
a WEEKLY JOURNAL OF PRACTICAL INFORMATION. ART. SCIENCE. MECHANICS. CHEMISTRY AND MANUFACTURES.

NEW YORK, MARCH 10, 1883.
[83.20 per Annumo

Paint for rioers.

A paint for floors, which economizes the use of oll colors and varnish, is described in the German technical press as having been composed by Herr Mareck. It is remarked that this phint can also be used on wood. stone. etc. For flooring. the following mixture has been found applicable: 21/8 ounces of good, clear joiner's glue is soaked over night in cold water. It is dissolved, and then is added (being constantly etirred) to thickish milk of lime beated to boiling point. and prepared from one pound quick lime. Into boiling lime is poured (the stirring being continued) as much linseed oil as becomes uuited by means of saponifica tion with the lime, and when the oil no longer mixes here is no more poured in.
If there happens to be too much oil added, it must be counbined by the addition of some fresh lime paste. For the quartity of lime previously indicated, about half a pound of oil is required. After this white, thickish foundation paint lias cooled, a color is added which is not affected by lime, and in cuse of need the paint is diluted with water, or by the addition of a mixture of lime water with some linseed oil. For yellowish-brown or brownish-red shades about a fourth part of the entire bulk is added of a brown solution obtained by boiling shellac and borax with water. This mixture is specially adapted for painting floors. The paint should be applied uniformly, and is described as covering the floor most effectually, and uniting with it in a durable manner. But it is remarked that it is not suitable for being used in cases where a room is in constaut use, as noder such circumstances it would probably have to be renewed in some places every three months. most durable floor paint is said to be that composed of linseed oil varnish, which only requires to be renewed every aix or twelve montbs. It penetrates into the wood and makes it water resisting; its properties being thus of a nature to compensate for its higher cost in proportion to other compositions used for a similar purpose. Its use is particularly recommended in schools and workrooms, as it lessens dust and facilitates the cleaning of the boards.-The Budldor.

Francts Lana, in 1670, proposed a boat raised by four containg fathers. Some that read this will be reminded of hollow copper balls, exhausted of air, for navigating the air. like cases that have come under their own notice.-ED.

PROPULSIOI OF BALLOONS BZ ELECTRICITY.

Attracted by the difficulties of the problem, M. Gaston Tissandier, of Paris, has undertaken to solve it, taking ad vantage of the recent progress of science. The interest and the novelty of these experiments consist chiefly in the choice of the motive power destined to actuate the propeller. These electrical motors bave the following advantages for aerial navigation : Absence of fire, constancy of weight, and incomparable facility for putting in motion and arresting the mechanism. The lightness of the motor was obtained by the aid of a Siemens machine of special construction, and that of the source of electricity by the aid of bichromate of potash batteries.
The Miotor (Fig. 2).-The motor is a Siemens con tinuous current dynamo, of a new design, con structed from the plans of M. George Boistel, Engi neer of the Maison Sienuens of Paris. It is charac terized by the lightness of its component parts and the very elongated form of the armature, which has the effect of diminishing the relative value of the re sistance of the wires which pass over each end of the drum. The position of the brushes is variable, and the inductors are included in the general cir cuit. The armature transmits its motion to the screw by means of a pinion and wheel; the relation of the velocities is as 1 to 10 ; therefore, when the motor makes 1,200 revolutions the screw makes 120 . Experiments made upon this machine al different velocities and with various current intensities showed that the machine can furnish as much as 100 kilogrammeters per second ($11 / 2$ horse power), measured at the brake, with a current of 45 amperes and a difference of potential of 40 volts at the terminals. Under these conditions a very simple calculation shows that the machine only transforms into work about 55 per cent of the electrical energy which is actually supplied to it. The lowness of this return is due to several causes, and a remedy has been devised, so that the return may easily attain 70 to 75 per cent, which is very salisfactory when we have to deal with an effective return resulting from direat measuremento and not theoretical considerations, whose accuracy is often more than disputable.
The mode of measurement adopted consisted of measuring (Continued on page 147.)

grientifir gimritan.

FESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.
O. D. MUNN. A.E. BEACH.

TERMS FOR THR SGIENTIFIC AMERIGAN. One cony, one year nontare Included.
One copy, six months postage Include

Climbr.-One extra copy of The Scientifio american will be supplied gratis for every clut of tive subscribers at 83.20 each : additional copies at Hemit by postal order. Postage prepald.

Kemit by postal order. Addrees
er of Warren street, New York

The Scientific American Supplemen

to a distinct paper from the Scievtipic Amraican. THE SUPPLement is issuad weekly. Nvery number contains 16 uctavo pages, uniform in size With scientivic Amprican. Terms of aubscription for Suppi, RMENT, 8500 a year, postafe pald, to subscribers.
all news dealers throughout the country
Combined lintes. - The Scientific american and supplikningt
wlil be sent for one year postage tree. on recelpt of seten dophrs. Roth papers to one address or difrerent addareses as desired. The sufest way to remit is br draft, postal order, or reaistered letter.
selontifc american Export Edition.
The Scirntipic a mirican rexport Edition is a larke and splendid perijarcal, quarto pages, mrofusely illustrated. embracing: (1.) Moest of the plates and pages of the four preceding weekly insues of the scick Triric Am:Rican, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing an.ıouncements of leading hovses.
Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the Terms for Rxport Edition, \&5.00 a year, sent prepald to any part of the
world :Ingle conples 50 cents. Manuencturers and others who desse to secure forelgn trude may have larke. and handsomely displayed announcements pabilished in this edition at a very moderate cust. The SCiENTIFIC AMKilican Exiort Edition has a large guarniteed circulation In all commerclal places throughout the world. Address MUNN \&
CO., $\$ 1$ Broadway, corner of Warran street, New York.

NEW YORK, SATCRDAY, MARCH 10, 1888.

TABLE OF CONTENTS OF

thr soientific akgerican supplement

NO. 378,
For the Week ending March 10, 1888.

1. ENGINEERRING AND MECBANICS.-Safety and Feed Apparatus

II. CHEMISTRY AND METALLDRGY. On the Molecular Rymataty

v. UEDCINE AND HYGIENE-LIme Julce; Its Propertles and

VI. BIOGRAPHY.-Henry Draper.
VII. MINING AND GKOLOGY.-The Geology of the Quicksilver

COMPRESSED BRAK.-ONE THOUSAKD DOLLARS REWARD

 FOR A NEW ITVERTION.In the manufacture of flour the outer cuticle of the grain is separated by sieves in the horm of bran, the particles of which are exceedingly light, but strong and elastic; probably they become electrified, for they have the peculiar quality of standing apart and holding air between them, thereby oc cupying much space. Thus a barrel that carries 196 pound of flour will only contain about 70 pounds of bran.
The quantity of bran annually produced in this country is enormous. Of flour we are supposed to manufacture about fifty millions of barrels yearly; for every barrel of flour made, probably about 40 pounds of bran is produced.
Bran forms a superior article of feed for animals. As a mixer with other foods it is of unquestionable value; but owing to its great bulk, and the lack of proper devices for its condensation or compression, it is difficult and costly to transport: lience it is almost a drug to the maker. It only brings about five dollars a ton in this country; but in England it sells for almost twenty dollars a ton. In the earlie practice of our Western milling it was common to turn th brun into the river and let it float off as waste. Even now it barely pays for handling.
With a view to the calling out of some new method, pro cess, or invention, by which bran can be more profitably marketed, the Millers' National Assoclation have recently made public an offer of a premium of one thousand dollars in cash, which is to be paid to whoever is able to meet the following requir enents and suggestions:

Millers' National Absociationt
Secretary's Office,
Milwaukee, Wis., February 19, 1888. $\}$
By virtue of a resolution adopted at the Delegate Conven tion Millers' National Association, in Cleveland, January 31 ult., the Sub-Executive Committee are instructed to offer a cash premium of $\$ 1,000$ for the invention and production of the best practical machine that will enahle mills of ordinary capacity to compress bran economically into a suitable cheap, and safe package for export, at a saving of at least five cents pet hundred pounds in the process, package, and freight, over the metbods now in general use.

Requirements.

First. A machine that will compress one bundred pounds of ordinary bran into a package not to exceed fifteen (15) inches rquare, or two bundred pounds in the same ratio.
Second. That will, with the aid of an attendant and a reasonable amount of power, prepare for shipment ove ton or more per hour.
Third. The inventor or owner of the successful machine must stipulate to sell it at a reasonable price (to be agreed upon bet ween the Executive Committee and bimself) to al members of the Association.
Fourth. The offer to remain open one year, the committee to be at liberty to reject all devices, competing for this prem ium, that do not come up to the requirements of the trade.

suggestions.

First. Other results being equal, the machine producing a package with the best form for close "stowage." will have the preference
second. The package should be compressed in pucb a man ner that when the covering is removed the bran will assume its ordinary condition without manipulation.
Third. No machine, or process, requiring the addition to bran of moisture, or any foreign substance, will be entertained.
Fourth. It is desired that parties building, or with machines in model, intending to compete for the premium, will report progress at an early date.
For further particulars address,
S. H. Senanase, Secretaty.

The chief utility of such a premium consists in directing the special attention of ingenious minds to this particular subject. The real reward to be derived by the successful inventor will come to him through the protection of the patent laws. These beneficent regulations present to every person a perpetual encouragement to study out and develop ne improvements; and they grant to lbe Rucces of securing in the name of the nainon, the oppordunty or secur reward for any new art or industry that be bring generous reward f
before the public.
The problen which the association presents for solution is doubtless a difficult one; but we think that some reader of the Scientific Amertcan will be able to solve it. Whether accomplished or not, we are confident that many ingeninus minds will devote study to the sulject; and, as always hap pens in such cases, these researches will open the way to bun dreds of collateral suggestions tor other novelties. Unde pressure of thought the inventor's brain is apt to yield mul titudes of new ideas, which fly out involuntarily, like sparks from grinding steel.
The offer of the association would have appeared more just and liberal had the third requirement been omitted. It convess the impression that the committee regards the pay ment of the thousand dollars as a consideration of so much importance that they ought to have the practical control o the invention. Such a notion seems almost absurd. Why, it will cost the inventor, in preliminaries, more than a thousand dollars for time, labor, models, experimental ma-
chinery, drawings, patent fees, etc. The committee may as chinery, drawings, patent fees, etc. The committee may as
well dismiss the idea of ever being called upon to pay the money, in the face of stipulation number three.
They ask the inventor to press their hran down to a dens-
ity more solid than bickory wood, and retain the compres sion in the form of a merchantable package, still keeping the quality of the chaff intact.
If this can be done, the commercial effect of the invantion will be to increase the selling price of bran protably five or ten times above its present rate; and the $1,000,000$ tons of bran, or thereabouts, now annually produced and sold say for five millions of dollars, will bring to the twentyfive thousand mills of this country perhaps not less than fifty millions of dollars a year.
The invention salled for, if actually realized, will be of immense value and utility. The man who produces it will be master of the situation; and to him will belong the exclusive privilege of dictating the terms apon which the members of the association may enjoy the use of the invention.
Refering to suggestion number four, we would caution he inventor to give out no description of the nature of his improvements until they are protected by patent.

sCHOOLED BUT NOT EDUCATED.

The great lack of our country to day, sulid a shrewd ob server recently, is properly educated men. The speaker was a rarely capable business man, whose connection with large financial and commercial affairs brings him into daily intercourse with many of the leading business men of the crantry.
Our material progress has been so rapid, he went on to say, that men bave fuiled to keep up: consequently the country is full of possibilities which cannot be developed. and of enterprises which are suffering grievously for lack of competent men to manage them. And the difficulty in finding the right men for the waiting work is not felt simply in connection with operations of great magnitude. It is felt wherever there is need of full, specific, and exact kuowledge, coupled with self-reliance, practical judgment, and skill to deal promptly and wisely with novel problems.
The men who are now doing the larger work of the world as best they may, have for the most part grown up with their affairs, under conditions comparatively favorable for gaining and retaining the mastery of them. But these men are waxing old, are rapidly dying off, and their manles fall upon younger men, whose entry upon the stage of action was too late for them to beneflt by the earlier formative experience enjoyed hy their fathers.
The world's business calls for a wider and wider range of real knowledge, a broader grasp of principles, and a larger executive ability than were necessary a few years ago. A the same time the specializing tendency of the age-the de velopment of specialties within specialties, an inevitable consequence of the increasing magnitude of commercial and industrial affairs-leads to narrower experience, narrower training, and, too often, to a serious limitation of men's grasp of affairs in general, their relations, and interactions. The demands of fulure years are likely to be for men of larger and still larger capacity; yet the conditions for their development are becoming less and less favorable in active business life as the years roll by, and the subdivisions of service becone more minute.
The day has paesed, or soon will pass, when a man could begin as a common labcrer and rise in succession through all the stages of service, pracically mastering each department up to the direction of, say, a great transportation system or other enterprise of national magnitude. The steps are too many and the ascent too great. To a larger extent also, the real workers must remain subordinate while the heirs of capital command the higher stations. How are they being educated for their great responsibility?
The speaker above referred to dwelt with much feeling upon the inadequacy of the traditional systems of education to meet this new requirement. With a few exceptions our great educational institutions, and still more the smaller ones, are in grasp and spirit far behind the age, and entirely out of sympathy with the modern world which the rising generation is soon to take possession of. From the moment the boy begins to prepare for college he faces the past; educationally he lives in the past; and the more conscientiously he does the work laid out for him the vaster will be the final gap between college life and real life. The intellectual babits acquired in school and college may possibly enable him ultimately to grapple with greater power and skill with the later problems of real life, greater, that is, than he would have shown had he been left entirely unschnoled; yet in the administration of affairs he is likely to be distanced for the best part of his life by the unschooled practical man who knows from early and real experience precisely what to do in any emergeney. The young man fresh from school is apt to know with thoroughness much that the busy world has no use for. He bas general notions of many arts and sciences, but his positive knowledge of the realities upon which such arts and sciences are based is usually next to nothing; still less does he know of the practical methods of men who apply them to human uees. His educational years have been spent mainly in a world apart from and largely out of relation with the modern working world be is to enter upon when his schooling ends. His education, admirable as it may appear from a theoretical point of view, serves ather to unfit than to fit him for practical life: and his real education has to begin afresh in the rude and cosily schonl of experience.
This, of course, on the assumption that the youth's edu ration bas been wholly by school work. Fortunately there are few boys who do not rebel more or less agninst the
rontine of schooling, and so gain under protest, often b stealth, a partial preparation for real life. If the schools did not usually get the credit for good results obtained in this way by the independent and unencouraged efforts of their pupils, it is probable that it would be much easier than it is to do away with the traditional obstructions to real edu cation which linger in most schools and courses of study.
One of the great problems of to-day is to infuse a large share of modern spirit into school life and school work; to lessen largely the amount of book learning and increase the proportion of individual effort in dealing directly with reali lies; in short to make the student more of a doer and lea of a passive recipient of vague generalities.
The pragress of the schools in this direction during recen years has not been small; yet it has been slight and limited compared with the rapid and general advance in public needs and individual requirements. In every departmen of active life the call is for men untrammeled by tradition, men trained to challenge every alleged fact and natural law until its truth is proved, bold men, used to the solution real problems and undaunted by novel difficulties; alert men, ready to grasp every opportunity for improvement in materials and processes, and skilled on the use of everything that ministers to economical success. The schools should help to develop such men. Now they oftener hinder such development.
sILK AND HOW IT IS DYED.
Otto N. Witt and E. Noelting have recently contributed an interesting essay on silk and silk dyeing to the Chemiker Zeitung, from which we abstract such points as are likely to interest the readers of the Scientific American
Silk holds the same place among fabrics that gold and the diamond do among metals and gems respectively. It is the noble, the royal fiber. Silk has that peculiar luster, that agreeable feeling, which charms our senses. The fiber itself, as it is unwound from the cocoon, consists of two parallel, thick, glossy threads stuck together lengthwise These threads are so highly polisbed that the best objectives are unable to disclose any irregular or uneven spots, which fact is expressed in a general way by saying that silk is structureless It is evident that such must be the case, for it is nothing but a solidified liquid thread, resembling in every rempect a glass rod. Cotion, on the contrary, is a together which almost always contains minute granules of dried plasma that once flled the tube. A glass rod is more brilliaut than a dusty tube irregularly formed or flattened Glass wool spun from glass rods has more luster than that spun from glass tubes.
To obtain a similar simile for wool one must compare it to rods of unglazed porcelain, or better still porcelain mds covered with "craquele," or crackled glass. This represents the bleached wool before it is dyed. When dyed, the conditions are still more favorable on the side of the silk.
The dyer utilizes the preat affinity that the silk flber bas for certair: chemical compounds, or rather its power of pre cipitating substances from their solutions and combining with them. The coloring matter is not, however, deposited on the surface of the silk in granular or crystalline form, but is dissolved in the silk and distributed through it just a it was previously dissolved in the dye-bath. The fibroine or silk substance, is not a base that combines with an acid dye, nor yet an acid which unites with basic coloring matters to form insoluble salts; silk makes no distinctions be tween acids and bases; it absorbs both just as a sponge sucks up water. It does not even confine itself to dyes, but has the same attraction for many uncolored substances, such as sugar and many metallic salts. Of course the exterior portion of the fiber takes the most, and only gives up to the interior portion the excess that it is unalle to retain for it self. Under the microscope the crosssection of dyed silk is seen to be shaded from the center outward, the circumfer ence being darkest, and the center usually white with inter mediate shades between
With wool the case is quite different. Its scales are horny and have but little affinity for dyes. On warming on boiling the dye-bath, the dye pezetrates into the interior of the fiber, which then becomes saturated with the pigment as in the case of silk. Consequently, wool is a dark colored substance surrounded by a covering that has little or no color.
Cotton has no affinity for dyes, but it is hollow, and the cellulose of which it is composed is osmotic, and on this the dyer bases his processes. He first treats it with mordants, which are solutions of different substances that pass through the walls of the cell into the interior of the fiber. He then washes off the excess of the mordant that bas not been absorbed. It is next put into a solution of some dye likewise capable of osmosis, when this also penetrates the cell walls, where it comes into contact with a mordant already stored up there, when a mutual decomposition takes place and an insoluble colored compound is precipitated within the cell, and cannot subsequently be removed by any amount of washing. In a cross-section of dyed cotton ex:imined under the microscope, the cell walls are seen as a long colorless ring in which are deeply colored granules. Hence, in this case too we have a dark colored substance seen througb a colorless, or nearly colorless, envelope.
The optical effect of dyed silk is just the opposite of cotton and wool. To make use of our comparison again,
sllk resembles a white substance viewed through colored

glass, while the two other fibers may be likened substances seen through pery thin colorless glass.

We emphasize the fact that the colorless layer is very thin, for we must recollect that very thin plates of colorless substances produce a play of colors, as can be seen at any time on soap bubbles or very thin glass balls. These interference colors are very prominent in the thin colorless layers hat overlie the colored portions of cotion and wool. We are unconscious of this play of colors here because the number of transmitted rays greatly exceeds that of the reflected ones. Nevertheless this play of colors is sufficient to dim the luster of the color beneath. It is easy to prove that this ack of luster is due to a phenomenon of this sort by wetting he fiber, which will increase its luster, for the interference produced in these thin layers is much less in water than in ar. If it were possible to find a liquid having exactly the ame index of refraction as these colorless layers, the colored core within would appear in all its true beauty.
Silk is free from this disadvantage; the center being colorless, and the surface colored, heightens the effect. Here again we have a good example in glass making; it has
 with a thin layer of colored glass) is more brilliant than where the entire mass is colored.
We have already said that the fiber from the cocoon consists of two cylindrical threads glued together; we must now recall the fact that in reeling off the cocoons, several of these double fibers are always united into one thread for spinning. Different qualities of silk differ in the number of fibers thus united and in the manner of combining them. What is called "Tram" consists of a small number slightly twisted, while "Organine" has a greater number, and is bard twisted. A third quality of silk called "Chappe." or floss, is made by combing and spinning the waste of the cocoons which is left after making the other two qualities. This last is generally used for velvet or for mixing with otton.
Silk is almost invariably dyed before it is woven, so that silk dyers are generally "skein dyers." Piece dyeing is the exception nd is generally limited to poor qualities, or to half silk goods.
The preparation of the silk for dyeing is rather complicated, the object being to impart to it that beautiful whiteness and to develop that luster which distinguish it from ther fibers. This is called "ungumming, or décreusage. Before this is done the finest organzine has a dirty yellow, or yellowish, gray cream color, sometimes greenish, accord ing to its origiu, and is hard and lusterless.
In order to understand the action of the reagents employed in degumming silk, we must first briefly consider be chemical composition of silk.
The raw undressed silk consists of the real silk " fibroive," which forms the center, or core, and the so-called silk-gum, glue like substance consisting of albumen, fat, resin, and ooloring matter, which forms a crust around it. The object to be aimed at is the complete removal of this crust with the least possible injury to the fibroine. According as his is more or less perfectly accomplisbed different qualiies of silk are obtained, which are known as:
(1.) Cuiks, or boiled silk, in which the gum is entirely removed, the loss of weight reaching a maximum of 25 to 30 per cent (2;) souples, where the loss is nut over 8 or 12 per cent; and (8) cras, or raw silk, when the silk is merely washed and only loses 3 or 4 per cent of its weight.
The removal of the gum is done before weaving, of course, and a great variety of chemical regents have been mployed for the purpose, for example, caustic and carbonated alkalies, alkaline earths, baryta and lime, bydrochloric acid, alcohol, and many others were tried, but they are too energetic. Although they remove all the gum, they attack the fibrnine, which thereby loses not only its strength but also its most valued property-its luster. A complete removal of gum without any injurious effect upon fibroine can only be obtained with boiling soap suds, in which the ber gains in softness and luster.
The ungumming, as now performed in Lyons, Zurich Bale, and Crefeld, consiste of two operations, known there as dégommage and la cuite, but differing only in the manner f dipping the silk and the time. The first is performed in rectangular wooden box (15 feet long and about 3 feet
wide and deep) lined with copper and provided with a coil wide and deep) lined with copper and provided with a coil f steam pipe in the bottom for heating the soap-sads. The skeins are drawn back and forth in the liquid, which is beated to 194° to 203° Fabr. From 30 to 35 parts of soap re used for 100 of silk, according to the bardness of the water, but if it is very hard it is advisable to soften it just to save soap.
The whole nperation is not usually finished in one tub, he silk being removed in half an hour to a second, which has the same temperature but contains less soap, and finally to a third. The three operations last from an hour to an hour and a balf. As fast as onc lot of silk is taken out of the first tub a second lot is put in, until the ends get saturated with gum, which is the case after three or four lots have heen passed through it. The suds is then set aside for use in color dyeing. If, however, it is not to be used again, the fatty acids are recovered by precipitation with lime, the lime salt being subsequently decomposed by acid.
The silk is next washed with water containing a littlesoap and soda. then packed in bags (poches), and boiled half an hour in a large copper kettle with one-tenth their weight of hemispherical, from six to eight, or even ten feet in dia-
meter. Formerly they were heated over the open flre, now they are almost exclusively heated with steam. In Lyons this extra boiling is very much in use for white and light shades, in Switzerland it is frequently owitted. After this boiling the skeins are stretched out, and then, if they are intended for light colors, they are exposed while still moist to the action of sulphurous acid gas in closed chambers, to bleach them. This gas is geverated by burning sulphur in stone crocks on the floor of the chamber.
The sulphur is left to act on it for six hours, and is repeated two, four, six, or even eight times, according to the nature of the silk. The total quantity of sulphur consumed is only five per cent of the weight of the silk. It has frequently been proposed to substitute for this gas its aqueous solution or acidified bisulphite solutions, but this has never been introduced into practice. After sulphuring, the silk is well washed to remove every trace of sulphurous acid and is then ready to be dyed.

OFTENING-AB8OUPLIBSAGE

This consists of four distinct operations: 1. Removing the grease (degraissage) ; 2. bleaching; 8. sulphuring; 4. the actual softening. For darker colors the second can be omitted.
The silk is first put in a tepid bath containing 10 per cent of soap, at a temperature of 77° to $95^{\circ} \mathrm{Fabr}$. It is left here one or two hours; pressed and moved around so as to wet it all. The principal object of this is to swell the fibers, open the pores, and prepare them to take up the dye, etc.
The bleaching is accomplished by the use of aqua regia, 1 part of nitric acid to 5 of muriatic, diluted to $23 / 2$ or $3^{\circ} \mathrm{B}$., or about 15 parts of water to 1 of mixed acids, by yolume. The operation slould not continue more than fifteen minntes, as the nitric acid will impart a yellow color to the silk that can never be removed. Sometimes sulphuric acid saturated with nitrous fumes is substituted for aqua regia.
The bleaching with sulphur is the same as that for boiled silk (see above). When it comes from the sulphur chambers the silk feels hard and rough, and is brittle, hence the necessity of softening (assouplissage).
This consists in treating it for a long time with boiling water, to which is added a certain quantity of tartar. After sulphuring, the silk of course retains a certain quantity of sulphurous acid. About three-eighths of a pound of cream of tartar is dissolved in 100 .pounds of water, and the silk drawn through it for $11 / 2$ hours. The silk gradually grows softer, swells up, and absorbs water easier, and is easily dyed. After this it is washed in tepid water.
The theory of softening is not yet established on a scientific basis. Many dyers are of the opinion that tartar can be replaced hy otber acid salts such as hydrosulphate of soda (NaHSO_{4}), or sulphate of magnesia (MgSO_{4}), with the addition of sulphuric acid.

Perbaps it is not even necessary to use acid salts, and that dilute acids will do as well. The question can only be answered by practical experiments on a large scale. At all events tartar is still used, in spite of its high price, in Lyons and elsewhere, whenever beauty is considered in preference to cheapness.
treatment of the "ecrus."
The raw silk is rarely used, even when naturally white, as, for example, in the back of velvets. If yellow, it must be bleached. Its treatment is as follows: 1. Moistening in hot water ; 2. washing ; 3. sulpburing twice ; 4. bleaching ; $\boldsymbol{5}$. washing; 6. sulphuring three or four times. If the silk is to be white, the treatment is as follows: 1. Cold soap bath without soda, 1 pound of soap to 10 pounds of silk; 2. Washing; 8. sulphuring twice; 4. bleaching with aqua regia or nitrosulphuric acid; 5. washing; 6. soap bath like No. 1; 7. sulphuring twice; 8. washing; 9. weak soda bath (16 to 1,000 of silk); 10. weak soap bath, cold (30 to 1,000 of silk); 11. washing; 12. sulphuring twice; 18. washing in pure, or slightly acidified water.
The details of dyeing the silk are promised us in a second paper by the same authors.

Remarkable Cireular Saw Aceident

The premises at Nos. 9, 11, and 13 York Street, New York, are used for an extensive packing box factory, con ducted by George Blair. About forty men are employed there. In the rear of No. 13 is a long, low shed, which covers a portion of the machinery. Directly under a sky light in the center of the shed is a table used for "ripping" planks. A circular saw projects above the center of the table about six inches. On the afternoon of February 26th, Caruline Bernheimer, a washerwoman, had been hanging out clothes to dry on a line that was stretched on the shed roof. Shortly after 5 P. M., a workman, who was engaged at the "ripping" table, heard a sound of crashing glass, and the body of the unfortunate washerwoman was precipi tated through the skylight. She fell squarely across the jarged teeth of the saw, which was whirling at its full speed. The poor woman had evidently stumbled and lost ber balance, and she did not utter a sound when she fell Death came instantaneously. The horrified workman stopped the machinery, and then lifted the bleeding corpse from the saf. Some of the workmen ran for a physician, and Dr. Gulick, who lives a few doors away in. Beech Street, hastily responded. The saw had buried itself into the victim's back, severing the spinal cord and cutting her heart in twain. Mrs. Bernheimer was thirty-five yeurs old She was a widow, with one daughter, and lived at No. 888 Hudson Street.

thomson's air extractor

We subjoin an engraving of an arrangement of air extractor for getting rid of the air which is discharged with the water by the feed pumps of marine engines, this arrangement being one designed and patented by Mr. Archibaid Thomson, the superintendent engineer of the Union Steamship Company, at Southampton.
The practical experience of the last few years has led most marine engineers to the conclusion that the presence of air in the water contained in a marine boiler is decidedly harmful, the air materially assisting, if not actually originat ing, the corrosive action on the plates, while itsubsequently after passing through the engines with the steam, tends to impair the vacuum in the condenser.
In marine engines, as ordinarily constructed, the feed pumps liave a far larger capacity than is absolutely required suppoing all to be in good order, and under the usual con ditions of working they discharge into the boiler with the feed a certain-or rather, we should say, uncertain-quan hiy of air, which is drawn in tarough the pet cocks, etc. In the apparatus now under notice the water is discharged from the feed pumps through a bell-mouthed pipe, A, into cylindrical vessel provided near its bottom with a branch pipe leading to the boilers, and laving at its top a piston air discharge valve, G, which is connected by a rod to the flout, \mathbf{B}.
The air separating from the feed water on its discharge from the pipe, \mathbf{A}, collects in the upper part of the cylindri cal vessel, a d 80 long as the air valve is not closed by the rising of the float, escapes through the air valve, G. If, bowever, this escape takes place more rapidly than the air enters, the water level rises in the vessel and the float, B, is lifted, thus closing the air valve, until a further quantity of air has collected. A glass gauge, G G, at the side of the vessel shows how the apparatus is working, while the air valve, G, discharges into a pipe, D, which is furnished with a stopcock, F, by means of which the engineer can control the working of the arrangement in the event of suything going wrong with the float or air valve.
The whole apparntus is very simple, and in practice it has been found to answer its purpose well. Now that the desirability of separating air from feed water is well under stond, we expect, says Engineering, to see Mr. Thomson's separator lurgely applied.

IMPROVED FOUNDRY CUPOLA

This furnace bas now been at work about two years and b balf in Mr. Pintsch's works, with the results which we now give. The furnace is square in section, baving a cast iron case and built up inside with fire-bricks the lower part being covered with refractory sand. The blast enters at the curv'd pipe shown fitted with a throttle valve. In the door at H , which gives great facility for manipulation of the re duced materials, are ose pieces, through which the working of the furnace may be observed
After two and a half years' work, Mr. Pintsch says he doubts whether for his purpose, namely, the production of very cleas light castings, he could have a better cupola than Kriegar's. Alter it has been filled with coke to commence blowing, he is able to melt 100 pounds ron with $41 / 2$ pounds Westpbaliun coke or with 5 pounds of Lower Silesian coke. The blower employed with the furnace is also Kriegar's, and works with 18 inches water column pressure. The process of melting begins after about twenty-five minutes, the furnace rendering a good hot iron, and an addition of 30 per cent of wrought iron may be added. For a daily casting of from one to wo bours be believes it is the best furuace in use, but for periods of more than two hours it has been known to give trouble by slagging up.-The Engineer.

Coke, Coal, and Gas as Heating Agents. At a recent meeting of the Manchester Sec tion of the Suciety of Chemical Industry a paper on "The Use of Gas as a Heating Agent Compared with Solid and Liquid Fuel" was read by Mr G. E. Davis, Government Inspector of Alkali Works. The author recommended the use of coke for house fires. If cooking could not be done well with this fuel, gas should be used sparingly. Manufacturers might also fire with coke, or if coal was still considered desirable, a mechanical toker should be employed. A ton of dry coke had the same beating nature as a ton of ordinary dry Lancashire enal when properly burned. and in many instances, owing to its freedom from volatile matterrs, it could be used in such a manner as to do far more ork, weirht for weight. Coke recommended tself to the bouseholder as well as to the manufarturer, and if means were only found for its continual production in a suitable form or use in domestic grates, a new era of fairly smokeless cities would quickly commence. It would he well for us to remember that when we burned coal at 10 s. per ton we got 65 unit ons of heat for one penny; while when coke was burned the number of unit tons of heat
for the same money was 84, reckoning coke at 7s. 6d. per ton.
Heating in any ordinary way by gas, dwelling rooms for instance, was entirely out of the question until gas was reduced far below its present price. Even at half that now charged gas leating would be considerably dearer than coal; and frons his own experiments, burning gas in the best manr and coal in the usual reckless mode we were all so fond

AIR EXTRACTOR FOR FEED POMPB.

of, the heating values would only be equal with gas at 10 d . per 1,000 cubic feet. To look the matter fairly in the face, the lowest price at which gas was put into the mains was in London, where it was said to cost 13d. per 1,000 feet; at one of the works of the Manchester Corporation it cost 14d. per 1,000, so that coal gas for purposes of the continuous warming of rooms, heating of steam boilers, etc., could not be ex pected to compete successfully with coal for a long time to come. Though gas cooking had its advantages, the high price now charged for gas showed practically no pecuniary benefit, and it was certain that the price of gas must be much

KRIEGAR'S FOUNDRY CUPOLA
reduced in order to tempt people to consume it. There was no reason why its price should not be reduced at once to 1 s . 6d. per 1,000 cabic feet, and if the manufacture was not a monopoly, it would have been below this price long since. All gas stoves should be provided with means for carring the products of combustion into the outside air. We should no more allow the products of combustion 10 pass out into the atmosphere of our rooms than we would allow a coal fire to burn in our dwellings without a chimney. It was rery well to hear of stoves which cousumed their own smoke or condensed all their products, but in any ordinary mellod of combustion such things were next to impossible. Wherever there was gas burned there must be good ventilation to curry away the products, and when be had seen small bath-rooms and kitchens beated by gas, with gas for cooking, and also water heaters in use in confined places without chimneys, he bad never marveled at the complaints of headaches from the occupants, but he had wondered that the so-called "accidents" had not been more frequent. Every gas stove, whether used for heating or cooking, should be connected with a chimney, or with the outside air, in order to carry away the sulphurous and carbonic acids. No stove should be allowed in any dwelling bouse except under these conditions. It should be universally known that the chief product of the combustion of gas is carlonic acid, a nou-sup porter of combustion or life; and when present in very small quantities in the air we breathe, had a decided effect upon the living organism. It was essential, then, that this gas be eliminated from our rooms as fast as it is formed. The other impurity arose from the presence of sulphur componuds in the gas, which could easily be removed at a moderate cost. These sulphur compounds burned iuto sulphuric acid, commonly called oil of vitriol, and as such found their way into the articles of furniture, binding of books, brasswork, etc.

Will Poate set "Top End Down ${ }^{\text {ch }}$ ©utlant those set Top End Up ?
It is firmly believed by many persons that posts set in the ground in a position the "reverse" of which they stood while growing in the tree, will last much longer than when set "top end up." In the spring of $18: 9$ I selected sensoned sticks, three feet long. These were split in two, and then cut in two crosswise, making four pieces of each. One set was placed in well drained sand, the other in clay soil. In every case two pieces were set side by side, with earth between, one as it stood in the tree, the other reversed. I tried thirteen kinds of timber. Some of these were young wood with the bark on. All contained some heart wood. Those set in sand were esamined in autumn of 1 t 81 . In case of the beach, sugar maple, ironwood, black arh, and black cherry, the piece reversed or placed "top end down," was somewhat most decayed. In case of red maple, American elm, butternut, and red elm, the piece set "bottom end down" was a trifle the most decayed. In case of bassword, white ash, white oak, and blue ash, there was no perceptible difference. In autumn of 1882 , the posts set in clay soil were examined. In case of the rod maple, sugar maple, American elm, basswond, buthernut, red elm, the piece set "top end down" was most decayed. In case of beech, white ash, black asb, black cherry, the piece set "bottom end down" was most decayed. In case of ironword, white oak, blue ash, there was no perceptible difference.
I infer that where one piece decayed more than the other it was caused hy some trifling difference in the sticks. The freshly sawed ends in each case were placed uppermost, and came an inch or two above the ground.
In some cases one balf of a stick (one piece certainly the reverse of the other) lasted considerably better than its other half. As will be seen, it was sometimes the ${ }^{*}$ top end down" which lasted better, sometimes the "bottom end down," and in some cases there was no difference in durability.-W. J. Beal.

Remedy for Erysipelas.
At the recent congress of German surgeons, Dr. Fisher, of Strasburg, drew attention to the value of naphthaline as an antiseptic. For some skin diseases, and especially in the treatment of erysipelas, it is almost specific. The application is made in the most simple manner possible, by rubbing gauze in the powdered material, or dipping any suitable fabric in an ethereal solution diluted with alcohol. Naplthaline being very cheap, this preparation will be less expensive than anything of the kind now in the market. It is extensively used in Strasburg, where it is regarded as a perfect preventive of erysipelas; and it is hoped that if this valuable property can be substantiated, it will be used for the same purpose in this country. Dr. Fisher does not state whether its use in the manner stated is attended with any inconvenience or pain to the patient; but persons employed in gas works and elsewhere who have suffered from scales of naphthaliue entering the eyes, etc., would be d'sposed to regard the remedy with very considerable suspictoritoogle

PROPULEICN OT BALLOONS BY RLECTBIOTTY.

(Continued from first page.)
the electrical energy supplied to the machine by the formula-

$$
W=\frac{E I}{9 \cdot 81}
$$

(W representing the work in kilogrammeters; E, the difference of potential at the terminals of the machine in volts; I, the intensity of the current in amperes) and in the determination of the mechanical work produced by the motor by making it alsorb this work by the dynamometrical balance of M. Ruffard. The electrical energy was measured by the aid of an ampere meter and a volt meter of M. Marcel Deprez
Comparalive measurements made by neans of thie volt and ampere meters of Messrs. Ayrton and Perry, constructed and graduated in England, gave results which agree perfectly with those given by the apparatus of M . De prez, constructed in France by the Maison Breguet.
The experimeuts showed that, when the machine works with a current of 45 amperes and 40 volts at the terminals. thirty por cent of the total energy sup plied was absorbed for the maintenance of the mag netic field in the inductors. By exciting the induct ors separately it was found that 32 amperes suf ficed to saturate them. There was therefore n real waste of energy for the production of the magnetic firld, which was diminished by omitting one layer of wire un the inductors. This inodification allowed of working under the same conditions of work and velocity with rewer elements, and consequently ith a better return.
The Source of Electricity.-M. Tissandier thought, in his first experiments, of using electrical accumu lators, but this source presents, at least for this particular application, the inconvenience of not dis charging itself rapidly enough-that is to say, of ouly furuishing a weak delivery. It is necessary. in fact, that in a period varying between two and three bours, the source of electricity should furnish all of which it is capable, and from this point of view accumulators are found inferior t (") bichromate batteries. After a minute investigation, and a long series of experiments upon t'le nature of the liquid, the form and nature of the cells, the size and thickness of the plates of zinc and carbon, their number, etc., M. Tissandier devised a type of bichromate b:atteries with concentrated liquid, which, with a weight of sevin kilograms per element, can furnish a current of 50 amperes for two hours. the electromotive force being about two volts, and the internal resistance not exceeding 0.01 of an ohm. The elements established in the aerostatic laboratory of M. Tissandier at Point du Jour are 24 in number, and arranged in four series of six elements each (Fig. 8). We are indebted to La Nature for our engravings. The liquid required to fill each series is placed in a copper tank conted witb lead commmunicating, by means of a ramified tube. with the ebonite boxes which serve for receptacles. By raising one of the tanks by the aid of small pulleys, we can fill the corresponding series, and put it in action immediately; on lowering it the liquid runs off, and the series is emptied.
A commintator varies the number of series which actuate the motor, and a volt and ampere meter show at every moment the electrical energy supplied. The machine is suspeuded to a longitudinal beam by cords; the screw is fixed upnn the lower axis; the static cffort exerted by the rotation of the screw is measured by the aid of a spring balance at lached at one end to a fixed point, and at tie other, by a thin metallic wire and a swivel, to the extremity of the reexiremity of the re-
volving arbor of the Volving arbor of the screw. Preciua
tions are taken thal the center of grav ity of the machine may remain always in the vertical plane parsing through the points of suspension. in order that the horizontal com ponent due to the inclination which it mig! !t take without these preciu tions may not influence the indications of the balance. In Fig. 1. S is a tank containing solution of bichromate of potash; P, batteries; C, commutator; A, ampere meter; V, volt meter; M, dynamo: H H', screw; E, swivel; D. balance.
The screw eonstructed from the plans of M. Tatin is 2.85 meters ($91 / \mathrm{f}$ feet) in diameter, and has a pitch equal to its external diameter; it is formed of two blades made of silk varnished with gum lac, stretched upon a frame furnished with two spokes of pine, with laths of the same wood, and an axle box fixed upon these laths. With 12 elements in series the screw turns at the rate of 80 revolutions per minute and exerts upon the balance a pull of five kilograms; with 18 elements the speed is 120 revolutions and grams; with 18 elements the speed is 120 revolutions and
the puil seven kilograms; with 24 elements in series the
speed of rotation reaches 150 revolutions and the pull nine kilograms.
It results from the experiments that the motor, without exceeding, with the generator, a total weight of three men, is capable of furnishing regularly during a period of three consecutive hours the work of 12 to 15 men, that is to say, i5 to 100 kilogrammeters. This motor only requires, for raising it in the air with two or threc travelers, a balloon of the small capacity of about 900 cubic meters. An elongated balloon of about nine meters diameter in the center, and 27 meters length, constructed of silk, inflated with pure bydrogen, is amply sufficient. Under the action of the propelle such a bal!onn would have in calm air a velocity of about four meters per second, or 15 kilemeters per hour in round numbers. Very of ten the speed of the wind in calm weather is below this figure; in this particular condition of the atmosphere, this balloon could deviate sensibly from the line

of the wind, go backward or forward, and perhaps return to the place of its departure.
M. Tissandier, satisfied with the results furnished by the batteries and motor, which present all the desired lightness (of course the system disposed under the balloon would be arranged quite differently to the battery in the experiments which we have just described), is busy with the construction of a pure hydrogen gas apparatus capable of furnishing 1,000 cubic meters in a few bours; be will then construct an elongated ballon to receive the screw and its electro motor.

THE ISOMETRIC GOVERITOR

We annex engravings of a governor devised by Mr. Gird wood, and to which the name of isocbronometer has been given. Its action, like that of some previous governors, is based upon the use of an appliance that offers a resistance to rotation that is a function of the speed, and increases with the velocity. This appliance consists in this case of a hollow drum or cylinder partly filled with fluid and rotating on a horizontal axis. When the cylinder is put in motion, the liquid is carried up one side to a beight that is determined by the speed, and, if the motion be unifurm, it will remain at that point, and will offer a resistance to the rotation which increases in proportion to the lateral displacement of its center of gravity. Should the speed increase, the liquid will. be raised still bigher, its center of gravity will be carried further to one side, and it will offer an increased resistance.
wheel and to carry the ho!low cylinder round with it. As he speed increases, the resistance of the wheel likewise increases, and the spring is more strongly compressed, there being a certain defnite pressure upon it for every velocity. A rod connected to the spring is attached to the slide valve of a small steam cylinder, the piston of which works the throttle valve of the engine that is to be regulated. The valve is designed so that an extremely small motion opens the cylinder either to the stcam or the exhaust, and thus comparatively minute changes of engine speed are sufficient to cut off the steam

The Inventor.

Now we do not for a moment expect to revolutionize the world, or to be successful in eliminating selfisliness from the catalogue of shortcomings which afflict the human race, says be Manufacturers' Gaedte, but we do desire to put in a plea for the inventor, the man of genius, the man to whom we are so largely indebted for the great progress inade in nearly every department of human affairs, and to urge a more liberal and genercus recognition of his merits. It is no new or uncommon thing for some men to ride to fortune on the brains and genius of otbers, and, where the arrangement is mutual, we do not object; but when. in good faith, the man who has given ceaseless study and thought to perfect and make practical an idea which will simplify some process, increase the quantity and improve the quality of some article of manufacture, unites his fortunes with the man or men of means in order to bring such improvement before the public, and is mercilessly "swailowed up," "bought off ". wilh a pittance, or "cleaned out" by false representations, it is time at least to enter a protest and to ask men to apply the golden rule in these cascs.
We are not quite sure but that most of the blame belongs to the inventor himself, for if a man possesses the genius and brains to do something that no other man has done, solving problems wbich start the world ahead a point, and thus becomes a benefactor, he has no excuse for being swindled with his eyes open, save the excuse of poverty, and even then, if his invention bears unmistukable evidence of merit. porvirty need not be a stumbling block, for good goods always sell at a fuir market price, and there are aldays purchasers. There are tempting allurements certainly and it chasers. There are tempting alhrement certainl.. and it lar (and mucb more ao a bundred or a thousand) looks as ar (and mucb more an a lundred or a thnusand) loors as
" big as a cart wheel," and throws him unsuspectiagly off his guard, and before be knows it he is "gune." Don'l be too quick or ansious to give up a goid thing for a song, and thus have cause to repent at leisure. We earnestly hope, adds the Gazette, for a reform in this malter, that this class of benefactors may have their just deserts.

Lime Juice in the Treatment of Diphtheria.
M. Czartoryski, M.D , of Stockton, California, writes as follows to the London Lancet:
During a prolonged residence in the interior of China, I became acquainted with the fact that the Chinese place great reliance during epidemics of diphtheria on the internal use of the fresh juice of limes, and of the fruit itself, which they consume in enormous quantities, in every conceivable form-as lemonade, with native spirits, cut in slices, etc:during attacks of this dreadful disease, with apparently nost successful results, it hardly ever failing to effect a cu:c The Chinese consider it a specific, and will, in case of nec.d
do anything to obtain a supply.
Since I have come back to California, as also in Louisinna, I have used limes and their juices in my practice as a phy sician with most successful results in cases of dipb. theria, even in the most desperate cascs. As soon as I take charge of a case of diphtlieria. I order limes to be administered as freely as possible in any manner the These varying resistances are balanced by a spring which |patient can be prevailed upon to take them, especially in responds to them by contracting and expanding, and in so the form of hot lemonade, sweetened with white sugar or doing gives the motion for operating the governing mechanism. As will be seen from the illustrations, which we find in Engineering, the cylinder spiudle ends in a crank disk provided with a driving pin, which engages with a simila disk at the end of a screwed or rifle spindle. A. This spindle fits in a corresponding nut formed in the boss of a driving pulley or wheel, B, and abuts at its other end against a spring arranged in a case, and provided with an index and scale. When the wheel, B, is turned, its first tendency is to force the screw, A, endwise to the left, compressing the spring, but the moment that the latter opposes a sensible lenale, sweeted whith or lime juice (which I suppose acts by imparting an excess of oxygen to the circulation, and thereby prevents formation of vibriones, etc., and so has almost a specific effect on disease) I prescribe whatever drug may be indicated to relieve symp oms as they develop, and impart strength by appropriate stimulants and nourishment.

Recent tests of yarn made from different hemps gives the following relative strengths: Manila, 245; Itnlian, 221; New Zealand, 143; Russian, 128. Manila is evidently the yarn to be hanged with.

colld and Liquid Illuminating Agente.

Mr. Leopold Field, F.C.S , lately lectured before the Society of Arts, Adelphi, on " Solid and Liquid Illuminating Agents." There was a large display of exbibits and illustrative diagrams. The lecturer began by saying that the electric and gas lights, brilliant though they were, left something to be desired. The one was unsteady, the other injurious to pictures and books. The candle and oil lamp Io a great measure supplied the deticiencies of the larger lights, aud these would form the subject of the lectures. Mr. Field then proceeded to give a slight outline, illustrated by elaborate tabular views, of the scheme of the hydrocarbons, and their derivative alcohols and acids-marsh gas represented the paraffines; ethylene the oleofines; and acetilene might be called the taproot of the whole, as it might be formed by the direct uaion of carbon and hydrogen, and again reunlte directly with hydrogen to form olefiant gas, from which agnin the paraffines and alcohols could be got by simple action. All the above were shown and descanted apon. The fatty acids were the most important series at present, as nearly every animal and vegetable combustible contained one or more of them, free or combined as an ethereal salt or glyceride. Tha lecturer then proceeded to give a rapid sketch of the history of lighting. The fire had always been associated with divinity, and the custom of celebrating great festivals with lights was handed down from the remotest ages, as in the old Roman Lupercalia, changed by Pope Gelasius into Candlemas. The earliest light was probably the torch, which led to the candle. Various torches were exhibited, one nearly eighty years old, disinterred from the cellars at Lambeth. These would, by degrees, grow smaller, and at last assume a suitable size for domestic purposes, in which state they were used by many nations, who surrounded a simple strip of tow, cotton, rust, or wood with bitumen, ozokerite, pela, wax, or tallow, as the case might be; some even drew a wick through the body of the gannet. But, though from a passage in "A puleius it is evident that candles both in wax and tallow formed par of the domestic light of the Romans, these were confined entirely to the lower classes. Strips of pine formed the street lights, and lamps illuminated the house. These gave scope for every variety of ornamental design, and were sometimes marvelously beautiful, as in the great golden lamp of the Erecthium, which burnt for a whole year, and that of Cortona, which had sixteen nozzles most exquisitely carved. Mr. Field quoted several authorities to show that candles were regarded as out of date and vulgar by the Rumans, and gave it as his opinion that wherever candlesticks and candles are mentioned in Holy Writ and elsewhere oil lamps are to be understood. The substance birnt and the wick varied. The former was genarally wive oil. the latter a kind-of cotton, though in many countries doubtless other vegetable and animal oils, and in some, as Egypt, naphtha and bitumen fed the flames. There was, however, no appliance, even rmong the wealthy and refined Romans, for checking the smoke, not even a chimney; nor was the wick supplied constantly, haviug to trust enticely to its capillary attraction. In fact, with the exception of a few slow improve ments in candle making - such as that of mould candles by the Sieur de Brog, drawn tapers by Pierre Blaisenier, and a few modifications in the process of dipping, the art of lighting might be said to bave stood still till the inventions of Argand in lamps and Chevreul in candles gave it an impulse which had steadily increased.

Invontions to Prevent Firen.

Until some new and cheaper material than timber for building purposes is discovered, or until all the trees in the land are cut down, it seems probable that inflammable materials will continue to be used for building purposes. The demand for improved means for the prevention of fires becomes every day more urgent, and there should be increased study on the part of inventors to find out and make known new and better ways to prevent the ravages of flames. Among recent inventions in this direction we give the following from Engiueering
The latest fireproof paint is the invention of Mr. C. J Mountford, of Birmingham. This consists of asbestos ground and reground in water, uluminute of potash or soda, and silicite of potash and soda. When it is to be exposed to the weather, it is combined with oil, driers, and gummy matters, and in some cases with zinc oxide or barytes. The buildings of the Fisheries Exhibition in the Horticultural Gardens are to be painted with this material. On two sides of the ground are valuable collections of works of art and scientific objects, while on the third side is the Albert Hall. Over the way, too, is the South Kensington Museum, contain ing the vastest assemblage of objects of decorative art ever amassed, and it requires little acquaintance with government officials to know that their consent could never have been obtained to the erection of light timber buildings covering 230,00 square feet if they had not been convinced that there was a method by which they could be rendered fireproof.
A public trial was lately mude in the gardens before tifty gentlemen to demonstrate the security of the buildings. Two worden huts, one of plain timber and one painted with three coats of asbestos paint, were filled with shavings and simul taneously ignited. The first caught fire at once, driving the pectators backward by its heat and the extent of its flame, while in the second the slavings, after a hearty blaze that scorched and blistered the paint. fell into a heap of red embers. Half a bucketful of petroleum flungintw the hut flled
the inside with a fierce flame that belched forth in a solid
body and curved on to the roof, and for a few minutes it was the opinion of the on-lookers that the confldence of the inventor had overleapt itself. But gradually the petroleum vapor became exhausted and little flame remained beyond that of the gis driven out of the cracks of the wood by the intense heat. The structure was intact, and it needed no special skill to see that a slight building filled with combustible material would, if painted with asbestos paint, be able to retain the fire within itself for sufficient time to allow of the arrival of the firemen. But the reputation of the paint does not rest upon an isolated experiment; not only in London, but also in Birmingham, Manchester, and Liverpool has it heen severely tested, and every time successfully. Ashestos has now established its cbaracter as a fire-resisting material, and we think that a grave responsibility will attach o all that have the management of buildings in which special risks are run, such as theaters, music halls, carpenters', and packing-case makers' shops, and the like, if they fail to avail hemselves of it in some form or other.
But alt hough it may be possible to localize a fire for a time, our experience of the way in which the flame will destrny a building almost entirely of iron and stone forbids the anticipation that the use of fireproof materials will be of sufficient avail by themselves. Once a structure is fairly alight, stone and cement crack and fly, and iron girders twist, and it is not paint alone that will preserve them. The respite that it gives must be turned to good use in extinguishing the fames. Unfortunately, this interval is often lost for want
of apparatus, particularly in the country, where it is a long of apparatus, particularly in the country, where it is a long way to the fire engine station. To supply the necessary has brought qute fire encine which emits a stream of carbonic acid and water. By this arrangement be is able to keep his apparatus within small limits, as the pressure of the carbonic acid is available for propelling the jet, and, as o well known, it is extremely efficacious in stopping combustion. The same idea has long been before the public in the form of the extincteur, which is universally known and appreciated. Mr. Foster's engine differs from this in being pump that can be kept going during the whole progress of the fire, and can be supplied with fresh chemicals from time to time as they become exhausted. In addition to his pumps he has a portable chemicalizing chamber, through which water from a high pressure main can be passed and be im pregnated with carbonic acid
A public trial of Mr. Foster's apparatus was recently made A public trial of Mr. Foster's apparatus was recently made
on a piece of waste land near the City of London Schools. A wooden house had been built, the upper story of which represented a bedroom. This was saturated with tar and petroleum, and when filled with flame was extinguished by a jet from a one-aighth inch nozzle in oue minute. The ower story represented a warthouse filled with boxes saturated with petroleum, and when fairly alight was extinguisbed in little more than a minute. Other experiments followed, all of which were successful in demonstrating that a small quantity of water impregnated with carbouic acid will put out a flerce fire, especially in confined situations and in cases where the combustion has not penetrated helow the surface of the burning surface.

The Polyphemu

This novel production of the British navy is, according to the London Engineer, a failure so far as anything effective as a war vessel is concerned. But the experience gained by her construction may be worth her cost. Our contemporary says:
She carries no guns, save a couple for saluting and signaling purposes, and relies altogether for her power of offense and defense on her speed, her ram, and her torpedoes. She is fitted with special uppliances for discharging torpedoes under water from her bows and her sides; and up to the present moment notbing but disappointment bas attended every effort made to use these last. The torpedoes fired rom the bow ports have at all events been got away from the ship; but as much cannot be said of those discharged from her broadside. They are expelled from tubes θ feet below the water line. A fish torpedo is about 18 feet long The Polyphemus has attained a speed of seventeen knots an hour, and the moment the torpedo shows its nose outside of the hull it is deflected by the apparent current running alongside the ship, and is thereupon jammed in the tube. If it can be got clear of this, it is only with its screw blades broken and its stern or tail twisted that the luckless torpedo gets off; aud it is not curious that the short course which it then describes is erratic in the extreme. To prevent this action. a steel plate 16 inches wide and 25 feel long bas been pushed out from the ship's side, and under the lee of this
the torpedo is discharged; but hitherto the resistance of the water has proved too much, and the steel bar. standing like an ore blade in the water, has been bent, and the torpedo has stuck half in and half out of the ship. The Polyphemus is coming round from Portsmouth to Chalham to have ew boilers put in, and renewed attempts will then be made oo fit her with some apparatus which will allow of the discharge of broadside torpedocs when she is running at full peed; but we confess we see little reason for expecting that
success will be attained. Even though the torpedo is success will be attained. Even though the torpedo is dis.
charged, the course which it will take must be, to say the least, doubtful. Up to the present the targets aimed at, even at distances of 200 and 300 yards only, the ship steaming at 8 knots or less, appeared to be specially avoided by and now and then hastily sought a bed in the mud.

The velocity actually attained by the ship wold $_{171 / \mathrm{k}}$ knots, but this was only maintained for very short periods by toottling up steam; and her best regular performance may be aken as 15 knots, which was obtuined when the boilers were in good humor, and did not prime very heavily. The ship is 240 feet long, 40 feet beam, and 18 feet 9 inches deep. Her displacement is about 2,620 tons, and it is calculated that with 5,000 horse power she can be propelled at 17 knots . She has twin screws, and two pairs of compound horizontal direct acting engines, with cylinders 38 inches and 64 inches diameter, and 39 inches stroke. Her bofilcrs are, as we have said, of the locomotive type, ten in number, arranged athwartsbips on each side of a longitudinal bulkhead, in two groups of three boilers and two boilers. The uptakes all lead into one fixed chimney. We do not know what power has been developed by her engines, nor is it likely any one will until questions are asked in the Huuse of Com mons by and by; but it is easy to see that to augment her speed from 15 knots to 18 knots, which speed it is boper she will reach, the power of the engines must be nearly doubled. Let us suppose, for example, that she steams a 15 knots with 3,375 borse power, which, probably, is not far from the truth. Then to go at 18 knots, she will require at least 5,882 Lhorse power, and prohably considerably over 6,000 . Such an increase will entail a very great augmentation in the weight of the generators, and how this is to be provided for no one seems disposed to explain. A lociomotive boiler with water, capable of working up to 500 horse power, need not weigh more than 10 tons at the outside. Alout half his will suffice in torpedo boat boilers, lat an ordinary culular boiler and water to develop as much will weigh at least 20 tons. If we suppose that the locomotive boilers worked up to only half their anticipated power, they were still doing as mucle as an equal weight of ordinary builers; and to obtain the full power required the weight of the new boilers muat be ncarly, if not quite, doubled. 'This appcars to us to be a very serious consideration in the case of a comr
paratively little slip like the Polyphemus, in which there is already hardly room to turn round.

Preparation of Carbonic Oxide.

In a recent number of the Berlin Berichts, E. Noack describes a convenient method for the preparation of pure carbon monoxide (CO) in a continuous current for laboratory use. Two methods have bitherto been employed for the manufacture of this gas on a smill scale. One consisted in the decomposition of oxalic acid by means of strong sulphuric acid, but the resulting gas was a mixture of equal olumes of carbon monoxide and dioxide, and a large amount of alkali was required for the absorption and removal of the latter gas. The other and better method, that of Townes, consists in decomposing crystallized ferrocyanide of potassium (yellow prussiate of potash) with an excess of strong sulphuric acid. The mixture fuams, the evolution of gas is rapid but not continuous, and mort or less prussic acid is formed.
Noack's consists in the reduction of carbon dioxide (CO_{3}) by means of zinc dust. A piece of hard glass tubing, such as is used for combustions in organic elementary analysis, is filled with zinc powder, which is held in place by a tuft of asbestos at each end. A narrow channel is left free above the zine, as in combustions, and the tube placed in a combustion furnace, which is slightly inclined, or one ond of the tube may be bent downward, so that any water formed may run off. A current of carbon dinxide generated from marble and hydrochloric acid is passed through a solution of sodium carbonate to retain any of the bydrochloric acid that might be carried along, thes conducted through the bot tube filled with zinc, and afterward passed through wash bottle containing caustic soda or potash to ausorb any undecomposed carbon dioxide.
With the use of 200 grammes of zinc dust Noack says that he obtained in a short time over 20 liters of carbonic oxide gas. The best results were obtained when the beat employed was just enough to make the clay channel under the combustion tube red hot, and the current of carbon dioxide was rapid enougb to form 400 bubbles per minute from the end of a 4 mm . tube.
In a quantitative experiment made by passing a measured quantity of the gas over the zinc and measuring the roulting gas, he obtaiued 11 liters of carbon monoxide from 13 liters of carbon dioxide used. An analysis of the gases obtained when the carbon dioxide was not absurbed. gave only 0.73 per cent of the latter with a slow current, and 321 per cent with a rapid current.

A Caution to Plumbers.

A decision was rendered in an English courr recently, which is, to say the least, bighly suggestive. A plumber sued a civil eugineer for the cost of crecting a lavatory, something near $\$ 150$. The defendant made a counter claim of $\$ 600$, on the ground that the plumber's work was improperly done, thereby allowing sewer gas to enter the house, causing the illness of six members of the defendant's household aud the death of his son.
The plaintiffs claim was denied by the court, and judg. ment was given for the defendant
This decision might or might not have any direct effect upon the action of an American court in a case of that ature; yet the awarding of consequential damares for bad work by an English court furnishes a warning which care less or tricky plumbers may do well to bear in mind.

© orreapouaturs.

Diseovery or a Now Comot.

To the Editor of the Scientific American

It was my grod fortune to discover this evening, at 6 h 45 m . February 23, 1883, a new bright telescopic comet in the constellation Pegasus. Its right ascension was approximately 23 h .50 m .; north declination, 28°. It has a large bright head, very condensed, and a delicate straight narrow lail. Its motion is eastward, and is probably approaching the earth. It was discovered with my 9 -inch refecting tele conpe, but may be well observed with telescopes of mode rate aperture. Telegraphic announcement was at once made of the discovery.

Willing R. Brook
N. Y., Feb. $23,1883$.
Red House Observatory, Phelps, N. Y., Feb. 23, 1883. ervatory show that it moving awsy from the sun and earth, and is growing fainter every day.

Electricity in Gold minimg.

Among other uses to which electrical currents are applied, the purification of mercury seems to be likely to take a very important place; a place so important, indeed, that the subject deserves considerable attention. The results obtained are not ouly singular and striking, but they are to a certain extent still unexplained. That is to say, particular effects are produced, but precisely why and how has not yet been settled. In order to make what follows intelligible, it will be necessary, in the first place, to say something concerning the modern commercial system of gold mining as distinguished from the finding of nuggets and the wasbing of river sands. Gold is found in almost all countries in greater or less quantity. The principal supply is obtained, however, from quartz "reefs." Through some of these reefs the gold is disseminated in veins, visible to the eyt. In other cases it appears as nodules or nuggets; but for the most part it exists in a state of extreme subdivision in the quartz rock. To ubtain it the rock is broken to a fine powder in stamp mills; this powder is then sprinkled on inclined wooden tables, some 15 feet long and 8 feet wide, down which a stream of water flows continuously. At intervals, across the table, depressions or troughs are provided, in which mercury is put to a depth of half an inch or so. As the water and gold bearing quartz powder run down the table or "riffle," they pass over the surface of the mercury in the troughs. The mercury seizes the gold in transitu. After a time the mercury becomes saturated with gold, about ' 3 ounces of gold being in practice sufficient to saturate 75 pounds of mercury. The mercury is then drawn off and "retorted;" that is to say, it is lheated in special stills, and evaporated like so much water; the mercury vapor or fames being condensed and used uver again in the form of mercury, much as the feed water in a surface condensing engine is used and reused. At the bottom of the retort when the mercury bas evaporated is found a button of gold, or rather of gold and a very little mercury. This button is then treated with nitric acid, and a number having been collected, they are melted in a crucible and cast into ingots. There i a certain loss by waste of mercury at every retorting, which is made up by fresh supplies.
Now if the miner had nothing but cleau quartz and gold to deal with, he would have no trouble in carrying out this process, but be seldom meets with conditions 80 favorable. Indeed, the quartz is constantly found impregnated with sulphides of arsenic and other metals, and these are found to "sicken" the mercury in the troughs in the riffle. The surface of the mercury must be absolutely bright and clean, or it will not take up the gold. To illustrate our meaning, let us suppose that the riffle troughs were filled with melted tin. Copper and tin bave a considerable affinity for each other, and if bright copper flings were permitted to pass over the surface of the tin, they would sink and alloy with that metal. If, however, the tin were coated with oxide, it will be clear to any of our readers who bas used a soldering bit, or tinned a piece of brass or copper, that the flings would pass a way down the riffle untouched by the tin. The arsenic and other impurities found with tlie quartz have an analogous effect. They adhere to and foul the surface of the mercury, and amalgamation becomes impossible The moment fouling or "sickening" takes place the riffle becomes useless, and the mercury must be all drawn off and retorted. Nor is this sickening a tedious process. It can be effected in half will instautly sicken twenty or thirty pounds of mercury. will instautly sicken twenty or thirty pounds of mercury.
The practical effect of all this is that there are very rich quartz reefs which cannot be worked, becuuse there is no knnwn method of getting the gold out of the ore. We may cite one case in which there are no less than 42 ounces of gold to the ton, but the quartz is so "foul" that it cannot be worked. Thus, then, we have an ore worth $£ 126$ per ton, which, as it happens, could be mined and treated for about $£ 4$ per ton, and which is entirely valueless, all attempts to work it having bitherto failed. A great many cases might be cited in which promising mines have entirely collapsed for this reason. A laboratory analysis of the ore has shown that it is rich in gold, carrying perbaps 5 ounces or 6 ounces to the ton, but owing to the sickening of tie mercury the most that can be got out will be a couple of pennyweights perhaps-hardly enough to pay for the working
We need hardly say that chemists and others have for years'attempted to hit on some expedient for cleaning "sick" :nercory without retortiug, and the result can be attained in
two ways. Thus, a small quantity of sodium added to the metal restores its power of amalgamating wilh gold, owing, no doubt, to the remarkable power which sodium possesse of making metals alloy. Thus, if a little sodium amalgau be rubbed on a bit of hoop iron, the iron may be dissolved in a pot of melted zinc. The mercury can also be cleaned by blowing chlorine gas through it. Neither plan bas, how ever, met with much practical success. Sodium is no easily ubtained in sufticient quantities, and it is not a very nice thing to carry up country to wild and out of the way districts. There are obvious troubles, again, connected with the use of chlorine, and so neither have, as we have said met with much, if any, favor from practical gold miners. Some months ago Mr. Richard Barker, of Norfolk Street a member of the Geological Society, discovered-for w cannot say invented-a very curious phenomenon, namely that if mercury be used as a cathode, while a copper o other metallic electrode is immersed in water covering the mercury, the mercury will immediately begin to expel any impurities which it contains, except metals. This princi ple he has applied to the purification of mercury in gold riffles, and with remarkable success. The invention-for the discovery referred to above bad to be reduced to a practical form, in the shape of suitable apparatus-bas been taken u by the Electro Amalgamator Compauy, and a riffle has now been at work in Southwark for some little time. Tbis riff consists of a wooden trough, about 3 feet wide, and 12 fee or 14 feet long, with the usual mercury troughs across it Along one side of the trough run two iron bars, one of which forms one side of an electric circuit, while the other form the other. Rods of irou dip into all the mercury troughs and put the mercury on the negative or return side of the circuit; similar rods are connected witb bars, one of which lies across the riffle over each mercury trough, and from thi bar strips of copper about 1 inch wide and 8 inches long ex tend and lie horizontally over the mercury, which is thu under, so to speak, a huge comb, the teeth of which are about 8 inches apart. The distance between the mercury and comb teeth is about one-fourth of an inch, and so long as the riffle is dry no current can pass. Close to the riffle is a very simple and inexpensive dynamo, wound for quantity only, with very coarse wire. Over each comb is fixed a small roller or axis of wood in which are stuck pegs, which pegs dip into the mercury between the combtecth. The dynamo is driven by a small gas engine, and the pegged rollers are caused to revolve at the same time, the pegs agitating the surface of the mercury. The ground quartz and a full stream of water descend the riffle from the top, as already explained and the water flowing over the mercury and touching the comb teeth, contact is at once made and a current flows from the whole lower surface of cach cotibl tooth through the water to the mercury. The effect produced is magical No matter how "sick" or foul the mercury is. the moment the current is turned on the impurities fly from the space below the comb tooth, and collect in narrow ridges in the intervening spaces, from which they are washed away by he current of water, and the surface of the mercury at onc becomes as bright as silver. We have seen quartz used beavily charged with sulphur and arsenic from sulphur pyrites. One shovelful of this stuff sufficed to sicken all the mercury in the riffle, and the mercury was brought back to condition in less than one minute after the current wa turned on. With the current flowing, the mercury could not be made sick. One experiment which we witnessed showed in a startling way the effect produced by the pas sage of the current. Four or five pounds of clean mercury being put into a china bowl, some oil was added, and th whole beaten up with a stick to a species of ointment, a pro cess whicb occupled five or six minutes. A sovereign dropped into this mixture of oil and mercury came out un touched by the mercury. For all purposes of amalgamation the mercury was useless, and must remain so until retorted The bowl was now nearly filled with water, and the end of a negative wire from a battery was plunged into the metal and oil, while the positive wire was just dipped into the water, which stood two or three inches deep The moment contact was made with the water the oil began to rise in streams from the mercury, which could be seen collecting itself into little drops, two or three of which would coalesce. In about three minutes the whole of the oil had come to the surface of the water, and the mer cury lay pure and bright at the bottom of the bowl
We are unable to explain to what this action is due, nor are we aware that any chemist or electrician is in a better position to supply information. There are two or tbree theories at the service of our readers, all more or less-prin cipally less-satisfactory. According to one of these, the im purities on the surface of the mercury, or mixed with it become electritied, and are repelled by the mercury, because they are not metalic. According to another. the molecules of mercury are polarized, and, changing their relations to each other, expel all foreign bodies. Another theory attributes the action to the formation of nascent hydrogen, which acts chemically on the impurities; and this theory finds con firmation in the fact that pure water acts more effectively than any other liquid, the addition of any other liquid to the water, or of any substance soluble in $j t$, apparently weakening the action of the current. It is a noteworthy fact that if the poles be changed, the cathode or negative end of the wire being in the water, while the anode or positive wire is in the mercury, the action is very trifling. If both ends are plunged in the mercury, there is no action whatever. If a quantity of sickened, " floured " mercury be
put into a large iron pan, and covered with water, experi ments may be carried out which demonstrate the action o the current very clearly. Taking the positive insulated wire in the haud, an inch or so of the wire being left bare, while the other wire is plunged in the mercury, we can cause the impurities on the surface of the mercury to go in any direcion we choose. They always fly away when the positive wire is pointed at them, just as dust will go before a blas from the nozzle of a pair of bellows. Indeed, it require small exertion of the imagination to believe that a current of air proceeds from the end of the wire, and brushes the dirt before it. It has, we may add, long been known that the passing of a current of electricity througb mercury tended to clean it, but the action was too feeble to be of any importance, and so far as can be seen, the whole virtue of the Barker system resides in the use of water on the top of the mercury. As to the importance of the invention our readers can judge for themselves. It is to be hoped tbat a really satisfactory explanation of the action of the current will be forthcoming ere long. - The Engineer.

The Last Rallway Census of the United states
The census report of 1880 relating to railways shows that for the fiscal year ending 1880, there were operated in the United States $86,781 \frac{1}{2}$ miles of railway, the cost and liabilities for which were a little over five thousand six hundred millions of dollars ($\$ 5,658,914,158$).
The average cost of the railways, counting capital paid in and bwrrowed, has been approximately $\$ 62,552$ per mile.
The aggregate trausportation earnings for 1880 were $\$ 580,450,594$, and the expenses were $\$ 352,800,120$. Net earnings $\$ 22 \pi, 650,474$. After paying interest and other fixed charges the amount available for dividends was $\$ 110,344,597$.

The total railway stock subject to dividend was over two housand six hundred and thirteen millions of dollars (2.613.606.204), on which a trifte over $41 / 2$ per cent average dividends were earned, and an average of $2 \cdot 70$ declared, th balance of 1.80 being held.
The earnings per mile were $\$ \mathbf{6 , 6 8 8}$. Expenses per mile, $\$ 4,065$. Freight trains earned $\$ 1.65$ per mile, and cost to ru 88 cents per mile. Passenger trains earned $\$ 1.19$ per mile and cost to run them 76 cents per mile. In round numbers $91,000,000$ tons of freight were carried; average distance each ton, 112 miles. Passengers to the number of $270,000,000$ were carried; average distance each, 23 miles.

Tetal killed and wounded for $1800,8,215$.
The equipment is as follows:

White Bronze.
Experiments are being made, according to the Polytech ische Notiablatt, in Paris with a new alloy having a white color yet containing vo nickel. It is said to be very strong and malleable. It is made of copper and ferro-manganese, the proportions being varied accurding to the purpose to which the alloy is to be employed.
An ailoy of forty parts of copper and sixty parts of ferro manganese, with a suitable quantity of some appropriate flux, produces a metal of such tenacity that it surpasses the best steel armor plates. The melted mixture is cast in block and is perfectly malleable. To obtain a white metal that can be rolled out in sheets, the above alloy is melted again 20 or 25 per cent of zinc or white metal added, which mparts to it the desired quality.
A plate of the first named alloy two inches thick was found by experiment to offer more resistance to a cannon ball than a steel armor plate of the same thickness.
This new kind of "white bronze" is not to be confounded with the alloy used in this country under the same name for gravestones and monuments, and which consists principally of zinc.

A Throat Electric Lamp.

At the last meeting of the Leeds aud We-t Riding Medico Chirurgical Society, Mr. Margetson, of Dewsbury, exhibite an incandescent lamp, designed by himself, and used by him since October last in examining the mouth and throat. The globe was about half the size of a walnut. It can be held in the mouth for two minutes without discomfort from the heat.

Novelutes in Varniahes and shoe Pollehes.
Reinhardt has devised a method of destroying the stick:ness of varnish, which consists in placing the article in a closed vessel or chamber where it can be exposed to the action of ozonized air in motion.
A leather varnish or polish is prepared by Gunther, of Berlin, by mixing a filtered sulution of 80 parts of shellac in 15 parts of alcohol, with 8 parts of wax, 2 parts of castor oil, and a sufficient quantity of pigment. The mixture is evaporated in a vacuum to a sirup. The varnish is applied to the leather with a brush moistened with alcohol or with colorless alcoholic varnish.
Nicolet, of Lyons, prepares boot blacking by dissolving 150 parts of wax and 15 parts of tallow in a mixture of 200 parts of linseed oil, 20 parts of litharge, and 100 parts of molasses, at a temperature of 230° or 250° Fabr. After this 108 parts of lampblack are added, and when cold it is diluted with 230 parts of spirits of turpentine, and finally is mixed with a solution of 5 parts of gum lac and 2 parts of aniline violet in 35 parts of alcohol.
Hein, in Kaufering, makes another kind of shoe blacking by melting 90 parts of beeswax, or ceresine, 80 parts of spermaceti, and 350 parts of spirits of turpentine, with 20 parts of asphalt varnish, and adds 10 parts of borax, 20 parts of lampblack, 10 parts of Prussian blue, and 5 parts of nitro-benzol.
Brunner uses 10 parts of bone black, 10 parts of glucose sirup, 5 parts of sulphuric acid, 20 parts of train oil, 4 parts f water, and 2 parts of (carbonate of) soda. The bone black and glucose are stirred with the acid in a porcelain ressel until the whole mass is homogeneous and has a shinng black surface when at rest. The soda is dissolved in a little water, and boiled with the oil under constant stirring until it forms a thick liquid, and then the other mixture is stirred into it. By varying the proportions of these two mixtures, the blacking is made thinner and softer, or harder and filmer. The substances sold as French polish are nostly composed of these ingredients. In this and all other kinds of shoe blacking made with bone black and sulphuric acid, the precaution must be observed of stirring rapidly and evenly after the acid is added, otherwise lumps will be formed that are difficult to crush, and the blacking will have a granular condition that dines not belong to it. Good shoe blacking must always remain soft, and show a smooth uniform sur face when applied to the leather.--Neuste Eirfahrungon.

THIS "PEERLESS" ENGITE

The engine represented in the engraving is one of the simplest, most compact, and strongest in the market. The pison rod. valve stem, and pins are made of steel. The crank shaft and connecting rod are made of Cbester teel. The main frame of the engine and the slides, as well as the bearings for the crank haft, are cast in one piece, so that it is impossible for the working parts of the engine to get out of line or change their relation to each other.
The construction of the engine is such that the action of the piston rod is exactly contral, and all lateral strains are avoided.
The "Peerless" engines do not require any masonry foundation, or extra care in setting up thus saving expense to the buyer. They will stand upon any ordinary floor and do perfect work, even when out of plumb. Every engine s adjusted, and run for several hours, before leaving the shop, and is in complete order when ent out
A detached engine bas many features which recommend it to those wanting power. When mall engines are mounted on boilers, the journals often become so beated that it is difficult to keep them lubricated, and the working parts of the engine are liable to be thrown out of line by nequal expansion of the different parts of the oviler to which they are attacbed, and the dura bility and efficiency of the engine greatly leasened
This engine occupies but little space, is convenient to work around, and makes a solid, substanial thing. Should it be necessary to move it at ony time, the boiler can be taken off the base by simply unscrewing the steam and exhaust pipes. A valuable feature of this form of portable boiler and engine is, that it can be taken apart and carried up or down stairs, or into localities where it would be difficult and expensive to carry the same power engines and boilers if all fastened together
All persons familiar with the mechanical principles involved will understand why this form of engine, detached from boiler and standing on a solid iron foundation, is superior to the lightly constructed engines which are bolted to the boiler shell. Aside from every other consideration, the greater power obtainable from an engine of this pattern, of same sized cylinder, owing to the higher rate of speed at which it can be run without serious vibration, should give it the preference among all careful buyers.
In a vertical engine no counter weight is required, because the recoil produced in a horizontal engine in overcoming the inertia of the reciprocating parts is bere prevented by the perfect resistance of the earth, as the travel of the piston is in the direction of the line of gravitation and not across it, as with horizontal engines, and greater steadiness and free-
dom from vibration is obtained. In a vertical engine the wear is equal on all sides, which is not the case with a hori zontal engine, in which there is always the heaviest wear on the under side of the cylinder.
Five sizes are manufactured, two, four, five, six, and nine Street, Chicago

TOY TONET BAFE

The child's bank or toy money eafe showu in the engrav ing serves as a secure and convenient receptacle for coins and at the same time is a truly ornamental object, being of polished metal, nickeled, silvered, or gilded, bronzed or japanned. It may be made of rubber or any other suit able material. It can also be made of brass spun in spherica form.

The hollow sphere forming the money safe has a narrow flat base forming the stopper of the aperture tbrough which the coins are removed. The stopper screws in with a fine,

HOTGHEISS' TOY MONET BAFE.
close-fitting thread, and with so much friction as to render it impossible for the child to remove it. In the stopper is a slot connecting with a short flat tube having an inclined bottom, which deflects the coins as they are introduced, and absolutely prevents their being shaken out
This simple device can be made to sell for a very low price and yield a good proft; at the same time it admits of price and yield a good proft; at the same time it admits of
fine finish, and may be made in various sizes to suit users.
knife, rolled into lumps, and epriskied with oatmeal to keep it together and make it look clean. It is Oply made along the Glower and Devonshire coasts, where a great many women earn their living by making it. After it is cooked it will keep for about three or four days in summer, and for about a week in winter. Most of it is takeu to the Swansen market, for which a great deal is sent from Devonshire, where the seaweed grows more abundantly than about Gower. It is sold at 8d., 4d., and 5d. per pound. The poor people are very fond of it, and eat it either fried with bacon grease, or else cooked like a vegetable with meat.-Kow Roport.

A Now Tar Explonive.

Among the derivatives of coal tar, several kinds of explosives have long been known; but a new compound of this character has lately been made by Dr. Himly and Herr Von Frutzschler-Falkenstein, which is said to be suitable either for mining purposes or for firearms. It is described in the Journal of Gas Lighting (London) as a mixture of saltpeter chlorate of potash, and a solid hydrocarbon, for which latter constituent paraffin, asphaltum, or pitch may be chosen The solid ingredients are powdered and intimately mixed and the mixture is then treated with a liquid volatile hydro carbon, such as benzine or gasoline, which dissolves the solid bydrocarbon and forms the whole into a plastic mass. The cake is then rolled into sheets, and bardened by allowing the liquid solvent to evaporate; the product being afterward broken up into grains of any desired size, like ordinary gun powder. By this mode of dis-olving the bydrocarbon before or after admixture with the ealts, the grains become coated, after drying, with a waterproof coating of varnish. I he process of manufacture is simple and free from danger, be cause in the event of the paste catching fire the volatile hydrocarbon will first burn away entirely, ufter which the powder will burn slowly and quietly. The new compound is therefore only an explosive when confined in a close space. It possesses the same density as gunpowder, and is very hard. It can be made twice as strong as the latter; but the intensity of the explosion can be regulated at will by varying the proportions of the ingredients and the size of the granules.

Hearing in incocte.

The sense of hearing in insects has been recently studied by Herr Gruber. He found the cockroach (Blatta germanica) very sensitive. On sounding a violin note when a cackoach was running across the fioor, the creature always suddenly stopped. Again, a number of these cockroaches were inclosed in a glass vessel, and on making a strong sound there was evident agitation and ercitement; some would full down from the glass as if paralyzed. A cockroach was hung by a thread from its hind leg; when it was quiet a bow was drawn sharply over the violin strings at the distance of about four feet, whereupon the insect was greatly cxcited, and struggled round, getting its head uppermost.
Beetles also were readily affected by sounds, but grubs and ants gave no certain indications. Of aquatic insects various kinds of coriza were tried. These would often remain quite quiet for several minutes, but on tapping the glass with a glass tube they rusbed about with much agitation. A disk at the end of a long rod drawn to and fro in the water near a quiet corixa produced no effect, but on couducting the sound of a struck bell into the liquid by the rod, there was lively reaction; similarly when a glass bell stroked with a bow was brought to touch the water. These creatures were also sensitive to high violin notes in air, to the sound of a metal plate struck with a hammer, etc.
Still more sensitive to sound were various aquatic beetles (laccophilus, laccobius, Nopa cinerea, etc). On the other hand various larves, especially of ephemerides, were unaffected; lut these were sensitive to mechanical agitation of the water. Herr Gruber considers the response the insects make to sound an indication of true hearing, and not mere reflex action.-English Mechanio.

The Dismal swamp.

The Dismal Swamp in Virginia is much roduced in extent compared to what it was trenty years ago. It now contains, says a recent visito there, some of the best farming land in the State. A railroad runs across it, and it is on its way to Anal extinction The drainage of final extinction mond, a central body of water lying higher than
This invention has recently been patented by Mr. J. F. Hotchkiss, of 84 John Street, New York city, who may be addressed for further information.

Laver Bread.

Laver bread is made of a seaweed (Porphyra laciniata) found growing on the low rocks. The women gather it in large baskets and carefully pick it over, wash it, and take out thoroughly washed again to remove all the sand, after which it is boiled for about two hours, then chopped up with
the average level of the swamp, would make th whole area fertile. This is a project of Gov. Benjamin F. Butler, who once had surveys made, but at lengib alandoned it. The one great industry of the swamp is lumber ing. It is penetrated by small ditches in connection with larger canals, and by rude tramroads, over which the log are bouled to be sawed up into shingles, railroad ties end fencing. The lake, however, with its fringe of csprese and its projecting roots and stumps, is just as dismal as ever.

Paste for labels is made by soaking glue in strong vinegar then heating it to boiling and adding flour

side exiow sciemor

There has recently been exhibited in the Circus of the Champs Elysees, in Paris (we learn from La Nature), a curious exainple of the ability to remain a considerable time under water withoat asplyxia. This is "Miss Lurline, the Queen of the Water," as she is called. The aquarium in which she performs consists of a large rectangular vessel with glass sides (the larger about 10 feet long by 7 feet high), and filled with water which is slightly tinted green, and is strongly illuminated by means of five or six oxyhydrogen lights.

Miss Lurline dives, swims, lies down and eats at the bo tom of the water, passes between bars of a chair, etc.
At a certain moment, the music ceases, the girl draws a few long breatis, then lets herself sink to the bottom, wher she kn"els on one knee, crossing her arms on her breast. man outside stands with watch in one hand and hammer in the other, with which latter he counts the half minutes by striking. One half minute-one minute-a minute and a half-two minutes-two minutes and a half! During the silence, interrupted only by the sound of the bammer, the minutes seem very long, the spectators are painfully intent, and experience a relief when the diver returns to the surface.
To appreciate what is implied in passing two minutes and a balf without taking breatl, let any one (says M. Kerlus in the journal named) make a small experiment, holding his breath as long as possible, while watching a seconds watch. Few persons reach one minute; the majority are ohliged to take breath before forty-five seconds have elapsed, and it is only exceptionally and with much difflculty that some attaiu one minute fifteen seconds.
The fishers of sponges, mother-of-peari, and of pearl oys. ters in the Mediterranean and elsewhere, do not ordinarily remuin under water longer than two minutes. It has never been authentically observed, watch in hand, that they effected a voluntary immersion of more than three minutes. The mean time is one minute to a minute and a half. Even under these conditions, the work of a diver in deep water is excessively painful. On coming out of the water, they usually remain some time motionless, the out by the mouth from rupture of blood vessels in the langs. These divers do not live long; they sometimes die of apoplexy after coming out of the water; they also frequently lose slght by reason of congestion of vessels of the eyes.
The public divers in aquaria run much less risk. They
bave not to bear any grent pressure resulting from thickhave oot to bear any great pressure resulting from thickness of the layer of water above, and, besides, they remain still in the waler, whereas the fishing divers have to performencive work during immersion, and so exhaust more quictly the supply of oxygen retained in their lungs.

During the last twelve years, four or five divers (male and female) have exhibited in Paris, under various aquatic names, sucl as " 1 'Homme-poisson," "l'Homme-amphibie," "La Femme-Sirene," "La Reine des Eaux." Their exercises bave been much the same. One of them, however, the fish man. made a very curious experiment. He smoked a cigarette almost entirely, but without eniting the smoke. Then lie lay down at the bettom of the water, and let a succession of gray bubbles of smoke rise to the surface. The quantity of smoke thus returned seemed enormous. At intervals the series stopped, to commence again a few seconds fater, greatly to the surprise of the spectators. Some nf these estimated that the experiment lasted quite five minutes. In reality, it did not exceed one minute.
While a diver is immersed, if one do not look at a watch, one finds it difflcult to calculate the time of immersion correctly, aud generally exaggerates. Hence, in all probability, the accounts of many wonderful divers. It is said e. g. that Ionian and Sicilian divers employed after the naval battle of Navarino, in 1827, remained five to ten min utes under water, and one of them even a quarter of an bour. Exaggeration here is evident.
Whence comes this power, possessed by some persons, of remaining longer than others without breathing? The old physiologists attributed it to the aperture of Botal not being closed in the heart (as in the child before birth). This is easily proved to be an error.
It has also been supposed that divers feed only on vegetaIt has also been supposed that divers feed only on vegeta-
bles. their frod yielding blood less rich in corpuscles, and so requiring less oxygen. Auother idea is thal divers exbibiting in public tnke either morphine with the view of retarding the circulation, or digitalis with the view of retarding the heart beats.
These supposed means (says M. Kerlus) are not practicable, or they would tend to the opposite of the end aimed at. The power of remaining a long time without respiration seems due simply to a great development of pulmonary capacits, to lungs of large volume and perfectly sound. This great capacity may be natural; it may be the result of heredity, as is probably the case with the sons and grandsons of fishing divers; it may be acquired, or at least developed, by exercise. The profession of diver is similar in this respect to those of the runner, the gymnast, and also the singer.

Tue Londoı Medical Record concludes from Prof. Koch's experiments that the only certain disinfectants are chlorine, bromine; and corrosive sublimate. Solutions of one part of the latter to 1,000 parts of water will kill spores in ten minutce, while a solution of 1 in 15,000 is strong enough to arrest the power of development in micro-organisms.

Hinanumeture or Tinned sheet copper.

An intaresting patent case bas been decided by Judge Shipman in the United States Circuit Court of Connecticut,
in which the following particulars of the above art were in which the following particulars of the above art were brought out:
Tinned sheet copper for the manufacture of culinary utensils was formerly furnished to the coppersmith in the form of a soft sheet of copper tinned on one side, and the copper side discolored by the action of the heat and acids employed in the tinning process. This soft, porous, flexible sheet was then made dense and hard by tedious and expensive hand bammering, or "planishing," as it. was called, which consisted of hammering the sheet upon an anvil with hammers if a curved surface to make the sheet dense, and then with hammers of a plane surface to smonth and brighten it. Tinned copper had been also sometimes cold-rolled or passed through polished rolls, whereby the sheet was made more dense; but the form in which the coppersmith generally received the sheet for manufacture into utensils was the one which has been described. Sometimes the discoloration was attempted to be removed by the use of acid. Mr. Andrew O'Neil, in 1867, received letters patent for a tinned copper sheet prepared in this way. A varuish, made after a prescribed formula, was applied with a brush to the copper side of the tinned sheets in the rough state " without subjecting them to any acid bath, scouring, planishing, or any other chemical or mechanical preparation." The varnished sheets, when dry, "were passed through highly polished rolls of steel or case-hardened or chilled iron." In 1869 another patent was granted to Mr. O'Neil.
This invention, which consisted in subjecting the sheet to old rolling, whereby the surface was made dense and glossy, to polishing, whereby the discoloration was removed,

hass lurline in imer aquariom

and, if need be, to an additional enameling process, was received with great favor, went iuto extensive use, entirely superseded hand planishing, and was very useful. In 1877 a- reissue of this patent was obtained, on which reissued patent this suit was brought. In the specification the patentee says that "in some instances the sheet had been passed through rollers before my invention;" but in consequence of the acids employed in preparing the sheet for tinning and the beat in the tinning operation the copper surface became dark and mottled.
The reissued claims are as follows:
'1. As a new article of manufacture, the tinned sheet copper herein described, the same having a bright or polished copper surface, and the whole being cold-rolled, as and for the purpose described.
" 2 . The improvement in the manufacture of tinned sheet copper, consisting in tinning one surface, cleaning or brightening the other surface, and subjecting the sheet while cold to pressure between rollers, substantially as set forth.
' 3. The sheet of tinned copper prepared by cleaning and olling, and protected by a varnish

and for the purpose set forth."

The first claim is identical with the first claim of the original. It is not for a tinned sleet, cold-rolled, and having a bright copper surface, made such by the use of acids, but having a surface made bright or polished by the wheel, or by any approved mode of polishing. The second claim is for the process of manufacturing described in both original and reissue, not including the varnishing; but it is not to be construed as including any mere "cleaning" of the surface, although the word "cleaning" is introduced both into the description and the claim. To include in the patented process cleaning by acid, or by scouring with acid and sand, would be an undue expansion of the original patent.
In 1876 Thomas James obtained a patent for an improve-
ment in the manufacture of tinned sheet copper, under which the defendants now make the article which is said to be an infringement. After the sheet is tinned the discoloration is removed by the use of diluted acid, or by scrubbing with acid and sand. The sheet is then washed in pure water, and after it is dry is cold-rolled between bright chilled rolls, two sheets baving been placed together with their tinned surfaces in contact. By this process the disculoration is removed by the application of acid, and tben the surface is polished by the chilled rolls. By the O^{\prime} Neil process the surface is $1: 01-$ ished and made glossy by the rolls, and the discoloration is removed by the buffer or other upproved polishicg method. The defendants' process is not the patented process. It omits a pateuted step, and in its stead includes one which the patentee intended to avoid.
There is no infringement, and the bill is dismissed.

Work for Inventors To Do.

We have machines for doing almost all kinds of work in field, shop, and factory. But most of the machines we find in them now will not be used twenty years hence. They will give place to something vastly better. All the machines now styled " perfection," will be found to be very imperfect. The machines now employed for making paper, weaving cloth, printing, sewing, shaping brick, and working up lumber will soon be displaced. A very valuable iurention is seldom very valuable, in itself, beyond the term for which it is patented. It is improved to such an extent that only a single principle remains to be kept in operation.
It is likely that much will be done in the future in restoring old processes, and in combining them for doing certain kinds of work. In many departments of industry little has been done to lighten the burdens of human labor. Kitchen work is performed in about the same way as it was when the first kitchen was constructed. Clothes, dishes, and floors are washed after the most primitive fashion.
Our methods of doing all kinds of housework are twenty centuries behind our methods of doing farm and factory work. Knives and forks are made by machinery, but are scoured by hand. A new tin dish is made in a factory quicker and with less trouble than an old one is cleaned in the kitchen. When drudgery was driven out of the field and workshop it took refuge in the kitchen, seemingly with the determination of making it its permanent place of abode. It clings to it with desperation. New dishes for the table and new garments for the person all make work, but the persons who bring them out produce no labor saving machine for cleaning the first or kceping in order the last.
It is likely that most of the valuable inventinns in the future will be made by persons who will devote themselves to inventing as a business. More knowletige, skill, time, money, and higher talent are now required to make inventions than were formerly needed. A person must now
study to find out what is wanted in any department of industry, and then learn what has been accomplisbed. He must read many books and consult with many persons. If a proposed invention pertains to the application of any science to the arts, he must become familiar with both the science and the art for improving which it is designed.

Messis. Bessearer, Ransome, and Edison, three of the most illustrious inventors of our time, afford good illustrations of what men of genius, judgment, and perserverance can accomplish by devoting themselves to specialties. A technical education and a library are as necessary to an inventor as to any professional man. For a miechanical inventor a workshop is as necessary as it is to a mechanic. Some capital of course is necessary to enable a person to devote all his time to this business. Ability to concentrate one's thougbts oll a particular subject is of prime importance to a successful inventor. A "happy idea" may occur to him, but patience is required to make it of any practical value. Many scientific men and mechanics can devote considerable time to inventing and go on with their regular pursuits, as they have unusual facilities. Much always depends on little things in the perfection of great inventions. Gondyear and Morse found their greatest difficulties with matters that at first appeared trifling.-Chicago Times.

An Artificial Aurora.

A telegram has been received by the Finnish Academy of Sciences from Professor S. Lemstrom, chief of the Finnish Meteorological Observatory, at Sodankyla. He states that, having placed a galvanic battery with conductors covering an area of 900 square meters on the hill of Oratunturi. he found the cone to be generally surrounded by a halo, yellow-white in color, which faintly but perfectly yields the spectrum of the aurora borealis. This, he states, furnishes a direct proof of the electrical nature of the aurora, and opens a new field in the study of the physical condition of the earth. A furtber telegram has been received, in which Professor Lemstiom states that experiment, with the aurora borealis made Dccember 29, in Enare, near Kultala, on the bill of Pietarintunturi, confirm the results of those at Oratunturi. On that date a straight beam of aurora was seen over the galvanic apparatus. It also appears from the magnetic observations that the terrestrial current ceases below the aurora arc, while the atmospheric current rapidly increases, but depends on the area of the galvanic apparatus, to which it seems to be proportional. The Professor regrets that with the means at his disposal further experiments cannot be made; and that he intended almost immediately to withdraw the apparatus.

Tho Voasi statice or memnon.

On the low marshy plains near Thebes, on the banks of the Nile, are situated the wonderful colossal statues of Memnon, which for so many centuries have attracted the attention and excited the wonder and admiration of travelers and students. These two colossal monolit bs, which are supposed to represent the royal personage of Amenophis III., and to have been erected by him some 1,700 years before the Cbris tian era, are of the same dimensions, and are hewn from the same sort of granite.
The heigbt of the figures from the soles of the feet to the crown of the tead is about fifty feet, making a total height with the pedestal of over sixty-five feet. One of these mono liths being mounted upon an unsufficient foundation, began to assume an inclined position many centuries ago, and a little crack forming in the stone was increased year by year, until, about the year 27 B.C., an earthquake taking place in Egypt, the upper part of the statue was broken off and over turned, and there it has been lying ever since.
Soon after this occurrence, certain curious rumbling noises were heard to proceed from the standing portion of the statue. These sounds were observed to occur at break of day, immediately after the rising of the sun. That this phenomenon was noticed by a number of travelers and savants is pretty well proved by the inscriptions chiseled on the pedestal of the statue by different persons at different times, and all bearing witness to the same fact.
Strabo, who visited the statue some dozen years after its fall, thus speaks of it: "There are two colossal monoliths, one of which is still standing, while the upper portion of the other has been overthrown, I am told, by au earthquake. It is believed, also, that once each day a sound like a slight blow proceeds from that portion which remains standing on the base. As for myself, when I visited this locality with Alius Gallus, I most assuredly heard a noise at the first hour. Did it proceed from the base, from the colossal, or from some of those who were standing about the base? Was it some of thosignedly? This is what I cannot assert positively, for without knowledge of the true cause it is better to imagine almost anything than to admit that stones so placed can emit sounds." Later observers were more decided in their opinion, however, and assert positively that they distinctly heard the sounds proceeding from the interior of the stone. In the time of Septimius Severus, the statue was restored, and the upper portion, consisting now of five pieces, was replaced to its original position, and since then there is no record of any sound having proceeded from the austere figure. It has heen noticed that the sounds were beard at the time when the first rays of the sun fell upon the statue, and further that these noises did not begin to be noticed until after the upper portion of the stitue had been overturned, and that as soon as the monolith was restored to its original condition they were heard no longer. Taking all these facts into consideration, M. De Roziere, who has made a considerable study of this matter, cousiders the phenomenon to be due to the fact that the rays of the sun, striking on the broken portion of the monument, dry up the moisture which has been absorbed during the night. The dew deposited in the fissures of the rock and thus caused rapidly to evaporate tends to open the crack still further.
If the matter were bomogeneous throughout or composed
of fine particles, no noise or vibrations would be discernible; of fine particles, no noise or vibrations would be discernible; grains, the larger grains will resist more than the others the endencr in the rock to crack and separate into fissures. and will be left alone to support the strain. This tension being continually renewed, these grains finally give way. This rupture causes in the stone a concussion or rapid vibration, and it is this which produces the groaning sound in the stone at the rising of the suin.
Humboldt speaks of having discovered musical stones, called by the inbabitants lojas de musica on the banks of the Orinoco. These were granitic in character and were full of cracks ard fissures, and emitted sounds, as he says, immediately after the rising of the suo, like the tones of an organ. The seventy inscriptions which make mention of this prodigy leave almost no doubt as to the facts in the case, and the great matter for regret is that the religious or perhaps superstitious ardor of Septimius Severus should have led him to set about those restorations which have for ever closed the mouth of the royal Memnon.

nt Proft on Colnago.

Some curious facts relating to unredeemed obligations of the Government have been collated by the New York Suro, which show a considerable source of profit to the United States Government. The amount of paper money and coin which is never presented for redemption comprises a large sum. Much of this is destroyed by fire. Some of it is buried or bid in places known to no person alive. A large quantity of the coin is melted to make sterling silverware. Considerable amounts of both paper money and coin are exported never to return. Not long ago a Cuited States bood, issued about 1819, was presented at the Sub-Treasury in this city. The interest on it had ceased over fifty years. It had come back from Europe through Baring Brothers. The outstanding principal of the public debt of the United States last year was nearly two billious of dollars, chiefly represented by bonds and treasury notes.
It would be, of course, impossible to say how much of this will never be presented for redemption, but some idea may be formed from the fuct that $\$ 57,665$ of it was issued \therefore long ago that the date is not recorded. It appears in the
meport as " old debt" that may safely be put down as proft There is an item of $\$ 82,525$ of treasury notes issued prior to 1846. Some of them were issued nearly fifty years ago, and will not, in all probability, ever be presented for redemp tion. One thousaud one hundred and four dollars of the Mexican indemnity of 1846 has never been claimed. The last of the fractional currency was issued under the act of June 6, 1864, yet, although nearly twenty years have elapsed, $\$ 7,077,247$ lias not been presented for redemption. Some of this is held as a curiosity. Some of it is still used by banks and merchants for transmitting small sums by mail. Sey eral New York banks bave considerable sums of new frac tional currency, which they distribute for the accommodation of their customers.
As to the coin, the Government derives a considerable profit from it. The silver in .one thousand silver dollar costs, on $2 n$ average, about $\$ 803.75$. The coinage of a sil ver dollar costs about $1 \frac{1}{4}$ cents. The total cost of oue thousand silver dollars to the Goverument is therefore $\$ 816.25$. Since the organization of the mint, in 1793 $127,190,618$ silver dollars have been coined, on which the Government has received a profit of over twenty-three mil lions of dollars.
In the same period $\$ 122,758,510$ was coined into half dollars. At the same rate of cost for coinage the Government profited $\$ 19,395,769$ on these. The total silver coinage of the Government since 1793 is $\$ 347,766,792$. Estimating the profit on the halves, quarters, and subsidiary coins at the same rate as on the dollars, the total profit received by the Government on its silver coinage has been about sixty-fou
millions of dollars. millions of donlars.
In the coinage of the five cent nickels the Government reserved to tiself the liberal profit of nearly 50 per cent. This gave to the Government last year the haudsome revenue of over $\$ 100,000$ from nickels alone. The wide margin between the intrinsic value of the five cent nickel and its face value led to extreme counterfeiting. Several years ago an assay was made of some of the counterfeit nickels, and it was discovered that the counterfeiters had put into their coins more valuable metal than the Government uses i making the genuine coins.

Doen Snow Protect the soll from Frome

Prof. Aleximder Edmond Becquerel, of the Conservatoire des Arts et Metiers in Paris, the celebrated investigator of electro-chemical decomposition, has recently been investigating a question of considerable scientific interest as well as of great practical importance especially, to agriculturists, namely; whether a blanket of snow prevents frost from en tering the ground or hoders it to any great extent.
The numerons experiments which it was necessary to make to obtain a precise answer to this question were carried on last winter in the Jardin des Plantes. The aim of these was to ascertain, first, to what extent the temperature of the ground was influenced by the temperature of the air both under bare ground and in solded soil, with and without snow. Also to ascertain what depth the temperature of the air was able to make its influence felt. In these very compli cated investigations the electric thermometer invented by Becquerel himself was employed, an instrument which nceds some description to make the following details intelligible.
Two covered wires of unlike metals-copper and ironare soldered together at both ends, which are left uncovered for this purpose; otherwise they are covered their whole length, for the purpose of insulation, with gutta-percha and to different temperatures, an clectric current is generated in them, and the greater the difference in temperatures the stronger the current, but the current ceases when both are exposed to the same temperature. This electric current acts on a magnetic needle suspended so as to move freely over a graduated circle, a kind of compass. The copper wire forms a vertical frame around the needle parallel to the normal di rection of the needle. As long as both ends of the double wire are at the same temperature the needle continues to point to the north, being subject only to the earth's magnet ism, but as soon as there is any variation in temperature the needle is sure to move instantly and take another position, which it will keep until some other change of temperature takes place.
The application of this ingenious instrument for the measuring of soil temperatures was made as follows
One of the soldered joints was buried in the earth to a depth at which it was desired to take the temperature, and the other end was put in a water bath at any desired distance from the first. The temperature of the latter could be increased or diminished at pleasure, and was measured by a very seusitive thermometer. To ascertain the temperature
in the soil where the other end is buried, it is only necessary to raise or lower the temperature of the water bath until the magnetic needle stands at zero, and then read the thermoneter. The thermometer will stand the same as if it wer buried at that point. The results obtained were absolut accurate. and the method itself very simple and easy.
Prof. Becquerel began his observations at the end of Nor Prer. Simultaneous observations were made of the temperature of the air at the height of $33 \frac{1}{3}$ feet and $66 \frac{2}{3}$ feet, and of the soil at the depths of $2,4,8,12$, and 24 inches. They
were made under sod and bare ground. On November 28 were made under sod and bare ground. On November 26,
a dry frost began which lasted without interruption until December 3. At this date the air had a temperature of 7° Fahr., and a heavy fall of snow began that covered the ground to the depth of 10 inches. From the 6th to the 19th
of December, the cold steadily moderated untij on the moruing of the 19th and 20th it was above 38 weather followed, and the snow sank to less than 8 inches. Observations of temperature showed tbat both before and after the snow fell the temperature of the soil, where it was covered with sod, remained above the freezing point even on the coldest day. On November 26, at a depth of 2 inches the temperature was 40° Fabr. From this time it sank continuously until December 14, when it reached 3214° Fahr., but it uever fell below this minimum.
The results were quite different in soil not covered with grass sod. On November 26, the day when the dry frost began, the temperature at a depth of 2 inches fell below 32° Fabr. ; on November 29 it stood at 2611° Fabr., and on December 2, before the snowfall, it was 25° Fabr. During the whole time when its surface was covered with snow from 10 to 8 inches deep, the temperature never rose above 32°. but only varied, at a depth of 2 inches, between 28° to 30° Falur. From these observations, which were repeated a great many limes, although we have given but few of the results, we may deduce a whole series of very interesting results of great importance to agriculturists.
In the first place it was proved that changes in the temperature of the air make themselves felt to a certain distance in the earth even when the surface is thickly covered with snow. Hence the generally received opinion that a mantle of snow keeps the earth warm is in general erroneous. Snow does not protect the soil and seed at all from freezing, but only hinders to a certain degree the too extensive radiation of heat from the soil, and is converted intn water at 32°, which sinks into the earth and somewhat raises its temperature.
Becquerel's experimeuts also prove that the best protecion for the soil is a heavy sed, which dops more to raise its temperature than ever so thick a layer of sanw.
The matted roots of the sod form a sort of felted cover ing which not only excludes the cold in a bigh degree, but also draws up the moisture from the lower strata toward the surface. Our winter grain does not have the thickness of a bed of sod and cannot act the same, laving much more the character of bare ground, and bence we are not entitled to consider our grain ields sufficiently protected from the strongest frosts when only covered with an ordinary layer of snow.-F. Von Thumen, in Weiner Landwirthachafliche Zeitung, January 6, 1883.

The Deepent Sounding in the Atlantic.

The Coast and Geodetic Survey steamer Blake returned to this port February 14, from a winter cruise for deep sea exploration betweeu the Bermudas and the Bahamas. On the 19th of January, in latitude $19^{\circ} 41^{\prime}$ N., longitude $66^{\circ} 24^{\prime}$ W., about 105 miles northwest of St. Thomas, there was ound the greatest depth ever measured in the Atlantic, or 4,561 fathoms.
The place was about eighty miles southwest of the place where the Challenger made her deepest sounding, of 8,862 fathoms. It was inside a basin-that is, many hundred fathoms down it was inclosed by a ridge. The temperalure of the water at this great depth was 36 degrees. It is a curious fact in connection with such basins as this that the water of the bottom of them is of exactly the same tempera ure as that which rums over the top of the ridge several hundred fathoms above. The specimen of the bottom secured at this sounding showed a soft, brown ooze, with evidences of fauna.

Mortality of Our Great Clty.

Thirty-seven thousand nine hundred and fifty-one persons died in New York city in 1882, the ratio being a little over twenty-nine per thousaud of population. These figures show that New York has uo equal amoug Northern citics for funerals and that the business of undertakers is remarkably active.
The number of cases and dealhs from the principal conta gious diseases for 1882 was as follows:

Diseasee.	Cases.	Deaths.
Smallpox	708	289
Measles	4.738	918
Scarlet fever	${ }_{6}^{6.594}$	2.070
Diphtheria	3,42.	1.381
Whooping cough..	\ldots	655
Erysipelas...........		${ }_{68}^{151}$
Typhus ever	${ }_{684}^{207}$	66 868
Malarial fever....	\ldots	683

The average death rate for the United States, as indicated by the census returns for 1880 , is between 17 and 19 per housand. Of suicides there were 199 ; of these, 165 were men, and 34 were women; 71 were Germans, 50 Americans and 20 Irish.

Mexican Tin

The first ton of Mexican tin ever sent to thi country was recently received. The metal is said to be bright, clear and apparently of good texture. It eame from Durango. The ores of placer origin are said to average 73 per cent of smelted tin. Mr. Henry Freeman, an Australian tin mining engineer, has been for a year or more exploring the region between Chihuahua and south western Durango in search of evidences of the tin lodes and placers spoken of by the old Spanish settlers, and bas secured for St. Louis merchants and capitalists a considerable tract in the southwest quarter of Durango believed to contain tin ore in large quan tities. The famous iron mountain of Durango is in th northern part of the district.

March 10, $1^{88} 3$.]

hecint invertion.

 Now Rlbbon Eilder.

 Now Rlbbon Eilder.}The annexed engraving shows a very simple and convenient ribbon holder recently patented by Mr. John Mellette, of Winamac, Ind. It consists of a wire bent \mathbf{V}-shaped, with the ends bent toward each other and with a bend at or near the middle, so that the wire acts as a spring to hold the ribbon from unrolling accidentally, while it admits of unwinding any desired amount by simply winding any desired amount by simply
drawing it from the roll in the usual drawing it from the roll in the usual
way. When the roll is of wood, the way. When the roll is of wood, the
ends of the wire are inserted in the center of the block from opposite sides.
 pastetioard or other thin material, the central holes ar eyeleted to prevent wear.

Oloth From Nettlea.

Though not in these days generally cultivated, at least in Europe, the despised nettle was at one time, and that for several centuries. Leld in high houor and esteem throughout the world. In an old medical book of the fifteenth century, many pages are devoted to a description of its healing virtues. During the Irish famine, it is said that hundreds of poor people subsisted eutirely upon it; while in Russia Sweden, and Holland it is still mown several times a year us fodder for the cows, whose milk it is found greatly to improve both in quality and quantity, tbough they will not touch it in its green state. In Kamschatka the flbers have long been used for fisliing lines; in France they have been made into paper; in Hindostan and China, woven into so called "grass cloth;" and in Scotland and some parts of England the stalks bave been dressed, spun, and woven into linen as good as that made from flax; while the old Ger man name for muslin, " nettle cloth," shows that it must have been at one time "xteusively used for weaving pur poses on the Continent. The change in the estimation in which the nettle was held began when cotton was intro duced from America, now a century or more ago; and in a
few years the b , gro grown plant was entirely superseded by the foreigner, and sank into the state of utter neglect and oblivion in which it has remained till within the last few years, when efforts have been made in Germany to draw at tention once more to its capabilities and good qualities. After the exhibition in Philadelphia, when it becaune evi lent to the German manufacturers that they must bestir themselves in real earnest if they hoped to compete successfully with their neighbors in the future, Professor Reuleaux their representative in America, seriously advised them to turn their attention to tneir own native industrial products, with a view to becoming less dependent on foreign countries. He reminded them among other things of the stirg ing nettle, and ihen people suddenly remembered that it had once been as highly esteemed as flax ard hemp, and scienLiflc men began to talk and write about the proper methods of cultivating it. For the most part, however, it was the foreign species which found favor in their eyes, and above all the snow white, stingless, Chinese nettle, which yields a glossy fiber, like the finest silk or spun glass. An enter prising lady. however, Madame Roeszler-Lade, had already determined to try what could be done with the common sting ing nettle, the Urtica dioica, and made her first experiment on ber own estates in 18i8. It failed, simply andsolely, as it would appear, because the peasants could not be induced to do as they were told, and were absolutely contemptuous when directed to treat the nettle stalks as they did their hemp. But now, when Professor Reuleaux came forward as the champion of the native nettle, Madame Roeszler-Lade applied to him for advice, and then planted her nettles on a piece of poor, rocky ground, having but a thin layer of soil and this time she succeeded so well that, at an agricultural oxhibition held in the autumn of 1877 , she was able to exbibit specimens of aettle fiber in all stages of preparation, ending with the spun yarn. This was a triumph, and the unbelievers who had turned up their noses in derision were now convinced, and hundreds determined to begin growing nettles without delay, and this not only in Germany, but in Switzerland, Belgium, Hungary, Poland, Sweden, Austria, and North America. Two years later the first Ger man "China grass" manufactory was established by Herr F. C. Seidel in Dresden. and after many failures and much expense he has succeeded in spinning the nettle fiber in a manjer which is perfectly satisfactory. He uses the common nettle, but prefers the Cbinese nettle as yielding, at pres:ult, a betier looking and much stronger flber.-Cassell Family Magazine.

Reticulated structure of Living Matters.
At a recent meeting of the New York Academy of Sciences, Mr. Romeyn Hitchcock read a paper on the above subject on the " Bioplasm Doctrine
The speaker devoted most of his paper to objections to Heintzmann and Elsberg's claim of having discovered a re ticulum or network in red and white corpuscles and in the amœba. He said that if these microscopists had seen it others ought to be able to see it also. Few people, it is true know how to use a microscope, but most people can see the most minute objects under a high power glass when it has been properly adjusted and focused, hence he denied Heintz mann's assertion that because a tyro can't see a thing is no roof that it doy't exist.
fitted with the beest high power objectives, and under one of these he placed an amœaba, under another a pus corpuscle, and under two others red blood corpuscles, to demoustrate the fact that no reticulum or network exists, because none can be seen. It has been claimed that this reticulum contracts and expands, thus causing motion, and that some such re ticulation is necessary to account for the motions of protoplasm, but it may be asked how this can of itself contrac and expand. It is an explanation which fails to explain The speaker next referred to the three sources of error in microscopic: work first, error in illumination; second, error in the correction of objectives; third, errors. in focusing To dem,nstrate the reticulum on red blood corpuscles, it is necessary to touch them with a dilute solution of bichromate of potassium, but this causes them to become granular, and as this action continues, it breaks up the corpuscles. Suct an effect was visible in one of the slides exhibited under the microscope. It is claimed that reticulum can be seen in the White corpuscles without this treatment, but such was not
the case here. Minute granules can be seen in amœba, but no reticulum. In microscopy errors of interpretation ar easily made; dots may merge into each other and be take for lines, and such may have been the case in the amoba.
Dr. Schene made some interesting remarks on bioplasm and thought that microscopists should make allowance for personal errors," just as astronomers do in a different way.
Mr. George F. Kuntz then exhibited a specimen of cret cous amber from the marl of Gloucester County, N. J. When found, the mass was 20 inches long, 6 inches wide and about an inch thick, weighing 64 ounees, the larges ever found in New Jersey. Its specific gravity is 1.061 . It was found at a depth of 28 feet, in the middle bed of the upper cretaceous, and was covered with greensand.
Several specimens of amber from other localities were also exhibited, including some very rare specimens frim Sicily Drs. Martin and Newberry and Messrs. Julian, Brittain, an Hadden took part in the discussion that followed. Pro Hidden also exhibited some nuggets of gold from Burke County, N. C.

Drawbridge safoty switches.

The New York, New Haven, and Hartford Railroad Com pany has adopted a set of drawbridge signals which, it is claimed, will render it absolutely impossible for an accident to nccur. These signals are worked by a series of levers, five in number, the first two working semaphore signals at a dis lance of 1,900 feet and 800 feet, respectively, from a bridge The other three work the switches of the siding and the lock of the bolt which holds the draw in place. Before the bridg can be unlocked, that a vesser may pass through the draw, these levers must be worked in their order. It is impossibl to work them in any other way, the interlocking preventing the draw-tender or signalman from moving the higher num bered lever until he has first moved the lower number. He cannot, when the draw is closed, replace the levers excep in the regular reverse order. It follows that a danger signa must first be shown at a distance of 1,900 feet from the draw and if that warning to bring his train under control for stop is neglected by the engineer, the signal is again given at 800 feet distant. Should this warning be neglected, the engineer will find his train shunted to a side track, and thus prevented from plunging into the open draw; for the draw cannot be opened unless it has been previously unlocked; it cannot be unlocked until the safety switch has first been unbolted and set for the siding; the switch cannot be set until the home signal has been set for danger, and the home sig. al cannot be set for danger until the distance signal has been so set. These operations are repeated on the other side of the draw, which is fitted with a bolt at each end. Sup plemental apparatus is provided, so that the signalman may know at a distance of $1 \frac{1}{4}$ miles that a train is approaching so that the draw may not be opened and trains delayed un necessarily. It is further claimed that when the draw, even if closed, should be unlocked, the safety switch cannot be thrown on the main line either by accident or design, and therefore no train can possibly run into the draw. By this pparatus the impossibility of a drawbridge accident is se cured independently of the engineers, and the risk substi tuted is only that of running over a misplaced switch, and in this case the risk is reduced to a minimum by two outly ing and interlocked signals which must show that danger it it exists.-New York World.

Biting Horses.

Horses have beell successfully cured of this vice by puting a piece of hard animal's mouth, about the same length as an ordinary suaffl bit. It may be fastened by a thong of leather passe through two holes in the ends of the wood, and secured to the bridle. It must be used in addition to the bit, but in no way to impede the working of the bit. Rarey adopted this plan with the zebra in the Zoo, which was a terrible brute a biting. Mr. Rarey succeeded, however, in taming and train ing bim to barness, and drove him through the streets of London. Animals with this vice sloould be treated kindly in the stable, and not abused with pitchfork handles, whips An apple, crust of bread, a piece of beet, etc., and kind pat, but firm, watchful band and eye, with the use o The fact that he cannot shut his mouth or grip anything Globe.

The speaker had several elegaut microscopes on the table Alobe
mbchanical nveritions.
An improvement in spinning machines conalsting of a revolving tiread gutde, has heen patented by Mr. Thomas D. Whilmarth, of Proridence, R. I. The
great advanage of this invention is 0 relieve the thread
 breaking, and to produce a more even and a stronger An improved adjustable window cornice has been parented by Mr. William C. Hamnett, of Toledn, \mathbf{O}. The cornice is constructed so' as to be
drawn out the desired length, and then locked. Proniston ls also made for bay windows and niches of ir regular fornns. For persons who change the
often, this invention is especially adapted.
A clothes rack constructed in such a manner as to ufiford a larre amount of clothes receiving sur-
face, which can be folded compactly for storage and cothes rack can be readlly arranged for use as a table has been patented by Mr. Wililiam Klinschmedt, of Haddonield, N. J. Thus one piece of furniture is made
An improved feed winding regulator for epinuing mules has been patented by Messrs. Edward
H. Giloert, of Ware, and Thomas H. Gieenwood, of H. Gilbert, of Ware, and Thomas H. Gieenwood, of
Hardwick, Mass. The object of the invention is t eeep an even tension apon the thread, and thas make the thread of a uniform quality, and prevent "breakcorta
An improved feather renovator has been paThe invention consiats of a jacketed cylinder monnted a sappuris by trunn ous which supply steam to the cyinder and the jacket, respectively, in the renovatiog proress. The cylinder is provided with an extension
for the connection of the tick to receive the feathers, an.l a dischar_er for delivering the feathers into the tick scer their Ireatment.
An improvement in means for attaching loose or removable hundles to crosecut, pit, or other
saws has been paiented by Mr. Benjamin Goalton, of Kaco. Wangaroa, New Zealand. The Invention consista in a blade which in furuifhed with a slot to which the handle of the sawbar is fastened by means of a cross
rivet or pin, and of a secondary slot into which pasees a in which is fixed on a slide operated by a spring, whicb spring holds the pin firmly in the slor, but which can be readily pue
remuved.
An cqualizing apparatus for pumping and other machinery has been patented by Mr. Charles
Bridges, of San Fernando, Cal. This improvement is designed to be applied to powers where walking beame or levers fur working pumps, etc, are employed. In a walking heam, one end of which is connected with the
pump. and the other is attached to a large pinion wheel operated by a crank ehaft, the invention consists in applying a balance weight and a secondary balance
welight iu such a was that not as much power is reweight in snch a was that not as moch power is re
quircd to operate the pump as would otherwise be

Mes rs. Isaac Burnett and Joseph E. Clif on, of Genesto. I l., have recently vatented an improv ed coal chate. The improvements relate to the con-
atruction and arrangement of coal chutes need for coal ing locumotive tenders and other carriages, and to save time in the coaling operation, by the combination,
with the coal box or chute, of a balanced aprod, which when turnexl down, forms a chute or slide for the coa to pass over. The gate of the coal box is antomatically
released when the apron is brouglit in place for disclarge of the coal, and is ingeniously arranged for the
Mr. James M. Collier, of Atlanta, Ga., has patented an improved grinding mill. The invention is 1833 , and the object is to effect a more accurate adjust ment of the parts, add thus render its facilities for
griuding more perfect. By the use of a swiveled screw griuding more perfect. By the use of a swiveled screw
and hinged arm, comblned with a lever attached to a and hinged arm, comblned with a lever attached to a
shatt connected with the upper and lower stone carrying racks, the sto es can be adjusted with accuracy nected with the upper rack oy a rod and nut, so that the upper stone can be raised at will without changing ite a ljustruent or se
Mallbew Van Tassel, of Brooklyn, N. Y.. has recenily yatented an impruved brake rod for cars.
which he claims is more durable and less liuble io break than the old style straight rods usually empioyed. The
invention consifts in a brake rod made with a U -bend at invention consifts in a brake rod made with a U-bend at
its rear end. T'the brake beam is placed upon the ehort arm of the brake rod, and the two arms are collnected at the forward side of the brake beam by a link, so that the wil be made to occur in the body of the rod. The rod thus constructed is less likely to crystallize, reudering It iess
action.

Mr. Silas Van Patten, of Duanesburg,
 To same inventor Dee. 27 , 188 . The invention consisist
fin the combination, with the tonnue, s slotected block ate

chatt of the brako lever, whereby the sald sliding rod
can be readily locked and unlocked. The band at tached to the U -shaped end of the extension rod it made with a fiange upon its apper side and a pin at it lower side to adapt it to serve as a stop for the neck yoke ring. The derrick is made curved and tabular, and is provided with a pulley at its apper end to receive The hoisting rope. The eocket rings in which the der-
rick turns are provided with bushings to adapt them to rlck turns are provided with bushings to adapt them to
recelve different sized derricks. With the rear sale of the wagon is a clamp operated by a rod to grasp the allow the apparatus to be readjusted.

AGRICULTURAL INVENTIONS.

An improvement which relates to mean for atueching cuitivator plows or teeth to the beam has beer patented hy Messrs. Amenzo W. Diefendorf and
Peier H. Marrill, of Wyocena, Wis. The invention Peier H. Marrill, of Wrocena, Wis. The inventio
consists in a stock pivoted to the beam of the plow an consists in a stock pivoted to the beam of the plow and tooth to the beam by bolting the shank of the plow in this groove. A strong leaf spring is attached to the back of the beam to hold the plow forwand to its work, but capable of yielding to let the plow swing back to avoid any obsiraction that may be too deepij' embedded
to be displaced by the plows.
An improved sulky plow has been patented
by Mr Enoch C. Raton, of Pinckneyvile, II. The in by Mr Enoch C. Raton, of Pinckneyville, mi. The in vention consists in a plow constrncted in snch a man
ner that it will be hicld steady and prevented from tip ner that it will be held steady and prevented from tip preg loward eltuer side, and can be raised from and
lowered to the ground by operating a lever. Also the driver will be able to raise and lower the plow while at work by operating this lever with his foot. and will also be able to ase the lever to nssist in raising the plow from the ground. Also, should the plow incline to ran out of the ground, it can be held down by palling the
An improved check row corn planter has been patented by Mr. John J. Fraikin, of Ottawa. In In using the machine the markernext the planted rown
is kept ralsed. At the ends of the rowa the other marker is raised. The machine is then turned, and as the croses ribs of the wheels come into a vertical posi tinn the pin which bolds the push rod is inserted, an the lever locks the wheels from turning, and when th marker is over the mark made by the cross rib of the drive wheel at the last crossing, the push rod is again connected, the lever releases the wheels, and the ma-
chine is driven forward, planting the hille in accurate chine is driv
cherk row.
A combined seed planter and fertilizer dis tributer has been patented by Mr. Richard 8. Wright of Monticello, Alk. Theel attached to the axle of the vehicle an revolving with it, which is furnished with equidistan cups or cavities for receiving the grain from the hopper above. These cups may be closed, so that only one
hill may be planted to every revolution of the wheel, or if left open as many as five or even six hills may b planted to every revolution. Within the hopper is a ranged an agitator, which is rotated by a cog wbeel at
tached to the whecls of the machine. To the drangh shaft of the machine is atlached a plow which opens the furrows, and in the rear are pivoted two other plows and a covering block, so arrauged that the rows planted
ray be instantly covered. The covering block may be o adjusted as to make the hills of any required beigh An improved wheat grader and cockle sep arator has been patented by Mr. Judson N. Mercliant of Bloomingdale. Mich. The machine consists in two screen shoes arranged one above the othcr, the upper one being longer than the other and of such a size of mesh that the larke grain wilbe carried down oo the end while the small grain and chafl will fall through the screen into the slide below. The upper screen is asttated by the revolution of the drive shaft. which at the same time revolves certain rollers between which the grain is made to paes. In operation the grain passes rom the screen shoes into the corrugated cylinders, Whence it falls partly separated upon the revolving rollors and from thence on to other rollers. when the proThe wheat treated in this machine will be divided into two grades and all the small seeds will be removed from the wheal.

MISCELLANEOUS INVENTIONS.

A dic for making clip king bolts has bee patented by Mr. Nicholas Riccles, of Auburn. N. Y. The bolts by means of dies which prodace a complete forsing instead of blanks, as in the ordinary mode of making king bolts.
An improved nail extractor has been paented by Mr. George ${ }^{\prime}$ Lewis, of Portamonth. Va The invention belongs to that class of nail extractors which are provided with a long handle for leverage,
and a grasping claw for seizing the head of the nail or and a grasping claw for seizing the head of the nail of
bolt to be withdrawn. It seems to be a very useful im
A novel window reflector has been patented by Mr. William H. Shipman, of Newark, N. J This in-
vention is an improvenent in the class of folding and
adjustable mirrors which are adapted for use exteriorly to a window for the purpose of reflecting objects in the
street or sidewalk, and the invention consists in placing that every portion of the street is hrought within range.
An improved coffee pot, designed to extract he full strength of the coffee and free the liquid coff
from the grounds, has been patented by Mr. Edward
Odend'hal, of Norfolk, Va. The invention consists pipes passing through it from a point on a plane a little
above its lower end to a suitable theight above it, and

A new mechanical telephone, the object of
which is to increase upon the line the viorations given
the diaphragm by the voice, so as to insure greater

Ioudness and clearnuss of tone, has been patented by
Mr. Charles Klan, of Zanespilie, O. The invention conMr. Charles Elanan, of Zanessilie, O. The invention conby wires that diverge from the center of the outer diaphragm, aid are atteched to the inner one at points be reen its canter and edge.
A temporary binder of novel device bas been patented by Mr. Joeeph B. McNally, of Clearfeld, Pa. The invention consiste of a binder with a flexdble back. one cover being furnished with two diexible prongs or Pastoners which are to be forced through the sheets to be bound, and then iuserted in holes in a metal strip
and bent over. This metal band is also provided with : slot through which is passed and fastened a loop al teched to the other cover, by means of which contrit-
acee the two covers are cloeely bound to the sheets they are designed to hold together.
An improved fence, the object of which is provide a fence which is portable, can be arected and compactly for storage or transportation, has been patented by Mr. William McG Buler, of Dyersbura, Tenn. The invention consists in U. sliaped clips attacbed to tie ends of the slats, and provided with screw pinties which are passed throagh apertares in the posts, and in ees in the sides, which in combination with certain other ements form the details of the invention.
A very simple and effective permutation pad ock has been patented by Messrs. Frederick Michael ists of a long case with a hollow space extending longiudinally through it, into which perforations are mude hrough which the attachment to the heads of tumblers project. These heads protrude through the case to enable the operator of the lock to manipulate the combination. Oa the plate of the lock and around the heads cumbers an index and pointer is placed whicha
Mr. John Wilson Brown, Jr., of Baltimore, Md., has patented a machine for catting green corn
rom the cob. This machine relates to that clans in which the ear is forced by a planger through a circular eries of knives that cat the corn from the cob. The ined with the knives is a tapering feed throat which acts as a gauge. and in expanding to receive large ears Between the cutting derices and the trough which ra eives the eara, a brosh is arrauged to ciean the ear kor drose before it pasees throngh
An improved cotton gin rib has been parented by Mr. Jordan H. Mitchell, of Hatchechubbee,
Ala. The invention relates to an improvement in that Ala. The invention relates to an improvement in that
class of gin ribs that hare at the point where the saw passes between them a steel plate for resisting the wear 10 which this part of the rib is subjected, and which plate. being detachable, may be removed and replaced by another whenever it becomes worn or defective. The invention consists in the pecaliar conatraction of the derachable plate and the manner of fixing it in the face of the rib, which is cl
ment over the old system.
A station indicator of improved device has seen patented by Mr. John Van Fieet Ryerson, of New
Branswick, N .J. The invention consists in rolls, on which webs having the names of the stations and destito expose anccessively, and the ultimate destination of the conveyance. Theee rolls are actuated automatically by one or more spricge, an antomatic stop mechanlem is used for holding the roll at measured points in its mtation by neaus of the actuating spring, or the parpose of exposug each station on the web a gong bell is likewise provided for attracting the aitentia
An improvement upon that class of meat houping machines in which spring supported knives beling revolving block are used, the knives and block patented by Mr. Henry R. Shirk, of Albion. Ind. This invention provides a machine simple in construction, which can be readily adjusted according to the material to be chopped, both in effect and the power required to need of dreseing-off, it may be removed, and when the chopping sarface has been cleaned and removed, say to
a depth of half an inch, the block is replaced; and in order that it may be bronght in pmper relations with the knives it is elevated by means of a screw placed onderneath for that purpose, by which devices the machine is made very durable and lasting.
An automatic car brake, designed to be operated by the momentum of the train, has been patented this brake two heavy rack bars, with buffers formad at their onter ends, are so supported under the car, one at each end, that they reach past the ends of the car and are capable of longitudinal movement. Arranged above the rack bars are two transverse shafts on which are
secured grooved pinions, which mesh with the rack
bars, and attached to these shafis are chains that
connect with the brake levers. The inner ends of the

The Oharge for Insertion under Inis head is one Dollar a line for each insertion: about oight words 10 a line. Adver tisements must be received at publication office
aseat it as.Thuraday inorning to appnay in next issuc.

Improvement in Sawmill Carriages.- Δ pplicable to lented in milis; increases capacitr and aurabity inn, Boston, Mass.
Nickel Plating.-Sole manufaciurers cast nickel an des. purenickel salts. polishing compositions. etc. Com
 Oild 1, , 1 Quild \& Garrison's Stesm Pump Wcrks. Broo:lyn,
v. Y. Steam Pumplig Machinery of every descrip-

The Celebrated Wooton Deak, See adv.. rage 148.

Lists $29,80 \& 81$, describing 4,000 new and 2 d-liand Mahhines, ready tor distribution. State Just what mnchinee
wanted. Forsaitb \& Co., Manchester, N. H., \& N. Y. City. An arsistant to distingnished electrical inven oors for the last 15 years is open fur an engaseme
Eleotrician, 580 l'acific Street, Brooklyn. N.
" Δ aniform " or "an aniform." Regurdlens of which is correct, the Esterbrook Steel l'en Compuny will still
ko on making pens of uniformily rood quality. The ationers have them.
Again the H. W. Johns Manufacturing Co., of 88 alden Lane. N. Y., are in the front rank in the matter etc. Their recent contract comprise, among many others, the Lollers and plpes of the Goodyear Rubber Co. ng Co.; the new Scranton Steel W orks, at Scranton. Pa; and the five bollers of the Penn. R. R. Co.'s elevator. In the lat ter case their system of coverings is to rep'nce
another style which has proved to be collipuratively another 8 .
Worthless.
Wanted. by a Patent Solicitor. a good epecification Machinery wanted for cuiting paper mats oval and Machinery wanted for culting paper mats oval
arch top. 8. Goforth, 100 N. 10 th St., Philadelphin.
Forsaith \& Co.. 2 n9 Centre SII., N. Y. city, have the fullowing new, first-class modern engine lathes ready for

 O. Box 1414,N. Y. Fire Brick. Tile, and Clay Retorts, all shapes. Borgner U'srient. M'rrs, z3d St., above Race, Phlla. I'a.
Drop Forgings of Iron or Steel. See adv, page 140. Cope \& Maxwell M'r'g Co.'s I'ump adr., page 142. Curtis Pressure Regulator and Steam Trap. See p. 140. steam Hammers. Improved Hydraulic Jacks. and Tube Dianders. R. Dudkeon. 4 Columbla St., New York. 50,000 Emerson's Hand Book of Saws. New Edition. Eagle Adress Emerson, Bmith \& (o.. Bally warranted Blate's Belt Stads Belt Hooks. Belt Couplings Lece Blake's Belt Studs. Belt Hooks. Belt Conplings LaC
Catters, Belt Punches. Greene, Tweed $\&$ Co., N. Y. Gould \& Eberbardt's Machinists' Tools. See adv.,p. 141. For Heavy Punches, etc.. see illastrated advertise ge 16.
Barrel, Key, Hugbhead, stave Mach'y. See adv. p. 140. Lathes, Planers, Drills, with modern improvements. For best low price Planer and Matcner. and latest
 "Abbe" Boit Forgin α Machines and "Palmer" Power
Hammers a specialty. Yorsaith \& Co., Manchester.N.H. The Porter-Allen High Bpeed Steam Engine. SouthThe Suryd The Sweetland Chack. See illas. adv.. p. 142.
Knives for Wrod working Miachinery. Bookbinders, and C. B. Rogers \& Co.. Norwich. Conn.. Wood Workin\& . B. Rogers \& Co.. Norwich. Conn.. Wood Working Machinery of every
Common Sense Dry Kiln. Adapted to drying of all ma-
terial where killo, etc., drying houses are used. :ee p. 125 . For Mill Mach'y \& Mill Furnishing, see illus. ailv. p 110. Drop Forgings. Billings \& Spencer Co. See adv., p. 100 For Pat. Safety Elevators. Hoisting Engines. Friction Mineral Lands lrospected. Artesian Wells Bored hy Steam Pumps. See adv. Sunith, Vaile \& Co., p. 110. Scientift Books. See prage 108.100 mage Calalogue
H. $\&$ F. Spon. 44 Murray Street. N. ₹ Valuable manofacturing properiy for sale at Taunton, Magic lanterns, sterenpticons. cond. lenses, etc. on
and and made to order, C. Beseler, zis Centre St., N. \mathbf{Y}.
 waymemem 1 and $5=\sqrt{2}=2$ 2x.

March io, 1883.$]$
Water parifed for all purpoves, from household sapplies to those of iargest ditlea. by the improved alters
manutactured by the Newark Filtering O_{o}., 177 Commanufactured by the
Ice Making Machines and Muchines for Cooling Breweries, etc. Hictet Artitcial lice co. (Limited), 16 areenwich street. l', O. Bux socs, New York atty. Steel Slamps and Pattern Letters. The best made. J.
F. II.Dorman 21 Germun St., Batimore. Catulogne free. pili Pis. 21 German St.. Ballmore. Celalioxue iree Split Pulleys at :Ow prices, and of same strength ani
appurrunce as Whole Pulleys. Focom \& Son's Shafting Machinery for Light Manufscuring, on hand and Preseses \& Dies. Ferracute Mach. Co., Bridgetou. N.J. Sapplement ('atalogne. - Yersons in parsuit of infor mation on uny special engineering. mechunloal, or scien-
cittc subjeit. can have catalogue of cuntents of the SClENTIFIC AMEIICAN SUPPLKMKNT sent to them free The - UPilisuzt contalns lenkthy articles embracing We whole range of enginering, mechanica, und physd-
cal solence. Address Munn \&Co.. Paulishers, New York Soupstone racking and all kinds of Steam Packing In ots to sult. Greene. Tweed $\& \mathrm{CO}_{2}$

4ndesumin

hinis to correspundents. No attention will be paid to commancationa unless writer.

Names and aldre

We renew our request that correepinatenta, it o forner ansuvers or thiclerrespondents, in referring name: Lue date of the paper and the page, or the number ftie question.
orresponilents whose inquiries do not appear afte a reasonable time silonid repeat them. If not hien pab-
lishent, thes may conclude that, for grood reasons, the sulitor declines liem
rersons desiring special information which is porely of a mersonal characier, and not of general interest, sinouni remin from 81 io 85 , according to the subject as we caniol be expectorl to apenin time and
any numbers of the Scientimic Amrioan Sopple ESNT referred to fu these columans may be had at thi ofice Price lil meniseach
Correspondents sending samples of minerals, ecc. label tioir Acation.

Abstract

(1) J. F. asks: 1. What is the best cemen to ma:e leather stick to iron pulleys? I have tried seve ral with poor success. A. The following is said to be excellent: sook equal parts of common glae and isinBring the whole in nearly the boilling point and ad pure iannin uutil the whole mixture becomes ropy, or appears like the white of eggs. Buff off the surfactes to be joined. apply the cement, and clamp irmly. Th belt must not be used before the cement is thoroughly dry. 2. I bave lagged the palley which runs our electric light machine (the Edison), which is 46 inches diameter driving the pulley on the machine. which is 10 Inche will noi stay on the palley? is it the fanit lafge ment. or on accoont of the difference of diameters of the pul eys? A. It might bes well to maghen the pulley for it is probable that the speed at which it is run is to great producing too mach fricti. n. Perbaps an endlesa rubber belt wouid be more serviceable.

cormicial.
index of inventions
por whiol
Lettorm Patont of the United staten w
Granted in the Weelk Rudiug

February 20, 1883,

AND BAGR BEARING THAT DATE [Those marked (r) are reissued patents.]
A printed copy of the specification and drawing of any patant in the annexed list. aloo of any patent issue
since ises. will be furnished from this office for as cente In ordering please state thie number und dute of the way. e, rrier of Wurren Street. New York city. W
alaw furnish coples of patents aranted pritor to 1866 but at Increased cost, as the app
printed, must ve copled by hand.

Adding machine, W. H. Beatley Advertising devioe, W. De Meza

$$
\begin{aligned}
& \text { Air compressing apparatus, J. J. La } \\
& \text { AIr comprossing machinery. G. H. In }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Air compressing machinery. G. H. Re } \\
& \text { Alarm. See Rali/ay crossing alarm } \\
& \text { Alcoh., I and ouher crude spirits. rect }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Alarm. See Ralimay crossing alarm. } \\
& \text { Acom, I and oher crude spirits, rectifying, Rous }
\end{aligned}
$$

A malgamating machine, ore, E. B. Lucas.

Amalganator, W. B. Harris
Amalgamutor, 8. G. Lladse

Animal crap. T. B. Zeller
Assay furnace, J. C. Tappetne
Automatio double gate, Austl
Automatio double gate, Austin \& Chamberialn
Awning. J. L. Rleger .-.
Bag. Soe Filitering Dak. Mall ba
Baking pan, I. II. Grabam...........................
Bar. Soe Chatin bur. Grate bar. Ballwas rail
Bittery. See Voltaic battery.
Bittery. Soe Voltaic battery.
Bed botoms. device for stretching. I. Lorensen.. 272,721
Bed, folding, c. Wulliams............ mathoo

Buckle attechment, G. B
Burner. See Gas burner.
Batton, A. H. Sarage
Button, J. S. Smitth
Button and button factoner. A. M.
Button fastener, H.
Button fastening, W. M. Hacel
Calisson, Ioating, P. H. Loud. .
Can. See Fruid can
Car, coal. D. Holt

Car coapliog, H. A.
Car coupling, F. G. Lawrenc
ar
Car doorr, grain, D. D. Mliles
Car. sleepling. W. H. Mauidilog...
Car, stock, A. C. Mather
rar window denector, H. B. Mearn..
Carboy stand. C. T. Armstrong
Carpet stretcher, Peterman \& Smith
Carriage top, L. Schmetzer
Carriage top-bow support. J. P. Whitman
Carriage top-bow sapport. J. P. Whitman
Cartrer. \&ee Ekg
Cartridge shell. 11. G. Pimard...........
Case. See Draining case. Drestios case. Eye
glass case. Bhow case. Ticket case
Canting shaft couplingas.apparatus fore. W. Tucker
Castings, facting for Ioundry.
 Centering shat
Eaufhols.

Chaln bar, etc., E. S. Jobnson
Chair. See Rallway rall chair.
Chair, w. H. Paulaling
bair and cuttiog table, combined.............. B. A. Hath
Way
Chimoney cap or ventilator, w. W. D. Bartiet
Churn. G. R. Barnes....................... .
Cloak. W. B. D. Howerd ..
Clook, W. S. MaLewee.
Clothe drier, J. S. Golid .
Cothen pin. B. B. Perlin
Coffee mill, O. J. Hange
Corfee or tea pot. J. Vachere
combe pot and Alter. A. Rutenlo
Collar, huree, I. E. Woodard....
Collar, huree, L. E. Wooda
Comb. See Curry comb.
Compass. recording. R. Plokwell....
Conduits of concrete, apparatus for forming co
tinuous. W. M. Campbell
Cool atmosphere in remen

Rgells.
Cores, forming....... J. Adams.
Corn bbeller. feed grinder, and horse power, ∞.
bined. J. s . Terr
Cotton gin hopper, E. F. Horne ...
Cotton opener and lapper, R. Kitson
Coapling. See Car conpling. Telegrapt wire
coupling. Thill coupling. Trace ooupling.
Crimp protector, G. C. Humphries
Cultivator, F. . 11. Johnsen
Cullivator. G. F. Skank.
Cullivitor. G. F. Skank.....

ray
0

Cut-or mechanism. J. Thoman
CaL-oll valve, B. Webster.
Catter. See Fodder
Dash pot bumper, F. G. Cogrif
Davit for boats, J. F. Mumm.
Desk cablnet. L. P. Ross
Deak. cabinet folating, L. P. Ros

Disinfecting apparatus for water closets. Park \& Blackman.
Ditches, machine for forming and cleaning, C .
Door check, R. G. s. Collamore.
Draught equaiser, G. M. Kerby

for, R. \& W. C. Ments
Draning case for barrela, Crapon \& Plckett ...
Drees lining, \&. W. Wheeler..................
Dressing case and wash atand, comblined, J. Pen-
nei................. ...
Drill. See Dlamond drill. Graln drill. Dyestum for applloution to ibrous materials, pre
paring. H. IV. Vaughan..................
 socentric, R.

7

772
272,
272,
272,
272
2
. 272

2

.. 2

.... 722

. 272.6 . ${ }^{272.0}$

\section*{| 273,123 | F1 |
| :--- | :--- |
| 272.550 | Fl |}

272.550
272.38
28

$\begin{array}{ll}272, \text { Lus } & \text { Furnace. See Aseay farnace. Boiler furneco. } \\ \$ 72.550 \\ \text { Gus, apparitus for the purification of coal, C. C. }\end{array}$
22738 Gas burner and plpe pliers. \mathfrak{p}. Mi.......... Gas burner and plpe pliers. P. Mihan..... 272.875
Gas engine, L. C. Parker (r)...............
Gas engine, L. C. Parker (r)...........................
Gus parifying sereen. E. M. Provonchar.......
Gate. Bee Automatic double gate. mievator
Ga
Gate, L. D. Meokley
ery, pinion 1 Ufter or apparatus for, Underwo
\& Daniels..
Genyceratior. See Steani generator. fatty matter, extracting, Ams \&

270
 272,71 22,41

.27281
2724
2728

... 272.76

272.4
272.05
. 772,61
272.189
272,094
272,709

772,008
$7 \pi 2 . e 88$

272,2
272,4
120

271.400 22.558 2272798

272,797
272.800

278.759
27.291
. 272,2
272.112
272531
233.708

272,510
272,415
222.513
272

 Gold wasker, J. P. Spenci.....Orain and eroed cleaning mill, i..............
Graln bowder, J. P. Bullock Grain binder, d. F. Atewara.....
................. Grain drill, ferth iting.
Grate, L. Bannister...
Grute bar, J. Ritchie..
Grtndstones, device for roukhening, G. And rewe.
Guard. See Berth guard. Pulley guard.
Gan magasine, P. Boch............
Hal.er trimming, O. P. Letchworth.
Harneses buck band hook. O. Pitts
Farness breast strap slde, A. A. Park........
Harrow and cultivator. wheel, C. H. Eggleoton
Harrow, riding, Mishell \& Il ill...............
Hay and outton prese, W. J. F. Lidiell ...
Hay and ootton press,
Hus rack, J. R. Stelts.
Hay rake and loader, combine....... W.
Heater. See Feed water heater.
Heating boller, steam. Hopking
Heating boller, steam. Hopkins \& Fockle
Hedge trimming muchine, M. Lowrey.
Holsting apparatus, hog, G. B. Flanigan
Holsting maohine, B. Harrington 272,481 , Holsting muchlne, H. 8. Haskins

Holduack, vehtcle, J. H. Stump....
Holder. See klectrotype or stereotype plute holder. Whisk-broom holder.
Hook. See Harness back band hook
Hoop fastening for backets, etc., H. . . Phumipa...........
Horseshoe, H. Olson...
Hydropneumatic engine, L. G. Cook................ 272, 272,
Iee cream freezer, C. W. Packer.............
Iee creeper, A W. Eitchelberger. 272
Incubator, A.
Incubator, A. H. Morgan
Indicator. See Traln indicator.
Indector and ejector, comblined. G. H. Little......
Insulated
Insulated electrio conductor, A. A.Cowles.272,089,
Irrigating agriculture and other Ianda, M. A. Mar-
Irrigating
tindale
Jact. See Luting Jack:
Jar and bottle stopper.J.
Jolnt. see screw joint.

Klla. See Screv Joint.

Krife. See Rooofng knife.
Knitting machine. II. Cartor............ 872.59
Knitting machine, G. A. Letghton.282.500, 272.561

Lacing books, machine for makink. s.
Ladith
Ler, top extenslon step, M. G. Gartrell.
Lemp, R. Marsh.
Lamp support, tabular, J. Krummenauer...

Lifter. See Stove cover lifter.
Lighnt. See Electric arc light...................
Lock. See Nut lock. Padiock. Seal lock.
Locomotive. A. A.. E. \& H. B. Blackman..
Lucomotive sanaling dev
Lubricator. A. W. Bwift.
Mail bag. I 1 .
Mail bag. i. I. Northrup..........................
Match cards. machine for Eaving, Flewweling a

C. Mason..... . …...

Mechanical movement. G. R. Peure
Metal, chill for chilling. V. Tuttro.
272,811
272,41
2
 Mili. Soe \mathbf{r} oftee mill. Gruin and seed cle
mill. Roller mill. Sswmill. Windmill.
Motion, mechanicul derice fur changing reetpro-
cating to rotary, A. Trousdale..............
cating to rotary, A. Trousdale 8 z2.002
Motor. See Rotary motor. Spring motor.
Motor. H. W. Gurney 272,401
Mule. self-acting. E. A. Baldwin
Mule, self-acting. E. A. Baldwin
Naill or spike, W. Tuylor
Neck apar shield. D. E. Ma jor........... 272,781
Nut lock. J. M. Mack
Nut lock, J. M. Mack 22,.58
Nut, top prop. A. Searis.89
Oil can. E. R. Deverall.................................
Ore concentrating and ama'kamating machine.

Palls, pouring spout for milk. B. Leonnard.
Paper cutting machine. W. F. Hill ...
Puper, dumping and cutting, W. scott
Pencll, lead. G. I. Jaeger
Photographic camera box
Photer
phic cameras, plate bolder for, W. . \mathbf{B}
Plak. J. C. Cramer........
Plle, Iron, Gray \& d bbott
Pin. See Clothes plin.
Pipe cotter ind tonge, J. w Culef
Pipe elbow, shent metal, A. F. Veters.................
Pipe into sectlons, apparatus for cutting sewer
R W.
R. W. Lyle......................................
Pipes of concrete. npparates for forming under-
ground, W. M. Campbell
Plane, recess, H. L. Tupper

song.........
Planter, automatic check row,
Barnes
hart.......
Planter, corn, J. E. Bering ...
Plow, rotary, A. A. Betancourt
Pool ball rack, W. F. Whltney,
Portable prese, W.J. F. Lideli.
Portable prese, W. J. F. Liddell.
Pot. See Coİee pot. Coniree or tea pot.
Press. See Hay and cotion presa. Portable prese.
Pressing board, tallor's, J. Noerpasch
Printing machine, s. D. Tucker... ...
Pristing machine, s. D. Tucker...
Printing machine J. T. Havern
Printing machine, J. V. Makin...
Printing press, J. T. Hnwkins.......
Printing presss J. T. Huskins......................
Printiog press alr cuahloning devico, G. P. Fen
ner..........
Printing press \&ripper motion.
Princ P. Fenner

Brojectlle for carrying and alwcharging oill, w. D.
Bat
Protector. Soe.................... Crimp protect.
Pulley guard. band, c. w. Frick.
Pulley guard. band, C. r. Frick. 272,077
Pump condensor, steam, W. A. Miles...... $78,156.272,107$
Pump,
Pump, force, A. Annibale.
Pump piston, J. O. Davis..
Pump ruel, chalin, W. P. Harrison....
Pumplng engine condenser, W. A. Mnes
Purifying, heating, and condensing npparitus,
B. Field......................................

Rack. See Hay rack. Pool bull ruck.
Rallway crossing alarm, J. A. B. Lorett.
Rallway crossing alarm. J. A. B. Lovett........... 272723
Rallway rall ohalr, Armstrong \& A bbott....

Rallway switch, W. Splelman.... 282,78
Ratchet wrench. J. w. Womelsaorr.......... 272,62
Reel. see tomp reen. water, system of and nppa-
Ratus for arroducing and distributing, H. D.
Cogswell.....................................
Regulator. See Me ectro-magnetic regulator.
Resawing machine. Jones \& Wetherell......
Resawing machlne. Jones
Roller mill, C. B. Campbell.
Roling steel springs. roll for. D. F. Kanal..........
Rooflog knife or tinner's scraper, G. J. CiIne
Rotary englue, T. \& J. W. Wllbraham.
kotary motor, Q. Lenhardt
Rug making machine, 0 . Huf
Sash fastener, H. J. England
Saw and edge monlder, scroll, A. Showaiter.
Saw gauge, rip. T. A. McDonald.
Sawmill. J. C. Wuerfel........
Sawmill. rectprocating, J. H
Sawmill dog. G. F. Knight
Sawmill dor. G. F. Knight
Saw setting and jointing device, Beach \& Burch. Saw teeth, device for dressing. S. H. C hase scale for welphlng dumonds, balance screvs Watches, etc.. F. F. Ide...........
Screen. See Gas purifying screen.
Sarew. w. Schilling..............
Screw grinding apparalus, II. A.....................
Screw joint for metal pipe ittings, W. A. Miles.
Seal lock, J. C. Rae....
Seaming sheet metal cans, double. F. A. Walsh..
seat. see Bracket seat. Vehtcle shifting seat. Sewing machine, T. A. Macautay
Sewing machine, D. Muls.........

Cameron..
Sewing machine feeding mechanism, G. R. Peare 272.781
Sewing machine guide, N. B. " Illiams..........
qri.50

Sewing machine ruming pttachment. T. B. Gar-

Sewing maching
sewing machine trimming atiachment. Wallac

ley............. 272

272.011 Shipe and the rate of currente. electric lof or ap

how case and separator, combined. E. Jones... signal. See Railway signal.
Sleigh, L. Debolt. Jr....... od cutter, A. Test.... . spectacles. J. L. Borsch............... spigot, self-closing. F. Mayer.
Spinning maching spindle bearing, J. Birkenpinning spindle bearing Spoke socket, C. E. Merritt Stamp, steam power, w. S. Sharpneck. Stand. See Carboy stand. Stove
Steam boiler, Oldham \& Payne... Steam boiler. straw burning, IV. R. Michene Steam engine reversing rear. W. A. Clark
team generator, H. P. \& R. E. Tilton. team shovels, method of and device for the a plication of cable power to, stark \& Crowley
Steel ingots for rolling, preparing. W. Hainsworth Stocking supporter, A. N. Horner..
\qquad
store service apparatus. H. Hayden.. stove cover lifter, N.L., P
stove, vapor. W.C. North
stove ventilator, cooking, J. F. Linscott...........
Stoves, steam heating attachment for, W. H
Straw stacker, C. E. Merrifield Stuffing box for Journals. J. W. W.
Suction ventilator, E. S. Radcliff Surveying instrument. C. W. Stickney Table. See Knock a
Tap, W. H. Goodwin

Tap, W.H. Goodwin......

Tap wrench, R. F. Rice.
Telegraphs, signaling apparatus for district an
fire alarm. T. A. Casey....

hill coupling, G. W. Beebe

Thrasher stacker, D. Sh
Tread guide and tension device, R. What Ticket case, J. L. Kirk
file, Illuminating, D. G. Beeching Tire tightening apparatus, P. \& J. Young. Tongue, wagon, T. B. Syke Top, block, R. H. Inge Toy kitchen, E. Durlach. Toss stove, E. Durlach Toy wagon, J. Murray
Trace coupling, J. M. Basing Traction engine, Lippy \& Hugh Traction engine, C. D. Monnet.
Train indicator, O. M. Shepard. Transferring designs, J. M. Mos Truck, car, E. B. Meatyar

```
Trunks, desk
```

Tube scraper, ©. P. Higgins
Tug, hame, T. Brad
Undershoe, H. E. Pond

Valve, J. H. Blessing Valve. M. M. Zellers

calve, stopcock, and
cheek, J. H. Blessing
Vault cover or grating tile and surfaces made the same, laminating. T. Hyat
Vehicle shifting seat, R. Fawcett.. Vehiciele shifting seat, R.
Vehicle, two-wheeled,,$~$ Vehicle, two-wheeled, G. P. Gimbal Vessel hull, D. Bainbridge \qquad Voltaic battery, J. M. Stebbens Wagon, dumping, C. Kaeppel Wagons. lock for top boxes of T. J. Halle Wall paper hanging machine, M. Heffernan Washing machine, J. K. Martin Watch escapement, G. F ware.
\qquad
\qquad Water meter, piston, F. Walker Water wheel, bucket. C. D. Smith Water wheel, turbine, M. D. Grow
Water wheel. turbine, B. Keiser... Well. B. F. StephensWheel runner, H. HolianWhisk-broom holder. C. E. KidderE. Barton.
Windmill, W. E. Williams
\qquad

Dentifrice, R. Fingerhut
Ferti izers, Imperial Guano Company
Lard packages, Menacho. Pula \& $\& ~$
Needles, sewing,
Needles, sewing, J. Smith $\&$ Son
Organs reed, J. Belling.
Organs reed, J. Bellink...........
silk piece goods, E. L. German.
Stoves and furnaces. heating and
Stoves, stove Company
tenting castro Company

the seibert cylinder oil cup co.,

Adxratisements.

A Practical Engineer and Surveyor,

WESTON DYNAMOELECTRIC MACHINE

ELECTROPLATING AND ELECTROTYPING,

EJECTOR CONDENSER FOR STEAM ENGINES $O R$ VACUUM PANS

ROCK BREAKERS AND ORE CRUSHERS

WITHERBY, RUGG\& RICHARDSON. Manufacturer
of Patent Wood Working Machinery of every deserip

Elatirical Inst Instunueltb, ELLIOTT BROS., LONDON. THE ELECTRICAL SUPPLY CO 109 LIBERTY ST., NEW YORK

ICE MAKING MACHINES,
And Machines for Cooling Breweries, Pork Packing Establishments, Cold storage Warehouses, Hospitals, etc. END FOR ILLUSTRATED AND DESCRIPTIVE CIRCULARS
PICTET ARTIFICIAL ICE CO. (Limited)
 PATENTS. location of the scirstricic AMERICAN , continue to ex-
amine Improvements, and to act as Solicitors of Patents

In this line of business they have had thirly-ight
years' experience, and now have
the preparation of Patent Drawings, Specifications, and
\qquad Mung \& (Co. also attend to the preparation of Caveats,
Copyrights for Books. Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business
iss, on very reasonable terms,
A pamphlet sent free of charge, on application, containing full information about Patents and how to pro
cure them; directions concerning Labels, Copyrights. signments, Rejected Cases, Hints on the Sale of ratents, etc.
We also send. free of charie. a Smopsis of Foreign
 MUNN \& CO., Solicitors of Patents, BRANCH OFFICE - 261 Roomer of F. New York. raehingtna, D. C

 KEUFFEL \& ESSER, New York. Drawing Materials in Largest Variety

 25 Imported design Chromo Cards for 18s8, name on: ARLETOXD TREASLRY of hivowledge,

RUPMURE
 $\$ 5$ to $\$ 20$ per day a home Somper sampes worth s stree. MANHOOD! 4
KHOW THYSELF,
A Book for Every Man
Young, Middle-Aged, and 01d.

OUR NEW AMERICAN LEVER WATCH

ROOT'S NEW IRON BLOWEL.

IRON REVOLVERS, PERFECTLY BALANCED, Has Fewer Parts than any other Blower.
P. H. \& F. M. ROOTS, Manufacturers, P. H. \&F. M. ROOTS, Manufacturers, s. S. TOWNEESD, Gen. Agt, LCortland
 SEND FOR PRY YOREK.

 ROOFINC.

The

 A MILLION A WEEK!
 Total.......55,536,030 Total.......50.236919 Five million more sUNS were boupht and read in 1882
than tin 181 The average circualation of the several
editions during the whole of the past year was:
 THE SUN has advertising space to sell. From its
compact form, an advertisement in THE SUN is more readily seen than in the blanket sheets, hence a few
lines in its columns wil serve to attract the widest
attention
 readers, This is unquestionabl
effient mode or ataning pub
tomers anywhere obtainable.

In Daily and ADVday Editions the price of advertising

 THE SUN, 166,168 . AND 170 NASSAU ST., N. Y. CITY.
TH.

CELESTIALSYMBOL

 50 Elegant Genuine Ubromo Cards, no two alike,

GONSUMPTION.

 Rofinitive
an be applied by ordinary workmen at ONE
THIRD the cost of TIN. Serd for a sample
$\begin{aligned} & \text { and our circular which gives full directions how } \\ & \text { to apply your own roof; also how to repair }\end{aligned}$
$\begin{aligned} & \text { to apply your own roor; also how } \\ & \text { leaky roots of all kinds. } \mathrm{w} \text {. Address. } \mathrm{H} \text {. STEWART, }\end{aligned}$

IT PAYS THE BIGGEST THING OUT Mnetton Rook

FINEWO\% FNGRAVING SEND COPY FOR CROSSCUP \& WEST ESTHMAE, IT WILLPAY YOU

 $\$ 66 \begin{aligned} & \text { a week in your } \begin{array}{l}\text { own town. } \\ \text { free. Address } \\ \text { A. } \\ \text { HALLET }\end{array} \text { \&erms and } 85 \text { outfit } \\ & \text { Co., Portland, Me }\end{aligned}$ 50 Elegant large chromos, no 2 alfke. name n . 10 c . TreSAFE and SPEEDY $\left\lvert\, \begin{gathered}\text { A FRRTUNE FOR } \\ \text { ONI } \% \text { Fi. Fer infor- } \\ \text { mation and circulars }\end{gathered}\right.$ WAY to FORTUNE, $\begin{gathered}\text { mation and ircular } \\ \text { sent free, wrie to } \\ \text { GFORGE LEE, }\end{gathered}$
Sxicutific Ammicat.

3. durxtispments.

ONE THOUSAND TONS

 METALLIC SHINGLES

ANGLO-AMERICAN ROOFING CO

 And 2221 Dudtry Hoad, Wolverhampton, En

HENRY OAREY BAIRD \& CO. Industrial Publishers, Booksellers, and Importers Waluat st., Philadelphia Our stock comprises the literature of every branch
of sleence appiliedto the arts. Catalogues free to any
address in the world.

H.W.JOHIS aseesos
 ASBESTOS ROPE PACKING

 ING.
 NUT TAPPINC DUPRELL'S PATENT No. 2 Machine
Capacty of 7 s spancles, 8,000 per
 howat freduens.
 Establ' EAGLE ANVILS. 1843 sold CAST STEEL. Face and Horn. Are Full War-

Foot and Steam Power Machinery,

SHAFTS PULLESTHACEMS

 Emery Wheel.

Extra Early, Very Dwarf(8 to 10 inches), Re-

 HAND BOOK for the FARM \& GARDEN 300 BEA TTIFUL LLLLUSTRATIOKS

 ${ }^{5}$

 mooperg mateint Asbestos Lined Removable Covering, (0)

JACKET KETTLES,

patent
Self-Oiling Loose Pulley.

SATISFACTORY RESULTS

 varanteed, if directions are followed. Orders filled for LANE \& BODLEY CO. OINCINNATI, OShafting, Steam Engines, Boilers, SAW MILLS, AND GENERAL MACHINERY.
 FEED WATER HEATERS. THE BEST AND CHEAPEST IN THE MARKET Warranted to heat water by exhaust steam from 200° to
212. Eadrenene.t
For description and price, apply to THE NATIONAL PIPE BENDING CO.,

The Eclipse Engine

WVIUN. A. HAREIS
 HA Rrishliliceollilins ENGINE

Moore County Grit" CORN MILLS Corn Mill Stones,
 North caroina Mill spone CO,

IMPROVED ROTARY BED PLANER

THE MEDART PATENT WROUGHT RIM PULLEY, mcmurray \& stoughton, HARTFORD, CONN.

MACHINISTS' TOOLS.
Sena tor new inustratac atalagese.
Laihes, Pla:iors, Drils, \&c.
NEW HAVEN MANCHCHuteng con

SPEAKING TELEPHONES.

 Alexader Graman Ielvs patent of Mared hi fise

 telephonic inventions. of Bell, Edison, Berliner, Gray
Blake. Phelps, Watson.and others.
apeseriptive catalogues forwarded on application.)

 Leffel Water Wheels, ba With Important Improvements.
1,000 IN SUCCESSFUL OPERATION FHNE NRW PAMPELET FOR 1883 sent free to those interes
JAMES LEFFEL \& CC. Springfield, Oh
110 Liberty St., N. Y. City
VOLNEY W. MASON \& CO FRICTION PULLEFS, CLUTCHES, and ELEVATORS

> ROVIDENCE, R. I

HARTFORD
STEAM BOILER
Inspection \& Insurance
COMPANY.
W. B. PRANKLIN.V. Pres't. J. M. ALLEN. Pres't
J. B. PIERCE. Sec'y.

Pyrometers. For ahomitw heat of

FOR 1883.

The Most Popular Selentific Paper in the World.

Only 83.20 n Year, ineluding postage. Weeldy.

This widely circulated and splendidy fllustrated paper is published weekly. Fvery number contains six original engravings of new inventions and discoveries, representing Enkineering Works, Steam Machinery, New Inventions, Novelties in Mechanies, Manufactures, Chemistry. Electricity, Telegraphy. Photography, ArchiAll Classes of Readers find in the Sciestifio All Classes of Readers find in best scientific information of the day; and it is the atm of the publishers
to present it in an attractive form, avoiding as much as to present it in an attractive form, avolding as much as
possib'e abstruse terms. To every intelligent mind, this journal affords a constant supply of instruetive
reading. It is promotive of knowledge and progrees in every community where it circulates.
Terms of Subscription.-One copy of the SCIEN-
TTFIC AMEHICAN will be sent for one yearpostage prepaid, to any subscriber in the United States postage prepald, to any subseriber in the United States
or Canada, on receipt of three dollars and iweuty or canada, on receipt of three dollars and twenty
cents by the publishers; six months, $\$ 1.60$; three months, 81.00 .
One copy of the Scientific Aymrican and me copy of the Sciestipic American Supplemknt will be sent for one year, postage prepaid, to any subscriber in the
United States or ('anada, on receipt of seven dollars by
the publishers.
The safest way to remit is by Postal Order, Draft, onr
xpress. Money carefully placed tnside of envelopes.
 astray, but is at the sender's risk. Address all letters MエUユVIV \& $C 0$

261 Broadway, New York.
PRINTING INKS,

Working Models

