a Weekly journal of practical inforination. art. ScIEvce. mechanics. Chemistry and manufactures.

TRANSMISSION OF POWER BY MEANS OF ELECTRICITY

M. Marcel Deprez has sent to the Academy of Sciences the following official report of the committee of the Munich Electric Exbibition on the experiments made on and after the 26th September, 1882, concerning the transmission of power by dynamo electric machines:
'By means of two dynamo-electric machines (Gramme system) of identically similar make, M. Marcel Deprez has transmitted to Munich (over a distance of 57 kilometers) along an iron telegraph wire of 4.5 millimeters diameter the power obtained at Miesbach from a steam engine. The re ceiving machine placed in the Crystal Palace supplied motive power during eight days to a centrifugal pump feeding a small waterfall of about 2.5 meters in height. The dy-namo-electric machines were set in motion for the first time on September 25, at 7 P.M., and according to the data of M. Datterer, an engineer appointed by the committee, the receiver placed at Munich rotated at a speed of 1,500 revolutions per minute; the brake used to measure the work was loaded with 1.5 kilogrammes.

A series of accidents, due to the fact that the machines were made for laboratory experiments and not for practical work, put a stop, at the end of eight days, to the till then entirely satisfactory working of the machines. The hoops which surrounded the ring of one of the machines broke; owing to this, the wires of the ring, 0.4 millimeter in diameter, were injured and bad to be reinsulated. In the small town far away from Miesbach these repairs could only be carried out under great difficulties, and necessitated much patience and perseverance on the part of M. Marcel Deprez's assistants.

- On October 9 and 10, when the Experiment Committee began to take measurements, a speed of only 1,600 revolutions per minute could be reached with the machine that had been repaired at Miesbach, the results obtained were, therefore, far less favorable than they would have been with the normal speed of 2,000 revolutions obtained at first. For some moments only during the measurements could the speed of 2,000 revolutions per minute be obtained, and,
again, at the commencement of the experiments one of the brushes of the machine came off, which produced an extra current, and completely destroyed the machine.
' The results obtained under these unfavorable circumstances, under the direction of Professors Dorn, Kittler, Pfeiffer, and Schröter, were as follows:
Resistance of the line.
Ohms.
950.2
Resistance of the machine at Miesbach
$453 \cdot 1$
$453 \cdot 4$

The only experiment which need be mentioned lasted five minutes, on October 10, between 12:32 and 12:37. The number of revolutions per minute of the machines was at Miesbach 1,611, and at Munich 752; the current at Miesbach was 0.519 ampere, and the electromotive force at Munich 850 volts. Summing up and taking into account the length of the line, but not losses, we have at Miesbach an electromotive force of 1,343 volts, a total electrical work of $1 \cdot 13$ horse power, work equal to 0.680 horse power expended in the circuit in heating, and 0.433 horse power at disposal for the transmission of a power which is equal to 38.9 per cent of the total electrical work. The direct estimation of the effective work, undertaken at the same time as the electrical measurements, did not give any exact result; in the first place, the Munich machine had not a sufficiently solid foundation, and part of the work was absorbed by the vi brations of the macbine; secondly, the Hefner-Alteneck dynamometer, used at Miesbach, was constructed to measure from 15 horse power upward, and the limits of error of this apparatus were too large for the small power required to be measured. The work obtained at the brake at Munich rose to 0.25 horse power; to this should be added the work absorbed by the vibrations of the machine. In the place of direct measurements a more exact value of the work expended at Miesbach will be arrived at by reckoning the electrical work expended at Miesbach and the return from the machine at Munich, which was identical with that at Miesbach, a return which can be estimated by the figures given above, taking into account the vibrations.
"As, owing to the numerous accidents indicated above,

Experiment Committee were much less favorable than those made during the first experiments, M. Marcel Deprez has decided to repeat the experiment at Munich, with more solidly made machines, and then only, we think, can a decisive judgment be given as to the return. Meanwhile, we do not hesitate to proclaim the success of the transmission of power from Miesbach to Munich as in every way an important event in the history of the technical applications of electricity."
We are indebted to La Lumière Electrique for our engraving, which represents the arrangement of the receiving apparatus as worked at the Munich Exbibition. For the above report we are indebted to the Electrician, which translates from L'Electricien.

The Mineral Industry in Spain.

According to statistics made for 1880 , Bilbao is at the head of the iron ore exporting provinces of Spain. In 1880 the exportation was about $1,350,000$ tons of ore; after this Murcia, Santander, and Almeria come, with about 375,000 tons. In the third place are Oviedo and Malaga, then Guipuzicoa, Huelva, and Navarra, and the last are Sevilla, Logrono, Badajoz, Pontevedra, Leon, Burgos, Teruel, Lugo, Guadalajara, Alicante, and Coruña. Huelva, Almeria, and Tarragona produce the principal quantities of manganese ore, Oviedo, Teruel, and Gerona take the second rank as producers of this mineral. Oviedo produces more than half of the coal of Spain. Cordova and Palencia produce only 75,000 tons; then Sevilla comes with about 25,000 tons, and then Leon, Gerona, Ciudad Real, and Burgos, with a great deal less. In 1880, 2,597 mines, ninety-three fields, and two escorials were explored, which is ninety-three fields and two escorials more than in 1879. The number of workmen em. ployed was 52,495 men, 1,222 women, and 6,188 boys. The number of steam engifes used was 372 , with 8,893 horse power, which shows an increase of fifty-eight engines, with 1,632 horse power, as compared with 1879 . The production of iron ore of 1880 compared with 1879 shows an increase of 905,000 tons; that of manganese ore, 208 tons; that of of 905,000 tons
coal, 80,000 tons

stimtifir gmmona

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at

No. 261 BROADWAY, NEW YORK.

O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year postage included...One copy, six months postage included
Clubs.-One extra copy of The Scientific American will be supplie gratis for every cub of five subscribers at $\$ 3.20$ each : additional copies a same proportionate rate. Postage prepaid.

MUNN \& CO. Brare

The Scientific American Supplement

is a distinct paper from the Scientific american. The supflement is issued weekly. Every number contains, 16 octavo pages, uniform in size $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by
all news dealers throughout the country all news dealers throughout the country
Coinbined Rates. - The Scientific American and Supplemint
will be sent for one year postage free. on
receipt of seven dollars. Both will be sent for one year postage tree. on receipt of
papers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, or registered letter
Address MUNN \& CO.. 261 Broadway, corner of Warren street, New Y
Scientific American Export Edition.
The Scienstaic ammrican Export Edition is a large and splendid perilarge quarto pages, profusely illustrated, embracing : (1.) Most of the plates and pages of the four preceding weekly issues of the Scunctific AMwrican, with its splendid engravings and valuable information: (2) Commercial, trade, and manufacturing announcements of leading houses. 'erms for Export Edition, 85.00 a year, sent prepaid to any part of the
world. Single copies 50 cents. Manufacturers and others who desir to secure foreign trade may have large, and handsomely displayed an nouncements published in this edition at a very moderate cost. The SCiENTIFIC Ambrican Export Edition has a large guaranteed circuo. 261 Broadway, corner of Warren street, New York Address MUNN

NEW YORK, SATURDAY, APRIL 14, 1883.

Contents.
(Illustrated articles are marked with an asterisik.)

TABLE OF CONTENT'S OF

THE SCIENTLFIC AMERICAN SUPPLEMENT

NO. 380,

For the Woek ending April 14, 1883.
Price 10 ceans. For sale by all newsdealers.
 The wordsworth cias Engine.
I. CHEMISTRY and metallurgy.-Bul's Iron and Steel di-

V. ELECTRICITY, LIGHT, HEATM, ETC.-On the Aurora Borealis.. 60
Electric Illumination by Reflection
Perfect Interference of Sound by Teiephone............................. 60
60 Perfect Interference of
A New Telephone Receiver. -3 by Tigures

In the Prodromal Stage.....................ily. of Typhoid Fever
 II. ARCHITECTURE.-New Grammar School at Heath, near

PETER COOPER

In the death of Peter Cooper New York loses a most valued citizen, whose noble life endeared him to every inhabitant almost as a personal friend. He was to this city what Benjamin Franklin was to Philadelphia; and there were various points of similarity in the general characteristics of these illustrious men.
Peter Cooper was born on the 12th of February, 1791, in the city of New York, and died on the 4 th of April, 1883, at his residence, No. 9 Lexington Avenue, in the 93d year of his age. He was a man of exemplary habits of life, to which is due, doubtless, the prolongation of his years. At the age of seventeen he was apprenticed to the business of coach making, for which, it is said, he received $\$ 25$ a year. After that he worked for $\$ 1.50$ a day at the business of making machines for shearing cloth. Having saved money enough to buy a right in the patent to manufacture these machines, he went into business on his own account and was patronized by Mr. Vassar, the founder of Vassar College. From bim Mr. Cooper received at one time $\$ 500$ for machines that he had made, and this may be said to be the principal capital, financially, on which his subsequent operations were based. From an early age he developed a great taste for mechanics, and was constantly inventing something new. When a lad he made a machine to utilize the power of the rising and falling tides. In early life he was led into the purchase of a glue factory in this city, which he carried on with such success that in due time Cooper's name for supplying the best article of glue to be had in the market became quite widely known, and the business grew into one of great importance.
Another portion of his attention was directed to the manu facture of iron. He built a rolling mill and iron furnaces in Baltimore, and from these sprang several very large iron rolling establishments in different parts of the country. He was among the first to roll iron girders for fireproof buildngs.
Many years ago he devised a method for propelling canal boats by a series of endless chains laid in the water on the bottom of the canal. This method has since been brought into use, and is known as the Belgium system. He devised a method of transporting coal from the mines to his furnaces by means of traveling wires and buckets. This system has also come into very extensive use. In 1824 or 1825 he designed a torpedo boat, which was moved by a screw propeller guided by steel wires which were unwound from a reel.
Peter Cooper's name is associated with the early railway history of this country in a curious manner. He built the first locomotive ever made in this country, and he was the first to draw passenger cars by steam. The earliest locomotive operated in this country was an imported machine from England, called the "Stourbridge Lion." It was tried at Honesdale, Pa., on the road of the Delaware and Hudson Canal Co., August 8, 1829, Horatio Allen being the engineer who worked the locomotive. The English engines, owing to long wheel base, were not well adapted to turn short curves, such as had been built on the Baltimore and Ohio roadthen a horse railroad.
Peter Cooper at this period owned some land in Baltimore, the enhanced value of which depended on the successful operation of the Baltimore and Ohio road; and, to demonstrate that a locomotive could be built which would run on the short curves of that road, Mr. Cooper, in 1829, built the "Tom Thumb," shown in our cut. This èngine had an upright boiler 20 inches diameter by 5 feet high fitted with gun barrels for flues. It had a single cylinder $31 / 4 \times 141 / 4$ inches. The engine drove a large gear which meshed into another smaller gear on the axle. The fire was urged by a fan driven by a belt. The driving wheels were $21 / 2$ feet in diameter. On the 28th of August, 1830, the first railroad car in America propelled by a locomotive was tested on the Baltimore and Ohio road. The wheels

PETER COOPER'S LOCOMOTIVE, 1829.
were " coned," and this was the first use of this principle as applied to car wheels, and was suggested by Mr. Knight, chief engineer of the road.
This engine (Cooper's) was coupled to a car in front of it containing a load of $41 / 2$ tons, including 24 passengers. The trip of 13 miles was made in 1 hour and 15 minutes, the best time for a single mile being $31 / 4$ minutes. The return trip of 13 miles was made in 57 minutes. While this engine of Mr. Cooper's was built for experiment solely, it was the first locomotive built in America.

Mr. Cooper's name is also prominently associated with the elegraphic history of this country. He had the foresight to discern the extriordinary importance of the electric tele
graph to business and to all the concerns of life when but few could see it. He boldly advanced large sums in the estabishment of telegraphic lines in the infancy of the business, when it was very difficult to find capitalists with sufficient confidence to take the risk. He was President of the North American Telegraph Company when it controlled more than half the lines in the country; as President of the New York, Newfoundland, and London Telegraph Company, he was ssociated with Marshal O. Roberts, Moses Taylor, Wilson G. Hunt, Cyrus W. Field, and others. They steadily paid out money for fourteen years, without return, in the confident hope of ultimately perfecting telegraphic communication between Europe and the United States. Peter Cooper was strong and ardent in his support of the enterprise, which was finally crowned with brilliant success.
One of the most prominent of the various benevolent enterprises with which Peter Cooper's name is associated is the institution known as the Cooper Union for the Advancement of Science and Art. The building occupies the whole of the small square at the junction of Fourth Avenue, Eighth Street, and Third Avenue. Mr. Cooper's avowed object in making his munificent gift was to supply to the industrious poor of New York what he had felt the need of himself-the opportunity for instruction in the industrial arts free of cost. He had attended school only half of each day in a single year, and he knew all the disadvantages under which the children of the poor are placed when they are kept out of school to assist in the support of the family by their labor. His plan, therefore, was to have an institution where most of the teaching should be done at night. He began the work when he was over sixty-four years old, and he lived to see many thousands of people filled with gratitude for his philanthropic efforts in their behalf. These efforts cost him bout a million and a half of dollars. He was not unfamiliar with the educational needs of the city. He early became a trustee of the Public School Society, and was its VicePresident when it was merged in the Board of Education. He was subsequently a School Commissioner, and saw how often the promising children of the poor were launched into active life without the preparation which would enable them to use their powers to advantage.
The cost of the building was $\$ 630,000$. The total cost of building and education has been about $\$ 2,000,000$. The work accomplished by this institution is comprehensive. It comprises regular courses of instruction at night, free to all who choose to attend, on social and political science, on the application of science to the useful occupations of life, and on such other branches of knowledge as will tend to improve and elevate the working classes. It includes, also, a school of design for females, which is now attended by over 300 pupils, a free reading room and library, galleries of art, collections of models of inventions, and a polytechnic school. The evening schools are attended by thousands of young men, who are mostly mechanics. They study engineering, mining, metallurgy, analytic and synthetic chemistry, architecture, drawing, and practical building. The institution includes a school of art for women, a school of wood engraving, and a school of photography, all of which are free. There are thirty instructors employed. During the past year 3,334 pupils passed through the different classes, many of whom came to New York from distant parts of the United States for the purpose of attending the institution. The expenses of keeping up all the departments last year were $\$ 50,973$.

MOSQUITOES VS. MALARIA

In a paper read before the Philosophical Society of Washington, Feb. 10, 1883, Dr. A. F. A. King endeavored to sustain the thesis that malarial disease is produced by the bites of insects inoculating the body with malarial poison, the mosquito being considered in this country the most, active agent.
Whatever value may be ascribed to mosquito bites as a cause of disease (and there are several very strong and, to our mind, fatal objections to the theory, and especially the fact that malaria prevails at seasons when no mosquitoes occur), it is interesting to observe how the properties and phenomena usually ascribed to malarial vapors become susceptible of explanation on the above insect theory, and how easily coincidences are made out. In the course of his remarks he presented the following series of twenty statements culled from leading medical authorities, in relation to malaria, and which, he maintained, are explicable on the mosquito theory.

1st. Malaria affects by preference low and moist localties. Such localities are the natural abode of mosquitoes. 2d. Malaria is s̀eldom developed at a lower temperature than $60^{\circ} \mathrm{F}$.; neither are mosquitoes.
3d. The active agency of malaria is checked by a temperature of $32^{\circ} \mathrm{F}$. The same may be said of the mosquito. 4th. Malaria is most abundant and most virulent as we pproach the equator and the seacoast. So, under specified conditions, are mosquitoes.
5th. Malaria has an affinity for dense foliage, which has the power of accumatlating it, when lying in the course of winds blowing from malarious localities. Trees accumulate mosquitoes in the same manner.
6th. Forests and even woods have the power of obstructing malaria and of preventing its transmission under these circumstanees. So of mosquitoes.
7th. By atmospheric currents, malaria may be transported to considerable distances, probably as far as five miles. Mosquitoes also.

8th. Malaria may be developed in previously healthy places by turning up the soil, as in making excavations for the foundations of houses, tracks for railroads and beds for canals. Such excavations when containing stagnant water may also serve as mosquito nurseries.
9th. In certain localities malaria seems to be attracted and absorbed by bodies of water lying in the course of such winds as waft it from miasmatic source. Such bodies of water may also arrest the passage of the mosquito, under certain circumstances, as in the absence of a strong wind to waft them over
10th. Experience alone enables us to determine the pre sence or absence of malaria in any given locality. Conversely, the absence of the mosquito, it was claimed by Dr. King, appeared to prevent malarial disease.
11th. In proportion as countries previously malarious are cleared up and thickiy settled, periodical fevers disappear. The consequent better drainage, disappearance of underbrush, and the more free play of fly catching birds may also contribute to lessen mosquitoes.
12th. Malaria usually keeps near the surface of the earth; it is said to "hug the ground." The same is true of mosquitoes.
13th. Malaria is most dangerous when the sun is down, and seems to be almost inert during the day. The mosquito is active at night; at rest by day.
14th. The danger of exposure to malaria after sunset is greaty increased by the person exposed sleeping in the night air. Persons while awake brush away mosquitoes; those asleep submit to being bitten.
15 th . Of all human races the white is most sensitive to marsh fevers, and the black least so. The black man is less easily seen by the mosquito, and the odor and greasiness of his cutaneous secretions are assumed to be offensive to the insects.
16 h . In malarial districts the use of fire, both indoors and to those who sleep out, affords a comparative security fly into fires and lamps at the cost of life.
17th. The air of cities in some way renders the malarial poison innocuous, for though a malarial disease may be raging outside, it does not penetrate far into the interior. Mosquitoes also, during their nocturnal flight, will be arrested by the houses, fences, lamps, and fires of the suburbs, so as to be prevented from penetrating far into the interior of cities.
18th. Malarial diseases are most prevalent toward the latter part of the summer, and in the au
more plentiful auring those seasons.
19th. Malaria is arrested not only
19th. Malaria is arrested not only by trees, but by walls, fences, hills, rowts of houses, canvas curtains, gauze veils, mosquito nets, etc. So are mosquitoes.
20th. Malaria spares no age, but it affects infants much less frequently than adults. Infants, however, from the care with which they are housed and covered with gauze to keep off house flies, and also shielded from mosquito bites.
C. V. R.

the extermination of venomous serpents,

The appalling destruction of life by snake bite in India has for many years caused the minds of learned and ingenious men to be exercised in quest of some remedy which shall effectually cope with so terrible an evil. That their efforts have hitberto been directed rather toward discovering an antidote for the venom than to what is proverbially better than cure, viz., prevention, or, in other words, the extermination of the reptiles themselves, is not to be wondered at when collateral circumstances are taken into account-the exuberance of
vegetation and smaller forms of animal life which afford the creatures shelter and sustenance, even in the immediate vicinity of human habitations; the intense susceptibility of the natives, both to the accident of the bite and its fatality, from various causes; their religious prejudices, which, at the outset, greatly hamper the success of Government rewards
for the slaughter of certain species, as proposed by Sir for the slaughter of certain species, as proposed by Si
Joseph Fayrer; and the fact that the multiplicity of venoms as well as species has only recently been recognized. The dense population, tolerance if not encouragement of the cobra, the habit of walking barefoot and consequent liability to be bitten on the ankle (the most dangerous situation in the body, owing to the large size and superficial position of the veins in that region), the low physique and apathy of the Hindoo, which cause him to lie down and die or trust to "clarms" instead of resorting to prompt and vigorous mea-sures-all these and many other conditions contribute their iflnuence in keeping up the enormous death rate in India. As to the serpents themselves, many western species, especially among the Crotalidue, are to the full as deadly as the krait, cobra, or daboia.
In a recent number of the Scientific American, it was suggested that the snakes might be lured to their own de struction by means of traps or the bait of poisoned food; or that some snare might be devised wherein they could be captured alive and so handed over to the authorities for kill-
ing by those castes whose tenets do not permit them to practice serpenticide. With regard to the first two proposals, it is to be feared that they offer little prospect of success. When we consider the character of their natural haunts-dense jungle or the crevices of rocks-and the difficulty of setting traps there, their uncertain rovings, and the special reasons
which militate against the ordinary mechanical principles of such instruments (as the great distribution of their bodily weight, peculiarity of movement, and possibility of egress
as well as ingress through small apertures), it will be seen that a specimen secured in this way would be as great a curiosity as the occasional sea gull which is reported as being caught by an oyster. Mr. Frank Buckland, ho wever, has put on record a story which he heard about a cobra de capello being drawn from underneath the flooring of a bungalow by a fish hook and line, baited with a small frog.
Any scheme involving the administration of poison is even less hopeful, seeing that they can rarely, if ever, be persuaded to take any but living food. In the very doubtful event of some powerful drug thrown into a pond to which they are known to resort proving fatal to them, for every snake so destroyed there would be hundreds of other animals scat tered around. Not only would it be next to impossible to get them to swallow poison, but they are extremely tolerant of its action when it is taken. Some time ago the writer wished to kill a captive rattlesnake (Crotalus horridus) by this method, and with that intent poured two drachms of Scheele's prassic acid down its throat. Scheele's preparation contains four per ceat of the anhydrous gas, and the quantity was sufficient to kill at least twelve men in a few seconds. On the reptile it produced no apparent result whatever ; the box, small and compactly made of thick wood with a tightly fitting slide, was closed directly the dose was swallowed, so that the occupant had the full benefit of the intensely sedative fumes. Four drachms more only served to make it a trifle dull and lethargic, and an ounce of chloroform in addition was given before it suc-
cumbed. I should mention that this rattlesnake was rather cold and torpid at the time, in which state it would be less eceptive of toxæmic influences.
Possibly a pitfall of some sort would be the most likely nstitution to diminish the number of serpents in its neigh borhood appreciably. A friend of mine, living in Brazil had a large disused cistern near his house. The masonry was cracked, and allowed the water to leak away, but sufficient moisture remained at one end to provide for a colony of frogs and to form a drinking trough for birds and smal beasts. Into this tank snakes often found their way, per haps attracted by the prospect of food, perhaps simply over balancing themselves at the edge, and were unable to scale the smooth plastered walls and make their escape. One
morning between twenty and thirty little new-born jararacas (Craspedocephalus atrox)-a most venomous species-were discovered in the prison. The mother must have been a huge specimen, for she had taken advantage of an inequality of surface high up on the side of the cistern to aid her in getting out. Now, a structure of this kind sunk below the level of the ground in an infested district, and furnished with water, frogs, and a cage of rats, or some such small
deer-necessarily protected by a cage to preserve them from other than ophidian marauders-might usefully co-operate with the active endeavors of the Government snake hunters, whose establishment is proposed, and who would visit the inclosure daily and add its nocturnal harvest to their spoils. This, again, would meet the views of those sects who are prohibited from killing; but it should be noted that the mild Hindoo is already fully alive to the desirability of reaping the proffered annas without prejudice to his spiritual welfare, and hatches all the snakes' eggs he can find by means of artificial warmth in earthen pots, feeding the young ones until they are big enough to earn the tariff reward.
For every one that may be expected to find its way into a trap, however arranged, a dozen might certainly be taken, living or dead, by those who would make a business of pursuit ; and for capturing them alive there is no safer or better appliance than the "twitch." This consists of a simple loop of string passed through an eye at the end of a long crooked stick, and controlled by the hand. Direclly a snake is seen it is hooked out into the open, if need be, away from all shelter, the noose dropped over its head and drawn up tight, and in that way it can be carried, powerless to do harm, or deposited in any receptacle which is ready for it. Collectors, too, would find this little apparatus far more practicable than the net or tongs. Places likely to form a resort for the deposition of eggs--situations which combine warmth, moisture, and protection, as a rule-should be diligently explored; and rocks or other fastnesses known to be their favorite breéding grounds should, if possible, be frequently disturbed by blasting. Catlin relates that near Wilkesbarre, in Pennsylvania, there was a cavern in the mountains inaccessible to man known as Rattlesnake Den by reason of the enormous numbers of those reptiles which made it their abode. To such an extent did they swarm in that locality that, although five or six bundred would sometimes be slain in a day by the expeditions organized for the purpose, in which the author took part, the bulk of the Crotaline settlers always managed to reach their lair in safety. On one of these battue days a happy thought struck Catlin. He had caught a rattlesnake uninjured, and while one of his companions pressed its head to the ground with a stick, he tied his powder-flask to the creature's tail and attached a slow match thereto. As soon as it was released
the serpent immediately sped away to the cavern, dragring the flask behind it. A tremendous explosion presently folowed, and death reigned triumphant in Rattlesnake Den. In all probability, the acclimation or encouragement of certain animals which seek out snakes as their favorite food will do more toward effecting their extermination than anything else. The mongoose enjoys a reputed pre-eminence in this respect which is quite undeserved-it need hardly be said that the "antipathy" which it is supposed to entertain
toward its prey is a chimera born of an argument by anal-
ogy to human prejudices. The ichneumon hunts snakes to eat them; so do various foxes, tayras, rats, civets, grisons, weasles, genets, paradoxures, and other members of the Viverrideo and Mustelide. Still more addicted to an ophidian diet are pigs; it is said that Mauritius was cleared of veno mous species by a number of wild hogs turned loose there. Toads, frogs, fish, lizards, newts, and even slow worms devour young soakes; indeed, it is only their popularity as an article of food that serves to restrain their increase, for they are produced in broods of from twenty to a hundred or more. But their greatest enemies are birds. Peacocks, in particular, will desert the home where they are fed in a disrict abounding with snakes; not long ago, six pairs of pea owl were employed to get rid of the vipers on an island off the west coast of Scotland, which they rendered almost uninhabitable by their abundance. Storks, pelicans, cassowaries, sunbitterns, cranes, falcons, and some vultures are also perpetually on the lookout for suakes, while the scienific title of the secretary bird, Serpentarius reptilivorus, sufficiently indicates its proclivities.

Watford, Herts, Eng.

Running as an Exercise.

Among the means which nature has bestowed on animals in general for the preservation and enjoyment of life, running, says Mercurialis, is the most important. Since, then, it is pointed out to us by nature, it must be in a bigh degree innocent. It is very singular that we should apparently do all we can-which, fortunately, is not much-to make our children unlearn the art of running. Our earliest physical treatment of them seems calculated to destroy their aptitude for it ; in a little time, it is too often the case that the city boy scarcely dares look as if he wished to run, we prohibit it so strongly as vulgar, and when he is more grown up gentility steps in and prohibits it altogether. Medical prejudices and our own convenience contribute likewise their share, and never allow our children, boys and girls, to acquire an art innocent of itself and necessary to all. It is possible that a person may get injury from running, but the fault is not in the exercise, but in the person who runs without having had proper training and practice
Negroes and Indians in a state of nature run daily in pursuit of game for food with a facility at which we are astonished, but they are not more liaible to consumption on this account than those beasts that are so famed for swiftness. The body of no animal seems better adapted to running than man's. The nobler parts, which might be injured by an immoderate reflux of blood, are uppermost, and the laws of gravitation assist in propelling the runner forward. He has little to do but to strengthen his limbs by practice and concentrate bis mind on the effort, and there is nothing severe in this, as experience has shown. Indeed, running may be made very beneficial to the lungs, and perhaps there is nothing better calculated to strengthen these organs, in those who are shortwinded, than gradual, careful training in this almost lost art. "As soon as children are expert in walking, turning, and the like," says the sagacious Frank, "running races under proper precautions is an excellent exercise for them." The principal objectṣ of this exercise are to strengthen the limbs, develop the lungs, exercise the will, and promote the circulation of the blood.
Running was so highly esteemed by the old Greeks, that Homer observed that no man could acquire greater fame than by being strong in his hands, feet, and limbs ; Plato recommends running, not only to boys and girls, but to men ; Seneca, who expresses strong disapprobation of athletics, recommends running to Lucilius for exercise. The following rules may be observed:
Running should only be practiced in cool weather; as, for instance, in the late fall, winter, and early spring months.
The clothing should be light, the head bare, and the neck uncovered. As soon as the exercise is finished, warm clothing should be put on and gentle exercise continued for some time. It is not necessary to have a race course. The teacher of a school may take his pupils into the fields and find suitable ground for them. Then his pupils may exercise their bodies in olher ways, acquire strength, agility, health, and the capacity of continued exertion ; the will is brought into play vigorously, which is a great aid in the battle of life.
Care must be taken not to overdo, and thus, perhaps for life, weaken or injure the heart. The race, at first, should be short and frequently repeated, rather than long, and full speed should not be attempted for some time.
Running is well adapted to young and middle aged persons, but not to those who are fat. Sedentary persons may
find great benefit in it after the day's work is ended. If they live in cities, a quiet spot in the park may be selected, and short trials adapted to the strength entered into. Invalids may do the same thing, only they must be more careful than the robust never to over-exert themselves.
Girls may run as well as boys, and, while they cannot go so fast, they can race much more gracefully and beautifully. Indeed, there can be few more attractive sights than that of a race between beautiful girls from ten to twelve years of age. After puberty, the clange in the formation of the bones of the pelvis in girls renders running less easy and graceful. In ancient Greece girls were trained to run races as well as boys, and to their superb physical culture was in great part due the grandeur and beauty of Greek life during the years of their ascendency. The modern style of dress for girls after puberty is also entirely unsuited to running.-Herald of Health.

Some time since, Mr. W. H. Symoñs exhibited at the Royal Microscopical Society a hot and cold stage for the microscope, by means of which the exact temperature at which different starch cells swell or tumefy could be observed. By means of this instrument this observer determined the tumefaction point of a num ber of different starches, and as some of them are largely used by brewers, we give his results:

Starch.	swolle
tato.	
Sago ...	
$\stackrel{\text { Bermuda a }}{ }$	
Wheat	
Maize.	

A few
ssoblen.
$55^{\circ} \mathrm{C}$
$64^{\circ} \mathrm{C}$
$62^{\circ} \mathrm{C}$
$60^{\circ} \mathrm{C}$
$65^{\circ} \mathrm{C}$
$65^{\circ} \mathrm{C}$
$70^{\circ} \mathrm{C}$.
Majority
swolien.
$60^{\circ} \mathrm{C}$.
$68^{\circ} \mathrm{C}$.
$69^{\circ} \mathrm{C}$.
$65^{\circ} \mathrm{C}$.
$77^{\circ} \mathrm{C}$
$70^{\circ} \mathrm{C}$.
$75^{\circ} \mathrm{C}$.

It will be observed that, as a rule, the largest starch cells tumefy at the lowest tem perature; and in accordance with this, rice requires the highest temperature of all the starches experimented on for the complete tumefaction of its cells. It was further proved by Mr. Symons that prolonged exposure to a temperature a littie below that of tumefaction not only does not tumefy the granules, but enables them to bear a slightly higher temperature than they otherwise would do. When starch granules are gradually heated, the majority do not burst their integument by splitting it from the nucleus in all directions, as when they are subjected to a sudden rise of temperature, but a small bladder-like process is thrown out near the nucleus; and if the temperature be kept constant the swelling increases, although still confined to that portion of the granule, bursts, the granulose oozing out, and if sufficient time be allowed, the integument, still retaining the original size and shape of the truncated granule, is all that is left.

MACHINE FOR EXAMINING GOODS

One of the most important duties in a mill or warehouse is that of examining the goods made or bought. With the best of machines and the most careful workmen faults and defects may occur, but, considering that all machines are not always perfect, and that all work people are at best ouly human, we must be prepared to find in every class of goods faulty parts. To detect this, to put the faulty pieces aside in order to draw the attention of the delinquent to them, and, if necessary, to fine himi or her, \imath nd also to mark the goods as damaged and indicate a certain allowance on them -these are functions which ought to be intrusted to vigilant persons, and the task of examining the goods ought to be made as easy as possible.
In most cases the cloth is laid upon a table before a window, and layer after layer turned over by hand, which is not only a tiring but also a tedious proceeding, and, on that ac count, liable to he done sometimes inefficiently. We have, therefore, in many places seen a roller affixed to the ceiling of the room, and the cloth drawn over it by hand; this, when done before or behind a window, as the goods may require, shows all faults of weaving, but not always those of dyeing. A foreign machine maker has carried this arrangement a little further, and constructed a machine for the purpose, which is driven by a strap, so that the examiner has only to attend to his duty, and, his hands being free, can mark the cloth or brush if up, or otherwise attend to it more closely.
The construction of the machine will be easily understood; it is shown as placed before a window; the cloth is laid before it ou a board, then passes upward through a couple of drag rollers, over a guide roller, and then in front and over a strong sheet of plate glass, and then over a pair of upper rollers down to the floor behind the examiner. The latter thus sees through the cloth as it passes the glass plate, and is able to detect all faults and blemishes of weaving; by means of a treadle he can put a brake on and stop the course of the cloth any moment, for the purpose of marking a faulty place or other reason, and his work being thus performed without bodily exertion, can be more thoroughly relied upon.
In our illustration the machine is shown driven by a strap, which is the most convenient arrangement in a mill; but as much of the work of examining goods is performed in warebouses, the machine is also made to be turned by a treadle, which the examiner has, in that case, to work by his foot, and thus can also stop the machine when required. The Textile Manufacturer

Heating by Acetate of Soda.
The heating of small pits and greenhouses is, in pite of the numberless apparatus in use, a source of trouble. To such folk-and their number is le-gion-the new plan of heating by acetate of soda seems as if it might be developed into something serviceable. According to an article in Nature, the plan is largely adopted on the London and North West ern Railway for foot warmers.
The duration of heat in a warming pan with acetate of soda is claimed to be four times that of hot water alone. This is due to the amount of heat required in the first in stance to change the acetate of soda from a solid to a liquid state, which heat is liberated as the acetate gradually resumes the solid form. It is stated that only about half the heat is required to produce the same effect as in the case of
bot water. The acetate does not require to be renewed ex cept at long intervals. To restore the heat in the pans after cooling, they have simply to be plunged in boiling water for balf an hour.

ROBERT'S AUTOMATIC RAIN WATER SEPARATOR.
In a goodly number of countries where water is scarc the precaution is taken to collect rain water in cisterns, whence it is drawn in measure as it may be needed. I

robert's automatic rain water separator
ertain slightly favored countries such water constitute nearly the sole resource of the inhabitants. It will be understood, then, how important it is to collect it, and espe cially to preserve it. The first and greatest precaution to be taken is to admit intothe storage reservoir only the second water, for the time which elapses between successive showers allows the roofs and other surfaces that collect the water to become dirty and thus foul the first water that falls And such water, if care be not taken to lead it into the drain will dirty and pollute the entire quantity stirred up. The Robert separator is designed to overcome the above
former of these, which is connected with the bottom of the leader, carries a movable perforated disk for arresting the solid particles, and an outlet, B, at the lower part. The separator, which is movable around a horizontal axis, is seen at C, and is divided into small compartments, D, into which falls the first rain water. E is an orifice proportioned to the surface of the roof, F is a wider orifice to permit the flow of water during ordinary rains, and G is a discharge pipe. During heavy rains the water fills the compartment, D, and bows over the upper orifice of the discharge pipe. H is a small orifice in the partition behind the pipe, G . When the entire amount of water that has fallen is unable to flow through E , it rises in the compartment, D , and, passing through the orifice, H, slowly fills the compartment, I. The apparatus is then inclined as shown in the figure, and the clean water changes its direction, passes through K , and enters the cistern. L is a small aperture near the bottom of the compartment, I , which permits the latter to empty, and M is a pipe through which flow the last drops of water when the rain ceases. N is a hook which prevents the separator from swinging and permits the whole of the water being sent to the drain when, for any reason whatever (a repair of the cistern, for example), it is desired to admit no more rain water.
When the apparatus is empty and the water begins to fall the latter is sent to the drain; but, as soon as the water increases, and the time has elapsed necessary to wash the roof, it flows through H , fills the compartment, I , and tilts the apparatus, and then begins to flow tirrough K to the cistern. When the rain ceases, the compartments empty and the apparatus tilts anew to prepare itself to send to the drain the first water of the next shower, and so on. Everything is arranged, then, so that the cistern shall receive only clean water which has been freed from every kind of impurity that fouls the roof.--La Nature.

Test for Ammonia.

A sensitive test for gaseous ammonia is proposed by Gustave Kroupa. He dissolves magenta in water, and gradually adds dilute sulphuric acid, until the yellowish color passes into a yellowish-brown. Unsized paper is saturated with this solution, and then assumes a yellowish color, becoming crimson on exposure to the vapor of ammonia. This test is declared to be exceedingly sensitive, and as simple and easy to prepare as turmeric paper. The magenta test papers must be preserved from contact with the air, in closelystoppered bottles; and it is not stated whether the test must be made wet or dry, or what minimum proportion of ammonia will be detected thereby, in order that it might be seen whether the new test possesses any advantages in this respect on the universally used turmeric test.

Examining Trainmen for Promotion.
A Jersey City paper gives the following account of the way promotions are made on the New York Division of the Pennsylvania Railroad: For the past three weeks twentynine brakemen and baggage masters on the Pennsylvania Railroad have been attending school in the reading room of the Jersey City depot. In anticipation of a big passenger business the coming spring and summer, the company has thought fit to supply itsclf with more conductors. Capt. Osborn, the ticket receiver at Jersey City, who has the railroad ticket business at his finger's end, is instructing the class of twenty-nine men. He shows the men the privileges accorded the different classes of tickets, and how to act when a passenger tenders a ticket which is worthless for passage.
Captain Osborn will soon begin to examine the twenty-nine men. . This will take two weeks at least. A number of the men have been brakemen for ten or twelve years.
After each one in the class has undergone a rigid examination, Captain Osborn will recommend about ten of those who pass the best examination. The names he selects will be referred to Mr. Pettit, the superintendent. These men will then be sent to the general office of the company, on Fourth Street, where they will be subjected to another examination of a week's duration, which will be conducted by an examining board appointed by Max Riebenack, the general auditor of passenger receipts. This is the final examination, which decides the fate of the aspirant in the ticket technicalities of the position. After this the candidates for conductorships who have passed at the Fourth Street office go back to Jersey City, where Mr. Adams, the trainmaster, takes them in hand, and finds out what they know about transportation, how they would act to prevent accident, and what they would do in case of a smash up. If they pass in this branch, then they receive their commissions as conductors. As there are bundreds of different kinds of tickets, whose privileges and value are of several conditions, and the

MACHINE FOR EXAMINING GOODS.

named annoyance automatically and regularly. It prevents
the first rain water that has washed the roofs and putters, from entering the cistern, and leads it into a special reservoir or carries it to the drain.
The annexed figure will permit the very simple arrangement of the apparatus and its mode of operation to be readily understood. It is situated at the base of the leader, and its dimensions vary with the superficies of the roof to be
drained. It includes a stationary and a movable part. The
knowledge required of the aspirant as to transportation is very intricate, a man has to have a good head to get through. He must be possessed of natural intelligence, and must have acquired a vast amount of experience before he can bope to be made a conductor.

An International Exhibition will be opened at Calcutta next December. Two thousand square feet of space have next December. Two thousand squar
been reserved for American exhibitors.

Heat and Magnetism.

I. Pilleux has lately called attention to the heating of iron during its magnetization. The fact had been previously observed by D. Tommasi in some researches, which are not yet published, upon the comparative study of the chemical properties of ordinary iron and of magnetized iron. In order to obtain a constant magnetic intensity, he employed an electromagnet of a single . branch in place of an ordinary magnet. When the current, even if it was produced by a weak battery, had traversed the coil for some hours, the magnetized bar became perceptibly warm. He at first atmagnetized bar became perceptibly warm. He at first at-
tributed the heating of the iron to the heating of the coil; but he was greatly astonished, one day, when he had removed the bar in order to clean it and had forgotten to interrupt the current, to find that the coil was not heated at all.--Les Mondes.

IMPROVED TRICYCLES.

In the "Leicester Safety" tricycle the rider is placed upon a saddle vertically above the pedals, and can therefore

the "leicester safety" tricycle.

employ the effectual downward thrust so approved of by the medical profession. He has before him a safety bar upon which he may rest his hands, from which he may steer and apply the brakes, and which also serves to prevent his falling forward when moving down hill. The tricycle is a front steerer, which adds still more to its safety in the descent of bills. The gearing has the advantages of backward and forward double driving combined in one cen tral endless chain passing from the pedal crank to the axle. Steering is effected loy the front wheel, which, from the construction of the entire machine, must always have a large percentage of the rider's weight pressing upon it to insure its efficacy. Behind the rider, to prevent all possibility of a fall backward, is a bar or tail, which adds also to safety in mounting and dismounting. The brakes act upon the tires of the driving wheels by a movement of the wrists, the right or left being applied as desired, or both together, while the steering can be effected at the same time, and without moving either hand from the safety bar.
In order to provide a tricycle for use in India and other countries where native labor is abundant, and the climate such that a European'finds all outdoor exercise impossible, a tricycle has been devised to be propelled by cooly power, which our engraving clearly shows. The brake is applied to a drum on the gearing box. The standard size of the driving wheels is 48 inches, and these can be geared either level or slightly down; for hilly countries the latter is recommended. It is made single to seat one European, driven by one cooly, or in a double form to seat two Europeans, propelled by two coolies. The native driver sits behind, pedaling and steering the machine, which becomes, as a matter of fact, a cheap kind of carriage, requiring no horses, and no stabling or coach house.

A Place where They Have no Flies.

A correspondent of Science says: I remember, years ago, seeing a dried specimen of the house fly sent to Boston in a letter, as a great rarity therethe only one the sender had seen in a year's residence in Manila. As this is one of the constant accompaniments of man, and a sure sign of his presence or vicinity, I was at a loss to account for its absence. It is not even found in the sugar yards in any great numbers. I now see why it should be so rare, viz., because it could not of itself paśs over so rare, viz., because it could not of itself pass over
the six huudred miles of the windy China sea; and the few which might be transported on vessels, if the few which might be transported on vessels, if
they got ashore from their distant anchorage, would they got ashore from their distant anchorage, would
be prevented from multiplying by their numerous enemies-bats, spiders, birds, lizards, and other reptiles. Some days I would not see one, and rarely more than two, around the table. Were they common, with the other insect pests, life would be almost unendurable in these islands.

It is now proposed to make nails from Bessemer steel. It is claimed that when made at half the weight of iron, the nail is stiff enough to be driven into the hardest wood, and tough enough to clinch.

Progress of Quarrying.

The Compendium of the Tenth Census, recently issued, contains some figures which will serve to give an idea of the magnitude of the quarrying interests of the country, which in 1880 gave employment to 39,723 men, 8,059 horses, and 851 mules; had 339 machines for quarrying, $2,290 \mathrm{ma}$ chines for hoisting, 1,308 machines for dressing, and used $\$ 192,175$ worth of explosives. The capital invested is given at $\$ 25,414,497$, and the value of the product in the census year at $\$ 18,356,055$, there being 1,525 quarries in all. Mar ble and limestone lead the list with $65,523,965$ cubic feet, followed by the sandstone quarries with $24,776,930$ cubic feet; crystalline silicious rocks, with $5,188,998$ cubic feet and slate, with 457,267 squares, or $4,572,670$ cubic feet.

Professor Henry in Bronze.

Story's bronze statue of Professor Henry, for which Congress appropriated $\$ 15,000$, will be unveiled April 19 in the center of a small triangle at the northwest of the Smithsonian building, Washington. It is seven feet high, and stands on a top and base of Quincy grey granite, with a center of red Beach granite, which adds eight feet to the height of the statue. The name Joseph Heury is cut on the red granite in plain Roman letters, forming the only inscription. The Professor is represented as standing in a meditative mood, Professor is represented as standing in a meditative mood,
with one hand resting on a support, and wears an academic with one hand resting on a support, and wears an academic
gown. The face and figure were modeled in Italy from gown. The face and figure were modeled in Italy from
photographs and a cast of his face and bust made by the photographs and a cast of his face and bust made by the
late Clark Mills. President Porter will make the oration.

Nickel for Galvanoplastic Purposes.

Nothing is easier, says the Central Zeitung fur Optik und Mechanik, than to cover metals with a thin film of nickel by electric deposition. If we wished to make a very much thicker deposit various difficulties stood in the way, which have but recently been overcome by Boudraux and his son in Paris.
It is generaliy known that if we attempt to precipitate nickel upon a plaster cast, or wax mould, covered with graphite, as we do copper in electrotyping, as soon as the nickel has attained a certain thickness it cracks loose from the mould and rolls up. This phenomenon is explained as being due to the absorption of hydrogen (occlusion) by the crystalline nickel, which is very porous in comparison with ordinary cast nickel, and is able to occlude 160 times its own volume of hydrogen in twelve hours, when it forms the negative pole of quite a strong galvanic battery.
The above named Parisians have removed this obstacle and are now able to precipitate nickel electrolytically to any desired thickness. At the Paris electrical exhibition they exhibited electrotypes, and art reproductions, which were not plated on the articles but upon casts taken therefrom, the nickel being more tban a millimeter thick. An electrotype has several important advantages over mere nickel plating, the most important of which is that by the former all the fine lines and the delicacy of expression are preserved while they are more or less destroyed by nickel plating.
Nickel offers three times as much resistance to mechanical pressure as copper, while the density of the two metals is nearly the same (copper 8.90 , nickel 8.57), so that a copy of any work of art when made of nickel can be made much thinner than if made of copper, and yet have the same
postage stamps, bank notes, etc. Nickel stercotypes would have special value for color printing, because many kinde of colored ink attack copper (vermilion, for example) and destroy the plates, while their own brilliancy is also affected by the copper faced type and plates.-Deut. Industrie Zeitung.

IMPROVED FIRE ESCAPE.

We give an engraving of a light, portable, and simple de vice for receiving persons jumping from upper portions of buildings in case of fire. The apparatus consists of a blanket made of two or more thicknesses of strong canvas provided with coil spring supports and sustained by a folding adjustable frame of wood.
The frame has four legs pivoted together near the middle, and the canvas blanket is secured to a rectangular frame formed of wooden rods linked together at the ends and pro-

JOLLEY'S FIRE ESCAPE.
vided with rings capable of receiving the upper ends of the vided
legs.
The

The blanket has pockets containing coil springs, which are attached by their outer ends to the rods forming the frame of the blanket. These springs serve to assist the blanket in resisting the shock of the person falling into it. The legs of the escape are made adjustable to adapt it to a rough or sloping surface, and a ladder is provided to enalle persons to reach the ground from the blanket. The fire escape is very light and portable, readily set up, and affords a yielding surface upon which people may jump without injury.
This invention has been patented by Dr. William F. Jolley, of Middlesex, N. Y., who may be addressed for further information.

Use of Hand Tools in the Schools.
Speaking of the refusal of the Massachusetts House of Representatives to pass to a third reading the measure which instruction in the elementary use of hand tools as a part of the public school course, the Boston Journal says: If the true aim of the school is in reality the preparation for active life, that aim cannot be accomplished by exclusive brain development, for even in the most clerical pursuits the hand must often come to the brain's assistance, and with practical skill be employed in practical uses.
How many of our graduates can drive a nail? How many can split firewood in the easiest way? How many can saw, plane, bore, glue, make a box? Many of our youth in the schools to day, who seem to lose their ordinary wits when a book is placed before them, would become master workmen with tools, if once given the opportunity of their use; and even the most studious scholars would rather gan than lose with this power over inanimate things which is won by the knowledge of the use of tools. Besides the advantage of manual skill, it has been shown by experience that intellectual training is assisted by a carefully arranged and systematic instruction in this branch of industrial science.
Undue attention to purely mental studies is diverted, the intelligence is aroused, and a healthful and revivifying change is brought about by active occupation. The testimony of physicians has shown the advantage to pupils, physically, in the use of tools. If the course of study is already crowded with different branches, there could easily be formed plans of either omitting a not indispensable study or of adapting the scheme of recitations to the addition of the tool practice. Results in Europe and in this country have proved that this course of
strength with much less weight. Copies in nickel cán be backed to any desired thickness by depositing copper on them by the galvanic current.
The highly valued qualities of nickel are these: It is as hard as steel, less oxidizable than silver, it is not acted upon by sulphides, it can be stretched, and is tenacious, it does not melt easily, and the prices are daily going down. Nickel would be very useful for stereotype plates from
which a great many impressions are to be taken, as for
elementary training ís in nowise a burden, but a benefit to instruction in the regular old time branches. As the educational science advances, new ideas work an improvement upon old methods. It is the spirit of the age to ennobie manual labor, and to teach the young to look upon citizenship through labor as a rigbt beyond the right of birth or wealth. If instruction in the hand working trades can assist in inculcating this true spirit of democracy, it is certainly the privilege of schools to supply the elements of instruction.

Naphthaline for Agricuitur

That a coal tar product should find use among farmers and pharmacists, as well as in surgery and dyeing, seems at first somewhat remarkable. Although naphthaline is found in coal tar, it is formed in even greater quantity when naphtha is subjected to a high temperature, and hence is abundantly produced by the process employed in enriching wate gas for illuminating purposes.
E. Fischer, of Strassburg, says, in the Pharmaceutische Centralhalle of Feb. 22, that one of the most striking characters of naphthaline is the fact that it is not injurious to man and the higher animals, whether breathed as gas or used in substance, externally or internally, while it has a very different action on the lower organisms, both vegetable and animal (fungi, insects, etc.), for they are not able to endure the action of the gas for any length of time.
These, however, are the very properties that a good antiseptic ought to possess. The most common impurity in naphthaline is phenol (carbolic acid), and this, of course, may make it dangerous tơ man.
To distinguish chemically pure naphthaline from that which contains phenol, a small quantity of it is mixed with very dilute caustic soda solution, boiled a short time, then cooled and filtered. If there was any phenol in the naphthaline it will be found in the filtrate, where it can be detected by acidifying slightly and adding bromine water. A white precipitate, or opalescence, due to bromophenol wil be formed if this impurity is present.
Experiments were made on dogs by rubbing their coats with powdered naphthaline all over. The sides and floor of the cage were strewed with it, yet they remained healthy and lively for days. Many persons dislike the smell of naphthaline at first, and in some it causes headache, but they very soon become accustomed to it, as was found in the surgical clinic at Strassburg, where much naphthaline has been used within a few months. Besides, the unpleasant.odor can be almost entirely concealed by adding a little oil of bergamot to the naphthaline powder.
The advantages offered by naphthaline as an antiseptic consist : 1. In the simplicity of its application. 2. In its absolute freedom from poisonous qualities, which is such contrast to carbolic acid, iodoform, and other aptiseptics. 3. In the low price, which must be taken into account in charity practice, in the country, and in the field. Ohlgard $\&$ Co., of Kehl on the Rhine, make chemically pure naphthaline, which sells for 1 mark per kilo., about 11 cents per pound.
Slnce naphthaline has been used in larger quantities in the surgical polyclinic at Strassburg, it has been observed that the annoyance from vermin bas decreased in a remarkable degree, and now there is scarcely a trace to be found of the fleas that were once so numerous there. It has likewise been employed against the other vermin, head lice, body lice, and especially the itch maggots (acari), and it was found that they, too, were destroyed by naphthaline.
If flies, mosquitoes, spiders, etc., are exposed to the action of naphthaline vapors, in a short time they become stupefied, and then die.
Naphtbaline has been used for many years as a protection against moths, both in museums, especially in the insect col lections, as well as by fur dealers and in domestic uses, and it might be employed in an analogous manner in summer against other insects.
Naphthaline is used successfully in garrisons to get the upper hand of insects, particularly bed bugs. It has been used with very good success as an antiseptic in the surgical clinics at Strassburg.
It seems to bave a very energetic action upon the lower rganisms of vegetable origin. It kills mould fungi ; fruit and vegetables do not mould in an atmosphere of naphthaline Since these vapors do not hurt men, even if breathed for a long time and in large quantities, it might be used for scarlet fever and diphtheria in children by strewing it abundantly over the floor of the sick room and through the beds of the patients. This precaution has no influence upon the course of the disease, except that it does not spread, as it very fre quently did ormerly
Fischer made some very interesting experiments in France Germany, and Spain upon the use of naphthaline for exter minating phylloxera. It is not necessary to use chemically pure naphthaline for this purpose, as the crude article answers as well. In the London market crude naphthaline costs about $\$ 6.25$ per ton ($2,200 \mathrm{lb}$.), and in Cologne it is worth $\$ 11.25$ per ton packed in barrels. These prices permit of its use on a large scale. The first experiments were made April, 1882, upon a vineyard at Bordeaux which had been almost totally ruined by the phylloxera. They generally do their chief damage by destroying the tender rootlets of the vine. Hence the roots of the affected vines were first exposed by digging a ditch along them. The ditch was then partly filled either with naphthaline or a mixture of naph thaline and earth, and then covered with earth. The naph thaline which is in contact with the roots volatilizes slowly its vapors are as destructive to the phylloxera as to other insects, while the plants themselves receive no injury worthy of mention. About 1 kilo. ($2 \frac{1}{5} \mathrm{lb}$) of naphthaline was ap plied to each vine. As early as June following the vines that had been treated thus exhibited a good growth. In September they were taken up to examine the condition of the roots. All of the plants, about seventy-five in number, bad already put forth new roots, which were perfectly free from phylloxera. The new roots were six or eight inches
long, had numerous fine fibers attached, and they were so numerous that it must be acknowledged that these vines had been rescued from the pest.
The roots of many other vines that had not received this treatment with naphthaline had absolutely no sound roots of this year's growth. On uncovering the roots to which it had been applied, a considerable quantity of naphthaline was found there yet in September, a proof that it volatilizes very slawly, and hence its action is very prolonged. It is probable that naphthaline will prove a means of entirely destroy ing the phylloxera.
The best method of applying it is to dig a trench six or eight inches deep around the vine, about a hand's breadth distant from it, then put in about a kilo. of naphthaline, and cover it up, stamping it down well, which prevents rapid aporation.
Naphthaline can also be employed as a prophylactic in regions threatened by phylloxera and also in transporting grape vines. Those which are merely threatened, but not yet attacked, would only require about one-fourth as much aphthaline, say one-balf pound. For transporting vines, the tight vessels in which they have to be shipped can be
disinfected by strewing naphthaline in them, which would destroy any phylloxera that might be present in the atmo sphere.

JUMPING SEEDS AND GALLS.

by prof. c. v. riley.

Having recently received some fresh specimens of so-called Mexican jumping seeds," or " Devil's beans," as they are popularly called, I took occasion, while they were yet active, to exhibit them to the Biological Society of Washington, with some remarks, of which I herewith give the substance : These seeds are somewhat triangular, or of the shape of convolvulus seeds, there being two flat sides meeting at an obuse triangle, and a convex one which has a medial carina. They not only roll from one side to another, but actually move by jerks and jumps, and will, when very active, jump at least a line from any object they may be resting on. The but I have often witnessed it

Carpocapsa saltitans: a, larva; b, pupa; c. motb, enlarged, the natura lengths indicated in hair line; d, wing of a pale variety; e, a seed showing pupa skin protruding; f, a seed showing hole of exit of the moth-both natural size. (After Riley.)

To the uninitiated these movements of a hard seed seem little less than miraculous. They are induced by a plump, whitish lepidopterous larva, which occupies about one-fifth of the interior, the occupied seed being in fact but a hollow shell with au inner. lining of silk which the larva bas spun. The larva looks very much like the common apple worm, and belongs in fact to the same genus. It resembles that species further in remaining for a long time in the full grown larva state before transforming, so that the seeds will keep up their motion throughout most of the winter months. When about to transform, which is usually in the months of January and February, it cuts a neat circular hole in the convex side of its house, fills the same neatly with a plug of silk, spins a loose tube, and transforms to the pupa state, the moth soon afterward pushing its way out from the little door prepared for it.
The moth was first described in 1857 as Carpocapsa saltitans, by Prof. J. O. Westwood,* and afterward as Carpoapsa dehaisiana by Mr. H. Lucas. \dagger
In regard to the plant on which these seeds occur there is much yet to learn, and I quote what Mr. G. W. Barnes, President of the San Diego Society of Natural History, wrote me in 1874 concerning it, in the hope that some of the botanists present may recognize it: "Arrow-weed (Yerba de fecha).-This is the name the shrub bears that produces the riangular seeds that during six or eight months have a con tinual jumping movement. The shrub is small, from four to six feet in height, branchy, and in the months of June and July yields the seeds, a pod containing three to five sceds. These seeds have each a little worm inside. The leaf of the plant is very similar to that of the " Garambullo," the only diference being in the size, this being a little larger. It is half an inch in length and a quarter of an inch in width, a little more or less. The bark of the shrub is ash colored, and the eaf is perfectly green during all the seasons. By merely stirring coffee or any drink with a small branch of it, it acts as an active cathartic. Taken in large doses it is an active poison, speedily causing death unless counteracted by ar antidote."
In a recent letter he states that be is informed that the

* Proc. Ashmolean Soc. of Oxford, 1857, t. iii., pp. 137-8; then Trans. Lond. Ent.
12, 909.
\dagger "Note sur les grains d'one Euphorbiacee de Mexique sautant au dessus du sol par les vibrations d’une larve de l'ordre des Lepidopteres
vivant en dedans."-Ann. Soc. Ent. de France, ser 3, t. vi.; Bull., pp. 10, visant en dedans." -Ann. Soc. Ent. de France, ser 3, t. vi.; Bull., pp. 10,
$33,44,1859$; t. vii., p. 561-6.
region of Mamos, in Sonora, is the only place where the plant grows; that the tree is about four feet high, and is a species of laurel with the leaves of a dark varnished green. "It bears the seeds only once in two years. The tree is called Brincador (jumper), and the seeds are called Brincaderos. The seeds are more quiet in fair weather, and lively on the approach of a storm."
Prof. Westwood mentions the fact that the plant is known by the Mexicans as "Colliguaja" ; and Prof. E, T. Cox, formerly State Geologist of Indiana, now living on the Pacific Coast, informs me that the shrub has a wood something like hazel or wahoo ; that the leaf is like a broad and short willow leaf. He confirms the statement as to its poisonous character : that a stick of the shrub when used by the natives to stir their "penola" (ground corn meal parched) purges; and that the shrub is used to poison arrow heads.

The plant is undoubtedly euphorbiaceous.
The peculiarity about this insect is that it is the only one of its order, so far as we know, which possesses this habit, and it is not easy to conceive of what benefit this habit can be other than the possible protection afforded by working into sheltered situations.
The true explanation of the movements of the larva by which the seed is made to jump was first given by me in the Transactions of the St. Louis Academy of Sciences, for December 6, 1875 (vol. iii., p. c. and ci.).

The jumping power exhibited in this "seed" is, however, trifling compared with that possessed in a little gall, and also caused by an insect. This gall, about the size of a mustard seed, and looking very much like a miniature acorn, is found in large numbers on the underside of the leaves of various oaks of the white oak group, and has been reported from Ohin, Indiana, Missouri, and California. It falls from a cavity in the leaves, very much as an acorn falls from its cup, and is sometimes so abundant that the ground beneath an infested tree is literally covered. It is produced by a little black cynips, which was described as Cynips saltatorius by Mr. Henry Edwards. The bounding motion is doubtless caused by the larva which lies curved within the gall, and very much on the same principle that the common cheese skipper (Piophtla casei) is known to spring or skip. Dr. W. H. Mussey, of Cincinnati, in a communication to the Natural History Society of that city, December, 1875, states the fact that such is the case, though members of the California Academy who have written on the subject assert that the motion is made by the pupa, which I think very improbable. At all events, the bounding motion is great, as the little gall may be thrown two or three inches from the earth; and there are few things more curious than to witness, I have done, a large number of these tiny galls in constant motion under a tree. They cause a noise upon the fallen leaves that may be likened to the pattering of rain.

Various Items.

Prof. Lackie in a recent paper read before the Royal Society, London, maintains that the scientific method of acquiring languages is to learn them in the same way that a child learns, conversationally; and this method should be employed in teaching Latin, Greek, Hebrew, as well as the modern languages. We are under the impression that this idea has been heretofore suggested.-The Royal Swedish Geographical Society has granted its gold medal to Mr. Stanley for African discoveries. - The Dutch Academy has given its gold medal, valued at $\$ 200$, to M. De Heen, for a work in five sections, relating to the "Physical and Chemical Properties of Simple and Compound Bodies."-M. Marx, an observer in Russia, has found what is believed to be cosmical matter, consisting of iron, nickel, and cobalt, in his pluviometer. This deposit was found after a heavy gale accompanied by snow and rain. It was observed near the time of the November meteors.-Baron Nordenskiold, the Arctic discoverer, is about to undertake an expedition to Greenland. He is to be accompanied by a complete scientific staff, and it is expected that his explorations will result in the acquisition of interesting knowledge. By the way, the Baron is reported to have applied to the Dutch Government, asking the payment to him of a reward of 25,000 gilders, equal to about $\$ 10,000$, which was offered by the Dutch, about three centuries ago, to whoever would discover a "Northeast passage." The Baron thinks that he has done so. He certainly succeeded in going through from the west to the east by way of the Arctic regions, but it took him two summers to accomplish the voyage. It is a question whether that can be considered a " Northeast passage," which requires the ship to be frozen up through a long Arctic winter, and bas been made only in one direction. Furthermore, the reward was addressed to the people then living, and it is questionable whether it would pass to future generations. In some of the States of this country it only requires six years to outlaw a claim. Three hundred years after date seems a long time in which to file an application. We are inclined to think there is some question whether the Baron will ever get the reward.-Mt. Etna is again in active eruption, and is throwing up quantities of red-hot lava which at night time is very luminous. There has been one very violent earthquake shock. This mountain, it will be remembered, is in the Island of Sicily, is 10,835 feet high, and for the last twenty-five hundred years has been celebrated for frequent eruptions. It is a veritable fountain of fire.-In a paper read before the Paris Academy of Sciences, M. Dareste states that he has been enabled to produce monstrosities of poultry by violently sbaking hens' eggs before hatching.

The Central Park Obelisk

To the Editor of the Scientific American:

We learn from your last number, through a letter of Mr. Cummins, of Buffalo, that the Egyptian Obelisk in Centra Park is not cut out of the granite quarries of that country, as was stated in your Supplement of 1881, but has been made from small pieces of granite ranging in size from that of a walnut to a grain of wheat, and all moulded and held together by some durable cement known and in use in the time of its erection. Mr. Cummins states that he could displace some of these pieces of granite lying near the surface of this stupendous amygdaloid with an ordinary steel pick.
This is all new to us, and contrary to our impressions on looking at the Obelisk, as it seemed to us to have been cut out of the native granite, still leaving the impression of the chisel on the face of the work; showing, moreover, that delicate and beautiful mingling of the hornblende, feldspar, and quartz in every part of the face of the Obelisk without the least appearance of any seams or bands of cement holding distinct and severed pieces of granite together, which, a best, would have given the work an appearance like to that of the amygdaloid or bracksea
In addition to this we have now before us a piece of the Obelisk.
When it was being removed from the vessel to where it now stands, a piece was spalled off of the base of the Obelisk and picked up by two beys, who gave it to a police officer he gave it to the police judge of his district, and by him was given to Judge Cady of this city, who gave it to us.
The fragment is about three inches long and two inche broad, and of a wedge like shape. It is a light drab syenite and contains large black crystals of hornblende, flesh colored feldspar, and limpid quartz.
It is rough and irregular on all sides but onc. On this it islevel, and shows the impressions made by the tools of the stone cutter.
It appears equally fresh on all sides, including the one showing the work of the chisel. Hence it must have formed a portion of an inside joint, where it has been protected from the weather. The quartz presents in one small spot a friable appearance, but it is supposed to have been caused by the great force that split this fragment out of the body of the Obelisk without any prior weakness in this part of the rock.
There is no cement in this fragment, nor has it been broken from anything to which it had been fastened by any adhesive substance.
Now, if the theory of Mr. C. be true-which is, that the entire Obelisk is moulded out of small pieces of syenite, held together by some durable adhesive matter-then this piece of the Obelisk must have been spalled out of the inside of one of the spalls used in moulding the column. And, moreover, the amygdaloid, after being set with cement, must have been ound to be untrue in some particulars, otherwise the marks of the stone cutter's chisel would not appear on the level side of the spall, as they now do. This was evidently done to fit the Obelisk on the foundation that must have been pre pared for its reception. If the Obelisk had been moulded on its fothndation, then the fragments of granite and the cement would have conformed themselves to the foundation as they were poured into the moulds upon it, and no cutting could have been done at the base, nor would any have been necessary to make the base of the column fit upon the foun dation. The syenite of this Obelisk gives great proof of its durability. It will last almost to an indefinite period of time, and as long in this country as any other with an equal amount of moisture and variation of temperature.
Perhaps there is no granite in this country as durable as that of the syenite of the Obelisk, or where the minerals of rock are so well balanced for durability as they are here. The Scotch granite is claimed to be quite as hard and dur able, but on a careful analysis is found to be lacking in some important particulars, and would become friable and ro away thousands of years before this Obelisk would show the least impression from time.
There are a few syenite mountains in the Ozak range of Missouri that in appearance and chemical tests prove to be equal to the granites of Egypt, but they are inaccessible and considered too hard to be worked so as to be put into market on a profit or in competition with softer or more friable granites that are being worked and are considered sufficient ly durable for all practical purposes. At all events, we are assured that the Obelisk is solid syenite, and will endure almost as long as time will last. This we could not expect if it were a mere amygdaloid.

Geo. W. Chin.
St. Louis, March 29, 1883.

Flying

T's the Editor of the Scientific American
I am greatly surprised to learn that my crude para graphs on "Flying" have attracted the attention of one so well qualified to discuss a difficult question, and to give a clear view from every standpoint surrounding it, as Mr. F. J. Patten, of the U. S Army, in the Scientific American of March 31. I am induced to say, bowever, that I think he is a little bit inclined to be sarcastic withal.
Mr. Patten says: " There s no use in being scientific by halves." Why, sir, I do not claim to be scientific, even by halves. Why, sir, I do not claim to be scientific, even by
a sixteenth. What I did say in regard to the comparative
trength of man and bird was more of an offspring of im pulse than of due reflection.
I do not pretend to know but very little about the question, anyway. I am very careful not to state a thing as a fact unless I know it to be true. I simply know that I can bear my weight, 190 pounds, and 25 pounds extra, on the balls of my toes without the slightest indication of pain. I can hang my weight on a bar by my chin ; I can put my feet under one bar and my legs over another, and from a horizontal position raise myself upright by the strength of my knee joints ; I can hang my whole weight by two of my ingers, while an equal amount of weight would crush an albatross to death. From these facts I conclude that the muscular strength of man is distributed all over his body while that of the bird is concentrated in its wing joints.
It was distinctly stated by the Engineer that the bird had as much muscular strength as a man, but Mr. Patten says 'It only means that they have greater proportional strength." Then again: "The bird can use a far greater proportional part in the exercise of those particular muscles adapted to ocomotion than man or anyertebrate animal can do.' That may be true, if ninety per cent of its strength is located there. But even that remains to be proved.
As to its "burning of carbon," that is a lantern that he has hung altogether too high for my short literary stature. I'll not meddle with it.
But for his " largest approximation to a flying machine that nature has given us," I will just simply cite this paragraph from Wells' Geology
"The size of the pterodactyl may be inferred from the circumstance that the wings of one specimen which bas been found must have had a spread of not less than twentyseven feet, while the spread of the wings of the great condor of the Andes--the largest of flying birds-does not exceed twelve feet.

Brooklyn, April, 1883.
Samoer، B. Goodsell.

Bronze Powder and Bronzing.

Bronze powder is finely pulverized metal or powder having metallic base, applied to the surface of various articles for the purpose of imparting a metallic color or luster.
Gold powder for bronzing is made by grinding leaf gold with honey, dissolving the mixture to obtain the gold by deposition, the honey water being decanted. German gold is a yellow alloy leaf similarly treated.
Mosaic gold is prepared by incorporating and grinding in, 16; flower of sulphur, 7; mercury, 8; and sal ammoniac, ; then subliming the amalgam. A flaky gold colored powder remains in the matrass.
Copper powder is obtained by saturating nitrous acid with copper, and then precipitating the copper by exposing ron bars in the solution.
Bisulphide of tin has a golden luster, flaky texture, and used for ornamental work, such as paper hangings, and as a substitute for gold leaf.
Dutch foil, reduced to a powder by grinding, is also used, nd powdered plumbago gives an iron colored shade.
Another kind is made from verdigris, 8; putty powder, ; borax, 2; niter, 2; bichloride of mercury, $1 / 4$; grind into paste with oil and fuse them together
Another (red) : sulph. copper, 100; carb. soda, 60; mix ad incorporate by beat; cool, powder, and add copper filings, 15 ; mix; keep at a white heat for twenty minutes; ool, powder, wash, and dry.
Bronzing is the process of giving a bronze like or antique metallic appearance to the surface of metals.
The processes vary; they may be classed as coating with metal alloy, coating with a metal in paste, solution, or vapor, corrosion, coating with a gum, applying bronze powder, and painting.
The modes vary with the material. The methods as to copper (some of them applicable to brass) are as follows:

1. The surface is cleaned, polished, and a paste of crocus powder and water applied to it. Apply heat to develop the color required.
2. Plumbago applied in the same manner. By applying ixtures of plumbago and crocus different shades are obtained.
3. The copper is exposed at athigh heat to the fumes of
4. The copper vessel is filled with water acidulated with hydrochloric acid, an amalgam of zinc and cream of tartar being added. Boil for a while. The two latter processes re more properly brassing.
Corrosion processes are as follows
Wash the cleaned copper with a dilute solution of sul phuret of potassium, or hydrosulphuret of ammonia is applied with a brush.
Apply a solution of verdigris, 2; sal ammoniac, 1; and vinegar, 16. Or, verdigris, 2 ; vermilion, 2; alứm, 5; sal ammoniac, 5 ; vinegar sufficient to form a thick paste. Blue vitriol inclines to dark brown, borax to yellow brown. Or, sal ammoniac, 1 ; cream tartar, 3; common salt, 3 ; hot water, 16 ; dissolve, and add nitrate of copper, 3 ; dissolved in water, 8 ; apply repeatedly with a brush. Or, salt of sorrel, , sal ammoniac, 3; distilled vinegar, 32; apply as above.
For iron: Clean the metal, and wash it or immerse it in a solution of sulphate of copper, or verdigris, when it will acquire a coating of copper.

The metal may be dipped in molten metal, copper, or its lloys
The polished metal-a gun barrel, for instance-may be
dipped in a solution of chloride of antimony and sulpbate of copper. This is browning.

The ordinary solution consists of aquafortis, 1; sweet spirits of niter, 1 ; blue vitriol, 4; tincture of the muriate of iron, 2 ; water, 32
The iron is cleaned, polished, and lacquered. The lacquer consists of shellac in alcohol, with or without the addition of saffron, annatto, aloes, or other coloring substances.
The iron is cleaned, polished, coated with linseed oil, and heated to develop the tint required.
For tin: Clean the castings, and wash them with a mixture of 1 part each of sulphate of copper and sulphate of iron in 20 parts of water; dry and wash again with a solution of verdigris, 5 parts; in distilled vinegar, 11 parts. When dry, polish with colcothar.
Plaster of Paris statuettes, models, etc., are bronzed in the following manner:
Prepare a soap from linseed oil boiled with caustic soda lye, to which add a solution of common salt, and concentrate it by boiling till it becomes somewhat granular upon the surface; it is then strained theough a liten cloth, and what passes through is diluted with boiling water, and again filtered. Dissolve 4 parts blue vitriol and 1 part copperas separately in hot water, and add this solution to the solution of soap as long as it occasions any precipitate. This flocculent precipitate is a combination of the oxides of copper and iron with the margaric acid of the soap, the former giving a green and the latter a reddish brown color, the combination of the two resembling that greenish rust which is characteristic of ancient bronzes. When the precipitate is completely separated, a fresh portion of the vitriol solution is to be poured upon it-in a copper pan, and boiled in order to wash it. After some time the liquid is poured off and the soap washed with warm and afterward with cold water, pressed in a linen bag, drained, and dried, when it is ready for use in the following manner:
Three pounds of pure linseed oil are boiled with 12 pounds of finely powdered litharge, and the mixture is strained through a canvas cloth and permitted to stand in a warm place until it becomes clear. Fifteen ounces of this, 12 ounces of the above described soap, and 5 ounces of fine white wax are melted together at a gentle heat in a porcelain basin, by means of a water bath. The mixture must be kept some time in a molten state, to expel any moisture which it may contain. It is then applied by means of a paint brush to the surface of the gypsum, which is heated to the temperature of about $200^{\circ} \mathrm{F}$.
After exposure to air for a few days the surface is rubbed with cotton wool or a fine rag, and variegated with a few streaks of metal powder or shell gold. Small objects may be dipped in the melted mixture and then exposed to the heat of the fire until thoroughly penetrated and evenly coated with it.
The Glassware Reporter, from which these particulars are derived, says:
The bronze letters and figures upon the bonds and paper currency of the United States-as, for instance, " the faint attempt at a metallic ring,'" as Secretary Chase called it, on the old twenty-five cent fractional currency-are made by printing in drying oil and applying the metal in fine dust to the damp surface.

Evaporation of Fruit.

The following by Amos Stauffer, of Waynesboro, Pa. was read before the third National Agricultural Conven tion, Chicago, December, 1882:
The best method of increasing the value of our domestic ruits, as I comprehend it, consists in familiarizing our farming community with the simplicity and cheapness of the evaporating process, and convincing them that it a legitimate, profitable, and easy adjunct of farm or house hold labor.
Evaporated fruit is worth from 200 to 400 per cent ad vance over the same fruit sun or oven dried, the labor of preparing the fruit (which is the greatest item) being the same in both cases. The actual cost per pound of finished product, without regard to quality or value when prepared about the same.
Briefly stated, our farmers' wives, sons, and daughters now exchange the product of our orchards, with their labor added, at a discount of from 50 to 400 per cent below the product of the less intelligent colored laborer in the tropics. At the village store or warehouses of the metropolis of the West the unequal exchange is daily made; two or three pounds of dried apples go for one pound of figs, dates, currents, raisins, or prunes, while our dried peach in ex change is scarcely at par. That our domestic fruits in themselves are superior to those of the antipodes needs no further argument than a comparison of daily quotations bet ween our evaporated fruits and those offered by the tropics Every pound of evaporated apples offered has a value in Chicago equal to about two pounds of tropical dried fruits, while evaporated peaches readily command from three to our pounds of currents, figs, dates, raisins, or prunes, etc., thus practically reversing old customs and values.

New subscribers to the Scientific American and Scien tific American Supplement, who may desire to have cum plete volumes, can have the back numbers of either paper sent to them to the commencement of the year. Bound volumes of the Scientific American and Scientific Americain Supplement for 1882, may be had at this office, or obtained through news agents.

DOWSON'S GAS PRODUCER.

We annex illustrations of the latest form of gas producer designed by Mr. J. Emerson Dowson, of 3 Great Queen Street, Westminster, and especially adapted for supplying gas engines.
The engines of this kind made by Messrs. Crossley Brothers, of Manchester, are known to have a very high efficiency. The power required at these works will probably be 200 to 300 horse power, and Messrs. Crossley have decided not to employ steam, but to drive all their machinery and tools with gas engines. Several preliminary trials were made with the gas produced in the Dowsion apparatus, aud the results were so satisfactory that it has been adopted for permanent work, and already nearly all the gas producing plant for 150 horse power has been laid down.
An engine, indicating from 27 to 30 horse power, has been working regularly with thi cheap gas over two months. During this time tests hav During this time tests hav actual fuel consumption, and the following are the results obtained, so says Engineer ing:

1. Time allowed to get generator fire in order for mak ing good gas, 45 minutes.
2. Fuel consumption per 1,000 cubic feet passed into gas holder, 13.2 lb .
3. Gas consumption per in dicated horse power per hour, 109 cubic feet.
4. Fuel consumption per indicated horse power per hour, $1 \cdot 4 \mathrm{lb}$.
These results confirm the ests made by Mr. D. K Clark, for the Committee of the Smoke Abatement Ex hibition, with a $31 / 2$ horse power Otto engine worked
with the cheap gas. He gave the following: 1. Gas consumption per indicated horse power per hour, $110 \cdot 3$ cubic feet. 2. Fuel consumption per indicated horse power pe hour. $1 \cdot 4 \mathrm{lb}$.
The engine now working with this gas at Messrs. Cross ley's new works is driving the foundry blower, which delivers an average of about 4,000 cubic feet of air per minute, and a mercury gauge indicates with accuracy the steadiness of the driving. The fuel used in the gas generators is small sized anthracite from South Wales, costing 3s. 3d. a ton in ruck at the pit.
It will be seen that the fuel consumption is remarkably low, even with so small an engine as a $31 / 2$ horse power, as reported by Mr. D. K. Clark. The wages of the firemen for the gas generators are not more than for a set of steam boilers. It should also be mentioned that the gas can be conveyed to any part of the works without condensation, that separate engines can be used for different lines of shafting, and that this not only effects a saving in the cost of shafting, but any department working overtime can have its engine supplied with gas from a single gas generator.
The arrangement of the plant will be understood from the
drawing, in which $a \boldsymbol{a} a$ are three producers, cylindrical iron compressed air below the temperature of the cooling water, chambers, lined with ganister, closed at the top, and pro- and, consequently, when permitted to expand, it produces vided with grate bars near the bottom, on which the anthra- proportionably lower terminal temperatures, thus giving cite, fed in from the hoppers at the top, is consumed. Steam greater efficiency per indicated horse power. is generated in a coil contained in the square furnace, c, and is led away by the steam pipe shown, provided with jets discharging into each producer, and drawing with this a considerable quantity of air. The gases generated are led off o the pump gear, $c \quad c \quad c$, and then to the holder (not shown in the drawing). From this holder the supply is delivered as required to the gas engines.
should Exercise.
Dr. Alice F. Freeman, of. Wellesley College, says that the cause of the breaking down of the girls in institutions of learning is the lack of proper physical care before entering.

On reference to our engraving, it will be seen that an air compressor is placed on the top of the bed frame, and the gas motor cylinder is placed on the same line as the compressor at one end of the bed frame, which it overhangs, as is usual in the Otto engine. The piston of the gas motor cylinder is on the same rod as the piston f the compressors, and this rod is connected to the crank shaft by a connecting rod. On one end of the crank shaft there is a fly wheel, and at the other end of the shaft a crank disk, to which is attached at right angles the connecting rod and piston of the cylinder, in which the compressed air (after having been deprived of the heat produced during compression) is ex- panded in the act of doing work. The valve gear of the gas motor is that usually adopted in the Otto engine. The process may be briefly described as follows:
Atmospheric air is taken into the compressor, and therein compressed to about $41 / 2$ atmospheres absolute, or say 50 pounds above atmospheric pressure. A considerable amount of heat is produced in this operation, which is removed from the compressed air by water, and to such an extent as to make temperature of the after compression, the air, temperature of the water used in cooling, which is generally from 60° to 80° in ordinary practice. The object is effected by forcing water partly into the com-

Experience shows that in the boarding schools where exercise is compulsory the students improve in health, but college is not a place for invalids, and those with weak constitutions and nervous prostration are likely to become ill. Girls have not as vigorous a physique as boys, but they are capable of greater endurance, and with proper care can sustain as thorough a course of mental training with benefit rather than detriment to their health.

COMBINED GAS MOTOR AND REFRIGERATOR.

Our engraving shows a perspective view of the apparatus, together with a portion of the cooling chamber. The machinery which has to be driven is of the well-known BellColeman type, and we need ouly here observe that the essential feature of the process consists in drying the air before expansion. This is carried out by passing the moist air, while in a state of compression, through a series of tubes placed in a colder atmosphere, or waste air current from the chamber, which causes the moisture to deposit on the surface of the tubes, whence it is removed by automatic traps before entering the expansion cylinder. The pipes have also the effect of considerably reducing the temperature of the
pressor and partly into the air immediately after leaving the compressor, the operation being completed and the surplus removed in the usual way in a chamber connected with automatic water traps. The compressed air, now free from mechanically suspended water, and still under compression, is led through horizontal pipes fixed in the sole plate, and which are surrounded by cold air returning from the room being refrigerated. The pipes act as heat excbangers, and also as moisture depositors, as they reduce the temperature of the compressed air considerably below that of the water.
The compressed dry air, which in ordinary practice is now generally of a temperature of 50° above zero, is taken to the expanding cylinder, constructed on the type of a steam cylinder, where it is expanded, and power is developed by the expansion, the power being utilized in the driving of the whole machine through the crank shaft, the air at the same time being reduced from 50° above zero to 50° below zero. The machine which has been erected in Leadenhall Market is employed in cooling a chamber whiclp contains poultry and game. The compressor of this machine is $81 / 2$ inches diameter and 12 inches stroke; the expansion cylinder is 6 inches diameter and 9 inches stroke. It delivers

cold air at the rate of about 5,000 cubic feet per hour, at a temperature 50° below zero, when working at a speed of 140 to 160 revolutions per minute, which is capable of being continuously maintained, provided the water supply and lubrication are attended to.
The chamber with which this machine is connected is 15 feet long by 20 feet broad and 9 feet high, and in the hottest days of the late summer its temperature was easily reduced to from 30° to 40° Fahr. by six or eight hours' working. There can be no doubt but that this machine will be found exceedingly useful for the preservation of food and other perishable goods in places where steam power is inadmissible, but more especially in the climates where high temperatures prevail.
We are pleased to note this practical advance, which has been made by Mr. J. J. Coleman, who was the first to make mechanical refrigeration a success on board ship, where it is now very extensively employed. Scarcely three years and a half have elapsed since he sent out to New York the first cold air machine successfully used in bringing meát across the Atlantic. At the present time machinery on the lines designed by Mr.Coleman and partners, and known as the Bell-Coleman machines, are fitted up in various parts of the world, their steam cylinders being capable of indicating in the aggregate 4,000 horse power, and their cooling capacity being equal to the freezing of 200,000 tons of meat per annum. These machines are working not only between America and Great Britain, but also between Australia, New Zealand, and India_{2} and this country.-Iron.

THE ELECTRIC LIGHT IN SURGICAL DIAGNOSIS.

We find in a recent number of Annals of Anatomy and Surgery a very interesting contribution by Dr. Roswell Park, of Chicago, in which he describes the most recent applications of the electric light for surgical purposes. It appears that .Josef Leiter, a well known instrument maker of Vienna, has at last succeeded in producing electrical instruments by which the interior portions of the human body may be strongly illuminated by the electric light, and thor oughly examined by the eye of the surgeon.
The accompanying engraving shows the application of one form of these new instruments, called the gastroscope, an instrument for the examination of the stomach. It consists of a benc tube, which contains a window at one end, electric wires, tubes for the introduction of a water circulation, by means of rubber bags, for the purpose of keeping the tube cool while the electric light is burning; also for the introduction of water into the stomach, to distend the same. The lower extremity of the tube is provided with a platinum wire, which is made to glow under the electric current, which is produced by a battery. The tube is also provided with reflector prisms and lenses, for directing the light through the tube.
The eye of the surg 3 on is applied at the upper end of the tube, after it has been inserted in the stomach in the manner indicated in our sketch.
As preparation ior the use of the gastroscope, it is necessary that the patient shall have gonefor some hours without eating. Half an bour previous to its use a hypodermic dose of morphia, say one-third grain, should be administered. Just prior to the examination the stomach should be washed out. The patient is then laid upon the left side on a table,
having a head support, which shall keep the neck in its axial position. A small receptacle is placed under the mouth to catch the saliva which cannot be swallowed. The head is then thrown well back, and the instrument, which has previously been lubricated with vaseline or glycerine, is guided by the finger of the left hand and passed downward with a gentle sweep.
Previous practice on the cadaver with a hard rubber sound of the same dimensions and flexure as the gastroscope will

THE ELECTRIC LIGHT IN SURGICAL DIAGNOSIS.

easily teach the necessary manipulations. The instrument being in place, the stomach is inflated to the desired extent, but not sufficient to distress the patient. The pointer on the rheostat being turned slowly, the metal blind is drawn (at J), and the observer has the field before him.

By the curve in the tube not only is the introduction of the instrument facilitated-it har ing been found impossible to pass a perfectly straight tube so far as is necessary for this purpose-but it will be seen that with partial rotation of the tube about the long axis of the straight portion, the extremity carrying the window and the light makes quite an
excursion, and permits the view of a much more extensive surface than would be possible were no such excursion made.
Moreover, as it is provided with an optical system, it obtains that as the instrument is rotated toward a given point of the mucous membrane its image is enlarged; while as it is further removed the image is diminished, while the field is enlarged. At a distance of two centimeters the image is of natural size. The "definition" of this system is excellent, and, granted a tolerance of the instrument on the patient's part, and the requisite skill on that of the observer, a very satisfactory examination can be made.
A variety of other instruments are made, which are operated substantially in the same geveral manner as the one described. For example, we have the laryngoscope, for examination of all parts of the throat; the œsophagoscope, for the gullet; the otoscope, for the ears; the urethroscope, for the bladder; the cystoscope, etc. The invention of instruments marks another step in electrical progress. They promise to be of utility and importance to the medical profession, for by their use many parts of the human system heretofore hidden from the eye may now be brilliantly lighted and examined, and their condition in disease and health ascertained.

THE PARADISE FISH.

The paradise fish is a representative of the family Macro1. These fish have very large fins, less developed in the female. The brownish color of the upper side changes into a greenish gray on the lower side; the markings consist of changeable yellowish green or blue and red cross lines. Their length is from eight to nine centimeters.

Very little is known of these fish in their free life. They are universally kept in captivity in China, and treated as our gold fish, but are more easily propagated in a limited space. They are better adapted for household pets than other fish of this class, as they can live in a much less quantity of water, and can remain out of the water for twenty minutes and more without injury. Giraud brought one hundred of these fish from China, and although during the tedious journey he was not able to give them sufficient room or the necessary care and nourishment, twenty-two of them lived.
Benecke says that "in May of the year 1878 he obtained i pair of paradise fish. They were placed in a basin containing about forty liters of water. They immediately went to work to devour the swall crawfish and larvæ of insects which had been placed in the vessel. After these were consumed two crawfish, water fleas, and mussels were put in. The mussels they had not received before, and evidently had never eaten them, for at first they only took bold of the little animals and then released them with a shake of the head, but after a day or two they only ate the mussels, leaving the water fleas placed in the basin unmolested. One day no mussels could be obtained, and they ate greedily not only small but very large angle worms from five to eight centimeters long and two millimeters thick. They always rejected the intestines of the worms. When the worms were put in the basin, as they were taken from the ground, they would shake them two or three times, then let them go, then throw them around in the water, in order to shake off the dirt before eating them. If the worm struggled, they would sling it against the water plants or the sides of the basin.

About three weeks after the fishes were received the male began to build a nest. For this purpose he would come up to the surface of the water, take his mouth full of air, thrust it under the water, forming small bubbles of film like spittle, and continue thus to build a layer of these bubbles banging quite firmly together, adding new layers until it was completed.
About twenty four hours after the spawning, the germ may be perceived in the pale yellow yolk of the egg-a day later the heart begins to beat-t welve or eighteen hours after the young. imperfect fish escapes from the egg, it is simila to a small tadpole. In eight months it is full grown. So long as the fish needs parental care the male devotes bimself to it. As soon as the young fish starts away he hastens af te it, seizes it with his mouth, swallows it; and spits it out int the nest of foam. They care specially for the sick and feeble ones. As soon as the young fish no lo.ger needs his assistance he forsakes it, without appearing to have any interes in its fate, and bas no hesitation in devouring it.
The young subsist at first upon the foam of the nest, late upon small animalcules not visible to the naked eye, and finally u pon the same food as the parents.-From Brehm's Thierleben.

Fire Resisting Doors and Shutters.

Experience has proved that the ordinary iron doors and shutters usually employed in warehouses do not afford the protection from fire (especially if a large one) that might be expected from them. The Insurance World, on this subject, mentions many instances where wood incased in tin has proved quite effective in preventing the spread of fires, but the writer also pertinently asks if human ingenuity cannot devise a door or shutter which will be more fire resisting?
Some English writers have expressed a decided preference for solid oak cased with tin or sheet iron over the ordinary rolling iron shutters, and, according to the Insurance World, as stated above, tin faced wooden doors have proved to be very efficient in this country. Mr. James Harrison, Superintendent of the Bureau of Surveys in the New York Board of Fire Underwriters, not long ago indorsed on the specification of a building about to be erected, as follows:
'Construction of doors and shutters herein described ap proved by the Board of Fire Underwriters. Batten doors, covered with metal, have been commended and preferred to irou doors for a long time."
The specification bearing the above forcible indorsement read as follows

1. "Iron doors.--Iron doors are much better than nothing, as they will often check the spread of a moderate fire. In the case of a heavy fire, the heavier the frame the more likely they are to warp. Besides the usual danger of twist ing and warping, they are liable to become red hot, and thus to communicate fire to contiguous goods
2. "Metal lined doors.-The experience of underwriters shows that the most desirable doors are those constructed of double thickness of one inch tougued and grooved boards, crossing one another diagonally, well clinched and riveted. Then completely covered on edges and sides by jointed (not soldered) tin of the best quality, and nailed on under each joint with shingle nails. These doors to be hung with wrought iron strap hinges, crossing the width of the door and firmly bolted, and to be firmly latched into the solid wall. In size they should be two inches wider and higher than the passage way, and skould be placed on opposite sides of the wall. When thus made, these doors will out last a fire which would destroy the best of iron doors.
"Window shutters should be of similar construction."
Doors of this construction have not only been approved, but practically tested by fire. The English article approved of oak, which certainly would be better than most iron doors, but, when hermetically sealed in tin, the wood is transformed into charcoal and easily fractures across the grain. The tough yellow pine of this country burns very readily in an open fire, but does not lose its fibrous textare when charred. So our insurance contemporary thinks it may be preferable to à less inflammable wood in the hour of emergency.
Property owners often prefer galvanized iron to tin, but the former presents a greater metallic body to the fire, rises in blisters, and is not as desirable as the non-flexible tin, which is closely nailed at every joint. Human ingenuity may yet devise some better plan for protecting the doors and windows of warehouses; certainly some better fire resisting substance and arrangements than are now employed are very much needed.

Preservation of Yeast by Cold.

It has already been shown by some experiments of Dr. Lintaer's that yeast may be preserved, and yet retain its full vitality by being frozen. A practical confirmation of this on a large scale has just been obtained by H . Von Planitz. A quantity of yeast, which had been badly packed, was consigned to him, and on arrival, during some very severe weather, was found to be completely frozen. The solid block of yeast was brokeu to pieces by aid of a chisel and hammer, and crushed to a powder under a mallet ; it was then mixed with water, and when the yeast had deposited, the ice which came to the surface was removed. Afterward the yeast was used in the usual manner, and yielded very good results, and yeast derived from it was in use for several months without showing the slightest signs of degeneration. Although these results fully confirmed the view that yeast is not injured by extreme cold, the same observer made a fur-
ther experiment; he submitted a quantity of well-washed yeast to intense cold, and having frozen it into a solid mass he kept it for four weeks at a temperature just below freez ing. This yeast, on being used, gave equally good results. The experiments here referred to were with "bottom" fermentation yeast, but there is no reason to suppose but tha similar results would be obtained with "top " yeast.

RECENT INVENTIONS.
 New Wagon Jack.

This a simple and inexpensive jack for use in removing the wheels from the axles of wagons or other vehicles. It consists in a lever combined with a post, and a clutch ring fitted on the post and conuected to the lever for holding the latter in any position to which it may be moved in raising the axle. The lever may be eversed to adapt the jack to axles of different heights as indicated in dotted lines in the engraving; the rod of the clutch being loosely connected at both ends to admit of this arrangement. This jack can be readily operated with out the necessity of crawling beneath the wagon to put it
in place. It is very light nd at the same time strong and durable, and cau be folded up in a compact shape when not in use. Mr. Alonzo B. Furman, of Strattonville, Pa., is the patentee of this invention.

Lock for Sliding Doors

The engraving shows a novel lock applicable to sliding doors and gates generally, but specially desigued for the sliding doors of freight cars on ailroads. The lock is provided with movable jaws or hooks ressed by springs and limited in their movement. by stops These hooks engage with a catch of dart-head form, and are sepa rated so as to release the catch by means of a tumbler, which acts on both hooks alike. The tumbler is fitted with a key which will turn it when proper ly inserted, and the keyhole is provided with an escutcheon that may be sealed, so as to close the . This useful invention has been patented Colorado.

Improved Flue Stop.

This is a flue stop that will fit and cover different sized flue or stove pipe holes, and which, although working in connection with the thimble or other lining of the flue hole, is an independent structure, and is capable of being adjusted so that no amount of soot or other dirt or wind will force it out of its place. The invention consists in the combination, with a flue hole plate or cover, of anchoring braces capable of being adjusted in opposite directions by a pinion working in racks on the braces. The braces are fitted with rubber bearing blocks on their outer ends, to insure a firm hold of the braces
 in the chimney crock or thimble. A spring pawl engaging a ratchet on the spindle of the pinion holds the braces extencled, and thus secures the stop. The stop is released by disengaging the pawl from the ratchet, and turning the spindle so as to retract the braces. This useful invention has been patented by Mr. James W. Webster, of Monticello, I

Improvement in Oil Cans.

The object of this invention is to prevent the oil outlet of an oil can from getting stopped up, to enable the operator to see how much oil is given to each hole, and to facilitate the removal of dirt and grease from the oil holes before oiling. The invention consists in the combination, with an oil can, of a wire passing loosely through the nozzle and into a tube secured on the bottom of the can and within it. The outer end of the wire is curved, and part of the wire is finely grooved or roughened. By pressing on the bottom of the can in the usual manner, the wire is moved forward and back longitudinally in the nozzle, and the oil that is spurted out passes in single drops
 along the wirc. It cannot drop from the same until it arrives at the end, for the fine grooves or roughnesses between the points assist materially in preventing the oil from dropping off the wire and at the same time facilitate the flow of the oil toward
the end of the wire. Address the patentee, Mr. J. A. Campbell, care of Wallace \& Brooks, Waco, Texas.

Improved Tombstone.

The engraving shows a tombstone, the several parts of which can be united easily and quickly in such a manner that the wholewill be very rigid. The base is formed of a bottom section, and an upper section on which the top stone rests. The upper base section is provided with a mortise in its top into which a tenon formed on the lower end of the top stone is fitted. Two or more holes are bored in the lower end of the top stone, and dowel pins having enlarged or
widened ends are passed into them, and then the space between the pins and the sides of the holes is filled with melted sulphur. In a similar way holes for receiving pins are formed in the top of the upper base section and extend through into the top of the bottom base section, and pins with enlarged ends are passed into the holes and fastened as in the first case. This forms a permanent fastening that will last as long as the stone endures. Mr. William Mould, of Saugerties, N. Y., is the patentee of this invention.

On the Action of Certain Metals upon Oils.

Some time since Chevreul, the distinguished investigator of the fats and oils, studied the effect produced upon the drying oils by different metals. (Memoires de l'Acad., xxii.) He found that under certain circumstances metals exerted an influence upon the oxidation of the oils; for example, linseed oil when spread upon a sheet of lead dried imme. diately.
A. Livache believed that the metals would act more ener getically if in the fine state of division in which they are obtained by precipitation from solution, instead of using only surfaces of sheets of metal. His experiments, which are exceedingly interesting, were published in Comptes Rendus, xcvi., 260.
Livache tried the effect of tin, copper, and lead on the oils, but only the last named exerted any considerable action. The lead employed in the experiments was obtained by precipitation with strips of zinc from the solution of a lead salt; it was quickly washè with water, then with alcohol and ether, and finally dried in vacuo. If this lead is moistened with a certain quantity of oil and then expnsed to the air, in a short time an increase of weight is observed, and the more drying the oil the greater this increase. When raw linseed oil is treated in this way, the increase of weight attained its maximum in thirty-six hours, while the same oil, if merely exposed to the air alone, requires several months to reach this state. A solid but elastic substance is formed like boiled linseed oil dried in the air
Experiments made with different oils show that the increase of weight is nearly the same as that of their fatty acids when exposed to the air for a few months.

Name of oil
treated with
precipitated lead
Increase of
Increase of
recipitated lead
Linseed....
weight in oil.
fatty acid.
In 8 days. In 8 month $\begin{array}{cc}14 \cdot 3 & \text { per ce } \\ 7.9 & " \\ 6.8 & " \\ 5 \cdot 9 & " \\ 4.3 & " \\ 0.0 & " \\ 0.0 & " \\ 0.0 & " \\ 0.0 & \end{array}$ \cdots 11.0
6.0
3.7
0.8
$2 \cdot 6$
2.6
20
1.3
09
07

Cotton seed oil was the only drying oil that showed a marked exception; the fatty acid from it exhibited a very slight increase of weight. That is probably the reason why this oil can play a double role, as a drying and as a non drying oil, for it is used to adulterate linseed oil on the one band and olive oil on the other.
Contact with precipitated lead. then, imparts to oil the property of absorbing oxygen rapidly. In his study of the oxidation of the oils, Cloez has shown that it is always attended with the total disappearance of the glycerine, and in Livache's experiments it was noticed that the glycerine was modified by the precipitated lead. If glycerine is mixed with precipitated lead in a tight bottle free from air, the lead soon vanishes, being oxidized at the expense of a portion of the glycerine, and then dissolved in it. [This may help to explain the action of the new French form of electric accumulator, where the lead plates are placed in glycerine.]
The facts above stated indicate that a rapidly drying oil can be obtained by simply treating linseed oilfor some time with red lead or litharge, although the product thus obtained always remains greasy and does not dry as good and quick as boiled linseed oil.
In the arts advantage may be taken of this action of lead toward drying oils, as for example to prove the presence of cotton seed oil in linseed oil as well as in olive oil. Probably boiling may be dispensed with by substituting mere contact of the oils with precipitated lead, or solutions of lead and strips of zinc on which the lead may be deposited in a fine state of division. Oils prepared in this way are always of a lighter color, and retain a greater degree of fluidity. Perhaps the bad smell of boiling oils and the great danger of their taking fire in the operation oan be avoided by this treatment.

ENGINEERING INVENTIONS

 A very ingenious car coupling is the subjook, of Yuba City, Cal. The counling is automatic in its operation, and is intended to preventaccidents which frequently occcoupling cars.
An improved cut-off mechanism for steam engines has been patented by Mr. James Thomas, of Catasauqua, Pa. 'This invention consists of a cylindrical valve combined with a elide valve, and operated by a governor which regulates the amount of steam pass-
ing through the slide valve to the engine. The means ing through the slide valve to the engine. The means
adopted for accomplishing the cut-off are very simple, adopted for accomplishing the c
and would appear to be effective

An improved railroad switch, designed to prevent trains of cars from running off the track at Spielman, of Oneonta, N. Y. The invention consists in connecting a lever attachment with the guard rails of a switch in such a manner that the wheels of the locomotive, in case the switch is misplaced, will actuate the cally, and enable the train to pass on without accident. A novel hydropneumatic engine has been patented by Mr. Levi G. Cook, of Mapleville, R. I. This air or gas under pressure, subject to percolation or passage up through a column of still water or quicksilver, to the driving of a series of submerged wheels, required by any of the well known methods-gearing, required by
Letters patent have been granted to $\mathbf{M r}$. Baylus Cade, of Scott's Depot, W. Va., for an improved car coupling-an automatic car coupling, in which the from beneath the pin by the entrance of the link. The pin is made in the shape of a bifurcated bar sliding in vertical guides in the drawbar. This coupling is
very simple in its construction, and appears to have less objectionable features than many patent car couplers and many more advantages.
A novel chair for railroad rails, designed to provide a rail chair that shall hold the rails firmly and contraction of the rails, has been patented by Messrs. Charles Armstrong and George Abbott, of Galveston, traps of wrought iron which fit therein, for receiving straps of wrought iron which fit therein, for receiving
the webs of the rail. One of the straps is fixed to the chair body, while the other is received in a recess in the chair, so that it may be inserted after the rail is set. A key passing through the two straps a
An improved railroad signal of the following Astruction has been patented by Mr. Norman Allen, of Rockaway Beach, N. Y. The inventor proposes to part, and connecting these suals by a wire or rope, tance to indicate danger. The signole are constructed with drums to which the actuating wire is attached, and likewise with reflectors and with projecting arms. olated on their pivots and the danger signals set, by night, and the arms will be set at right light by night, and the arms will be set at right angles pedo placed on the extremity of the arm will be exploded by the passing locomotive.

MECHANICAL INVENTIONS.

An improved millstone driver bas been patented by Mr. James F. Callahan, of Knoxville, Tenn, niforject of the invention is to insure a steady and irregularities in the motor from affecting the movements of the millstone.
A new knob spindle fastening for mortise locks has been patented by Mr. Francis Lattimer, of
Richmond, Nova Scotia. The special object of the invention is to facilitate the attachment of the knob to the spindle of mortise lock in a manne
Messrs. E
Messrs. E. L. Young and L. Dyer, of Millbridge, Me., have patented an axle lubricator which
can be adapted to any kind of a vehicle. In using this device it is not necessary to remove the wheel in oiling, longer than the common way.
Mr. W. P. Harmony, of Sidney, O., has ype case stand, so arranged as to enable its adjustment at any angle or height to suit the compositor, and when not in use can be so inclosed as to protect the ype from dirt and dust.
A mechanism for converting reciprocating into rotary motion, designed especially for use in wind
mills, has been patented by Mr. James D. Clarke, of mills, has been patented by Mr. James D. Clarke, of
Harvard, Ill. A swinging frame, carrying dogs or pawls, engages by the reciprocation of the frame with Mr. J. A. Stephens, of Brockville, Ontario,
in a very simple manner. Mr. J. A. Stephens, of Brockville, Ontario,
Canada, has patented a novel and improved knife edging Canada, has patented a novel and improved knife edging
machine. It is intended for use in sharpening paper cutting and similar knives, requiring frequent, rapid, and very accurate edging. The machine is adjustable, so the angle of the blade can be altered
commodate itself to the grinding stone.
Mr. Conrad Muller, of Columbus, O., has patented a tool holder for lathes which seems to possess
some advantages over the many lathe holders now in use. The adjusting screw and nuts, in their relation to the too holding block, enable the tool to be accurately fed to ine work. The nuts have a graduated scale colla
A novel method of detaching life boats ajd Messrs. Edward J. Hill and J. L. Clark, of Westminster England. A float, preferably of cork, is lowered with
the boat, and as soon as it reaches the wateritauto matically disengages the hooks, to which the
Mr. William A. Bradley, of Oshkosh, Wis.
is the patentee of a new shingle sawing machine whic embraces a number of changes and improvements over the old style of machine. A change in the driving gear,
and in the bolt dogging and bolt setting apparatus, are the most important features of the improvement. Th bolts in this machine are automatically shifted in

A novel device for converting rotary int reciprocating motion, designed more especially for ope rating lift pumps by windmills, is the subject of a pa-
tent recently granted to Mr. C. M. Ford, of Bellevue, O. tent recently granted to Mr. C. M. Ford, of Bellevue, \mathbf{O} A novel arrangement of springs is attached to the ver-
tical connecting rod, which counterbalances the action of the mill, and is intended to produce uniformity o its movement.
An improved derrick of simple and cheap construction has been patented by Mr. Patrick Kelly, of Poughkeepsie, N. Y. The derrick foot consists of a plate having upon its lower side a hollow pivot, and
upon its upper side seats for the lower ends of the post and boom to rest in, whereby the post and boom will be securely held. The derrick post is secured to the foot y an eyebolt se
ost by a bolt.
An improved air separator and feeder for bolters, etc., has been patented by Mr. Robert Wilson, o Greenup, Ky. The invention consists in a tube through
which the meal passes down and drops upon scattering meal passes down and drops upon scattering
y which itis scattered in the larger tube. Th the current of air, and the meal drops into the bolter The fan also draws all the hot air produced by the grinding stones from the bo
same will be fresh and cool.
A very simple cotton press has been patented by Mr. William B. Ingram, of Lilesville, N. C. This press is worked by hand or other power. A pai of rock levers are located at the sides of the case to
work the follower, the power being applied to them from a windlass by ropes working on segmental rims on the levers, maintaining uniformity of leverage,
while the connection between the levers and the follower is such as

A railroad switch lock bas been patented oseph H. Dugan, of Denniso O Mitsburg, Pa., and with a bolt is a rotary device which is rigidly mounted
upon and actuated by a hollow spindle. An arm for upon and actuated by a hollow spindle. An arm for locking the bolt is mounted upon a spindle arranged in-
side of the hollow spindle. The key is furnished with an outer and an inner part for engaging the spindles respectively and for imparting motion to the inner spin dle an instant before the outer one is rotated, so as to
disengage the locking arm before the bolt is withdrawn In connection with this locking device, the orāinary switch lever may be employed.
A novel ore amalgamator has been patented by Mr. W. E. Harris, of New York city. The invention amalgamated plates, and provided with inlet and outle sponts and a slotted partition, of a longitudinal shaft revolving in the trough, and provided with amalgama
ed plates arranged at right angles to one another. trough faced with amalgamated plates is provide with a shaft running the full length of the trough. To this shaft amalgamated stirring plates are attached as
above, the same distance apart as the width of the above, the same distance apart as the width of the
plates. The revolving of the shaft stirs up and separates the contents.
An improved washing machine has been patented by Mr. August Scharnweber, of Davenport cal shape, provided with faucets, and of an upper an are placed betwd or rubber. The clothes to be washe so connected that when the upper portion is oscillated by the handle in one direction, the otber portion is'oscil lated in the opposite direction, and the clothes are thas thoroughly rubbed between the two rollers, and quick-
ly cleaned without being worn or damaged. The upper ly cleaned without being worn or damaged. The upper
rubber may be elevated to any height, according to rubber may be elevated to any height, according to
the quantity of clothes to be washed, by means of a rod extending upward from it, and which operates telescopically within the handle which drives the rubbing

An improved combined instrument for leveling, surveying, etc., has been patented by Mr. Ru-
dolph Peter Gallis, of Hartford, Conn. The invention consists in devices for facilitating the determination of the direction, the setting, and erection of horizontal,
vertical, and inclined lines of shafting, and of lines of shafting at right angles, or of geometrical lines in an of the above directions in general; aiso, for setting
bases of machinery, parts of bridges, roofs, etc. in any of the above positions; also, for use in the work shop and other places as a common spirit level, as a right and as a face plate, and for similar purposes. This is
and an instrument designed especially for use in machine
shops for determining in a more simple and accurate manner than heretofore the setting of bases of ma chinery, erection of lines of shafting, etc. It may be
used also advantagenusly by bridge builders, and cat be used as a right-angled positive and negative square also as a spirit level, and for other purposes abcut ma chine shops and manufacturing establishments.

An improved cockle seed separator has been patented by Messrs. George Adams and Morgan M.
Jenkins, of Sherburne, Minn. The invention of a machine furnished with an endless apron formed of a series of metal plates hinged one to the other, and
furnished with numerous indentations. The grain is fed through a spout upon these plates between a brush having a rotary motion and the upper end of the frame, and which is thus spread out and rubbed during its passage by other brushes, having a motion contrary to the movement of the endless apron. This operation rubs
piates, so that, while the grain falls from the lower end mall seeds will be carried up by the plates, and will all from the upper end of the machine. As the plates pass to the upper end of the machise, the rotary brush
brushes back any kernels of grain that may be carried brushes back any kernels of grain that may be carried ied up to the upper end of the machine, where the mall seeds pass.

AGRICULTURAL INVENTIONS.

An improved method of irrigating agricul . Ma ided with valves at suitable interver main pipe pro water from an elevated reservoir. Connected to the main pipe are smaller branch pipes, which distribute the water in small quantity over large surfaces. Up-
right pipes with sprinklers are also provided, so that right pipes with sprinklers are also provided, so that
awns and gardens may be kept constantly showered lawns and gardens may be kept constantly showered
where water is available. The principal object of this invention is, however, the irrigation of agriculturat ained from adjacent mountains.
A wheel harrow of novel construction has been patented by Mr. C. F. Hornbeck, of Owego, N. Y. The machine has a rectangular frame with intermediate crossbars fitted for carrying the harrow teeth. The rameand its attachments may be swung up and down on pivots by means of arms which are attached to the rame, and operated by an adjusting lever. The teeth at at the place where it is attached to the frame of the to form snitable teeth for the harrowing process. Teeth f this kind are very effective and may be made a mall cost. Each of the teeth has a spring arranged to egulate its action in the ground.
A combined seed planter and cultivator of mproved form has been patented by Mr. John J. Birdsong, of Medina, Tenn. A combined seed planter and cultivator is provided with plows. To the frame is at-
tached a seed box, which is divided into two compartments by a slotted partition, and is provided with a disharge tube. To the sides of the seed box is journaled seed dropping wheel, which is provided with inclined box and transfer it to the other compartment. moothing roller is connected with the frame by bars of the driving belts and the depth to which the plow enter the ground.

MISCELLANEOUS INVENTIONS

Mr. Alonzo H. Savage, of Ashtabula, O., as patented an improved button, to the back of which hey are fastened to the garment
An improved compass frame has been patented by Mr. R. A. Kipling, of Roselle, N. J., inBy the construction of the as a charm on a watch chain pivot can be readily adjusted by unskilled hands.
A ditching spade of peculiar shape has been patented by Messrs. Elijah Kirkpatrick and Samuel with two blades set at right angles to each oth single blade bent in that form.
Mr. C. W. Hellenbrand, of Salem, Oregon, has patented a very simple improvement in the manu facture of candy, whereby he is enabled in a very simple
and inexpensive manner to cut the molten candy into nd inexpensive manner to cut the molten candy into Mr. George E. Stedman desired.
Mr. George E. Stedman, of New York city, has patented a novel buckle, which is notable for its
strength and simplicity of construction. It is intended principally for use in the interior of trunks and valises, where it is inconvenient to pass the straps through the frame of an ordinary buckle.
Av improved paper box has been recently patented by Mr. W. H. H. Rogers, of Brooklyn, N. Y The improvement relates to that description of pape board or any other suitable paper, so that when they are folded together, the flaps overlap the ends and sides of Mr. C. S. Barnard, of New York city, has recently patented a novelty in the way of a toy saving
bank which is in the form of an elephant. The coin is placed on the end of the elephant's trunk, and by press. nal, the trunk is raised up and deposits the coin with mal, the trunk is raised up and deposits the
Mr. Josiah P. Whitman, of Ithaca, Mich. upport. The patent for an improved carriage top bo back bow of carriage tops, at the points where the come upon lower joints of the frame, a protector or
support at the middle, with a cushioned knob for sup. porting the top when lowered
An ingenious blotter tablet has been patent ed by Mr. William Bancroft, of Wilmington, Del. The of the tablet, and stop arms at the four corners of the blotter, to engage with the guides, and prevent the bloter from being separated from the tablet while allowing be readily slipped off and on.
Mrs. B. G. Borgesen, of Chicago, Ill., has wocently patented a very neal and conveniently arranged number of trays and compartments for holding needles, embroideries, scissors, spools, and such other articles
as ladies use in sewing, knitting, etc. The box makes very compact and ornamental piece of furniture.
Mr. W. C. Seaton, of Quebec, Canada, has le construction. A spiral brush is revolved in a bo into which the wick enters through a slot, and a the brush is revolved it removes the carbonized end o
the wick in a very rapid manner withont the hands of the operator coming in contact with either the lamp o
the wick.

A cartridge implement has been patented by Mr. Edmund R. Darling, of Woonsocket, R.I. Th ing cartridg adapted for capping, loading, and extract the shells; the whells, also for removing the caps from adapted to be easily packed in the gun case or carried in the pocket, and will prove a very convenient tool for
portsmen.
An improved device for roughening grind stones is the subject of a patent recently granted to Mr.
George Andrews, of Bellows Falls, Vt. The invention is especially intended for roughening the peri phery of grindstones used in treating wood for making
paper pulp. The implement is so set to the face of the paper pulp. The implement is so set to the face of the
grindstone as to peckit as the stone revolves, giving it a

Mr. C. J. B. Gaume, of Brooklyn, N. Y., has received letters patent on an improvement in fish ing tackle, which consists of a rod with a bell on the tip, which rings when a fish by a nibble causes the
slightest tension of the line. There is also a spring a tachment so contrived that when the fish takes a firm hold a lever is pulled, which relieves the spring to which the line is attached, thus a tomatically jerking the hoo An improvem

An improvement in the construction of jails, etc., designed to prevent the escape of prisoners,
has been patented by Mr. Samuel M. McLean, of Mo-
desto desto, Cal. It
work of pipes which arrangement any attempt at cutting through the pipes to reach the wall would result in the flooding
of the buiding, which would warn the guard of the of the building, which would warn the guard of the at-
A flavoring extract for sirup and sugars, by which a maple sugar flavor is imparted, is the subject of
a patent granted recently to Mr. Josiah Daily, of Madia patent granted recently to Mr. Josiah Daily, of Madi-
son, Ind. The inventor prepares a decoction from hickory bark or wood, which he mixes in small quantity with the saccharine matter. the decoction is strong. about three tablespoonfuls of it are required to a
gallon of boiling siru p, to give it a fresh maple sirup

The ornamental piece of furniture called an een improved, and a patent taken on the improvement, by Mr. William S. Wright, of Dover, so that the height may be regulated to the will of the occupant. Underneath the seat, pockets are provided for holding sheet music, newspapers, etc. The construc-
tion of this ottoman is such as to render it adapted for a piano stool.
A very cheap, simple, and compact folding chair has been patented by Mr. George A. Leavitt, Jr., of
New York city. The chair is made with a back having New York city. The chair is made with a back having
a ninged seat in front and a hinged prop to support the back, the seat and prop both folding up against opposite sides of the back when the chair is closed. By this
construction, a very cheap chair is furnished, which is likewise portable, and occupies but little space when An improvement in wooden horse collars for draught purposes is the subject of a patent granted
to Mr. L. E. Woodard, of Owosso, Mich. The principal novelty of the invention lies in an arrangement for uniting the two sections of the collar, so that the coupling device is rendered interchangeable. The metallic
couplings uniting the side pieces are provided with couplings uniting the side pieces are provided with
means for lengthening or shortening the strap for regu-

Mr. W Blake
Mr. G. W. Blake, of Port Townsend, Wash. Ter., has recently patented an improvement in
buckles for belts and harness straps, which promises to be as useful as it is ingenious, being applied to straps without sewing or stitching. by the use of teeth in the socket of the buckle clamped by the jaws of a wedge. These buckles can be readily transferred from one strap
to another, and their use saves much leather as well as to another, and their use saves much leat
expense in the construction of a harness.
A simple and inexpensive fire escape is the subject of a patent recently issued to Mr. John A Edmonds, of Dover, Del. To the end of a wire or rope a
hook is attached to be made fast to a window sill when hook is attached to be made fast to a window sill when
required. A tached to the rope is a windlass, by which ols the speed of his descent from ing. The same appliance may be used equally well as ings to rescue persons or property
A dressmaker's measure for cutting dresses and articles of clothing has been patented by Mr. F. E. Buddington, of Stillwater, Minn. The invention con-
sists in a measure for cutting dresses and other articles of clothing, constructed with cutlers formed of bars, sheaths, and slides for dra wing outlines of the back and front patterns, and a dart rule for drawing straight and by taking the body measures carefully and adjusting fitting dress will be produced.
A simple and cheap fire escape bas been patented by Mr. Ray Howland. of Brooklyn, N. Y. A rope is connected with the window sill. With an eye
formed in the shank of the friction hook is connected a rope or strap to be secured to the person escaping, and a cord to be passed around the hanging rope and through he shank eye of the hook for controling the rapidity of descent. Upon the rope a friction hook of very sim-
ple construction is applied. Another rope is fastened to the eye of the hook, by which the person lowers himAn improved gas light reflector has been The in jet a cone made of polished metal, and having an open top and a convex glass bottom, by means of which the light is reflected downward in the room. Above the burner is arranged a large reflecting cone, which like-
wise reflects the light down into the room. This reflector being made of opal glass allows the light to pass ranged around the rim of the reflector. This band, which supports the reflector, is suspended from a metal
plate at the ceiling, and the lower reflector is chains which are suspended from the band mentioned.

The Chargefor Insertion under this head is one Dollar
a line for each insertion : about eight a line for each insertion : about eight words to a line. Advertisements must be received at publication office
asearly as Tlurrsauy norning to appear in next issue.
Boiler Scale- - Parties having fine specimens for sale
or loan, adress Jas. F. Hotchkiss, 84 John street, , \mathbf{Y}. Storage Electricity, \$1; Dictionary Electricity, \$2. All inventions described. Best out. School mlectricity, N. Y.
 1847 to 1882. Address J. G., Box 1977, New York city.
Wanted.-A Hydraulic Press for hand power. Must Wanted.-A Hydraulic Press for hand power. Must
be in good order and cheap for cash. Address with full be in good order and cheap for cash. Addre.
particulars to P. O. Box 3489 , New York city.
Building with power for sale, rent, or partner wanted Farley's Directories of the Metal Workers, Hardware Trade, and Miners of the United States. Price $\$ 3.00$
each. Farley, Paul \& Baker, 530 Market Street. Phila. Wanted.-Some energetic reliable business man, specially to travel and sell on commission. State Rights
under improvement in Tellurian, patented August 22, 1882, No.263,236. Illustrated in SCIENTIFIC AMERICAN of January 27,1883 . Apply to J. Spicer, Taylor's Island, Md.
American Fruit Drier. Free Pamphlet. See ad., p. 222.
Am. Twist Drill Co.,Meredith, N, H., make Pat. Chuck aws,Emery Brass \& Copper in sheets,wire \& blanks. See ad.p. 222.
The Chester Steel Castings Co., office 407 Library St., The Chester Steel Castings Co., office 407 Library St.,
Philadelphia, Pa., can prove by 20,000 Crank Shafts and Philadelphia, Pa., can prove by 20,000 Crank Shafts and
15,000 Gear Wheels. now in use, the superiority of their
Castings over all others. Circular and price list free. The Improved Hydraulic Jacks. Punches, and Tube Dxpanders. R. Duageon, ${ }^{\text {Diamond Planers. J. Dickinson, } 64 \text { Nassau St., N. Y. }}$ Tight and Slack Barrel Machinery a specialty. John Gear Wheels for Models (list free); Experimental
Work, etc. D. Gilbert \& Son, 212 Chester St., Phila.. Pa. Upright Self-feeding Hand Drilling Machine. Excel-
lent construction. Pratt \& Whitney Co., Hartford, Conn. lent construction. Pratt \& Whitney Co., Hartford, Conn.
Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 221. 20,000 Duc Spherical Elevator Buckets, sizes $31 / 2$ to 17 inches, constantly on hand. Telegraphic orders fille
T. F. Rowland, sole manufacturer, Brooklyn, N. Y.
First Class Engine Lathes, 20 inch swing, 8 foot bed
now ready. F. C. \& A.E. Rowland, NewHaven, Conn. Common Sense Dry Kiln. Adapted to drying of all material where kiln, etc., drying houses are used. See p.222.
Lightning Screw Plates, Labor-saving Tools, p. $2: 2$. The Best.-The Deuber Watch Case.
Curtis Pressure Regulator and Steam Trap. See p.206. The Sweetland Chuck. See illus. adv., p. 206. Knives for Wood working Machinery.Bookbinders, an
aper Mills. Taylor, Stiles \& Co., Riegelsville, N. J. The Celebrated Wooton Desk. See adv., page 206. Comfort Dinner Pails.-Most convenient in use. For
sale everywhere. C. B. Rogers \& Co., Norwich, Conn., Wood Working ., page 190 Scientific Books. See page 188. 100 page
free. E. \& F. N. Spon. 44 Murray Street, N. Y
Permanent Exposition.-Inventors' Institute, Cooper Union, N.Y. City. Every facility for exhibition of machin-
ery, merchandise, and inventions. The expense is small -the advantages great. Send for particulars. Contracts taken to manuf. small goods in sheet or
cast brass. steel, or iron. Estimates given on receipt of cast brass. steel, or iron. Estimates given on receipt of
model. H. C. Goodrich, 66 to 72 Ogden Place, Chicago. Nickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts, polishing compositions, etc. Com-
plete outflt for plating, etc. Hanson \& Van Winkle,
Newark, N. J., and 92 and 94 Liberty St., New York. Guild $\&$ Garrison's Steam Pump Works, Brooklyn,
N. Y. Steam Pumping Machinery of every description.
Lists $29,30 \& 31$, describing 4,000 new and 2 d -hand Machines, ready for distribution. State just what machines
wanted. Forsaitb \& Co., Manchester, N. H., \& N. Y. city. "Abbe" Boit Forging Machines and "Palmer" Power Magic lanterns, stereopticons, cond. lenses, etc., on Railway and Machine Shop Equipment.

Send for Monthly Machinery List
Send for Montace Machinery Company,
to the George Plam 103 Reade Streets, New York
Improved Skinner Portable Engines. Erie, Pa.
$25 \prime \prime$ Lathes of the best design. G. A. Ohl \& Co.,
East Newark, N. J.
For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J.

Engines, 10 to 50 horse power, complete, with govern-
r, $\$ 250$ to $\$ 550$. Satisfaction guaranteed. More than seven hundred in use. For circular address Heald \& Was Dre, N.
Wanted.-Patented articles or machinery to make
and introduce. Gaynor \& Fitzgerafd, New Haven Conn Latest Improved Diamond Drills. Send for circular Water purified for all purposes, from household supWater purified for all purposes, from household sup-
plies to those of largest cities, by the improved filters
manutactured by the Newark Filtering Co.,4177 Complies to those of largest
manufactured by the Ne
merce St.. Newark, N. J.
Ice Making Machines and Machines for Cooling
Breweries, etc. Pictet Artificial lee Co. (Limited), 142 Breweries, etc. Pictet Artificial lee Co. (Limited), 142
Greenwich Street. P. O. Box 3083 , New York Split Pulleys it. P. O. Box 3083 , New York city Split Pulleys at low prices, and of same strength and
anderan appearance as Whole Pulleys. Yocom \& Son's Shafting
Works. Drinker St., Philadelphia.Pa. Machinery for Light Manufacturing, on hand and
built to order. E. E. Garvin \& Co., 139 Center St., N. Y. Presses \& Dies. Ferracute Mach. Co., Bridgeton. N.J. Supplement Catalogue.- Persons in pursuit of infor-
mation on any special engineering. meehanical, or scienmation on any special engineering. mechanteal, or scien-
tiffi subject, can have catalogue of contents of the ScIENTIFIC AMERICAN SUPRLEMENT sent to them free.
The SUPPIEMENT contains lengthy articles embracing the whole range of engineering, mechanies, amd physi-
cal science. Address Munn \& Co., Publishers, New York.

NEW BOOKS AND PUBLICATIONS The Imperial Dictionary of the Eng Lish LaNGUage. By John Ogilvie, LL.D
New edition, edited by Charles Annan dale, M.A. Four vols., 4to. New York
The Century Company. fis
This important work, which has been accepted Great Britain for more than a quarter of a century as
standard lexicon of the English language, and as on of the most useful works of the kind extant for genera reference, is not merely an ordinary dictionary intende
to supply philological information, but is, in addition to supply philological information, but is, in addition,
an encyclopedia, which gives brief, clear, and well sum an encyclopedia, which gives brief, clear, and well sum
marized descriptions of things to which words are ap marize
plied.
This encyclopedic feature adds greatly to the rea with the numerous quotations that it contains, malos attractive reading. The scientific and technologica features of the dictionary are closely allied with its en cyclopedic character. While it does not contain, no profess to, all the terms found in each art and science yet it does contain far more than the reader will be
likely to meet with in general literature. It is especially strong in the departments of botany, zoology, geology anatomy, medicine, surgery, physics, mathematic chemistry, mineralogy, astronomy, archæology, archi tecture, engineering, machinery, manufactures, agricu
ture, and commerce. In the treatment of subjects re lating to science, the articles belonging to this depart ment have, in order to secure accuracy, been submitted or revision to men eminent for their scientific attain ments. Wherever an engraving can help to set the
meaning of a word more clearly before the reader, it has been introduced; more clearly before the reader, it has nearly three thousand, have been executed with re markable care and finish, and are splendid specimen of the wood engraver's art.
here offered to the public Imperial Dictionary, which i without change or revision, has been in preparation fo over ten years, and so greatly has the vocabulary bee ncreased, and so important and extensive have been th changes due to the revision, that it may now be con sidered a new work.
The separate words or entries contained in the four volumes before us number about 130,000 , the definition in all the cases that we have examined being specially this new edition has been altogether remodeled and brought up to the present state of knowledge on the sub ject, and special care has been taken to state in a concise form such facts regarding the derivation of eac word as might suffice to meet the wants of the genera reader, without entering into an extended treatment that could be appreciated only by the philologist.
Altogether, this work forms a wonderful monumen of wide research and erudition, and should find a place
on the book shelves of all classes of readers. Report of the Entomologist of the De partment of Agriculture, Charles V
Riley, M.A., Ph.D., for 1882. Author' edition. Washington: Government Print.
Contains a partial summary of the year's correspond motion of silk culture; a report on pyrethrum, its use a an insecticide, its cultivation in the United States, and experiments made in its use; study of the chinch bug
he army worm, the scale insects of tue orange, rice in sects, corn and clover pests, the cotton worm, the apple magyot, new lac and wax insects, etc. The report i well indexed and illustrated. In view of the circum-
stance that the aggregate annual loss to the nation from insect depredation amounts to many million dollarsProf. Riley says hundreds of millions-it is a pity that means are not provided for the fulier reporting of the
work of the entomological department. The work is so well done and so useful that it should not be stinted in its publication.
Cotton and Woolen Mills of Europe Reports of U. S. Consuls in answer to a Washington: Government Print. Sept. 1882. 8vo., paper, pp. 400.

Comprises about forty reports upon the cottoy and ters, each report describing minutely the mechanical financial, commercial, and labor conditions under which the manufacture is carried on, with ail kindred information obtainable. It is neediess to add that turers and dealers, as well as to legislators and all interested in th eal and relative welfare of American operatives
Text Book of Geology. By Archibald ral of the British Geological Surveys. London: Macmillan \& Company.
"This admirable text book is an expansion of the article Britannica. Dr. Geikie is a charming writer, a master teacher of his favorite science, and also one of its
most successful prosecutors. He has been a close and appreciative student of American geology, in the field as well as in the reports of our working geologists, and
n his breadth of view and grasp of his subject he shows marked adver view and grasp of has subject ue show marian school which has so long dominated English geology. To American students his work possesses pe culiar value from the fact that, unlike our popula
American text books, which dwell most uponhistorica geology, it is particularly full in its treatment of
the cogmical aspects of geology, rock structure, and dynamical geology. The seven divisions of the work are: Book I. Cosmical Aspects of Geology, 24 pages. II. Geognosy, an investigation of the materials of the
earth's substance, 162 pages. III. Dynamical geology, astudy of the agencies of geological changes, their ope
rations and effects, 276 pages. IV. Structural geology 125 pages. V. Paleontological geology, 304 pages. And VI. Physiographical geology, 19 pages. The illustratrations are carefully selected and include a large num-
her from De La Beche's classical "Geological Obher from De La Beche's classical. "Geological Ob-
server." The work has a copious index.

The Brewer, Distiller, and Wine Manu FACTURER. Philadelphia: P. Blakis Son \& Company. \$1.8
handbooks to be edited by Mr. John Gardner. It give directions for the manufacture of beers, spirits, wines, liquors, etc., as carried on in England. Its value for his market would be materially enhanced by the addition of chapters on the treatme
and the brewing of larger beer.
The Slide Rule Simplified, Explained, and Illustrated. By Robert Riddell.
Philadelphia: J. B. Lippincott \& Comphilad.
The author'saim is to demonstrate the practical scope and utility of the slide rule as a means of mechanical calnection with the work of the carpenter and joiner Skillf ully handled the slide rule is a wonderful saver of time and labor, a pocket calculating machine, which every mechanic should know how to take advantage of. Mr. Riddell's illustrations are abundant and well chosen. The preliminary explanations might be clearer, but any proper study, rule in hand, and will be sure to find the lesson a useful one.
The Materials of Engineering In three
parts. Part I. Non-metallic materials. John Wiley \& Sons
Prof. Thurston has here-brought together a considerstones and cements, timber, fuels, lubricants, andencinor non-metallic materials used by engineers, euch as leather, paper, rubber, cordage, etc. The adaptation of different materals to special uses, their varying strength and durability, modes of testing and of preservation, their uses, economical characteristics, and behavior under ordinary conditions are discussed at some
length. An appendix embraces a large number of ength. An appendix embraces a large number of ramme secsion tables, a repor an the centimeter, and a table of four figure logarithms.
Report upon the Primary Triangula-
tion of the United States Lake
stock. Washington: Government Print.
Contains nothing of popular interest. There are elapparatus; of the testing and use of such standards and apparatus; illustrations of the methods of conducting triangulations; and-descriptions of the methods and instruments of astronomical work, and kindred matters, which will be appreciated by those engaged in work of
this nature, and possibly by students of geographical this nature.
surveying.
Annual Report of the Chief Signal
OFFICER FOR 1880. Washington: Gov-
ernment Print.
A volume porlenich in which the useful in-
of sight and almost past finding. Brief digests and summaries of the results of observation and experience would cost
the public.
Saw Filing. By Robert Grimshaw. New York: John Wiley \& Sons.
ructure of saw teeth, the choice of saws, gum of the structure of saw teeth, the choice of saws, gumming,
spring setting, and swaging. It is amply illustrated and seems likely to be of use to practical sawyers.
The Colors of Flowers as Illustrated
in the British Flora. By Grant Al-
len. London: Macmillan \& Co. $\$ 1$.
Mr. Grant Allen needs no introduction to the readers
of this paper. He has a rare faculty both for original investigation and for describing his observations entertainingly without sacrifice of scientific quality. This, the
latest addition to the "Nature Series," comprises five latest addition to the "Nature Series," comprises five
essays treating of the origin. of petals in flowers, the law of progressive coloration, variegation, temporary or permanent reversion of color, degeneration, and other phe-
nomena illustrating the natural variations of flowers and the bearing of such variations upon the theory of evolution.

HINTS TO CORRESPONDENTS.
No attention will be paid to communcations unless writer.
Namesand addresses of correspondents will not be Wen to inquirers
fe renew our request that correspondents, in referring ame the date of the paper and thepage, or the numbe of the question.
Correspondents whose inquiries do not appear after a reasonable time siould repeat them. If not then pub-
lished, they may conclude that, for good reasons, the Editor declines them
Persons desiring specistinformation which is purely of a personal character,
should remit from $\$ 1$ to $\$ 5$, according to the subject, should remit from $\$ 1$ to $\$$, accorng the subjec as we cannol be expected to spend time and
obtain such information without remuneration.
Any numbers of the Scientific American SuppleMENT referred to in these co
office. Price 10 cents each.
Correspondents sending samples of minerals, etc., for examination, should be careful to distinctly mark or label their specimens so as to avoid error in their identi-
fication. fication.
(1) C. M. S. asks : 1. In electric telephonng, is the voice or sound actually transmitted, or is it
reproduced? A. It is reproduced. 2. In electric telegraphing, ooes the electricity pass from one point to
another-say, from Boston to New York-and do its
work, or is it an electric disturbance (if that is the way when on opening one door another is closed in a room, the air opening one door another is closed, nol from but by the movement of the whole body of air in the room? A. Forthesake of convenience, dynamic elec tricity is usually spoken of as flowing in a current tion of electricity.
(2) H. W.: For soldering flux use borax glass; pulverize, and then add water to proper con
sistency.
(3) A. M. F. asks: 1. Can absolute alcohol be frozen, and if so, at what temperature? A. Alcoho
has never been solidified. 2 Can the spirit used thermometers freeze and if so, at about what tempera ture; and what is used to measure a very low temperature? A. Alcohol thermometers are used for low temperatures. 3. What kind of thermometers does the below the freezing point of mercury and are there an better made? A. See Supplement, No. 59, for the gencral subject of thermometers. We presume the for very low temperatures. Supplen ald scribes the instruments used at the New York Meteoro logical Observatory
(4) F. E. W. asks: 1. What is the chem
(4) cal composition of ordinary " laughing gas" as used by dentists? Can it be described as "ordinary air with a excess of oxygen"? A. Laughing gas is nitrogen monoxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$. The name you apply would be incor-
rect. 2. What is the composition of prussic acid, and what is its action upon the system of pressic acid, an which it causes almost instant death? A. Prussic acid \mathbf{i} chemically hydrocyanic acid (HCN), one atom of hydro gen combtued with one atom of cyanogen. It produce A very full description of its symptoms may be found n Taylor's " Medical Jurisprudence."
(5) E. B. asks: What is the exact analysis of sulphate of potash, and where and how is it pro duced? Also, what crops are designated as field crops
and what as garden crops? A. Potassium sulphate is by-product from several chemical industries. It is als made directly as a fertilizer by several large dealers.
Frequently it is sold commercially as pure as 85 pe Frequently it is sold commercially as pure as 85 pe
cent of potassium sulphate. The field crops are whea cent of potassium sulphate. The field crops are whea
and such products, while vegetables, etc., are called and such products, while vegetables, etc., are calle sulphate as manufactured by one of our large fertilize

(6) H. T. Co. ask: What is the best prepa ation or lubricant for wooden cogs in heavy gearing (7) J. W. S. asks: 1. Is the light of a lamp affected by the color of a ceiling? A. A room having
white walls and ceiling will be better illuminated by lamp than a room with colored walls and ceiling White walls reflect a great proportion of the light, while dark walls absorb it more or less, according to the depth of color. Of course the amount of light produced by the lamp is unaffected. by its surroundings. 2. What
can I use to remove mildew from a cement wall? A. Mil can I use to remove mildew from a cement wall? A. Mil
dew on walls may be partially removed by scrubbin dew on walls may be partially removed by scrubbing
with soda water, and when dry whitewash or paint. A solution of oxalic acid may be used as a wash to bleach out the stains after the scrubbing. 3. Will a live fish The fish will add its own weight to the bucket of w (8) E. F. F.: A locomotive cannot get on a dead center unless the engine of one side is br (9) J. S. asks how to calculate the change gears for a screw cutting foot lathe to cut any number nch. Please give full instructions. Also, when cut
ind ting threads on a foot lathe, when you have gone ove the thread once and want to go over it again, do you
have to back the tool out of the cut and reverse the foot have to back the tool out of the cut and reverse the foo
wheel and run it backward until the tool is where it began, and then begin another cut? A. The gearing and management for cutting threads are the same in princ and Queries," vol. xlvi., query 31, page 323, you will and Queries," vol. Xlvi., query 31, page 323, you will
find formulas for two styles of gear. If your lathe has a clamp grip upon the leading screw, you can unclamp
and slide back for any number of threads that will divide by 10 without a remainder, or that is a divisor of 10 without a remainder, thus in your case you can slide back for $2 \%, 5,10,20,30$ threads to the inch only, and
will have to run back for ail others. (10) R. W. S. : The charge (10) R. W. S. : The charge of powder for a (11) W. J. R. asks how to transfer a print (common printing) to a piece of poiished steel. A. To varnish as follows: Gum sandarac, 4 ounces; mastic, 1 ounce; Venice turpentine, 1 ounce; alcohol, 15 ounces or any smaller quan ity in proportion. Digest in a botte, with frequent shaking. Moisten the print slightly upon the back by laying a wet cloth upon it; then varnish the steel plate or glass with a thin even coat lay the print with the face next to the varnish, compressing it down close with the fingers if the print is that all parts of the print print is large. Be careful that all parts of the print are in contact with the var
nish. Laty aside to dry. After it is dry wet the back with water and cautiously rub the paper off with the ingers; rub lightly toward the last with plenty of water and the surface of the varnish will come up smooth with the ink of the print solidly embedded. Then a thin coat of mastic varnish will give it a finish.
(12) T. D.: To cut glass water gauge tubes file a nick in one side and break as you would a stick.
In some cases it is necessary to scratch the tube on the inside. You can dn this with the sharp end of a broken
（13）A．F．S．asks how to prepare a good blacking for the inlerior of telescope tubes． 1 am atout
to construct one，and would be very much obliged to you for this information．A．For dead black for inside of telescope tubes use alcoholic shellac varnish and lampblack，equal parts by weight，and thin with enough alcohgl to make it flow freely with the brush．
（14）J．L．B．：The method of preparing paraffine paper is as follows：Dissolve paraffine in ben－ zine，and into the warm solution dip the paper，sheet by sheet；let drip off and dry．On the large scale it
may be done by leting mass through such a solution，and then between flannel to absorb the surplus．Wax is best dissolved in carbon disulphide，and paper can thus be made ready for use in five minutes．Quite a good plan is to apply
solution of paraffine by means of a soonge．
（15）S．L．asks if there is any chemical or mechanical means for repolishing glass after being scratched？A．Slight scratches may be partially pol－－
ished out by rubbing the part with rouge wet with ished out by rubbing the part with rouge wet with
water upon a piece of soft leather．If it is a deep scratch，it will have to be ground out with the finest flour emery，such as is used by opticians，and the spot polisher with rouge and water upon a piece of sot
leather．If you have much of this kind of work to do it will save time to set up a buff wheel made and grind out the scratches with fine pumice stone and water．Then polish with a felt buff and rouge with
${ }_{(16)}$ A．S．M．asks ：Do locomotives ever work up to 100,000 horse power on the road？A．No．
What is the highest power ever developed by locomo－ What is the highest power ever de
tives？A．About 800 horse power．
（17）J．E．asks：1．For a test for determin ing the presence of sulphuric acid in a liquid？A．Ba rium chloride gives a white precipitate with sulphuric acid．2．Is there any other chemical that will change
starch into sugar？A．Any dilute acid．
（18）F．asks：The best cement for small pieces of ore on wood or
glue and whiting mixed．

A．Starch
 White sugar
 Gum arabic Water．．．．．

drachms． 2 drachms．

Dissoive the gum，add the sugar，and boil until the
（19）A．L．H．asks what the composition

A．Fine glue

Phosphorus．．
Potassium chlora
Powdered glass．
Red or white lead or smalt suffcien．to to to 4
Forcomplete information consult Dussauce，Practical
Treatise on the Fabrication of Matches，etc．Suppre－
wirt No b4 contains a good account．
（20）G．A．B．asks：Is there not a method of hardening and tempering shears and scissors（both water cracking or becoming too hard to work，which is preferable to hardening and tempering in oil？If so， please give directions for doing same．If，in your judg，
ment，oil is best，please give the best mode of using Is there anything better than oil or water for the par－ pose？If so，what and how used？A．Shears，if pade of low steel，such as shear or double shear or even of
American spring steel，should not water crack if prop－ American spring steel，should not water crack if prop－
erly treated．We fear that you heat them too hot and throw them into the water in any way most conven the hardening quality of the steel by a few trials of the lowest heat that it will harden in water at 70° ，or shop temperature．Be careful not to overheat the points，and dip vertically．Oil is preferred by some because it does like to try the oil hardening，the process is the same as with water，with the same precautions．Use only the from fine steel，you will probably find all the dificully in overheating，as fine steel will not stand high heat
（21）J．H．F．asks：1．Does the steam pres－ sure on a prston head keep up to a given pressure as The pressure remains the same if the opening to the cylinder be large enough；but if too small，the pressure will fall．2．State the differences in a large cylinder and that is，as to the comparative power obtained．A．Theo retically there is no difference；practically，the friction
would probably be most with large cylinder and sho crank．
（22）C．C．writes：In your paper of the 13 th proofing linen garments．Would the same ingredients and application thereof do for worsted and woolen gar－ ments without damaging the texture and color？Or by placing it in your columns？Would you please an swer：1．After boiling for a quarter of an hour，you say
rinse out．2．After being in the solution for 6 hours， wring out and wash．Should the rinsing and washing process take place in cold or hot water？A．The fol－
lowing may be tried．Two solutions are prepared．The first，composed of 1 part dry gelatine dissolved in 4 parts of oil，contains a little sulphuric acid．The sub－ stances are mingled by the aid of heat，after which about 5 parts of an alkaline solution， 26° B．strong，is
addied and stirred till cold．To prepare the second solution，dissolve alum，zinc sulphate，and lead acetate in three separate vessels，making each solution of the same degree of density．Mix these in the propor－ 5% parts lead solution．After settling the supernatant liquid is diluted to 1° to $2^{\circ} \mathbf{B}$ Textile fabrics are firs treated in a bath c ntaining $1 / 2$ fluid ounce of the first solution in 9 quarts of hotwater；afterdraining and dry ng they are left 8 to 12 hours in the second solution，
nd gradually dried，which finishes the process．See also Supplement，No． 317
（23）T．A．C．asks：1．Is the tendency of the ime to use higb speed engines for increase of power2
Yes．2．Will an engine with a driving wheel 3 feet in Yes． \mathbf{y} ．an eng ine with a driving wheel 3 feet in more power on the line shaft than an engine of driving wheel of 6 feet diameter making 150 revolutions per min ate？A．Yes，because the pressure on the piston is es－ pended on an arm or radius of $11 /$ feet in the firs
case and 3 feet in the last．Assuming the pressure on ase and 3 feet in the last．Assuming the pressure on
the piston to be the same，the power given out is in oportion to the speed
（24）J．C．G．asks：What process may be used to the best advantage in colring meerschaum
pipes？If a meerschanm pipe is once burnt，can it be remedied so as to continue coloring afterward？ When once burnt the pipe cannot be satisfactorily col red，unless the burnt portion is removed and the sur－ is prepared．The coloring is produced by action of the smoke upon the oils and was which are super ficially on the exterior of the pipe，and are applied in

Where can I g lenium，what W．asks： 1 ． electric conductor？A．Selenium can be purchased in New York of almost any of the dealers in pure chemi cals．Its cost is about $\$ 4.00$ per ounce．Its conduc vity varies according to the degree of light or heat to at a higher temperature than at a low temperature． 2 Can white cast iron be magnetized，and how？A．White castiron can be magnetized if chilled or hardened．It may be charged with an electro－magnet．
（26）C．F．P．asks for a recipe for making shellac varnish that will be a good insulator of elec tricity．A．D
（27）D．S．asks：What can I put on canvas make it airtight and flexible？A．Boiled linseed oi is generally used for the purpose indicated．In time the oil will take up oxygen from the air，and in that （28）E．M．G．writes：I would like to me information on＂spongy iron，＂and how made，if you cangive any．A．Pure iron may be obtained by heating pure ferric oxide in a current of hydrogen gas state．Spongy iron，such as is used for filtering pur poses，is simply metallic iron．
（29）A．B．writes：1．＂To lime whitewash add sulphate of zinc．＂Is this of any value，and if so， how much zinc must I add？A．Zinc sulphate is added
to the lime whitewash to prevent it from souring．It acts as\％an antiseptic．Less than one per cent should be added．2．Can ice cream be prepared without eggs and without heating？If so，how？A．Ice cream can be made without eggs by
heat，as we know of．
（30）G．L．asks：1．What article contains the largest amount of butyric acid？A．Butyric acid is fats．2．Can you give me a recipe for preserving eggs or five or six months－a cheap and effective one？A． Consult Scientific American Supplement，No．317．
（31）G．H．B．asks：1．What is the process of the manufacture of vaseline？A．Vaseline is ob－
ained by distilling off the lighter and more volatile portions from American petroleum，and purifying and ecolorizing the residue by treatment with sulphuric and potassium bichromate and subsequent digestion with animal charcoal．2．The process of deodorizing recommended：To each gallon add an aqueous solution of four to eight grains potassium permanganate，shake well，and add，after five minutes，as much calcium chlo－ de，previously rubbed with a little water．Filter the liquor after several hours，and set it aside for a few ays．The alcohol will then have lost its chlorine smell nacquired a peculiar flavor，which，however，de－ ium chloride used．If then distilled，the alcohol may e used as the finest cologne spirit．
（32）C．E．H．writes：I wish to do some razing，and for this purpose I constructed a fire－pot 8 fled with amer and the－brik．This is miled with charcoal and attached to a small blower，in arts to be soldered are filed clean and placed in pois ion．The solder is then applied，and borax is used as a ux．The fire is raised to its highest temperature we can obtain before the solaering is attempter；but the wish to unite will become red hot and all the flux ap－ parently burnt off without melting the solder，or，at east，meit it very imperfectly．What is wrong，and how can I overcome the difficulty？A．You cannot
braze copper pipe with the seam side $u p$ without diffi－ culty．The proper way is to clean the edges and wire the pipe with small iron wire at small intervals to keep by rubbing a piece of borax upon a stone with water， pon the outside along the seam，and also upon the inside if the tube is not long．Then place a few pieces of low or common yellow brass upon the inside along he seam，dipping the pieces into the borax solution before putting them in place．Put one piece close to （which should be charcoal）so that Arrange the fire tube about twenty degrees．Lay the tube into the fire seam dou＇n so as to melt the brass at the upper end first．As soon as the brass begins to flow，gradually draw the tube toward you，looking at the progress of the flow upon the inside，until the brass has flown hrough the whole length of the seam．If upon exami－ ation it is found perfect，take off the wires and boil he tube in a pickle made of one part sulphuric acid to n parts water，in a copper dish；or，if not convenient， eat the tube nearly red and plunge in the pickle．In borax solution to the proper place inside and heat as before．Spelter solder that is granulated is made for such uses，and is furnished by moist houses that deal in sheet brass and copper，or can be procured at a copper－
smith＇s．A piece of sheet brass，cleaned and clipped with shears，should make good work．

COMMUNICATIONS RECEIVED．

 A Challenge for Scientific Men．By H．C． On sevage．By S．G．J．On the Protecting Qaalities of Snow．By E．G．A． On Cleopatra＇s Needle．By T．H．H． On the Siemens Dynamo．By M． On the Cause of the Aurora．On the Cause of Earth Ones．By W．H．W．
On Aerial Navigation．By F．B．
On the Hydrostatic Paradox．By F．S．H
On the Vienna Electric Exhibition。By A．P．De R．

［OFFICIAL．］

INDEX OF INVENTIONS or which
Letters Patent of the United States wer Granted in the Week Ending

March 27，1883，
AND EACH BEARING THATC DATE
［Those marked（r）are reissued patents．］
A printed copy of the specification and drawing of an
patent in the annexed list，also of any patent issued
since 1866 ．will be furnished from this office for 25 cents．
In ordering please state the number and date of the patent desired and remit to Munn \＆Co．， 261 Broad－ ay．corner of Warren Street，New York city． 186 but at increased cost，as the speciftcations，not being

Accordion，B．Berr

Acid from borates，process of and apparatus for 274,705 obtaining boracic，W．R．Robertson，Jr．．．．．．274，660 Adjustable hook，F．D．Thomason．．
Advertising wind mill，T．B．Peacock Ford（
Alarm．See Railway safety alarm．
Alkalies，manufacturing
Axle，vehicle，D．F．Hull
Bag dumping machinery，E．W．Scot
Löwig．
Bag dumping machinery，
Bag seam，grain，E．Detrick．
Bale tie，J．W．Griswold．．．．．．．
Baling press，G．F．Whitman
Band
Bed bottom，spring，D．Rensha
Bed cove ing，etc．，manufacture of，T．M．Wi．．．．．．．
Beer，hermetic apparatus for racking，J．Pusch．．．
Beer，hermetic apparatus for racking，J．Pusch．．
Rell，Electric，C．F．De Redon．．．．．．．．．．
Bilge water indicator，J．M．Fennerty．
274，672
274,651

Bayley
Bit．See Boring bit．Bride．．．．．．．．．．．．．．．．．．．．．．．．．．
Blind stop，T．M．Brintnall．
Board．See Musical instrume．．．．．．．．．．．．．．．．．．
Boiler．See Cooking boiler．Sectional boiler．
Boiler furnace，steam，B．Topmille
Boiler furnaces，locomotive and other，J．A．Ga
Bolt cutter，J．H．Kennedy．．．．．．．．．．．．．．．．．
Bolt for chilled mould boards，J．Du Shane reel，Phillips \＆Keal Book adjuster and supporter，Carlock \＆Davids
Boot and shoe indicator．A．Muckenhaupt．．．．． Boot or shoe polishing machine，T．J．
Boring bit．w．W．Brigg．．．．．．．．．．．．．．．
Boring mill attachment．G．T．Reiss．：． Bottle stand，lock，C．W．Hutchins． Box．See Match box．
Box fastener，W．B．Judson．

Bracket．See Lamp bracket．

 Brake．See Arr brake．Car brake．Wagon brake． Bridle，Peavey \＆Kiekenapp
Bridle bit，T．Brabson ． Bridle bit．M．J．o＇Leary

Broom corn，cutting and preparing，J．B．Beale．
Buckle，trace，J．Thornton
Buffing wheel，R．Binns．．
Burial casket，G．S．Eato
Button，metallic，E．N．Foote．．．
Button，separable，D．\cdot Humphre
Button，settina sabies instrument，P．H．Sweet，
Cable gripper，traction，A．H．Lighthall．
Cabie way，underyround，A．H．Lighthall．．．
Cables or conductors，suspending，C．E．Chin
Cables or conductors，suspending，C．E．Chi．
Camera．See Photo micrographic camera． Camera．See Photo micrographic came
Can．See Milk and cream can．Oil can． Can heading machine，W．E．Vincent．．．．．．
Cans，device for handling fruit，W．Gregg． Car brake，J．M．De witt．
Car brake，Weller，Wanee \＆Roesch
Car brake，automatic，G．Heidel．．
Car cinder，F．w．Gor
Car，cinder，W．Kelly
Car，cinder，W．Kelly．．．．．
Car coupling，，S．J．Filson．
Car coupling，T．Harding．
Car coupling，T．Harding．．
Car
Car coupling，J．D．Miller．．．
Car coupling，C．F．A．Nettzel．．
Car coupling，R．G．Thompso
Car，dumping，C．La Cosse
Car heater．W．M．Fuller
Car，railway，E．B．Meatyard
Car seat ticket holder，C．S．
Car，sleeping，W．H．Wigmo
Car starter，A．F．Clark．．．．．
Car，stock，Burton \＆Holde
Car，stock，Burton \＆Hol
Car，stock，M．H．Gilbert
Carriage，jump seat，O．Morrill．
Carriage top，W．Hodge．
Carrier．See Trace carrier
Cartridge capping machine，w．Lorenz．
Case．See Leather case．Toilet
Case．See Leather case．Toilet set case
Casting printers＇rollers，apparatus fo
Crutsinger．

Chain，harness breast，J．c．Covert．．．．．．．
Chair．See Folding chair．Operachair．

Chair suppoyt and foosstool，M．
Check rower cord，H．Fapuer．：．
Chopper．See Cotton／opper．

Cigar coloring and flavoring machine，N．Du Brul．274，472
Cigars，machine for treating tightly rolled，J．
 Clamp．See Stool screw clamp 274,546
274, Clamp，C．Steineke．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 274,888
Clay，coloring and hardening，J．Ambunl．．．．．．．．${ }_{274,543}$ Cleaner．See Grain cleaner．Hoof cleaner． Clip bender，N．R．Dull．． Coal，apparatus for separating slate from，J．Fer Cock for steam radiators，air，＇H．Patterson．．． cockle machine，J．Lucas．．
Coffee roaster．T．C ．White．
Coffee roaster．T．C．White．．．．．．．．．．．．．．．．．．．．．．．．．． 2744,7972
Cooking boiler，steam，Kuhn
Cooler．See Water cooler．
Cooling beer，etc．，apparatus for，J．W．Sehorr．．．．．． 274,830

Corkscrew，C．T．Williamson．．．．．．．
Corn sheller，hand，G．W．Gordon．
Cot，folding，G．E．Bedell．．．．．．．．．
Cot，folding，G．E．Bedell．．．
Cotton chopper，W．J．Irwin
Cotton gin，J．D．Miliburn．．．．．
Cotton stalk cutter J．M．Sto
2744,588
274,455
274,780
274,806
274,670
Coupling．See Car coupling．Harness coupling．
Shaft coupling．Thil coupling．

Crib，folding，C．S．Comins ．．．．．．．．．．．．．．．．．．．．．．．
Cultivator，E．T．Gregg．．
Cultivator，S．D．B．Kise
Cultivator，L．Luppen．
Cultivator，tongueless．B．C．Bradiley
Cultivator，wheel，C．D．Carter．．．．．．．．．．．．．．． 274,98
247,555
$.274,720$
274,572
 274.559
274,530

Cutter．See Band cutter．Bolt cutter．Co
stalk cutter．Pipe cutter．Sod cutter．
Damper for stove pipes and flues，ventilating，A 274，567
Cummings．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

Die．See Roller die．
．
Differential register，J．Thomson．．．．．．．．．．．．．．．．．．． 274.
Digger．See Post hole digger．
Disinfectants，production of，Kingzett \＆Zingler．274，789
Disintegrating machine，S．Dodson．．．．．．．．．．． 274,54
Disinfectants，production of，Kingzett \＆Zingler．274，789
Disintegrating machine，s．Dodson．．．．．．．．．． 274,57
Distilled spirits from grain，process of and appara－
tus for manufacturing，w．T．Jebb．．．．．．．．．．．．
Dominos，checks，etc．，manufacture of，c．c．
Dominos，checks，etc．，manufacture of，C．C．
Shepherd．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 244,668
Dor，automaticaly operatin，j．L．Hawkey．．．．2447655
Door lock，sliding，Rees \＆Nills．．．．．．．．．．．．．．．．． 244,658
Door lock，sliding，Rees \＆N ills．．．．．．．．．．．．．．．．．．．．．．．274，658
Drawing table，A．Hörmann．．．．．．．．．．．．．．．．．．．．274，605
Dredgers，chain wheel for sand，M．Herron．．．．．．274，601
Dredgers，chain wheel for sand，M．Herron．．．．．．．．．274，601
Drill．See Grain drill．Rotary drill，
Easel，sketcher＇s，M．A．Merrill．
Easel，sketcher＇s，M．A．Merrill．．．．．．．．．．．．．．．．．．．．．． 274,629
liectric generator，s．．Wallace．．．．．．．．．．．．．． 2748,85
Electer wires，conuit for，W．H．Johnstone．．．． 274,611
Electrical conductor，G．F．Barker．．．．．．．．．．．．．．．．． 274,699
Elevator clutch，automatic，E．T．Herrick．．．．．．．．．274，770
Elevator gate，automatic，G．v．Delue．．．．．．．．．．．．．．．．2474，887
Elipsograph，C．Stickney．．．．．．．．．．．．．．．．．．．．．．．．．．．．．528
274，757
End gate，wagon，A．Graham ．．．．．．．．．．．．．．．．．．．．．．．．
Engine．See Rotary engine．
Engraving preparing blocks of wood for，w：
Brah ．．274，556
Eraser，blackboard，D．．Croft．．．．．．．．．．．．．．．．． 274,566
Explosions，composition of matter for preventing
Explosions，composition of matter for preventing
the occurrence of，T．Sheehan．．．．．．．．．．．．．．．．．274，666
Express signal，A．Craw ford．．．．．．．．．．．．．．．．．．244726
xpress signal，A．Crawford．．．．．．．．．．．．．．．．．．．．．．．． 244,726
Feed water heater，G．Cassidy ．．．．．．．．．．．．．．．．．247．561
Fence，metallic，J．M．Reid．．．．．．．．．．．．．．．．．．．．244，822

Float，E．D．Shepard son．．．．．．．．．．．．．．．．．．．．．．．．．．．．274，83
Flour，machine for mixing and aerativg，J．D．Ban－

Fluid meter，piston，Barton \＆Miliken．．．．．．．．．．．．．．．274，879， 244,730
Folding chair，w．J．Decker．．．．．．．．．．．．．．．．．．．

Fuel，feeding pulverized，J．B．Hyde．．．．．．．．．．．．．．．．
Furnace．See Boiler furnace．Gas furnace．Heat－
Ing furnace．
urnaces，feed hopper and bell for blast and other，
E．Shepard．．． ${ }^{2744,667}$
ing or heating，F．D．Moses．．．．．．．．．．．．．．．．．．．．．．．．．．．．．24，837
2Y4．592
Gas from hydrocarbons and utilizing the same in
fnrnaces，apparatus for gerfetang，H．F．Hay－
den．．．．．．．．．．．．．．．．．．．．．．．．．．
as furnace，H．F．Hayden
Gas regulator，J．S．De Palos．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Gate．See Elevator gate．End gate．
Gear，bevel，A．Vivarttas．．．．．．．．．．．．．．．．．．．．．．．．．．．．

Generator．See Eौectrig \＆eeerator．steam gen－
erator．Thpor or gis generator．

Goveivor，water wheel，D．\＆A．Narracong．．．．．．．．．． 27
Grup binder，W．Aldrich．．．．．．．．．．．．．．．．．．．．．．．．
Gexin binder，．P．Bullock．．．．．．．．．．．．．．．．．． 274
gin＇binder，corn grasper，and cutter，A．Savage．274
G inn；binder，corn grasper，and cutter，A．Savage．
Gin binder twine tension and take up device，
rain binding machine，Howard \＆Bousfield
Grain cleaner，J．E．Cummins．
Grain drill，Rude \＆Swope．．．
Grain drill attachment，Carr \＆See．
Grain drill，walking，Rude \＆
Grain elevator，J．B．Pelton．．
Grain purifer and
Grain purifer and separa
Grinding mill，J．Beall．．

	Propeller, hydraulic, T. L. sturtevant............. 274.489	Wa	T THE best and Cheapest.
27	Propeller, reciprocating, J. A, Arthur............. 274,693		
Hame strap fastener, R. C . G. Hanford, Jr...........: 244;63 Hanger. See Shaft hanger.	Pump, C.E. Ba	Water cooler, A. J. Schultze ${ }^{274.463}$	
Hanrer. seat entaart hanger.		Wax compuoud, P. C. Ghaler........................ 274,4836	S Silver Finish.
Corbett...................................... 24,464	Putting out ma		(
ness coupling. A. P. Gross. 274	Radiator, stean	ortat	
Harness hook;	Rail joint, C. .	Jacobs................................... ${ }^{274,881}$	
Harness pole ring, D. Kirk........................ 274,1615			
	Rails and bars. appuratus for bending, L. Vojicek. 27 Rails, tools for cutting slots in, J. K. P. Renfroe.. 27	Whip socket, J. Thornton............................ 274,850 Whip socket and rein holder, combined, J. L.	
Harrow, spring too	Railway safety alarm		
Harvester, corn, A,	Railway switen, J. M	Windmill horizontal, A. ZWiebel.................. 274,541 window	,
Hat band, C. F. Beatty............... 274,704	Railway switch, S. Nichols,....................... Railmay swith, adjusting and locking device, R .		On,uniformityof temper, and general aura-
Hat sizing and shrinking machine, W. F. Martin.. 274,623 Hat tip, Winghart \& Rochford.......... 274,873	Railway switch, adjusting and locking device, R. G. Brooks..... 274.713		Whity. One Perin Savo out we ers three ordinary sawa
. self-closing, D. Humphreys.... 274,777	Reel. Se	Wire work, machine for forming. F. J. Brand.... 274	
Hatchway, self-closing. R. D. Thackston.......... 274	Refrigerator,		
Hay stacker. A. W. Tay	Regulator	8 Kiton	
der tooth. J. Mu	${ }^{\text {Ring }}$	Yench, F. Armstrong........................... 27.4 .544	
He	Roaster. Roller. See Coinying roller. Leather dressing		
Heation furnace, F. Tylee....................... 274.676			
	Roll		
and	$\begin{array}{l\|l} \mathrm{Rol} \\ \mathrm{Kol} \end{array}$	ESIGN	
of cleaner, E. O. Davis.............. 274,570	Rolling mill, con	Bed spring, s . H . Tur	
Hook. See. Adjustable hook. Snap hook.	Rotary drill, expansi	Carret.E.E. A. Crowe......................13,323 13, 11.8238	ratuswithout the use of tanks or
Horseshoe. J. A. Maguire.................. . . . 274,800	Rotary engine J. J. Starks... 274		
Horseshoe, E, S. Thurber.............................. 274,853	Sand band,		
rseshoe and calk therefor, E. S. Thurber....... 274, e carriage, S. T. Holly	Sand band, J. O . Waddell................... 274		
Hose carriage, S. T. Holly.....ere......... 274 ,		$\xrightarrow{\text { Car }}$ Car	
makng mac	Saw mill steani feed works, A. Cunningham....... 27,5668	ca	A PROPAGATING BOX-DESCRIPTION
Indicator, See \mathbf{B}			
	Scale beams, ind		
icator lock, P. Yoe 274.875		- Cup and sauc	SCIENTIFIC American SUPPLEMENT, No. 330. Price 10 cents. To be had at this office and from all news-
ulated wir	Seat lock. FF: P. Montfort..................... -.. 274,509	Fri	
	Sectional		
	Seeder, R Seerer		
alid lifter, stelle \& Cutting....-	Seeding machine		,
Iron and steel, manufacture of, J. Henderson.... 274 Iron, apparatus for purifying, T . H. Rurridge..... 274	Sewer inlet, Coilings \& Pike...................274,465, 274 Sewing machine binder, G. M. Morris............... 274,	To	ifire mand- Vermini-
Jack. See. Wh	sev	Rade Mark	$O \text { H }$
			mple and Circular Free by mail.
Joint. See Rail joint.	Start coupping , A. Ioebierer...1......................... 274747996	Ca	L WOOL CO 22 Courtlandt St., N. Y.
	Shelvin		
Ladder, extension step, G. W. Stambaugh......... 274,526 Ladder, step, J. F. Treftz............................. 274,855	Ships bottoms, composition for preventing foul- ing of, N. B. Dennys.................	Cotton piece goods, Langdon Manufacturing Company.	
ders, hoo			
mp, electric arc, J. Du Shane.			
Lamp, electric arc, J. Du d Shane... .i.i.i........ 774,		$\xrightarrow[\substack{\text { Flour, } \\ \text { Linime }}]{ }$	
orch	'shoe fo	Liniment, Hamin's	
mp	Signal.		
Leather case, A. \& H Leather dressing rol	Snap hook, F.	Paint, roofng	
$\xrightarrow{\text { Leather dressing rol }}$ Lifter. See Invalid	${ }_{\text {S }}$	Ren	
Lifting meethpuism; G. A. Shoudy. 2r4, 8 \%	sp	Tob	
ghtning conducto			
Lock. "See Galley type lack ToEk, seat Toct	Spring	Varnigher, Lewis, Hedell \& Co. velvets, satins, andsilk goods,	
Locomotive, rotary engine, I. N. Forbes........ .. 274,480	stand.	Wound dressings, C. G. Am Ende....... 10,145	
Loo	Sta		
Mat lock, J. J. King........................20.274	Sto	duratisam	
Match box, R. Wallace.............................. 274, 264			
Mattress, L. Heath................. 274,495	Stone turning Iathe, T. F. Clemons.... 274,563 StooI screw clamp. R. Wangeman................. 274,680	Inside Page, each insertion - - - 75 cents a line. Back Page, each insertion -- $\$ \mathbf{\$ 1 . 0 0}$ a line.	
sure			
Mexturing machine son \qquad			
etals, co	stra	as Thursday	
Meter. See Diaphragm meter. Fluid meter. Milk and cream can, G. W. Evans........... 274,745			
Milk and cream can, G. W. Milk, making condensed, J.	Straw stacking machine, G. W. Williamson....... 274, Surcingle. Maltby \& Sabine............................ 274,		Clay Grinder and the best Cotton seed in the world.
Mill. See Grinding mill. Roller mill. Rolling mill. Windmill.	Switch. See Lamp switch. B Table. See Drawing table.		
Mirror and p	Ta		
Moistening Mould. See den	Tap for cutting spiral wedge nuts, H. A. Harvey. 274 Teaching, puzzle card for object, S. Lyman....... 244,		
Moulds			
Motion, mee	$\xrightarrow{\text { Telegra }}$ Telegra		
ham			
Mowing machine, R. A. L Musical instrument key.	$\begin{aligned} & \text { Tel } \\ & \mathrm{Te} \end{aligned}$		
sical instrume	Te		
Neck tie holder, ${ }^{\text {a }}$, Newspaper wrapp			
$\xrightarrow{\text { Smain }}$			
$\underset{\substack{\text { Oil can } \\ \text { Oil can }}}{ }$			
er.	Teth	Lathes, Planers, Drills, Shapers, etc.	
Opefa chair. Durant \& Kane. Ore coneentrator, dry, W.	Th		
	${ }_{\text {Thill }}^{\text {Thash }}$	Artices of Wood and Lidht Meral made in quanti-	
${ }_{\text {Orgma }}^{\text {Or }}$	Tie, Se		
	TMile machine, G. Potts........................... 274	SPEAKING TELEPHONES.	
Oreat erater idjust	Toilet set ease, Jasmagy \& Frost.................. 24.540	e amblean bela triephove company,	
Pail noo-beativy con	Tra		
aint, C. Millet	Tre	Owned by this company, covers ev	
int waterproot, E. Hass... ${ }_{\text {a }}$.	Tricscle, Handy \& Anthony.................... 274,782		
Paper textile fabricsteto machen	Turbine wheel, N.F. Furrnham.... 24.84		
	Valve for	The Commissioner of Patents and	
	Valve gear, steam engine, A. Morton........... 27.4810	the valialty of the	
Pens. machine for catting ane iorminn raling, w.	Valve, pug stop, L. D. Craig....... 2 2it,yit	and junctions and final decrees have been obtained ont them. This company also owns and controls all the other	ecifications, and
C Dema	Valve, safety, A. D. Kibborn.......... 274,787	telephonic inventions of Bell, Edison, Berlin Blake, Phelps, Watson. and others.	the prosecution of Applications for Patents in the
Ioto mierog,			United States, Canada, and Foreign Countries. Messrs.
	Vapor or gas, apparatus for generating and utilizing, H. F. Hayden		L Labels, Reissuues, Assignments,
	Vapor orgas generator, hydroc		ports on Infringements of Patents. All business
Planing machine, Cook \& Perkins..................... $24.44,8086$			do them is done with special care and prompt-
274,.565	Vêhicle	aress all co	
nter check row attac		Ik Street. Boston, Mass.	
Brown.			Designs, Patents, Appeals, Reissues, Infringements, As-
ter. See			
			n
ing pr	Washing in		
ting p			
274,546		Higa, Amateure	
Printing, etc., production of surfaces for, J. J. Sachs			BRANCH OFFICE - Corner of F and 7th Stre Washingtn, D. C.

AGENTS

chissivi wext

 BOSS MATENTOLD Watch cases

 OUNW 1883.

\$30,000HOW \$2 INVESTED brings
$\$ 80,000$ A fortune within
the reach of ALS. Circulars $3 \int_{\text {by }}^{\text {addressing }}$
Courier Journal Building, LeUKISville, Ky.

MANHOOD!

 KNOW THYSELF: M

Young, Middle-Aged, and Old. The untold miseries that result from indiscretion ib
 servation. It is not only a complete and perfect trea
tise on Man Manhod. EXhasted Vitality, Norvous an
Physical Debility. Premature Decline in Man Error

EVAPORATING FRUIT

 Treatise on Improved Methods SENT FREE. Tables of Yields, Prices, Profits, and General Statistics.AMERICAN MANUF'G CO., WAYNESBORO, PA.

 "BLAKE'S CHALLENGE" ROCK BREAKER.
 BLAKE CRUSHER CO., Sole Makers, New Haven, Conn. Tha SENOTOLONDON,BERRY\&ORTON
THE BESTIAPA BAN FAN SAWBLADE

BARREL, KEC
HOCSHEAD,
AND

WATCHMAKERS.

2 to 150 Horse Power,
s absolutely batanced at all speeds, and may be run from $\mathbf{3 0 0}$ to $\mathbf{1 , 2 0 0}$ revolutions per minnte. Requires
neither Lining, Adjustment, Key-

 toolsi parts built strictly to gauge
Alli palinterchangeablẹ.
and

daMASCUS BroNVE.

 A composition metal unequaled onstrength, durability, anti-fricton quali-
ties, and price. Tet or Westinghouse Maedine Co.,

 Put on cars at Sipininiela, 40,0
JAMES LEFET \&

 creates but little friction. This lengths of about 20 feet, and of all sizes from 14 to 2 inches square
JOHN H. CHEEYER. Treas. NEW YORK BELITING A PACKING CO., 29 Parl
beencelal Nowice.-Owing to the recent great fire in the "World" Building, dur office has

ENGINEER AND MACHINIST.

The New Baxter Patent Porabile Steam Enjine.

[^0]*

ROOT'S NEW IRON BLOWER

IRON REVOLVERS, PERFECTLY BALANCED, Has Fewer Parts than any other Blower P. H. \& F. M. ROOTS, Manufacturers, S. S. TOWNSEND, Gen. Att., 6 Cortland St., 8 Dey St . GOOKE $\&$ CO., Solling Agts., 6 Cortland Street,
BEGGS CO., Selling Agts. 8 Dey Street, NFWV YORK.
 Patent Journal Box. The best Planer and Matcher ever
nade. Planing 20 in. wide, 6 in. thick, weight 2,200 lb

FOR A
OMDINED PunchandShears
 Lambertville Iron Works, ICURE FITS!

WOOD WOORKNGMACHINEKY tRON TOOLS

2. MARKETST.
PHILADELPHIA.PA.

RUPIURE

MORPHINE and WHISKEY
CHLORIDE OF GOLD
REMEDISS, 5,000 Cures. Bonk

CONSUMPTION.

3ivertisements.

Inside Page, each insertion - - $\boldsymbol{7} 5$ cents a line.
Bacli Page, each insertion -- $\$ 1.00$ a line.
 Engravings may head advertisements at the same rate
per line, y measurement, as the letter press. Adver.
tisments must eo received at publication ofice as early
as Thursday morning to appear in next issue.

Now then, here is. something good.
It ought to have been thougnt ot before.
Every mechanic, every farmer, everybody needs one. It saws iron, wood, brass, bone; everything. .
One saw will cut off one liafinch round iron 72 times.
The first time in twenty seconds. The fast time in twenty secight minutes.
Of course it cuts twice as fast.
Of fan Hack Saw
This sells for less than the cost
Frame 14 inches $10 . \mathrm{g}$, holds cost of filing that.
And holds them and and 9 inches. And holds them at any desired angle.
Twelve saws are packed in a box wih trame.
Price of frame, saws and box, $\$ 1.50$. Price of frame, saws and box, $\$ 1.50$.
Sold at our price by all Hardware Dealers. Or sent by mail, post-paid, on receipt © f price.
All genuine goods are marked with a star.
Millers Falls Co.
74 GHAMBERS ST., NEW YORK.
 "BUCKEYE LAWN MOWER.

T

 The "MONITOR."

Water 이루ators

 - $\begin{gathered}\text { NATIONAL STEEL } \\ \text { TUBE CLEANER }\end{gathered}$

 exsceitipany,

ROOFING.

GOLD MEDAL, PARIS, 1878

 BAKER'S Breakifast Cocou, Warranted absolutely pureCocoa, from which the excess of
Oil has beenremoved. It has $t h r e e$ Cocoa, from which the excess of
Oil has been removed. It has three
times the strength of Cocoa mixed times the strength of Cocoa mixed
with Starch, Arrowroot or Sugar, with Starch, Arrowroot or Sugar,
and is therefore far more eccnomi.
cal. It is delicious, nourishing, strengthening, easily, digested, and admirably adapted for invalids a
well as for persons in health. Sold by Grocers everyw.
W. BAKER \& CO 1, Dorchester, Mass. $\underset{\text { Poiler }}{\text { PYometer }}$

Double Screw, Parallel, Leg Vises. Made and WARANTIDD stronger than, any other Vise

PROVIDENCE A. HARIRIS. Original antes waik ivest from station EE HARRIN-C'ORLINS ENUINE
 Rider's New and Improved COMPRESSION Hotiripminigetinine New and Improved_Designs.
NTERCHANGEABLE PLAN DELAMATER IRON WORKS, No. 16 Cortlandt St., New York, N. Y
rris' Patented Impro
rom 10 to 1,000 H. P.

\qquad

\qquad
 NEW YORK THE DENGEE \& CONARD CO'S

H.W.J.HIIS ASBEATOS

ASBESTOS ROPE PACKING,
ASIBESTOE WICK PACKING,
ASBESOS PIAAT PACKING, ASIBESTOS SHEATHINGG,
ASBESTOSASASKE'TS,
ASBESTOS BUILDING FELT.

ASBES'NOS BUILDING
made of strictly pure Asbestos.
H. W. JOHNS M'F'G CO., $\mathbf{8 7}$ Maiden Lane, New York,
Sole Manufacturers of H.W. Johns' Genuine

Self-Oiling Loose Pulley. SATISFACTORY RESULTS guaranteed, if directions are followed. Orders filled for
Pulleys from 6 in. to $\because 0$ in. diameter. LANE \& BODLEY CO., INCINNATI, OHIO,
Shafting, Steam Engines; Boilers, SAW MILLS, AND GENERAL MACHINERY.

IHE NEW OTIO SILENT GAS ENGINE.

SHEPARD'S CELEBRATED Screw Cutting Foot Lathe, Foot and Power Lathes, Drill Presses,
Scrolls, saw Attachments, Chucks, Man-

FEED W ATER HEATERS. the best and cheapest in the market. Warranted to heat water by exhaust steam from 206° to
2120 Fahrenheit.
For description and price, apply to
For description and price, apply to
THE NATIONAL PIPE RENDING CO.
New Haven, Conn.

Adress JOHN A. ROEBLIITGS SONS, Manufactur
ers, Trenton, N. J.

Heavy Punches, Shears, boiler shop rolls, RADIAL DRILLS, Etc.

HILLES \& JONES,

 CAN SOPPLEMENT, No. 359. Prine Price 10.
at this offee and from all newsdealers.

WANTED.-Price and particulars of small boiler
from HVe to twenty arse parter Address
THE UNION SWITCB \& SGNAL CO., Pittsbarg, Pa.

WARRANTED

 THE WALKE PEN M'F'G CO. HAMILTON, OHIO.

KORTING UNIVERSAL double tueg INJECTOR

 NO ADJUSTMENT FOR VARYING STEAM PRESSURE.
WILL LITT WATER 25 FEET.
SENO FOR DESCRIPTVE CIRCULAR.

 HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY

W. b. FRANKLIN.V. Pres't. J. M. ALILEN, Pres't

 J. b. Pierce, Sec'y

W A NTED.
Correspondence with Engine Builders, Boiler Makers,
and Supply Dealers in Steam Goods. We manufacture
and

A. \& F. BROWN, 43 Park Place, New York.

SOUTHW ARK FOUNDRY \& MACHINE COMPANY, Engineers \& Machinists, Blowing Engines and Hydraulic Machinery.
sole makers of the $\frac{\text { Porter-Allen dutomatic Cut-off Steam Engine. }}{\text { EVERY USER OF MACHINERY }}$ How to Use LOOSE Puligjs. Useful information on this subbeet
is given in our "Catalogue No. 55° "
Sent free to any adress.
VAN DUZEN \& TIFT, Cincinnati, 0 , Hugnnin Improved Sash Balances are not catches, bupieccanical cost for buildings, steamboats, cars, tete. Write
ap. B.Hugunin, Sole Maker, Hartford, C't., for particulars.

The Most Popnlar Scientific Paper in the World. Only $\$ 3.20$ a Year, including postage. Weelsly. This widely circulated and splendidly illustrated paper is published weekly. Every number contains sixteen pages of useful information, and a large number of
original engravings of new teventions and discoveries.

 AIT Censses of reinilers finf the scifivitipro
Amerren a popular resume of the best scientific in-
formation of the day; and it is the aim of the publishers Am ERegn a popular resume of he best the publishers
formation of the day; and is the aim of
to present it in an attractive form, avoiding as much as to present it in an atcractive form, avoidng as much as
possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in reading. It is promotive of knowlegg
every connmuntify where it circulates.
Termas ar' Stbscription.- One. copy of the ScIEN-
TIFIC AMEICAN wil be sent for one pear 69 numbersTIFIC AMERICAN w\#y be sent for one year-62 numbers-
postage prepaid, to any subscriber in the United States postage prepaid, to any subscriber in the United States
or Canada, on receipt of three dollars and twenty cents by the publishers; six months, $\$ 1.60$; three
months, $\$ 1.00$. montss, $\$ 1.00$.
One copy of the Scientific American and one cony for one year, postage prepaid, to any subscriber in the for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dollars by the publishers.
The safest way to remit is by Postal Order, Draft, or
Express: Money carefully placed inside of envelopes, Express: Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes securely sealed, and correctly addressed, seldom goes
astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to

MエUMN \& \& CO.,
261 Broadway, New York.
PRINTING INKS.

[^0]: Or No, 10 Barclay St., New York

