

A WEEKLY JOURNAL OF PRACTICAL INFORMATION. ART. SCIENCE. MECHANICS. CHEMISTRY AND MANUFACTURES.

GORDON'S DYNAYO ELECTRIC MACHISE.

The first steam locomotives were cride machines compared with those which were constructed in the course of a few years after their first introduction. Just so, no doubt, will be the case with dynamo machines. The first dynamos were little more than models, and we are only now beginning to realize the fact that it is more ecoromical to construct a dynamo which will absorb 100 horse power than it is to construct one to absorb a single borse power. Then again. new uses require new designs. The design of a pumping engine differs from that of an express locomotive; so the design of a dynamo to supply the electric current for a large number of incandescent lamps differs considerably from that designed to supply a large number of arc lamps. A few years ago the success of incandescent systems was scouted by many and doubted by others. Time has proved that their fears were groundless, and that incandescent lighting is not only an actual fact, but it is the system
the resistance in proportion to the vumber of lamps. If the resistance of one lamp is represented by x, the resistance of the lamps in series is represented by $n x$. A certain electromotive force is required to overcome the resistance, x; but n times that electromotive force is required to overcome the resistance, $n x$, the current being constant, and, of course the more constant the current the better for the lights. Put ting this into the familiar symbols of Ohm's law, $C=\frac{E}{\bar{R}}$, we know at once that to retain C constant when R becomes n R. we must make the numerator $n \mathrm{E}$.
The feature of machines required to supply the current to a number of arc lamps in series is high electromotive force. To a certain extent quite an opposite condition bolds when a large number of incandescent lights are under consideration. These lamps are generally arranged in multiple arc or each lamp provides a path for the current rom terminal to terminal; or say two large main wires are taken from the
and these present some curious problems when taken in connection with the electrical requirements.

The latest and most important development of the dynamo electrical machine we illustrate this week. It is the invention of Mr. J. E. H. Gordon, and has been constructed from his designs-in the preparation of which he was aided as to details by Mr. Clifford and Mr. Lucas-by the Telegraph Construction and Maintenance Company at its works at Greenwich. Before proceeding to describe the machine more minutely, it will be well to explain the principle on which it acts in general terms. The central armalure is an iron disk, on which are arranged a series of wire coils, the wire boing coiled in the same plane as the disk. The wires are united in a ring on the central axis, against which ring bears a gunmetal contact lever, into which is sent a current of electricity from two Burgin machines which act as exciters. The armature revolves between the two sides of a frame of cast-iron, which carries a number of electro-magnets; that

GORDON'S DYNAMO ELECTRIC MACHINE.
toward which almost all eyes and efforts are directed as the great work of the immediate future. Directly incandescent lighting became practical and no longer merely an incident of the laboratory, attention began to be directed to its introduction upon a large scale. Gas was already in possession of the field, and usually changes are not made unless the evidence of gain is very strong. There is, however, a stronger incentive to gain than mere economy, and that is fashion.
The electric light seems to bave become fashionable, and this in addition to its inherent merits as a light. It is said to be, when used on a large scale, as economical as gas and as inuch under control. This being the case, it was to be expected that machines would be designed to supply the current on a large scale. Under the usual conditions, arc lamps have hitherto been arranged in series, that is, one after the other upon the wire joining the two terminals of the machine. Now, as each lamp opposes the current with a certain resistance, the adding of lamps in series increases
wo terminals of the machinc, the lamps are strung between hese two wires. In the case of the arc lamps, with one lamp we require, say, a current of 20 Amperes; the machine is not asked to supply more current, though 100 lamps are in the circuit. It still sends 20 Ampères through the circuit. But taking one incandescent lamp as requiring 1 Ampère, by the arrangement adopted 100 such lamps require 100 Amperesthat is, 1 Ampère through each branch wire and lamp. Hence the machine has to provide quantity in one case and electromotive force iu the other. In the latter case, E , represented in the formula $C=\frac{E}{\bar{R}}$, is constant, and C is increased by diminishing R
From these remarks it will be seen that a large amount of knowledge, talent, and ingenuity may be brought into play in designing dynamos for different purposes. Besides, how. ever, the electrical matters to be considered in such designs, ortionaln the purely mechanical details, such as the pro portion of parts, the strains, etc., to be brought into play,
so say, of cores covered with insulated wire. From these the currents developed in them are led off to the lamps. Thus it will be seen that the field magnets are attached to the armature, and move, while the equivalents of the armature coils are at rest. There is no commutator, the machine being of the alternatiag current type.
This machine can, with sufficient power, light 6,000 Swan lamps, but this is not at present available, the engines used to drive it being a pair with horizontal cylinders. 20 inches stroke, and 16 inches diameter, making about 140 revolu tions per minute. They were used for some time on board the Calabria for picking up cables. On Wednesday night about 1,300 Swan lamps of over 20 -candle power were in use, lighting up every department of the large works. It will give some idea of the dimensions of the system if we state that there are about 8 miles of wire leads in use.
This is not the first machine made by Mr. Gordon. Mr. Gordon's present machine is an improvement upon an earlie (Oontinued on page 6.)

我
MUNMC̣ CO., Editors and Proprietors. published weekly at

No. 261 BROADWAY, NEW YORK.
o. D. MUNN.
A. e. beach.

TREMS FOR THE SCIENTIPIC AMERICAN.

 One copp, one year mortage inoluded......One copy, slx m months postage included

8320
160
Clubm. One extra copy of The Scientipic Am erican will be supplied gratis for every clut of tive subscribers at 8 same proportionate rate. Postage p
Remil dy postal order. Address

The Sclentific American Supplement is a distinct paper from the Scievtipic Ambrican. The SUPPLEMMENT
is issued weekiy. Every number contains 16 vectavo pages, uniform in size is issued weekly. Every number contains 16 uctavo pages, uniform in size
with Scientipic Americai. Terms of subseription for Supplement, 85.00 a year, postage pald, to subscribers. Single copies, 19 cents. Sold by all news dealers throughout the country
Combined ©ntes. - The Scientific american and suppiamint will be senr.t for one year postage free. on receipt ot
papers to one address or different addresses as desired. The safest way to remit is br draft, postal order, or registered letter. Address MUNN \& CO , 261 Broadway, corner of Warren street, New For

Selentifc American Export Edition.
The Scirntific American Export Edition is a larke and splendid pert-
 plates and pages of the four preceding weekly isnues of the Scicvitific Am/Rican, with its splendid engravings and valuabbe in iformation: (c.
Commerclai, trade, and manufacturing announcements of leading houses Commercial, trade, and manufacturing announcements of leading houses Trorms for Export Editinn, 5.00 a year, sent prepaid to any nart of te to secure foreign trade may have large, and bandsomely displayed :an nouncements published in this edition at a very moderate cost. ation In all commerclal places throughout the world. co., 261 Broadway, corner of Warren street, New York.

NEW YORK, SATURDAY, JANUARY 6, 1883.

TABLE OF CONTENTS OF
the scientific american supplement NO. 366,
For the Week ending January 6, 1883. Price $\mathbf{1 0}$ cents. For sale by all newsdealers.

\qquad

\qquad

 Na.
t. Hygiene, mpitcine, etc an an

the death and burial of woehleb

We have already briefly referred to the death of the vete ran scientist whose name is familiar to every chemist in America and Europe. On the 23d of September, after a brief indisposition of four or five days' duration, the light of bis life, which had been flickering in its socket, went out while he was in full possession of his intellectual faculties. The machine which bad kept soul and body together ceased working, and life became extinct. When the final hour came, surrounded by all the members of his family, his spirit. took its flight so quietly that those present were scarcely able to tell when he ceased to breathe. It was a most gratifying ending to a long life-no pain, no wearing sickness, no anxiety-as peaceful and gentle as his life had been, so was his death
Up to the Tuesday preceding his death, which took place on Saturday, he continued his literary activity. When be laid down his pen his table was covered with scientific papers, and the correspondence which, as Secretary of the Academy of Sciences, he conducted to the last, having carried his work forward to the very portal of the tomb. Yet death did not tind him unprepared. It had long been expected, and in his will be gave full directions about his funeral, and indicated the inscription to be put on his tomb. His funcral was to be of the simplest character; no music, no speeches, no special ceremonies, no procession of students in uniforms, but everything quiet and unobtrusive, just as his own life had been. And thus it was. We are indebted to Prof. C. A. Joy, who was present at the funeral, for many of the above facts, and the following description of the burial ceremonies:

At 10 o'clock on Tuesday morning, September 26, a few of the most prominent professors of the University gathered at the house of the deceased. The cofflin stood in the center of the largest room, covered with wreaths and palm leaves, and on eacb side there was a row of six burning candles. The Chaplain of the University, Pastor Schultz, read the usual selection from the Scriptures, and in his prayer referred to the character of the deceased, but made no remarks. The widow was present during the exercises, surrounded by all her children and grandchildren, with a few other near relatives.
"Among those present at these services were Professor Listing and now more than eighty years or ond colleagues of the deceased. There were but few persons present from a distance, as it was vacation at the University, and no notice of the funeral had been published. But there was one old friend there that could not stay away-Professor Hermann Kopp, who came up from Heidelberg to follow in the mournful procession to the grave.
"After the short exercises at the house the body was placed in a hearse, and the procession slowly and silently moved to the cemetery. The streets were lined with people who felt that they had lost a friend. There were several bundred men in the group, many of them world renowned celebrities.
"At the grave there were no speeches. I threw in several handfuls of eartb, according to the German custom, and in bebalf of the many American pupils of the illustrious dead. The grave was rapidly filled up, and after the benediction the mourners dispersed."

RAILWAY TRANSPORTATION.

Mr. William P. Shinn, C.E., lately read before the American Society of Civil Engineers a paper on the "Increased Efficiency of Railways for the Transportution of Freight."
The first portion of this paper gave, from carefully gathered statistics, a valuable amount of information in regard to the actual increase of traffic upon American railways. In 1860, the tonnage mileage of the New York Centrul and Hudson River Railroad, the Erie Railway, and the Pennsylvania Railroad was about equal, and amounted in the aggregate to a little nver three-fourths of that of the New York State canals; and in 1870 cach of these railroads averaged about the tonnage of the canals, and in 1880 they averaged each nearly double that of canals.
The aggregate tonnage mileage of the other railroads was, in 1881, 1,217 per cent more than 1800. Statistics were also given showing the increase of population, of railroad mileage, of the production and export of grain and other leading exports. The means by which this rapid increase of freight transportation had been developed was considered under two general leads, namely, improvements in the physical conditions of the railroads, and improvements in the adminitreated on under these heads

1. Improved track or "permanent way," including bridge structure.
2. Additional sidings, and second, third, and fourth tracks. 3. Increased capacity and strict classification of locomo-
3. Increased capacity of freight cars.
. Additions to terminal facilities.
The improvements in the administration were referred to ader the following beads:
4. Improved methods of signaling.
5. Running locomotives "first in, first out," and running
freight trains at higher rates of speed.
6. Consolidation of connecting lines under one manage-
ment by purchase, lease, amalgamation, or otherwise.
Running freight cars through from point of production
7. Issuing through bills of lading (or freight contracts) from Western points of shipment to Atlantic and European ports.
The general introduction of steel rails was stated to lie the very corner stone of increased efficiency. The improve. ments in all the directions referred to were treated of, and described at considerable length.
The second portion of the paper presented the views of the writer as to the means whereby stial greater efficiency could be most economically obtained. The constant demand is for more transportation facilities-for more cars. In the opinion of the writer, what is needed is not so much more cars, as more movement of cars. Frcight blockades will be prevented, not by having more tracks to stand cars upon, but by having fewer standing cars. It was shown that upon one railway there had been a decrease in the miles run by the cars of 21 per cent between 1868 and 1851 , and that the Union Line cars between 1879 and 1882 were increased 49 per cent in number, while the mileage run by them decreased 16 per cent in the same period. The remedies suggested by Mr. Shinn, were more main tracks, more locomotives, more trains, the improvement of the making up of trains at the points where cars are loaded. The detention of cars at stations and private sidings, and the absence of cars on foreign railroads were considered as among the greatest causes of loss, and the writer suggests that the remedy will be to charge a per diem charge for cars when on foreign roads. and that this charge should be based upon the average economic value of the cars in use to their owners.
It was voted that this paper should be discussed at the annual meeting. Members of the society and others interested in this subject are requested to contribute to this discussion. The annual meeting of the society will occur January 17 and 18, at the Society house in New York. The first session of the meeting will be at 10 A.M., January 1 , 1883.

DANGEROUS FUNERAL APPLIANCES.

The possible agency of the undertaker in disseminating infectious diseases is not sufficiently regarded by health authorities. In many places public funerals are prohibited in cases of infectious disease, yet they are the rule rather than the exception the country over.
Where the funcral services are held in private bouses, it is a common thing for the undertaker to provide clagirs or camp-stools for the multitude. These are carried from bouse to house, and are liable to become carriers of infection. Some careful undertakers may take the trouble to disinfect such appliances in all cases of possible infection; but we doubt its being done very generally.
The ice boxes, in which the dead are laid until the time of burial comes, are still more liable to carry the germs of disease. The ice boxes are costly. are seldom renewed, and are scarcely more frequently disinfected. That they are a source of public peril is gradually becoming recegnized by physicians and boards of health; and not a few have taken an interest in the devising of means for their displacement. The most promising substitute is the injection of preserving fluids into the circulatory system. Quite a number of prominent undertakers in this city and Brooklyn are reported as having adopted the new plan, under the instructions of Dr. Lukens and Professor Clark, of tise Cincinnati Scloon of Embalming. Demonstrations of the process of injecting preservative fluids have been made in the dead house of Bellevue Hospital. No mutilation of the body is required further than the opening of an artery for the injection of the fluid. There are several fluids which answer for the purpose, and the cost of embalming is said to be little if any greater than the charge far the use of an ice box.
A careless embalmer may still be a carrier of infection, but it would seem to be easier to enforce precautinnary measures in the case of a man than with the bulky and variously ex posed ice box, which may hold in succession the victims of every sort of disease.

MACHINERY AND LABOR.

Mr. Edward Atkinson says that it takes 160.000 men. women, and children to make the cotton cloth, the use of which is now enjored by the people of the United States. who are the best clothed people in the world. If those who do this work were obliged to use machinery no more efferive than the spinning wheel or hand loom, it would require. he computes, $16,000,000$ persons continuously employed ten hours a day to do the necessary work.
According to the view of a certain class of self-called " labor reformers "-of whom we hear less now than formerly, and less than we are likely to when hard times come again-modern labor-saving cotton machinery must be de. priving $15,8 \pm 0,000$ men, women, and cbildren of stendy work; the "reformers" would assume, remunerative work.
Where are they, and what are they doing? In every department of productive labor, machinery has been and is
having a corresponding effect. The displaced millions of mythical hand workers cannot have starved to death, or have been otherwise exterminated, for there has been a rapid increase of population in all manufacturing countries, and the average length of human life is greater than it used to be. The obvious truth-obvious, that is, to all who can see
things as they are-is, that so far from displacing labor, or the demand for it, labor-saving machinery furnishes more and more varied opportunities for remunerative work, larger
pay for the worker, and cheaper products for the worker to

Machinery increases thr cotton worker's capacity a bun dredfold, cotton cloth is cheapened, and, as a natural result a hundred times as many people can afford to use cottou and more of it. And a similar effect is produced in every othe department of productive labor.
The anti-machinery argument holds good only on the as sumption that savagery-which in our climate means inces sant toil with nakedness, hunger, indifferent shelter, and general misery-is better than limited labor, made efficien by steam power and machivery, and surrounded by all the comforts that labor brings where labor is aided, as it is with us, by the fruits of a century of accumulation and invention If any workman, or class of workmen, remain as badly off as savages are, it is wholly because of their choice to lead the lives of savages, or worse. Intemperance and improvi dence, the great sources of misery in industrial communities, are not produced by machinery.

bmulsions of petrolevi as insecticides.
 \section*{ay prof. o. v. puex}

In the Scientific American for May 27 last I gave an account of the successful management of the chief insects
iojurious to the orange tree, and showed the value of kerosene emulsions based on very thorough experiments by one of my assistants, Mr. H. G. Hubbard, at Crescent City, Fla. In my forthcoming annual report, as entomologist to the Department of Agriculture, a more extended account of Mr. Hubbard's experiments is published, prepared in advance from a special report on the insects injurious to the orange tree. Mr. Hubbard's experiments with kerosene are espe cially valuable, and while I by no means consider them as final, I know of none ever made that compare with them in fulness or carefulness. His emulsions were made with milk, as sel forth in the article in the Scientific American alre:idy alluded to. Emulsions of kerosene with soap sud and lye have been worked at, and recently Mr. Joseph Vorle, of Gainesville, Fla., has been experimenting, under my direction, with an emulsion of kerosene, soap, and fir balsam combined under a high temperature, and to which be gives the name of "Murvite." Experiments made here at the Department show that twenty parts of hard soap, ten parts of water, forty pirts of kerosene, and one part of balsam make a very satisfactory emulsion in the form of a permanent paste which dilutes ad libitum with water, and is not likely that the emulsions made by the use of mucila ginous substances or phosphates will ever supersede, for practical insecticide purposes, those made of milk or soap.
On the Pacific coast the horticulturists have, during the last two years, been very active in their attempts to effectually destroy scale insects, and Mr. S. F. Chapin, a member of the State Horticultural Commission, has recently published an extensive and interesting report (ride late numbers of the Pacific Rural Press; which bears evidence of careful wark, and in which kerosene is condemned and various ap plications of lye and whale-oil soap are strongly recommended as sufficient for the object in view. Now, my own experience with scale-insects, and that of Mr. Hubbard, show that neither of these two substances bears comparison with a proper kerosene emulsion as an effectual destroyer of scale-insects and their eggs.
The discrepancy on the Pacific coast and.in Florida can scarcely be explaiued by the different species dealt with, but may, I think, be explained by the difference in the trees treated and the methods employed, and as I should be sorry to see the California orange growers deterred from the use of kerosene, which has proved so successful in Florida, I have thought that
prove interesting.

In his experiments he refers mainly to pear trees, and occasionally to other Northern fruit trees, the report being beaded, in fact, "Scale-Insects on Deciduous and Orna mental Trees." The orange is not a deciduous tree, and was evidently not experimented on. Other insecticides were used by him upon pear, peach, apple, almond, prune, and plum. Now, there is no doubt but that the action of kerosene proves more injurious to some plants than to others, and in sufficient quantity is hurtful to ail. It should, therefore, be used with caution where its effects are not already known, and never employed pure. Even the orange receives a shock from its judicious application, though there is subundant proof of the fact that young vigorous shoots of
this tree will withstand a thorongb drenching with the pure oil. Again, much will depend upon the condition of the tree and the time of application, as Dr. Le Baron long since showed that kerosene can safely be applied to apple trees in the spring of the year (Second Illinois Report, pp. 114, 115) or during the season of rapid growth. Again, the condition of the atmosphere will have much to do with the results, and the injury by kerosene will be greater during cool damp weather, when evaporation is at a minimum. The fatal reused and the coarse methods of application, for Dr. Chapin's report shows that in most of the experiments it was ap-
plied undiluted, in coarse spray, while the quantity is not stated.
As two years have now elapsed since Mr. Hubbard began the use of kerosene emulsions, I recently sent him a copy of Mr. Chapin's report, with the request that he give me a ré-
sumé of his views, and particularly requested him to examsume of his views, and particularly requested him to exam-
ine the trees that had been first treated with kerosene. I
give berewith his report:
of even pure keroseue. In 1880 one of my neighbors treat pouring very young orange trees for Lecanium scale by not in very bad condition at the time and did not appear to suffer auy injury at all, and at this date they are in very thrifty condition. The applications were made at evening. On September 13, 1881, I applied to twenty five young trees fed imperfectly with 1 quart fresh milk and diluted with $51 / 2$ quarts water. The emulsion (No. 1) was very imperfectly united, and most of the oil rose to the surface, and as the wash was applied with a brush, the first trees washed received a large amount of pure kerosene upon the trunks, branches, and in many cases upon the leaves. This application was made in the afternoon (2 P.M. to 6 P.M.) of a very hot, clear day. The trees so treated received not the sligbtest harm, and at this date are among the finest in the grove, and nost of them have quadrupled their size within the year. About the same date (September 14) I made as a test an application to two young orange trees of a very unstable mixture, of kerosene, 1 pint; of milk, 2 fluid ounces;
water, 2 ounces; which, when diluted, separated and floated ou top. The mixture was applied with a brush, and the oil could be seen to penetrate the leaves, so that they ap1 P.M. on of an oak tree, B in the sun. September 16, 1881, B, old, devitalized leaves loosened or fallen; A, no leaves loosened or fallen. September 20, 1881, B has dropped its leaves badly; A has dropped fewer leaves. December 17, 1881, both trees apparently cleared of living scales. Februarry 14, 1882, trees pushing out vigorously; Do apparent difference in condition of A and B; no living scales can be found. To day, November 9,1882 , these trees are in splendid condition, and have made nearly, if not quite, the maxinum growth possible in the year. In these cases, the effect of the kerosene has been simply to remove the scale; the rest is due, of course, to cultivation.
"Another test, which I intended to be crucial as to the ef fect of diluted kerosene wash upon the roots of the orange, was made at the same time, September 14, 1881. In this experiment I sclected a very small two-year-old budded orange tree, which had made no growth during the year, was starved and hide-bound, and stunted. Every orange grower knows how difficult it is to start such a tree into vigorous growth. I disbed the earth around this tree and poured a gallon and a balf of kerosene wasb, containing 1 pint of the oil in emulsion with milk, into the cavity abou the cavity of the tree, so that the whole of it soaked into the
sand on and about the roots. The tree had but a few yellowish leaves, and most of these dropped within a week It, however, pushed out new leaves during the winter, and made a respectable amount of branch growth during the past summer. At this date, far from being in dying condition, it is evidently prospering as well as its guarled and stunted trunk will allow, and I do not hesitate to say that the shock of the kerosene started it from its dormant condition. I might give other instances of applications with kerosene used unnecessarily strong or in imperfect mixtures with other liquids, in none of which have the trees been killed within the past year, but I prefer to cite only from my own notes. In the California report the concentrated solutions of lye seem to be recommended, although the effect upon the trees is evidently very severe. E. g., 'No. 3, concentrated lye, one and oue-half pounds; water, one gallon. June 23, 1881, lye so strong as to burn bark and foliage. ... August 2, 1881;
bark being restored and new foliage appearing.' I should call this heroic treatment. It would never do for orange trees,
because it would make them hide-bound, if it did no worse. I made four experiments with potash lye (see Pre liminary Report, table 6). The strongest solution is 1 pound to $11 / 2$ gallons, applied December 31, 1881 (Exp. 43). I find I have the following notes upon the condition of the tree: January 10, 1882, 'Until within two or three days, the tree bas not dropped many leaves. It is now severely defoliated. January 20 . Has ceased to drop leaves; defoliation complete upon the most badly infested branches; no leaves dropped on the most vigorous branches; some dropped on nearly all older brauches.' At this date (November, 1882), the tree is alive, but seems to be suffering from a severe check, and bardening of the bark. The result on scale was not at all satisfactory in my experiments, but I have since had reason to suspect that the concentrated lye used was not a good article. Mr. Voyle, who has tried apparently the same brand, told me that he suspected there was ' no potash
in it.' What was substituted he could not say, but it might be some form of caustic soda. I have had it in mind to repeat these experiments with a brand of potash known to be good. Shall I do so? In my experiments Nos. 43, 44, and 45 (see Report, table 5) the trees were in very bad condition, coated with scale. I looked at them the other
day, and they seemed to me to be in dying condition. This, however, may be partly due to scale, as the lye did
not clear the tree. They have, however, been repeatedly washed, with the other trees in the same grove, during the
past summer, the washes used being soap and kerosene emulsions of the strength I bave recommended, i.e., 66 per
cent oil in emulsion, emulsion diluted nine or ten times. That the present condition of these trees is not attributable to the kerosene is shown by the surrounding trees, many
of which were in equally bad condition, but all of which

Improved Formale for Preparing Gelatinc Photo craphic Emaleion.

bi a. l. henderson.

My own, Nelson's or any good photographic gelatine hould be used, and must be well washed for twelve hours by soaking in water, cccasionally changing the same. Dissolve thirty grains of the washed gelatine in two ounces of warm water in a wide mouthed jar, then add in the following order:

Bromide of potassium....... 180 grains. Iodide of potassium 8 grains.
Ammonia. 60 minime.
tantly stirring, in the dark room, the following solution:
\qquad .
Water
dry gelatine,
When these are mixed, add 240 grains of dry gelatine then place the jar in hot water, 150° Fabr.; allow it to remain until the gelatine is melted. Remove the jar from the water, and allow the emulsion to cnol and set. When set it resembles a stiff jelly, is torn into shreds from the bottom of the jar, and squeezed through an opened meshed canvas bag into another dish. It is then washed; a simple way is to allow a small stream of water to trickle on it all night. The water is drained off, then the jelly-like enulsion is put into a wide mouthed bottle, and remelted or dissolved by immersing the bottle in warm water, the temperature of which must never exceed 90° Fahr. When dissolved, enough warm water should be added to the emulsion to increase the bulk to eight or ten ounces, after which plates can be coated in the usual manner.
Instead of allowing the emulsion to set as above stated, welve ounces of warm alcohol, 100° Fahr., may be added, and the whole well agitated. The emulsion will then become flocculent, not adhering to the stirring rod, aud in a hort time will precipitate to the bottom.
After removing the waste alcohol, the emulsion is then set and washed as previously described. When redissolved, add water to make up from eight to ten ounces, and to every ten ounces of tinished emulsion add half an ounce of alco hol, which will make it flow better on the glass. An emul sion made as above stated is rapid working and safe. By increasing the amount of ammonia, the rapidity of the emulsion is increased, but manipulation becomes more difficult, and it is possible, by a great increase of ammonia, to make an emulsion so sensitive that plates coated with it will be fogged where exposed for twenty seconds to a light renpered more actinic by passing through double thicknesses of spectroscopically perfect yellow and deep ruby glass.

The Orbit of the Great Comet or 1882.

Professor Frisby, of the Naval Observatory, Washington, has completed a calculation of the orbit of the great come of 1882 from observations made on September 19, October 8, and November 24, and finds the orbit to be a very lengthened ellipse having a period of about 793, and probably identical with a very large comet scen 371 B.C., and 963 A.D., just about the time of the death of Constantine. Its perihelion distance is only about 700.000 from the center of the sun, and it extends outward at aphelion to about ninety times the sun's distance from the earth.

Direct Fermentation of Starch.

The investigations of V. Marcano go to show that diastase is a product of the vital process of vibrios. To prove this, the microbes observed in corn (maize) were planted in a cul tivating tluid of non-gelatinous starch and artificial albumen mixed with water that had not been distilled. These or ganisms developed remarkably in this fluid. The filtered liquid, after the microbes had been killed by Muntz's process, possessed a diastatic power equal to that of a good malt extract. Koji's diastase was produced in like manner. Compt. Rend.

Isovanilline.

Dr. R. Wegscheider has prepared a substance isomeric with the vanilline of vanilla, by heating opianic acid and dilute hy drocbloric acid in closed tubes to $170^{\circ} \mathrm{C}$. An aldeyde of protocatechu is also formed. Isovanilline dissolves readily in hot water, from which it crystallizes in prisms melting at 116° to 117°. It dissolves with difficulty in cold water, is easily soluble in alkalies, reduces the ammoniacal silver solution when boiled, and forms with bisulphite of soda a soluble double salt.-Vienna Acad. Bericht.

A Brazilian Coffee Plantation.

One of the largest coffee plantations in Brazil is the Fazenda Santa Catharina, 100 miles from Rio Janeiro, belonging to Baron de Monteiro. It covers an area of more than wenty square miles, contains $1,700,000$ bearing trees, and employs six hundred slaves, who are sulijected to the most rigid discipline, and, in fact, as mucb like muchines as it is possible for human beings to become. They are well taken care of, however, and the Baron maintains a private ho

A Raid on Telephones in Paris,
The Société Générale des Téléphones has just made a aid in Paris on all persons making and selling telephones, which they assert are infringements of the Edison patent, and has issued a notice warning tie public against making, selling, or retaining possession of such telephones unless
they have the company's trade mark on them.

botary mould for castirg pipes.

To cast pipes of large diameter Mr. Whitley, of Leeds employs the rotary mould shown in the accompanying cut. The mould is fixed so as to project from a disk, v, mounted on the axle, m, and consists of a series of iron rings, e, which are held together by bolts, h. The springs, i, permit the mould to expand in a longitudinal direction, while the con cal ring segments, f, which can be thrust outwardly, render contraction possible. The outer extremity of the mould is supported by one or two rollets.
The mould, properly so called, is formed by covering the rings, c, and the plate, n, with moulding clay, g. Before moulding. the carriage, q, carrying the mouth piece, op, is shoved up against the mould, and the latter is made to rotate rapidly during the inflow of the metal. In order to determine the thickness of the sides of the pipe, a peculiar measuring apparatus, $\boldsymbol{r} \boldsymbol{\varepsilon}$, is affixed to the mouth piece. The internal surface of the mould may also be produced by templets fixed on a carriage similar to q, in such a way that it can revolve.Dinglor's Polytechnisches Journal.

Rapld Growth of a Colt

A yearling colt in Mr. Robert Bonner's celebrated breeding stud, in Westchester County, New York, weighs 1,062 pounds, and yet is fine in all bis points, and promises to turn out a fast trotter. Mr. Bonner thinks he gets this early exceptional size from an experiment he tried with his dam. Before the colt was weancd, he says he had the mother brought up from pasture every night, and fed six quarts of oals; and since the colt has learned to eat he also has been fed abundantly with oats, in addition to good pasture in the summer and hay in winter. Following up this system, Nortbern horse breeders may get the same size at as early an age as is now obtained in our Southern States and the milder winters of California. In the latter country there is good pasture all winter, and the colts receive no check in their growth, as is common with all kinds of stock unless they receive extra care during the rigorous winters of the Northern States. Mr Bonner's treatment of this colt is the same as that pursued by English breeders of race horses. The dam is not only fed an abundance of oats, but the colt is also taught to eat them just as soon as possible, which he learus to do at an early age from the same trough as his mother. At six months old -the general age for weaning the colt-he has learned to sustain himself well on grain, grass, and hay, so that when weaned there is no check in his growth, but he keeps steadily along the same as when sucking his dam.Rural New Yorker.

DPRROVED ICE MACHINE

This apparatus is the inveution of Franz Windhausen, of Berlin. It is claimed that by its means ice can be com mercially manufactured of a better and more durable quality than that produced by the freezing machines at present in use, and at from one-third to one half the cost.
It has long been known, say the Engineor, that extreme cold can be produced by the rapid evaporation of water in a com paratively perfect vacuum, the beat required for vaporization being abstracted from the remaiving water, which conse quently becomes reduced in tem perature, and if the process b sufficiently prolonged, actually converted into ice. Machines to carry out this principle have been constructed by Leclie, Carré, and others, but in all these cases the air pump served only for the rarefaction of the air in the refrigerating compartment, and not for the removal and condensation of the vapor, which had to be entirely absorbed by sulphuricacid, requiring renewal after each operation Owing to this defect, continuity of action could not be obtained, while the removal and replacement of the acid was not only an expensive operation, but was open to ob vious objections from the danger and difficulty of dealing with such a bighly corrosive ma terial as oil of vitriol. For these reasons the introduction of vacuum machines has never been general, and in point of fact they were little known or used, except for producing very small quantities of ice for household purposes and for laboratory experiments, in both of which cases the air pump was worked by hand
In Windhausen's machine is introduced a combined air and vapor pump, which serves for maintaining the extreme vacuum of about four millimeters absolute pressure in the refrigerator, and at the same time to remove and condense the steam, while the renewal of the sulphuric acid is avoided
by a cooling and concentrating arrangement, by which the absorbed water is abstracted and the acid rendered available for use over and over again
Our illustration below gives a general view of a complete vacuum ice machine, arranged as it actually is in practice. The pump, A, shown in the present instance as driven by an independent engine, maintains an almost perfect vacuum in the freezing cylinders, C C, with which it is connected by the suction pipe, c, through the absorber, B, containing concentrated sulphuric acid continually agitated by revolvconcentrated sulphuric acid continually agitated by revolv-
ing arms. Pure water is delivered by pipes, $f f$, into cisterns

ROTARY MOULD FOR CASTING PIPES.
cold water jacket surrounds the cylinder and cools the acid, which would otherwise become heated. From the absorber the dilute acid is conveyed by a pipe to the bottom of the heat exchanger, G, and, ascending through tubes, is heated by hot concentrated acid outside, traveling in the contrary direction on its passage to the reservoir, H. From the exchanger the dilute acid, now somewhat raised in tem perature, enters the concentrator, F, by a pipe at the top and is further beated by a steam coil in order to evaporate off the water, the vapor being removed by the small supple mentary pump, L. The bot concentrated acid then passes mentary pump, L. The hol concentraled acid then passes
from the bottom of the concentrator round the outside of the tubes in heat exchanger, where it is cooled, into H, from which the pipe, p, conveys it for reuse in the absorber.
In a report by Dr. John Hopkinson, F.R.S., who has personully inspected one of the vacuum machines erected in Berlin in 1880, and in use since that date, it is stated that no undue depreciation or corrosion was apparent in any part of the apparatus, and that after most careful ex. amiuation no trace of acid could be found either in the condensed vapor from the large air pump or in that from the small concentrator pump. With regard to cost, the report states that the writer found from experiment that 1 ton of coal would produce $121 / 2$ tons of ice, the average net horse power to work a machine making 12 tons in twenty-four hours not exceeding three, and that be is of opinion that, after allowing interest on capital, depreciution at 10 per cent, and estimating other expenses on a liberal scale, solid block ice can be produced by the vacuum process for from 3s. 4d. to 5 s . per ton, depending upon the magnitude of the plant and whether it was continuously worked up to its full power or otherwise. Even in this country the manu C C, by pipes with adjustable valves, projecting somewhat facture of ice and the refrigeration of water and other into the interior, and water jacketed to prevent obstruction liquids bave become such necessities that it is quite certain from the formation of ice. The vacuum within the freezing cylinders at once causes rapid evaporation, and the vapor, ogether with a certain amount of air given up by the water, is drawn toward the pumps through connecting pipes, $B C$, and d, over the surface of the sulphuric acid in B, which bsorbs the greater part of the vapor.
Each pound of vapor formed in the cylinders, requiring a supply of some 1,100 thermal units, has no other source of heat to draw from but the water itself, and as about 200 units are given off in the formation of one pound of ice, it will be seen that by properly arranging the supply nearly six pounds of water might be converted into ice for every pound evaporated. Actually, about five pounds of ice are obtained, the balance of the heat being drawn from the iron casings by conduction from the outside. When the process is sufficiently advanced, that is, when the freezing cylinders are filled, which takes place in about an hour-more or less depending on their size-the doors, h, at the bottom are swung open, and the blocks of ice permitted to fall by their

THE WINDHAUSEN ICE MACHINE. the advantage of a cheaper method of producing cold than those now in use will be readily appreciated; while in hot climates, where, from the difficulties resulting from the high pressures required in ice machines in which cold is produced by the evaporation of ammonia or other volatile liquids, the use of cooling apparatus has hitherto been attended with considerable difficulties aud expense, the new vacuum plant should be worked as effectually and economiThy as in this country.
The ice produced is not transparent, but opaque, this ap pearance being caused by vacucles due to its formation in a vacuum, and which, so soon as the dours of the freezing cylinders are opened, become flled with air. On this ac count it is claimed that the ice is more durable than if trans parent. The experimental trial lately made in London was complete success in every respect.

Gunpowder Engine.
Herr Beck, of Nordhausen, Germany, has invented a ma chine of which the motive force is supplied br gunpowder. In a borizontal cylinder a piston is set in motion by small quantiles of powder, which are alternately ignited before and behind it. The gases which have been used escape through lateral penings closed by slide valves the return movement of the piston. The beary residuum accumulates in the deepest part of the cylinder, and is pushed by the piston into receptacles which are emptied from time to time. The ignition of the gunpowder is effected by a spirit lame or by a gas jet, which is brought to bear upon it by the sucking action of the piston, through an opening provided with a slide valve. A Cologne firm of engineers has, according to the Deutsche Industrie Zeitung. undertaken the construclion of this machine, with a view to its being introduced for sale during this autumn. Among the ad vantages claimed for it are the comparatively small space it takes up and the fact of its being constantly ready fur use. The consumption of powder is own weight into receptacles of any convenient description. of eczing vessels are placed in two rows, one on each rate pipes with shut off valves, so that if desired each cylinder can be worked and discharged independently of the ther.
The absorber, B, containing the sulphuric acid, is a horizontal cylinder within whicb a shaft provided with arms otates. These arms stir the acid and mix the surface poroncentrated portion at the being made 5,500 to over 6,000 pounds of sugh to the acre. The crop concentrated portion at the bottom, and being made spoguidas, generally largely exceeded the estimates made when
shaped, carry up acid with them, so promoting absorption.

IMPROVED GALVANIC BATTERY

The improvement illustrated herewith is designed to effect the rapid and complete depolarization of the negative plate, and ihereby increase the efficiency of this class of batteries. In this galvanic battery the positive plate is made of zinc, in any of the well-known shapes, and is provided with a wire conductor connected with it in the ordinary way. The negative plate, which is of carbon, is placed in a porous cell and surrounded with a mixture of granulated gas retort carbon, granulated black oxide of manganese, and mild cbloride oi mercury, or calomel, equal parts. These materials are intimately mixed together with a small quantity of water before being placed around the negative plate. As the fluids of this battery, when in operation, are very corrosive, the upper end of the carbon is saturated with paraffine or wax, and the electrical connection is made with it by casting lead or solder around it, and attaching to it a binding screw. The porous cell is filled around the carbon to within a short distance of the top of the cell with the mixture of gas carbon, black oxide of manganese, and chloride of mercury, and the top of the cell is sealed with a cement of resin and wax, or any other insulating cement insoluble in the fluid of the battery. Two small holes are left in the cement for the admission of water or the exciting fluid, or for the escape of gas which may be generated in the porous cell.

The porous cell, coutaining the carbon plate, the granulated carbon, and black oxide of manganese, and the chloride of mercury, as above described, is placed in u suitable jar, together with a zinc rod or plate which has been amalgamated. The exciting fluid is a saturated solution of ammonium chloride or sal ammoniac. The action of this battery is as follows: The zinc, calomel, carbon, and manga nese being all insoluble in water, there is no internal action when the circuit is open. The circuit being closed, decomposition commences. The zinc is oxi dized by the water of the sal ammoniac solution form ing oxide. This zinc oxide immediately reacts with the sal ammoniac (ammonium chloride), first combining with a portion of the chlorine of the latter_(and displacing au equivalent of ammonia), and then combining with another portion of the sal ammoniac, forming ammonia zinc chloride, while the ammoniac becomes converted into ammonia. The hydrogen being liberated at the negative plate, unites with its equivalent of oxygen from the peroxide of manganese, reducing this to the sesquioxide, and by this union forming water. The ammonia reduces the calomel into metallic mercury and hydrochloric acid, which latter unites with the ammonia, forming ammonium chloride, to be decomposed, as above described, or this latter acid may act directly upon the zinc, thereby intensifying the action of the battery.

The reaction given above may not be at all times fully complete, and the double chlorides of zinc and ammonia may be formed, as well as double chlorides of mercury and ammonia; but the above shows the advantage of the use of the calomel, as by its use the ammonia, which previously was a waste product in this class of batteries, is made to play a part in intensifying the action of the battery, and render it practically a constant battery, fitted for where a constant current is required, as well as baving still a very desirable und economical form of battery, for use with alarms ol bells, or other forms of work where open circuit is the rule and closed circuit the exception, as in telephone service.
Fig. 2 shows a portable form of the battery in which the mixture of carbon, black oxide of manganese, and chloride of mercury is inclosed in a canvas rack placed between zinc plates which are wrapped in blotting paper. The inclos ing case is made of rubber or other suitable material. The exciting fluid is a saturated solution of chloride of ammonium, which is absorbed by the blotting paper surrounding the zincs and by the canvas sack and its contents. As this form of the battery contains no free solution, it may be carried in the pocket without inconvenience. Further informatiou in regard to this invention may be obtained by addressing C. D. Parkhurst, Fort McKinney, W yo., via Rock Creek.

Daify Induntry in France.

To give an idea of the dairy industry in France, M. Herve Mangon recently stated at an agricultural gathering that the milk produced in the country would, if collected, form a stream about 1 meter in width and 83 centimeters in depth (say 8 ft .4 in . and 1 ft .1 in .), flowing night and day all the year, with a mean velocity of one meter per second. Young animals drink a part of this enormous volume of milk, man takes a good part of it, and the rest is transformed into cheese and butter. No branch of agricultural industry has so progressed during the last fifty years as the making of butter. In 1833, France bought abroad $1,200,000$ kilogrammes of buiter, and sold to foreigners only $1,100,000$ kilogrammes. She now exports 84 to 35 million kilogrammes of butter annually, and receives in return from abroad (especially from England) a sum of more than 100 million francs.-Nature.

ROTH'S SAW FILE GUIDE

of a head provided with legs to slide in the grooves in the clamps, A, so that the clamp, B, may slide freely lengthwise of the saw. At the under side of the plate is a semicircular or arc-shaped piece, held in place by a screw and thumb nut, the screw passing through a slot in the lower piece, so as to allow of its lateral and vertical adjustment. The ends of the lower piece are apertured, receiving the slide rod, F. of the file frame. This flle frame is formed by arms upon the ends of the rod, F, the arms being adjustable and formed at their outer ends to receive the ends of the file. The file being held in the frame in this manner, and the guide rod, F, being beld in the clamp. B, the file is free to be moved endwise and across the teeth of the saw, and the file may also be swung upward from the saw teeth upon the rod, F. as a cenMachinist. industry of Pittsburg.
ter. By setting the piece which guides the rod, F, to the right or left, the angle of the file with reference to the teeth is varied. This is important, because all saws have their teeth set or bent, one to the right and the other to the left; and in order to file teeth so that their cutting edges shall be in the proper direction, the file must be set to the left while fling one-half of the teeth, and to the right for filing the other side. These changes can be readily made by loosening the thumb nut upon the clamp, B; and to facilitate the accurate adjustment of the file the plate is provided on its upper side with a scale of figures to indicate the angle.
The pitch given to the teeth is of course dependent upon the angle of the filing surface to a vertical line. This is varied by adjustment of the file in the file frame. To facilitate this adjustment and insure accuracy, a gauge, C , is provided. This gauge consists in a plate formed with a straight edge to rest upon the points of the saw teeth, and to the plate is pivoted a pointer. By turning the pivoted plate the angle of the edge is varied with reference to the straight edge of the plate, and upon the plate there is a scale of numbers to facilitate accurate adjustment. The gauge, C, being placed upon the saw teeth, and the pointer properly adjusted, the file is to be adjusted to correspond with the edge of the plate, which will give the proper pitch to the teeth. This may be done with either a three-cornered, a flat, or a half-round file, the file being secured in the frame by a set screw.

Inventors and Patents.

Judged by what seems to be current opinion, it would be inferred that the failures of inventors, at least of those who secure their inventions through the operation of the patent laws, were phenomenal. Why of all men who invest means-sonetimes fool ishly-the inventor in a patent should be singled out to point a moral is a matter by no means plain. Unquestionably, if all patents issued from the Patent Offlce are looked upon as evidences of so many attempts to establish a business enterprise on the basis of their existence, a large proportion of failures to get rich can be chronicled, but even then hardly more than could be found in other business enterprises. If the same argument that is applied so flippantly to the patentee's affairs is applied in the same way to general business affairs, the scope of the inquiry into the cause of the lack of success will be widened to an extent apparently nol thought of.
But it is manifestly tinfair to look at best upon more than a very small per cent of the total number of patents issued as evidence of an intention to establish a business or accumulate a fortune by their means. The great majority of patentees risk the small amount necessary to obtain a patent exactly as they risk similar amounts in other side or collateral issues, that is, for the chance of getting back more than they invest, and fully comprehending the probability of failure. Looked at in this light, the failures are about as numerous in oue instance as in the other, but in one case they go upon record, while in the other they are unknown. A good many men can look back to a few dollars invested -sunk-in the Patent Office, and at the same time can contemplate several other enterprises that were balanced by proft and loss. It is sometimes noted as remarkable that so many who know substantially nothing of the matter at issue attempt to improve existing appliances, and undoubtedly a large per cent of the failure of patented devices to come to the surface the second time is due to this cause; but why this should be considered more remarkable than the fact that men are forever meddling with other things with which lack of acquaintance makes success at least highly improbable, no one can tell.
If in distinction from those who invest a little in patents in the way of their regular business, or who do a little in that way as a sort of side issue, the class that may be termed profesional inventors be taken in comparison with those engaged in other business affairs, it will be found that both classes are subject to the same general laws of business, and about the same ratio and degree of success and failure will appear. Individual judgment is likely to be at fault, or one is likely to invest unadvisedly in securing a patent exactly as in a hundred other ways, and the results will be in accordance with the quality of the judgment; but the idea that there is anything phenomenal in the failure of inventors is something for which it would be difficult to find any foundation.-The Amorican

James Laughlin, Br.

James Laugblin, Sr., President of the First National Bank of Pittsburg, and member of the firm of Jones \& Laughlin, iron manufacturers, died in that city, December 18. For many years Mr. Laughlin bad been identifled with the iron

GORDON'S DYNAMO ELECTRIC MACHINE.

(Continued from page 1.)

ne the former machine the revolving rings each car ried the same number of magnet coils as the fixed rings carried armature coils, and it was found that an injurious in ductive action militated against the efficiency of the machine. If a certain number of lamps were maintained by one coil, and the circuit of the next coil was then closed, there was a reduction of light in the lamps of the first circuit by some 20 or 30 per cent. The cause of this was in the current circulating in opposite directions in the contiguous coils. In the present machine the armature coils are twice the number of the magnet coils, bence the magnets act on alternate coils. For example, at the instant when the 32 magnets are acting with their maximum effect on the alternate coils $1,3,5$ 63, the other alternate coils, $2,4,6 \ldots 64$, are practically idle, and altiough the coils $1,3,5$, etc., do not act upon each other, it is with far less effect in there being comparatively a long distance between them, so that the effect is inappreciable. Our illustration of the general view of the machine, as seen at Greenwhich, will give a better idea of the machine than mere description. Its total weight is about 18 tons. The weight of the revolving magnet wheel is 7 tons. The space occupied by the bed-plate is 13 feet 4 inches by 7 feet, while the diameter of the magnet wheel is 8 feet 9 inches. With 1,300 Swan lamps in two circuits, the 128 coils are arranged 4 in series and 32 in quantity. The number of revolutions is 140 per minute, which gives a velocity of a little over 60 feet per second to any point in the revolving wheel. The revolving magnet coils are magnetized, as we have said, by the current from two Burgin machines-one would in reality suffice-conveyed in the usual way by brushes making contact with rings. The rings are usually of phosphor bronze, and are separated from the iron collars by an insulator. The current in the magnets is 19 Ampères, with an electromotive force of 88 volts. The current in each armature wire is 27.5 Ampères. Each coil is wound with wire 0.185 inch in diameter, its cross section is 00269 square inch, and the total cross section of the 128 coils of wire in quantity is $0.0269 \times 128=3.44$ square inches.
The coils may be coupled up in almost any way desired. For example, if the full 5,000 lamps were placed on this machine, the 128 coils would be all coupled together for quantity. The number of revolutions would be raised to 200 , with a current of 48 Amperres in the magnet's coils, giving the same electromotive force as before, and the same current-24.25 Ampères-in the armature wire. The armature wire will take a current of 40 Ampères easily. The core of the coil is of wedge shape, and. made of a piece of boiler-plate bent upon itself, so that the angle forms the thin end of the wedge, and the free edges, which do not quite meet, form the thick end. A wedge-shaped head of a T-piece is inserted into one end of the folded plate and welded to it; the stem of the T being turned and screwed is passed through a hole in the fixed ring, and secured by nuts. A German silver flange is riveted on a shoulder cut on the end of the core. This flange has cut into it slots as nearly as possible in a direction at right angles to the currents which may be induced in it. The convection of the outer ends of the cores of the coils is made by prolonging the cores outward from the magnet coil, and securing them to a fixed iron ring-shaped plate, which forms their support.
In order that power may not be wasted in inducing currents in this plate, it is set back some distance, the cores being correspondingly prolonged. The space between the wire of the coils and the iron plate may be filled up with wooden plates or blocks, which form the second flange of the coil. The thickness is such that the algebraic sum of the magnetic potentials, induced by the magnetic poles at any point of the fixed iron ring, is as nearly as possible zero. The wheel consists of two central disks, and of two cones whose bases fit upon the central disks, and through whose apices the main shaft passes. The disks and cones are made of segmental pieces of boiler plate, so cut that the grain of the plate is radial to the wheel at the center of each seg. ment. The segments are riveted together with butt strips in the way usual in boiler making. The disks are kept apart at the center by a cast iron distance piece. At the rim they are kept apart by a wrought iron ring. The cones are of less diameter than the disks, so as to leave a space of flat disk all around exterior to the cones. The cones and disk are separated at the center by massive cast-iron bosses, turned square to the shaft where they butt against the disk, and conical where they butt against the cones.
The flat outer portion of the wheel receives the magnet cores, which are 32 in number. Each magnet consists of a
cylindrical iron core of cylindrical iron core, of two bobbins of brass or other metal Ther than iron, containing wire, and of two pole pieces. wrough passes right through a bole in the disks and wrought iron ring, and is fixed so as to project equally on
both sides. The brass bobbins are then slipped on both sides. The brass bobbins are then slipped on, one at
each side of the disk, and the pole plates being fixed on each side of the disk, and the pole plates being fixed on
hold the hobbins in their places. The pole plates are of iron, preferably wrought; their sides are not parallel, but form radii of the magnet wheel. -The Engineer.

Longeat Line of Rallway Under One Management.

 The New Orleans extension of the Southern Pacific Railroad is nearly ready for business. When it is completed, the Southern Pacific will have a road from tide water at San Francisco to the Gulf of Mexico, twenty five bundred miles,the longest continuous line of railway under one management.

Sheet Iron Gab Mains.

During the past few months the Paris Gas Company have been engaged in reorganizing a portion of their distributing plant for the purpose of connecting the trunk mains in the
principal central streets with their new station at Clichy-laGarenne. All the main thoroughfares of the city have been affected in this operation. From the Place de l'Opera to the Courcelles gate, and thence along the national road to the works, the new main is one meter in diameter, and is made of bitumenized sheet iron. The pipes are laid in a bed of hot bitumen mixed with fine gravel-a pitch concrete, in short. This composition is said to acquire very great consistency and strength in cooling, and to protect the sheet iron so well that it does not at all deteriorate or oxidize, even in a soil saturated with damp. The pipes in the streets are placed underneath the pavement. It is worthy of notic how Continental gas engineers appear quite converted from cast to wrought iron mains, even to the size mentioned in
the present example. With regard to the protective quali ties of the bitumen, on which so much reliance is necessarily placed, it is not stated whether the work is carried on in all weathers. It would appear that heavy rain must ma terially interfere with this method of main laying.

IMPROVED WHEEL TIRE

The engraving represents a new adjustable wheel tire, re ently patented by Messrs. Wm. J. Plummer and P. Tur pin, of Olympia, W. T
The wheel rim bas a.stepped recess in the face, in
which the offset portion of the end of the tire and the fastening bolts and nuts of the end of the tire and the fastoffset of the tire is serrated, and the inner face of a portion of the other end of the tire is also serrated, so that when bolted together the parts cannot slip. The offset part has

slotted holes for the bolts, to enable them to be shifted along the joint for tightening the tire, and the outer part has round holes with square sockets for holding the heads of the bolts when screwing up the nuts.
To apply the tire to the wheel, it is first adjusted to the size of the wheel when tightened thereon, and bolted together. Then it is to be heated and shrunk on, in the same manner as other tires are. Afterward, when the wheel shrinks, the tire can be shortened and reapplied, as before without the aid of a blacksmith.
Fig. 1 shows the tire; Fig. 2, a section of the wheel rim and Fig. 3, a transverse section of the tire joint.

Drainage and Ventilation of Fouses.

At a recent meeting of the Society of Medical Officers of Health, London, a paper was read by Mr. Rogers Field, M.I.C.E., on "Certain Less Recognized, but Highly Im portant, Poiuts in the Drainage and Ventilation of Houses," of wich the following is an abstract:
Three sauitary principles govern house drainage. These
1st. All refuse matter must be completely and rapidly re woved from the bouse.
2 d . There must never be any passage of air from the drains or waste pipes into the house
3d. There must be no convection between the drains and These, although supply.
These, although so simple, are very frequently neglected. The first goes absolutely to the root of sanitation; for were it strictly complied with, there would be no leaky drains, no polluted subsoil, and no production of foul gases in the drains from decomposing organic matter. There cannot be a greater mistake than to assume, as is commonly done in this is all that is required. Numerous away with freedom where the sewage from houses is that is requires are on record where the sewage from houses has apparently run away
freely for years, but where the greater portion of it has really been leaking out of the drains into the ground it has or close to the house. In illustration of this point, the author quoted two cases in his own practice: one in which the connection with the sewer was actually found to be blocked with shavings, which bad been left in when the
house was built three years before; the other that of a school in which the drainage from the lavatories bad leaked through disused drains under the floor of a large portion of the building, and where, althougb there was a mass of filth in some places seven feet deep, no leakage bad been suspected. If
the drains are exposed, and found clean and jointed
cement, this is not sufficient; the tops of the joints may be good and the bottoms bad. The only safe method is to actually test the drains by plugging them at the lower end and filling them with water. Very few house drains, indeed,
stand this test. stand this test.
Even if the drains are outside the bouse, it is a mistake to assume that it is unimportant whether they are sound, for not only may sewage leak out of faulty joints and percolate under the house, but foul air may be drawn into the house It is important to realize how small an amount of deposit will create mischief by decouposing aud generatitg foul gases; a mere irregularity of the joints, even wheu the drain has a good fall, is sufficient to cause this. There is no bet ter test of the condition of the drains than the amount of smell emitted from a ventilating opening. for, if drains be properly laid, and in thorough working order, practically no smell should exist. Examples were given. Faulty forms of traps and water closet apparatus were strongly condemned by the author, and diagrams descriptive of good and bad closets were exhibited.
The principle that there should never be any passage of air from the drains or waste pipes into the house was then considered, and the means of isolating the house drains from the public sewer, the necessity of keeping the drains outside the house, their ventilation, as well as that of the soil-pipes, the position of the water closets, the disconnection of the sanitary fittings inside the bouse from the drains, were resanitary fittings inside the house from the drains, were re-
ferred to. It was insisted that the danger should be guarded against of trusting too much to those parts of the drainage of a house which are visible, as an index of the condition of other and important parts which are concealed; and an instance was mentioned of a house the drainage of which had been recently reconstructed, and where all the sanitary arrangements appeared at first sight to be perfect, but where a subsequent examination of the drains which were under the house showed that the joints were in many places defec tive, and at one point the pipes were not jointed at all, but a space left large enough to put a hand in, though it was stated that special care had been taken to make the drains water-tight. Old drains, which had no outlet connected with gullies, were found beneath the passages and rooms; the housemaid nearly died of typhoid fever, and beneath the room she occupied was fould an old drain, with a large amount of foul deposit. A long list of other defects was described, leading to the conclusion that the drainage, instead of being very good, was really so radically defective throughout, that it was necessary to reconstruct the whole of it.
Another instance was given in which a lady and her cook were attacked with erysipelas and blood poisoning shortly after occupying a house. Varicus alterations were made in the drainage in the absence of the family, but, on their return, the lady was again attacked with erysipelas, and shortly after other members of the houschold. Again alterations were made, and again the lady was attacked with erysipelas, and the bousemaid with typhoid fever. An examination of the bouse by the author showed that an old stoneware drain in the scullery, into which the sink formerly discharged before it was disconuected, had not been removed, and though stopped with cement, the stopping was imperfect, thus allowing the air of the drain to enter the house. The author next considered the various ways in which foul air from faulty drainage inside the house passes to different parts, and pointed out the opportunities which were given for the passage of air from one part of a bouse to another, depending chiefly upon windows and fires, the latter, of course, mainly acting by drawing air through passages, staircases, and doors. But other chanvels must also be borne in mind, and an interesting account was given of the passage of foul air along bell wire tubes, the proximity of the bell pull to the freplace giving an increased opportunity for air to be drawn from a distance to this part of a roum. Channels for gas pipes and for hot water pipes also not uncommonly give facility for the admission of foul air. In connection with this part of the subject a remarkable instance was given of a particular bed in a school, the occupants of which were constantly the subjects of slight attacks of pneumouia with tendency to typhoid. In this case the foul air was conducted from a lavatory, where there was defective drainage, up a staircase, and, impinging on the ceiling of the dormitory, was reflected on the bed where the sickuess occurred.
An interesting account is given of the cause of the Duchess of Connaught's recent illness. Defective drainage was found in the basement of the house, and after numerous experiments the means by which the foul air entered the Duchess' bedroom was discovered. These showed that it was only when occupying certain positions in the room that she would be exposed to the influence of the foul air, while in bed she would escape. As a matter of fact, in twenty-four hours after sitting on a sofa in one of these exposed positions, her Rnyal Highness' symptoms fully developed themselves. These two cases were illustrated by diagrams. The necessity of a thorough disconnection betweeu the drains and the domestic water supply was then dwelt upon, and the mistakes most commonly made in this particular pointed out.

The simple decoction of onion peel is said to produce upon glove-leather an orange-yellow superior in luster to any other. It is also said to be suitable for mixing with light bark sbades, especially willow bark, and as a yellow for modulating browns. The onion aye is said to fix itself readily, even upon leathers which resist colors, and colors them

RECEIT INVENTIONS, Spwer Gas Trap.

The object of this invention is to guard against sewer gas entering a building through the sewer pipe connections.
The trap is constructed with a separable cover provided with inlet and outlet pipes, divided into three compartments by upper and lower partitions, and provided with disinfectant vessels within the first and third compartments, whereby sewer gas passing through or generated in the trap will be prevented from eutering the building. A is the body of the trap, provided with a cover, B, which is hung at one side to the body, so that it can be conveniently opened. With an opening in the middle or upper part of one side of the trap, A, is conected the inlet A, C, and with the inlet pipe, C, and with
an opening in the lower an opening in the lower
part of the opposite side is part of the opposite side is
connected the outlet pipe; the interior of the trap is divided into three nearly equal compartments by two partitions, one extending from the top of the trap about two thirds of the distance to its bottom, and the other extending from the bottom of the trap about two-thirds of the distance to its top. With this construction the first and second compartments of the trap will be always full to the level of the upper edge of the lower partition, and all the sewage that enters the trap must pass beneath the lower edge of the upper partition, and over the upper edge of the lower partition, into the third compartment of the trap, whence it flows out through the outlet pipe. Further information may be obtained by addressing Mr. Moses T. Wil liams, care Jesse West, 109 W. 11th St., New York City.

Now Bution Fantening

This device is designed to be employed for fastening shoes of the kind for which buttons are employed, the object being to avoid the wear and tear of the buttons and loles and avoid much of the labor and loss of time required to fasten button shues; and it is contrived for the application of buttons, also to give the appearance of button shoes when required, but may be used without the huttons, if desired. It preserves all the appearance of a button shoe, but it is equally as effective without buttons, the latter being only ornaments. A plate of thir metal is attached to the side of the upper covered by the fly. The inner edge of this plate has a flange turned upward and over toward the outer
 edge, and near the middle of the plate there is a catch which is raised slightly above the surface for engagement with a plate on the button fly. This plate is attacbed to the button fly by a wire to which the buttons are fastened. When it is to be applied to low shoes having only three or four buttons, one set or pair of plates will be used; but for higher shoes two or more pairs of plates may be employed, because the shape of the ankle will not allow of the use of plates longer than about the range of four buttons. This invention has been patented by Mr. William Wiggins, 103 B Street, South Boston, Mass.

Improved Hammer

The engraving shows a novel device for securing the handle to a hammer and for strengthening the handle. The invention consists essentially in a hammer having the outer end of its eye closed and provided with a threaded bole, a longitudinally bored wooden handle being inserted in the eye, and an iron rod passing through the handle and having one end threaded for engagement with the hole in the eye, and the other end threaded for engagement with a uut at the free end of the handle. A represents a bammer head having the outer end of the eye closed, and in the center of the closed portion there is a threaded hole. The handle, B is of wood, aud is bored centralIy throughout its entire length. and has one end formed to ex actly fit the eye of the hammer C is an iron rod of the same di ameter as the bore in the bandle and it has one end threaded to fit the hole in the eye, and the other end threaded for recciving the nut at the end of the handle. If desirable, the rod, C, may be If desirable, the rod, C, may be welded to the hammer head.
The advantages of this invention are that the handle is securely fastened to the bammer and prevented from coming off, without the necessity for driving wedges in the eye portion. The handle is made stronger by the rod running through it, so that the hammer can be used to pull nails without danger of breaking the handle. By emoving the nut the handle can be taken off when desired
and by baving the end of the rod smoothed and finished off even with the surface of the head, the hammer can be used in close places, such as in boxes, or in corners of a wall or ceiling where it could not be used if the nut were outside of the hammer hend. This invention has been patented by Mr. Thomas B. Bailey, of Columbus, Miss.

Hand Corn Planter.

This corn planter is constructed with a seed box having a seed dropping slide operated by a hinged bar, with which is also connected by a bolt and spring the hinged jaw for dropping the seed. The seed box is provided with a spring catch for holding the binged bar, and which is operated to release the hinged bar by a cord connected with the pivoted bandle of the planter. In using the planter the jaws, when closed together, are forced into the soil to the proper depth. As the foot comes in contact with the soil the upper end of the planter is forced forward, which forces the upper end of the bar, H , inward until it is caught and the upper end of the ba
held by the catch, M .
The in ward movement of the upper end of the bar, H, opens the jaws, and allows the seed to drap out into the opening made in the soil by the opening of the jaws. As the planter is being raised from the ground, the jaws are held open by the bar, H , and catch, M , so that all the seed will be left in the ground. As the planter is raised from the ground the operator turns the han-
 dle, which raises the tch, M, releases the bar, \mathbf{H}, draws the slide, \mathbf{Q}. forward to again receive seed, and closes the jaws ready to be again thrust into the soil to plant another hill. Two hills can be planted at a time by apart by two planters together at the proper distance patented by Mr. Orlando T. Grattan, of Ivanhioe \mathbf{P}. D. T.

improved Nut Lock.

The bolt, A, is made with a central bore, B, through it longitudinally, which is internally serew-threaded partly or wholly! throughout its length, the threads being pitched reversely to the threads, C , on which the socket of the nut
is to screw for drawing up the bolt on the plates. The nut has another and smaller socket or bore, threaded to re ceive the end of a binding crew, which is screwed in from the head of the bolt by a wrench or screw driver, fter nut is screwed on. For long bolts the socket in the nut is extended to form a bore entirely through the nut, and the bore of the bolt extends inward but a short distance, forming a socket into which, through the nut, the locking screw is inserted. It will be seen that any tendency of the nut or bolt to work loose will be resisted by the tightening of the binding screw, which will thus effectually
keep the nut tight on the bolt. This invention has been keep the nut tight on the bolt. This invention
patented by Mr. Charles E. Bell, of Greenfieli, 0 .

Valuable Tin Discoverion in Alabama.

From a late number of the Ashland Banner, Clay County Alabama, we learn of the discovery of large and valuabl lodes of tin bearing rocks, at the Brond Arrow Mines, nea that place. Within the last year Mr. G. W. Gesner, of this city, having secured proprietary rights to the above lands, has erected machinery for crushing, stamping, and washing the ores, and is now engaged in working them on au exten sive scale.
The ore bas bitherto been found chiefly as a tinely disseminated oxide in gneiss. as in Germany and other localities, but indications strongly point to the existence of the compact oxide, cassiteritc, somewhere in the lode. As the locality is readily accessible by railroad to Talladega, Alabama, and thence about twenty-five miles to Ashland, it is confdently expected that this discovery and enterprise will be the means of attracting attention to a section hitherto little known. The country is well wooded and watered, of a mountainous character, and eminently adapted for min ing pursuits. It is worthy of mention that this is the first attempt in the United States to work tin ore on the spot where found.

The Deepent Coal Mine in America.
Pottsville, Penn., claims the deepest coal mine in America. The shaft is 1,576 feet in depth. The cars, holding four tons each, are run upon a platform, and the whole weight of six tons is lifted in a little more than a minute by machinery 200 car loads a day.

Cortegudutiture.

The Tides on the Bay of Fundy.

To the Editor of the Scientific American:

Referring to the article in your paper of December θ. 1882, headed "Blomidon": These high tides, and the still higher stories we often hear of them, having perplexed me from youth, I set out last summer to study their reputed phenomena, before venturing to take a party of my friends in the steam yacht. The following course was sailed over: From this city to Halifax, N. S., standing well out to sea; thence coastwise to Cape Sable and Yarmouth; acrosa the inner mouth of the bay to Grand Manan Island; up the coast of New Brunswick to St. John and Trurn, at the head of the bay; down the coast of Nova Scotia to Annapolis, which river and several others I ascended, thus circumnavigating the entire sheet of water, which is about 180 miles long by an average width of 40 miles. Soundings and deep sea and surface temperatures were taken during the cruise. A week was spent at Kingsfort, N. S., on the beautiful Basin of Minas, a few miles from Cape Blomidon and Cape Split.
These tides are, as you say, one of the wonders of the world. They are caused, as are also the dense fogs of this region and of the North Atlantic, by the cold Gulf Stream, pouring from the Arctic Ocean by Smith Sound, Baffin's Bay, and Davis Strait, along the coast of Labrador, and through the Strait of Belleisle, which discharges into the Gulf of St. Lawrence. These cold, heavy currents hug the coast line as they iun.
On doubling the southeast corver of Nova Scotia, at Cape Sable, they strike for the first time the warm and lighter witers from the south, and drive the latter before them toward the point of least resistance, which is up the Bay of Fundy. At its mouth, opposite Cape Sable, the tide rises 6 feet; opposite Digby, 28 feet; at St. John, 38 feet; off 6 feet; opposite Digby, 28 feet; at St. Jobn, 38 feet; off
Windsor, 45 feet, and when ebb, a bucket could not be filled Windsor, 45 feet, and when elbb, a bucket could not be filled
with water in the harbor; at Truro, 60 feet, and at ebb the with water in the harbor; at Truro, 60 feet, and at ebb the
red clay bottom is exposed for a distance of 25 miles. These measurements refer to spring tides, which are highest. But the belief which so generally prevails, that the tide assumes, as il rushes onward with loud roar and greal velocity, a high, almost vertical wave, or "bore," as it is termed, which even draws into its vortex such animals as may stray near the beach, is wholly erroneous. There is no bore or tidal wave on the Bay of Fundy. Navigation there is neither dangerous nor difficult, unless it be from fog or ice. In the absence of storms, the tides, ebl and flood, are accompanied by scarcely a ripple. Even at Cape Split, where the bay suddenly contracts to a width of about $31 / 2$ miles, the wave" will not measure one inch in height What can have been the origin of this fable. which bas not only obtained general credence among many, but is even accepted by men of cience without question, and is yet chimerical as a madman's dream? Probably the very tritling bore which does eally exist on two small tributaries of the bay, the Petitcodiac and Shubenacadie. The bore on the former river I measured at Moncton, N. B., 89 miles E.N.E. of St. John, and found it just $31 / 2$ feet high, with a travel up-stream of 6 miles per hour. It is caused by the last of the ebb lides being met and repelled by the flood tide in a narrow stream confined by almost vertical banks.
I cannot close this hastily written sketch without adding that the British people of the lower provinces are reasonably courteous, and quite as honest and honorable as any among whom I have ever traveled.
P. J. McCourt, M.D.

New York, Dec. 9, 1882.

Aztec Remains in La Plata County, Colorado.
At the Denver Exposition there were exhibited some Aztec remains from Farmington, La Plata County, Colo., of inense interest to the student. They were found in the ruins of a building several stories high, which had been erected in the form of a terraced pyramid, near the mouth of the Animas River.
Nearly all the bones of the human body were discovered in a good state of preservation. Among them were three skulls, two of men and one of a woman. The latter was also young, as the distinctness of the suture joints testifles; one of the male skulls was of a middle aged person, and the other evidently of an old man, as the several parts had grown almost solid. All were very thick, showing charac teristics of the semi-barbaric races. The teetb remaining were mostly sound, though one showed marks of an ulceration, and there were several empty sockets.
Besides, there were some fine specimens of Aztec pottery of perfect color, parchment, stone implements, etc., from the same vicinity. This section of Colorado has been as yet little explored, but enough has been found to demoustrate that it is a region of great value to arcbæology.F. E. S., in Kansas Cily Review.

Helght of Ocean Waves.

It is stated that in the North Atlantic record waves have been observed of 24 and 80 feet high, highest being 48 , mean 18, in westerly gales. In the Pacific, 32 feet is recorded; South Atlantic. 22; Cape Horn, 32; Mediterranenn, $14 \frac{1}{2}$; German Ocean, $131 / 2$; and French sailors mention 30 feet in the Bay of Biscay.

ALLEN'B APPARATUS FOR FEEDING BLABT AND OTHER FURNACES.

This invention is an improvement in the feeding apparatus of a blast, cupola, or other like furnace of the class empluying a cup and cone or a bell and hopper.
The design of the invention is to enable the ordinary feeding or charging operations to be performed from the sround. To accomplish this there is arranged immediately ,ver the bell or cone, b, an open bottomed hopper, c, and so arranged with reference to the bell or cone that charges of material for the blast furnace, on being dumped or discharged into the hopper, c, will be delivered through its open bottom on to the bell or cone at or near its apex, and consequently will pass down the sides of the bell or cone uniformly all a round, and so will be distributed with practical uniformity around the annular receptacle formed at the junction of the bell and lower hopper, a. Then, when the bell is lowered to discharge such material into the furnace, B, such charge will be supplied to the burden below uniformly all around, or practically so. Then, by the addition of a chute, d, from the elevator, D, to the auxiliary bopper, and of a self-tilting or dumping car, D^{\prime}, so that the car containing the material shall be automatically emptied into the chute, the entire work of feeding is done with. out the necessary presence of workmen at the top or mouth of the furnace to do or superintend the feeding.
The material may be dumped in from barrows by hand in the ustaal way; but the inventor prefers to so organize the apparatus that the work of feeding may be done from the ground, and without the necessary presence of workmen for such purpose at the top or mouth of the furnace.
The engraving shows an elevator, D, which may be of any suitable construction, adapted to be operated from the ground, and to raise and lower the car, D^{\prime}, loaded with the material to be charged or fed into the urnace. A suitable tilting mechanism is added, so that when it reaches the proper height it will be tilted, and its contents will be dumped into the chute, d, which discharges into the bopper, c. As soon as the car is thus emptied it may be lowered in the usual way and at the proper intervals. The bell, b, is also lowered from below by the use of a windlass and rope.
In the engraving the windlass, rope, etc., are on the side of the furnace opposite the elevator, but for ease and facility of operation, the bell lowering and raising appli ances should be arranged over and down the side of the fur nace near the elerator
This invention has been patented by Mr. William H Allen, of Pittsburg, Pa. (P. O. Box 943.)

HEW TRACTION ENGINE

This new engine is made for plowing, thrasbing, road, mining, and yard transportation. The frame is constructed of four parallel I steel sills with cross beams at ends, and diagonal braces throughout, except at base of boiler, giving stiffness to frame, and supporting at ends the coal tender and water tank, thereby giving equal distribution of weight and balance on the tracks. The parallel sills are 24 inches apart from centers, to which are attached on the under side of sills, by adju table boxes, three axles on each side. On these axles are firmly keyed three driving wheels of 2 and 3 inch faces, with a space of $21 / 2$ inches apart on axles. On the front and rear axles are four wheels; the first and fourth, or outer wheels, are 3 -inch face, and are flanged with flanges on outside of wheels to prevent track from slipping off in tuining. The center axles have three wheels of 2 -inch face. The gangs of wheels intermesh or overlap each other; the tires of center gangs work close to the hubs of the front and rear gangs. Revolving over with these gangs of whecly are two tracks of rubber on other suitable elastic material com posed of an outer and inner layer, between which are transverse metallic plates, secured through layers and plates by rivets or bolts, to retain tracks in shape transversely. The front and rear gangs of wheels arc driven forward or backward, or one forward and the other backward in turning, by spur gears secured to inside of wheels; front and rear gangs are connected by idle gears on center axles. The center gangs are driven in the same direction by spur gears on axles, of the same diameter as those on front and rear gangs. Motion is given by long pinion to these gears from reversing yacht engine, one on each side of upright boiler for each track. The width of each track is 18 inches; thickness of rubber tracks, $41 / 2$ inches; height of wheels, $41 / 2$ feet; length of each track in contact with the earth, 60 inches; hence $60 \times 18 \times 2=$ 2,160 inches of effective earth contact or traction, over which is distributed the 6 tons of weight of engine and track. A horse of 1,000 pounds weight has 48 inches of effective earth contact while pulling; hence 10 horses have 48 i inches of traction.
The engines now on the market with two drive wheels of
10-inch tires, have 48 to 72 inches only of effective earth
contact, consequently are useless for plowing, or hauling their own weight over spongy ground.
This engine's tracks have no suction or adherence when the tracks leave the ground, therefore no loss of power by carrying its tracks forward. The tracks cannot be broken by passing over an obstruction, as the rubber will give to wheels until the wheel rotates over, and then instantly return to place.
The adherence of the tracks to the periphery of the onehalf of the front and rear gangs and the bottom and top of center gangs of wheels, insures no slipping of wheels on the tracks when worked to its fullest capacity on steep in

ALLEN'S APPARATUS FOR FEEDING BLAST AND OTHER FURNACES.
clines. Patented in the United States, August 29, and in Canada, August 31, 1882, by Jacob Nixon, of Winfield, Kansas, who can be addressed for further information.

Houme Plumbing and Drainage

This subject is well worn, but so important to the wellbeing of every houseliold that we believe it is doing the greatest good to the largest number of our readers by calling their attention frequently to it.
The last annual report of the Massachusetts State Board of Health, Lunacy, and Charity contains some excellent suggestions in regard to this subject of house drainage. They are the result of much study and research, and until omething better is proposed much good will result if they are followed by builders throughout the country :

1. All drain pipes inside the house should be of metal, and all joints of well-calked lead or solder. Metal is recommended in preference to stone-ware, owing to the diffculty in keeping tight the joints of the latter. All connections between lead and iron should be by a calked brass oipple and solder. It is best to keep drain-pipes in sight, or at least of essy access. They should never be hidd or at least of easy access. They should never be hiddon

NIXON'S TRACTION ENGINE.

 ipes. team in winter. are remote from windows.cleaning. In straight reaches of fifty feet or more in length, these Y branches and clearing holes should be introduced intervals of not over forty feet.
3 No T branches should be allowed, except in vertical
4. All pipes should be put together by a series of straight
lines, and with a general direction as straight as possible
5. Alt pipes should have a fall of not less than two per cent of their length, where no special apparatus is provided for flushing. All drains should be kept free from deposit ; and, if this cannot be effected without flushing, special apparatus should be applied for this purpose.
6. A trap should be placed on the main drain outside the bouse walls, made of glazed earthenware, with a vent hole as large as the pipe directly above the trap, communicating with the open air. This should be made accessible for cleaning out, and a rain-spout had hest be discharged into it or into the drain at some point above it. This trap should be near the bouse, and can be alongside the grease tank, if convenient.
7. Every separate stack of soil or waste pipe within the bouse should extend out through the roof, at least four inches in diameter; smaller pipes than this are liable to be choked with ice from condensation of
8. Separate traps should be placed under all receptacles of drainage, as close to them as possible, and no other traps allowed to intervene between these and the outside or main trap described above (6). Each one of these separate traps should have an air pipe of iron or lead connected just below the water seal, as large as the waste pipe, and either connecting at its upper end with the soil-pipe above all other brancbes, or passing through the roof independeutly, as found most convevient. Several traps can be served by the same vertical line of vent pipe.
9. No drain pipe from any safe pan under any tub, sink, bowl, or water closet sliould be connected below to the drain system, but should discharge over an open sink or cellar floor.
10. No waste pipe from an ice chest or refrigerator should be connected with the drains.
11. Rain water leaders shnuld not be used as soil or drain pipes, nor should they be depended on to ventilate drains. If connected with the drains at all, care should be taken to so connect them below the water of some trap otherwise supplied with water, unless their upper ends
12. A tank or small cistern should be provided in the upper part of the bouse, from which the kitchen boiler should be supplied, together with the bowls and sinks; also any water closets that happen to be close by. The drinking water should not be drawn from this tank, but from a separate tap on the supply pipe direct from the street main. The overflow of this tank should not be connected with any drain, but discharge as directed for safe druins above (9). It is common in mild climates to discharge such pipes through the house wall into the open air; but this plan would be wortbless in frosty climates. 13. All water closets should be supplied by a small tank directly above them, and not by valves altached to the closets themselves, nor by pipes branched from those from which drinking water is drawn.
14. Concentrate the fixtures used for drainage-such as water closets, bowls, sinks, tubs, etc.-as nearly as possible in vertical groups, to avoid waste pipes passing across under floors, which are rarely satisfactory
15. Never locate a fixture, especi ally a water closet, in a dark corner where a good ventilation cannot be had. If outer air cannot be got, seek to draw off the foul air from the closet by a pipe leading up through the kitchen fire flue to the chimney top built into the chimney for the purpose, at least four inches in diameter Small pipes branched into the fire flues for this purpose soon get choked with soot at their mouths, and become worthless, unless extending quite to the top of the chimney.

Underground Wires.

The laying down of the telegraphic wire which is to put Marseilles in direct communication with the capital, is being rapidly pushed forward. The distance is 536 miles. Two hundred and fifty workmen are at present em ployed on the right bank of the Rbone, following the high-roads as far as possible. The cable is inclosed in a cust iron pipe, laid at a depth of 5 feet 6
under the ground. If needed below the basement or cellar inches under ground, the joints of the pipes being covered floor, they should be placed in a trench lined with brick with india-rubber washers and leaden rings. About every walls, with movable covers on the trench. It is a good 550 yards the cable passes through a covered cbamber of plan to paint the pipes white, so that any slight leakage of cast-iron, fitted with a manhole, by means of which it can gas may be seen readily; for such gas generally discolors the paint. 2. Changes of direction in iron pipes should be made insped by cast-iron boxes, which also enable the wires to be mostly by Y branches, leaving an open hub, to be closed by estimated at forty million francs, or $£ 1,600,000$. When this a brass nipple calked in with a movable brass clearing screw line shall

Telephonic Experimente.

As a result of numeruus experiments on induction in telephonic circuits, Prof. Cross, says the Tech, has found that the induction operating to produce telephonic disturbances is almost entirely electro-dynamic.
The effect of thin sleets of tin foil surrounding an insulated conducting wire is very slight. The diminution of inductive effect produced when a plate of metal or a spare wire is placed between the wires carrying the inducing and induced currents was found to be much greater than with the foil, and also greater with the overtones of the sounds transmitted than with the fundamental. That electrostatic induction is almost ineffective, so far as producing sounds in the receiving telephone is concerned, is shown by the fact that if a small secondary coil with a large and deep primary is held at right angles to its plane, the sound disappears; also, if the metal plate between the coils is slit radially, its effect in diminishing induction disappears.
If intermittent or variable currents are passed through a coil of wire forming a closed circuit, within which a second closed parallel coil is placed, the secondary current induced in the latter can be investigated to a certain extent by iuserting a receiving telephone in the secondary circuit. If a closed wire coil is placed near to the other coils, there is a current jinduced in it, which, as Heory first showed, dimiuishes the strength of the current in the secondary coil. A heary sheet of metal, as of brass, placed between the primary and secondary coils, also diminishes the current in the secondary for the same reason. Hence, in both of these cases, the sound produced in the telephone by induction is considerably reduced. The effect of brass, copper, and iron is very bird, but merely trailed behind it as it walked.-Land and marked. Lead, also, contrary to an opinion that has been Water. advanced, exerts a very decided effect. Thin foil, even if it completely envelops the secondary, produces but slight effect. The application of these important results to telephonic cables is obvious.
If, instead of being placed in a simple secondary coil, the telephone is placed in a double circuit of twisted wires, so arranged that the current induced in these will be in opposite directions, complete neutralization of currents is produced, and consequently cessation of sound.
Various other experiments have been performed to test the value of different "anti-induction" devices.
Prof. Cross has also found that a Hughes microphonc and a Blake transmitter were capable of transmitting the sound of a high pitch bar giving 12,000 double vibrations per second, thus showing the excessive sensitiveness of the ordinary hand receiving telephone. If the capacity of the line were increased, it was found that its ability to transmit high vibrations was diminished. These experiments also showed that change in quality in the sounds transmitted is not due, as has been stated, to an inability of the microphone or any part of this circuit to respond rapidly enough to their higher overtones.

Premervation of Railway Thes.

Some interesting data are published showing the relative value of different methods of injecting railroad ties. On the route from Hanover and Cologne to Minden, for example, the pine ties inject ed with cbloride of zinc required a renewal of twenty-one per cent, after a lapse of twentyone years; beech ties injected with creosote required a re newal of forty six per cent after twenty-two years' wear; oak ties injected with chloride of zinc required renewal to the extent of about twenty-one per cent after seventeen years; while the same kind of ties not injected necessitated fully forty-nine per cent of renewals. The conditions in all these cases were very favorable for reliable tests, and the road bed was good, permitting of easy desiccation; the unrenewed ties showed, on cutting, that they were in condition of perfect bealth. On
another road, where the oak ties were not injected, as larg a proportion as $74 \cdot 48$ per cent had to be renewed after twelve years; the same description of ties injected with cbloride of zinc required only 3.29 per cent renewals after seven years, while similar ties injected with creosote involved, after six years, but 0.09 per cent.

THE stock of ivory in London is estimated at about forty tons in dealers' private ware'ouses, whereas formerly they usually held about one hundred tons. One-fourth of all imported into England goes to the Sbeffield cutlers. No really satisfactory substitute for ivory has been found, and millions awalt the discoverer of one. The existing substitutes won't take the needed polish.

IGSTANTANEOUS PHOTOGRAPH OF AN RLEPHANT.

The Exhaunt Injector.

On November 11, the members of the Manchester Association of Employers, Foremen, and Drauglitsmen had an opportunity of inspecting, on the premises of Messrs. George Fraser, Son \& Co., a feed water injector, which is actuated solely by the exhaust steam from the engine. The injector is the inveution of Messrs. Davis, Hamer, and Metcalf, and the perfectly successful operation of the apparatus by steam drawn from the ordinary exhaust pipe was a matter of con siderable surprise to many of the visitors. Afterward a paper descriptive of the iujector was read before the members, at their ordinary meeting held in the Mechanics' Institute, by Mr. A. S. Savill, who, before explaining the invention, said it seemed to bave been the opinion of engineers that it would not be possible to work an injector with steam at atmospheric pressure; that an injector must have a pressure of steam to work at; and that with the exhaust injector, this pressure must be got up in the exhaust pipe, which of course would act as a back pressure on the piston of the engine, under which conditions there would not be much, if any, economy in the adoption of an exhaust injector. This reasoning had, however, been proved entirely wrong, and the injector he had brought before them did not in any way put on back pressure, but, on the contrary, reduced or altogether removed it. The injector was simply fixed in a vertical position to a branch from the main exhaust pipe, and to start the injector all that was necessary was to turn on the steam and water. With regard to the apparatus itself, the most important point was its automalic action. As soon as the first puff of steam from the cylinders had cleared out the air from the exbaust pipe, the injector commenced to work, and kept on until the engine ceased to give out steam, restarting again as the engine restarted, without any manipulation being required. In the construction of the injector there were, as in the ordinary types, three nozzles-the steam nozzle, the combining or mixing nozzle, and the delivery nozzle. The steam nozzle was similar to the one in the Giffard injector, but of a very large bore, and inside was fixed a small spindle to concentrate the steam. The chief feature, however, was the combining nozzle, which was constructed to start the injector automatically. The nozzle was split from its smallest bore for rather more than half its length, onehalf being solid with the nozzle itself, and the other half arranged to work freely on a hinge, by which it was enabled to enlarge or contract its area. The delivery nozzle was very similar to that of a Giffard injector. When not working, the hinged flap in the injector was open, and a large area was presented for the egress of steam and water. When steam and wnter were turned on, some condensation took place, which instantly formed a partial vacuum, into which more steam and water were drawn until such a vacuum was formed that steam was attracted with a velocity so great as to impart to the water sufficient speed to enter the boiler, the fiap being at the same moment sucked down, and forming to all intents and purposes a solid nozzle. Results from actual experience had shown that by one of these injectors, the feed water entering at 66° Fahr., and a minimum delivery of 960 gallons per hour, the temperature had |been raised to 190° Fahr. The injector was capable of feeding against 70 pounds to 75 pounds pressure, but when the pressure was above this an arrangement was attached for supplementing "live" steam from the boiler, which in addition further increased the temperature of the feed water. In the discussion which followed, the injector met with general commenda. tion, the results which had been seen in actual working being admitted as surprising; and Mr. Gresuam, who has long been connected with the manufacture of injectors, said he considered the exhaust injector as great an

Paris, gives shelter to the large mammiferæ. Here dwell especially the giraffes, camels, elephants, etc. We give herewith, from La Nature. a copy of an instantaneous photograph taken in this part of the Jardin. The elephant shown was taken just as he was in the act of opening his mouth to receive a piece of bread that his keeper was about to throw to him. Here is seen faithfully represented the reservoir for water that runs around the rotunda, and the external wall of the latter. We may recall the fact that six very similar parks that radiate from the rotunda permit of the large mammifere taking the air when the tempera ture is favorable. With each of these parks there is con nected a stable, in which the animals are housed, cared for and kept warm during winter.
advance upon the present methods as the introduction of the Giffard was upon the methods then in vogue. He thought, bowever, that automaticity might be carried too far, and that the exhaust injector would scarcely be suitable for locomotives, as it only delivered its feed when the engine was working. Mr. Savill in reply, however, stated that, by connecting the injector with the boiler steam, it could be worked when the engine was standing, and that. although it did, not seem a very nice arrangement for locomotives, it had been worked successfully on a locomotive both when it was running and whan it was standing.

IT is estimated that there passed througb the booms of the St. JohinRiver, N. B., this season about $126,000,000 \mathrm{ft}$. of logs.

ENGINEERING INVENTIONS.

 Mr. Albert J. Seaman, of Stanford, Ky., has patented an improvement in what is known a" petticoat" pipes for locomotive engines; the object "petticoat" pipes for locomotive engines; the object
of the invention being a construction by which a large exhaust nozzie can be used, sn that a larger quantity or steam may be generated with a less amonnt of fuel tha usual.
An

An improved dumping car has been pa tented by Mr. John E. Bemis, of Waupun, Wis. The wise along the middle, the parts being hinged near about their middle longitadinally to the car frame, so a to be silted on the hinges for dumping to the sides of the car. The inner edges of the divided platform have sides to prevent the load from fulling between them
when raised up and the joint where they meet toeether when raised up and the joint where they meet together
opened; and between the sides and the outer edges ver which he earth is dumped they have a rod or ba piled up around it when loaded on, and the rod will act os retarder to the earth when discharging and preven from sliding off rapidly and projecting so far awa from the track as it otherwise doen.

mechanical inventions.

Mr. Alfredo Cottrau, of Naples, Italy, has patented an improved car wheel consliting in two conentric cires fitting over the treads, and connected at the
adjoining edges by a flat ring which is placed edgater adjoining edges by a fil
in relation to the tires.
Mr. Allen Ditson, of Larned, Kan., has paented an improved mechanism for converting reciproating rectilinear into continuous rotary motion, so as to avold dead centers. The invention is especiaily
adapied to windmills, but may be used wherever

Mr. Christian W. Hergenroeder, of Baltimore, Md., has patented a device for turning the leaves heets or book, and a train of gearitg connected to pedal, hy which saitable mechanism for turning the

An improvement in hat pouncing machines has been patented by Mr. Theodore Hadden, of Mattea-
wan. N. Y. This iuvention consists of a tension attachwan, N. Y. This iuvention consists of a tension attach-
ment. whereby the action of the pouncing roller apon the felt may be easily controlled and the danger of injury to the hands of the operator from contact with the

Mr. Augustus F. Woodham, of Minneapolis, Minn, has patented a velocipede for traveling on ice and other smooth surfaces. It has a suspended
driving wheel for operation by the feet of the rider, ront sled runners having an attached hand steering device, and a rear spiral propeller actuated by attachments
on the driving wheel arranged to engage with a screw on the shaft of the propeller, the latter and the roners orming the bearing supports for the vebicle on the sor face it is designed to travel over.
A combination tool patented by Mr. Elijab A. Parks, of South Bend, Ark., consists of a metal driver, having notches in one edge for bending saw teeth or breaking glass, having the upper end of this edge beveled and provided with gange studs or projechons to be ased as a sauge for the inclination of saw eeth, having a glass catting roller jonrnaled in one edge, and having a recess in one end, which forms a
sharpened and pointed prong to be used as a can

Mr. Daniel M. Reed, of Ancona, Ill., has patented an improved windmill, In which the whecl is of sheet metal instead of wood, as herecofore. These ails are placed edgewise in diagorial slots cut in the edges of the inner and outer rims of the wheel in the bich pass through the sails and diagonally into the rims. This mill is provided with improved means of gulation, so that it maintains a uniform velocity und
rying pressares of wind.
Messrs. Samuel Collinge and Aaron Serfass, chine especially adapted for short grained brick ma shale, and is adapted to work it in a damp or moist machine being adapty found when newly dug up. the clay will be formed into a truly shaped brick at one entering them prevents the clay from clogging the ma chine or from adhering to the plungers, so as to break Mr. William C. Knox Mr. Will in Kins, haw patented an animal power made with a small wheel
placed loosely upon a slationary upright shaft, and conswee by hinges with the inuer ends of arms and upon caster wheels to support the weight of the wheel by an interposed frame a large gear whecl, into the teeth of which, upon the opposite side of its axis, mevh the tecth of wo small gear wheels, cach gear whee! being
provided with a driving pulley. whereby two separate machines
eame time.

AGRICULTURAL INVENTIONs

Mr. Thomis P. Hopper, of Sherman, Tex has patented an improved cotton seed planter, by whic is insured, and depositing of the seed in moitst soil is made prac
An improved Paris green and fertilizer dis tributer has been patented by Mr. Benjamin F. Mus
chert, of Morrisville, Pa. Th:s is a simple and ingenious arrangement for distributing a greater or less guan-
tity of Paris green or other material upon or around tity of
plant.
A corn planting machine invented by Mr. Zebulon W. Bart, deccased, has been patented hy Lydia
Ann Burt, of Rome, O., adminletratrix of said Burt.

This invention" relates to improvements in that class of corn planters and Pertilizer distributers in which th Mr. James B. B. Evans, of Junction Cit Mo., has patented a band catter and feeder for thrash of machines. The object being to feed to the cylinde thrashed, and at the same time to cat the bands of the ceaves and spread them out evenly and regularly be An lare introduced into the thrasher
An improved cotton chopper has been pa Ala. This Mr. Greene W. Dugger, of Greensborough ping and hoeing or cultivating machine, in which it sought to provide simple and efficient means for regilating and adjusting the chopper and hoes or plows
both for working together or separately, also to provide for the
tlons.
Mr. Charles William Wilfert, of Jefferson ville, N. Y., has patented an improved hand planter
made with a box having its lower end beveled upon the opposite sides, and provided with a handle and guide keepers. At, ihe lower ends of the sides of the box are
hinged two plates, connceted at their apper ends hinged bare with a slide placed at the forward side o the box. The upper ends of the hinged plates are held apart, holding their
tached to the box.
Mr. Geo. C. Mueller, of Shasta, Cal., ha patented an improved corn crusher. The invention consists in a casing containing a cylinder on which saw
blades are secured, between which cylinder and curved frame, aleo provided with saw blades, the ears of corn pass and are cut to pieces, and these plieces ar then guided by enitable guide plates to a cylinder pro vided with atuds on its surface, between which cylinder
and a curved frame, also provided with studs, the pieces of the ears of corn are crushed to meal which is to b
Mr. Judson
Mr. Judson B. Hurd, of Sour Lake, Texas has patented an improved revolving plow, for cutting
up, breaking, and turning over the soil or turf, in which the cutter blades are freed antomatically from the soil, turf, etc, adhering thereto. The invention consists in a cylinder to which radial blades are attached, between which movable scraper blades are held and against the radial blades, which scraper blades ar
moved to and from the edges of the radial blades by pivots attached to the edges of the radial blades by passing into grooves in the end plates, on which the cylinder revolves, whereby when the revolving plow i moved over the ground the radial blades cut into t .
ground, and the scraper blades are moved to the outer edges of the radial blades when the same are rained and scrape off the soil, grass, etc., adhering thereto which scraper blades are cleaned by scraper plates at

MISCELLANEOUS INVENTIONS.

An improved book rest for writing desks and tables has been patented by Mr. Reaben W. Terrill of Denton. Texas. The object of this invention is to
support record books upon deeks or tables in such posiions that they can be conveniently used.
A novel device for moving pianos bas been This invention consists of a Prompen, of Boulder, col olied to a pianoforte, so that it can be moved with great facility and without danger of marring or injuring it. Mr. Minebeart Brunell, of Allegany, N. Y. has patented an improved device for equalizing the pulls in advance of horses, so that when one anima less will have of the other, the animal that draw A novel roundabout has been patented by Mr. Cornelions R. Silabon, of Hull, County of York, Eng. whereby the sups are siven wherebent, in imitation of the motiong or undulatory
An improved suspeuder end patented by Mr. Bernard Petchaft, of New York city, is formed ower ends, and then croesed before until near their the ends, the two crossings betng fasteved by rib clamping devices, forming a button hole
An improved wire stretcher patented by Mr. Robert Milby, of Morales, Texas. consists of two ble rod, provided w, connected at one end by a detactia and, and having the vertices of the angles connected

An improved scoop has been patented by Mr. Mark J. Llddell, of East Saginaw, Mich. This inention consists iu a scoop body of metal secured to a and flting over a bead on the head. The handle is seMr. David W
Mr. David W. Smith. of Port Townsend Washington Ter., has patented an improved buckle for one or more straps can be secured and by whic without being stitched or riveted.
Mr. James B. Bray, of Waverly, N. Y., as patented an improved machine for perforating paper tc. It consist of a perforating whecl mounted in the ght line over the paper capable of being moved in a An improved fire extinguisher has been paented by Mr. Daniel Parham, of Tyngeborough. Mase Tices, whereby the severing of a cord or cords by fir
vent operater to sound a
Mr. Harley A. Barnhart, of Hallsville, 0 . bas patented an improved table. The object of this combination of construct an extension table by the
ceparate tables in such manner that the two tables can be used separately or cumbmed
together, as may be desired.

Messis. John B. Davis and William Walker Glenwood, Pa., have patented an air blast or inject Ing apparatus for use with blacksmiths' forges and fur-
naces for the supply of air thereto, by means of a stean jet, whereby the air is applied in a moist condition, o
Mr. Paul E. Wirt, of Bloomsburg, Pa., has patented ates to that class of writing instruments in which aib pen is employed in connection with a reservoir ountain; and it consists mainly in a duct and valve of ink at the pen.
Mr. Hiram
Mr. Hiram Kenton, of Albany, Or., has patented an improved magnetic gold separator, for
separating fine gold and other metals from maguetic sand and other gold bearing sands and gravel in hydrauc mining, and also for the working of the taillugs from quartz mills for eaving the gold carried off in the sluice-
Mr. Harry T. Johnson, of Scio, N, Y., has patented an improved mechauical telephone, having a or inproving its vibratory acton. It also diaphragm the peculiar construction aud arrangement of a double diapliragu arrangement calculated to improve the effMr. Henry C. Fox, of Evansville, Ind., has atented an improvement in reversible sad-irons, in heating devices within, and has several faces either nue of which may be brought into use by shifting the osition of the handle, which is adjusted in relation to iron by means of a spring catch.
Mr. Alexander Morison, of Alpena, Mich. hanged so as to adapt it for carrying ordinary freigy or for carrying stock, or both, as circumstances may require, and one having such construction that the stock
may be casily fed and watered without taking them out of the car.
Mr. William W. Goodwin, of Pbiladelphia a, has patence an improvement in gas coosing tov gas cooking sloves and ranges in such a mo construct give th greatest facility and convenience for cooking operations, and at the eame time insure the escape of ape flue.
Mr. Willianı W. Goodwin, of Philadelphia Pa, has patented an improved burner for gas stoves type, atapted for burning ans burners of the Bunsen spheric air, the object being to facilitate and atmo of the burners, which are apt to become clogged. Thi burner may be applied to yas cooking stoves and range

Mr. Diedrich Schmidt, of New York city ass patented an improved fish safe, in which salted weight hy the evaporation of water. Tithe losing in conists in a box provided with a slatted floor for re ceiving a box containing salted fieh, below which a
water pan is placed, which provides the box with moist water pan is placed, which provides the box with moist the salted flish.
An improvement in fence posts has bee The object of this invention is to faruish durable character fur building fences of fany usual sttle It consists in a mortised poet slotted from the uppe end through the middede duwn to a point at the desire height of the bottom rail above the ground, and havin metailic flling pieces with ears turned in opposite di
Mr. Frederick H. Tompkins, of Jersey City N. J., has patented an improved shade rack for hold-
ing a variety of sample window ebades so that they may be conveniently and advantageously exhibited to cus tomers for selection, the construction being such tha small space or for shipment, and down and packed in and such that the curtains may be enturely inclosed in the rack. and thus completely protected from dust and other injury.
An improved automatic siphon has been patented by Mr. Robert Reiman, of Egg Harbor clity N. J. The invention consists in a $=$ tarting and stopping outlet end of the tube or hose of the siphon, wherebs the air may be exbousted to start the siphon by a re movable mouth piece, and the flow of the liquid may be ayain indefinitely, without having recourse to a renew of the exhansting operation.
An improved inkstand has been patented by Mr. Charles De Roberts. of Albion. Neb. The inapont and with a swinging cover, which ink vessel and cover can be operated by means of levers and con-
necting rods in such a manuer that when a knob pronecting rods in such a manuer that when a knob pro
jecting from the frout of a lever pivoted in the base of jecting from the fromt of a lever pivoted in the base of
the inkstand is depressed the spout will be swung downward and the cover will be raised. so that a pen Mr. William G. Jesse of Geo the ink.
, Kown, Ky has patented an improved trap for catching tobacco
fies, cotton fice, bee millers, and other insects which injure the crops. The invention consists in a box momnted to turn on a lamp and provided at its inner chnte between the lamp burner and the mirror, to the ower end of which a bag or receptacle is attached for receving the insects which have been killed or crippled by hom in
An improvement in tanning apparatus has
hecu patented by Mr. Wenzel Masek. of Philadeiphia,
Pa. This is an improvencent on Lettery Patent No 18.034. for an apparatus for use in tanning hides in tank or cylinder for containing the hides and tanning
in hanging and remoring the hides, and which aleo serves to agitate the tanning liquor and throw it apon
the suspended hides, whereby twe operation of tanning is hastened.
An improved thread case has been patented by Mr. Eugene L. Fitch, of Des Moines, Ia. This in vention relates to that class of thread cases in which a number of spools placed trausversely are held in a row
in a drawer in such a manner that the spool at the outer or open end of the drawer can be released to dro from the drawer by pulling a wire upon which the pool rolls to that end of the case at the inner edge of seller or er and can then be seize pcilitatienuly releasing the outer end spool of a row of spoois in a drawer.
An improved furnace grate has been $p a$ The by Mr. Jolin R. Fish, of Grund Rapids, Micb Tre invelition consists of an arrangement oh rocking
grate lower with respect to each other to the extent of au inch and u half or thereabout, the ohject being to provide grate bars for buruing coke in locomotives, the highe bars projecting upward into the bed of fire, so that they will break the fus ed cake or crust which forms in the
bottom of coke fires, so as to obstruct the air io extent that the upuer portion of the fire fails to set an due supply of air for good combustion.
Mr. George W. Smith, of Harlansburg, Pa. has patented an improved fire escape consisting of a verically in front of and projecting a litue from the side of a building, and coupled by an arch at the top to each of which tubes a balcony is fitted so as to slide up and down, being connected through a slit with a suspendllg and operating rope within the tabes, the
two balconies balancing each other, so that persons in two balconies balancing each other, so that persons in
one or the other may command their own descent by one or the other may command therr own descent by
wieans of a lever brake in the balcony Means are also provided for working the brake from the ground.
Mr. Henry J. Butler, of Independence, Or. has patented an improvement in harness race buckles.
The objects of the improvencuts being to provide a buckle that obviates the use of the box loops or strap the hame tug with the trace by the buckle in a manuer that divides the strain upon the leather, thus obviating he entire strain being upou one point alune in the trace, as is the case with other trace buckler; and to obviate having any part of the buckie on the hame tug or the race while in the course of construction, the hame tug
and trace being entircly finished before the buckle is and trace
attached.
A reversible moulding for frames has been patented by Mr. Charles H. Bodurtha, of Delaware, ach edge with a longitudinal cut and with a cut pral lel with each edge in the inner surface of the moulding whereby a rabbet can be formed in eiller edge of the moulding by deepening these cuts sufficienty to loosen the strip of wood between the tro cuts. With this
noulding a loss of material in making the frame is moulding a loss of material in making the frame is
obviated, as there is no necessity of culting a triangnlar piece out of the moulding for each corner of the frame, as has been necessary in making frames of ass having rabbet on one edge only.
Owing to the rude coustruction of the chimneys now in use on railroad cars, it is the practice, longer needed in the cars, th remove the chimneys and pack them away, to remain until the cars are again repon the cars for ued, when they are again put in place lyn, NoY., has patented a railmad car chimney constructed so that it need not be removed from the car, but may be permanently atlached thereto, thus avoiding
the labor of removing and replacing the ch:mness. aud he labor of removing and replacing the ch:mneys. and
the wear and tear incident thereto. and to the packhe wear and tear incident
tng of the chimneys away.
Mr. Charles Gibbs, of New York city, has parented a portable galvante battery constructed with a Irmly secured to it. Turougli a satationary cover con ected with the case parses a rod attached to the cover of the jar for raising ald lowering the jar and which is secured in place, when adjusted, by a fastening at-
ached to the stationary cover. The electrodes are tached to the stationary cover. The electrodes are placed in the jar, and are supported by rods attached to
hem, passing through the jar-cover and the stationary hem, passing through the jar-cover and the stationary
cover, and having tinding poste attached to their upper nds, whereby the electrodes and solntion can be lowering the jar.
A vital heat alarm has been patented by Mr. Wilhelm Reiseig, of Darmstadt, Germany. The object of this invention is to provide a device for sounding an alarm or otherwise giving notice when the
nalural warmith of the body and life returns in nalural warmith of the body and life returns in appa-
rently dead persons-for instance, persons in a trance rently dead persons-for instance, persons in a trance.
The invention consists of a tube or vial containing mercury, and connented by electric conductors with a battery, which mercury is held from closing the circuit fusible material, the plug melting when the highly Warnth of the body returns, thus cloung the natura oo that an alarm will be counded by the alarm apparatus comnected with the battery.

An improved harness pad press bas been patented by Mr Joseph W Johnson, of Lathrop. Mo. The invertion consiets in a harness pad press formed of two V-sbaped frames, provided. with longitudinal verti-
cal riges having one side flat and the other side reessed or curved to adapt the frame to form straight or welled pads. The two frames are nited by bolis, and be ieather for forming the pad is phaced between them
and formed by means of the formus irons we and formed by means of the formus irons, wedges,
and clinching irons placed bet ween the leather on the frame, upon which the edges of the leather are lapped over the clinching irons. and a piece of leather is place of tacks or rivete driven through the overlapping edge of the two pieces of leather, and having their points
bent over or clincted by the elnching irons. whereby bent over or clincthed by the cllnching irons. whereby
the two pieces of leather are united and a perfect pock:

January 6, 1883.]

tusiness and zersonal.

The Charge. Yor Insertion under this head is Ine Dollar a line jol each insertion; about etght words to a line.
Advertisements must be rectived al publication offic advertisenvents must be rectived al publicalion office
as early as Thursday morning to appont in next iesue.

Nothing is more refreshing than a cup of good Breakfast Cocoa. If you purchnse that bearing the stamp of
Waiter Baker \& Co., Dorchester, Mass., you will be sure Walter Baker x
of a pure article.
Physicians acquatnted w!th Dr. Elmore's Rheiumatine Goataline pronounce it the only real remedy for rheu-
matic disorders ever alscovered, and the best remedy matic disordicrs ever alscovered, and the best remed
for dyspepsia. Eidney and IIver alisorders. Hundreds of cits referencen. Sent any hiere by express. \$2. 2 S and
\$1.50 per bottle. Elmore, Adams \& Co.. 105 William St.

Covering for Steam Pipes, etc.. etc -The H. W. Johns Manufacturng Company stili keep anead of ull competfor the reuson that. knowing what is wunted, thes fur
nish the best materials for the purpose. Among the contracts riceent 1 completed with the goens manufac
ured bs this company are the steam mpes, etc. of the

 Popular Scientific Works by Tyndall, IIuxley, Spencer. Proctor, Helmholtz, Geikle, etc.. 16 cents each.
Catalogue free. J. Fitzgerala, so Lafnyette Place, N. Y. Wanted.-A practical mechanic to superintend factory in this city; one conversant with rone spinning
preferred. Address, stating age. references, etc.. Superntendent, Box 773, New York
For Sale. - Vertical Engine, 9×9, Greenfleld maker:
Tight and Slack Barrel Machinery a specialty. Toln
Green wood \& Co., Rochester, N. Y. Soe llus. ady. p. $4: 36$ Trevor's Patent Key Seat Cutter. Trevor \& Co., Lockport. N. Y. See pare 426.
Lathes, Planers, Drills, with modern improvements.
The Pratt \& Whitney Co.. Hartford, Conn.
Pays well on small investment. - Stereopticons, Magic Lanterns, and Views illus: rating every subjec: for public
exhibitions. Lanterns for colleges, "unday-schools, and home amusement. 116 page illustrated catalogue free.

Metallic letters and figures to put on foundry pat
Otis Passenger Engine \& Sufety Drum, Cylinders 8x10.
Double Cut Gears. in grood condition. L. S. Graves \&
son, Rochester. N. Y.
Diamond Planers. J. Dickinson. of Nassan St., N. Y.
Dlamond Planers. J. Dickinson. \& Nassan St., N. Y. The Improved Hydraulic Jacks. Punches, and Tube
Expanders R. Dudgeon. 24 Columbla St.. New York. The Chester Stecl Castings Co.. office 407 Library St. Philadelphia, Pa.. can prove by 20.000 Crank shafts and
5.co Gear Wheels. now in une. the superiority of thelr castings over all others. CIrcular and price list free. Brass \& Copper in sheets. wire \& blanke. See ad. p. 429. For best Portable Forges and Blackemiths' Hand
Blowers, address Bufalo Forge Co., Bunaio, N. Y. Drop Forgings of Iron or Steel. Sce adv., page 429. Am. Twist Drill Co.,Meredith, N. H., make Pat. Chuck Amencan Frail Drier. Free Pamplict. Sec ad., p. 429. Drop Forgings. Billings \& Spencer Co. See adv., p. 413. For Pat. Safety Elevalors. Hoisting Engines. Friction Hineral 1 Mineral Iands l'rospected. Artesian Wells Bored, hy
. Diamond Drill Co. Box 423 . Pottsrille. Fa. See p. 412 . C. B. Rogers \& Co.. Norwich, Conn.. Wood Working Machinery of every kind. See adv., pake 414.
Common Sense Dry Kiln. Adapted to drying of all ma4 to 41 H P. Steam Engines See adv. p. 412.
"How to Keep Boilers clran." Book sent free by
ames F. Hotehkiss, 84 Juhn St.. New York. Scientific Books. See page 399. Catalogues free. E. \& F. N. Spon. 4. M urray Street. N. Y.

Lubricator. See advt., Detroit Lubricator Co., p. 398, See New American File Co.'s Advertisement, p. 898. Steam Pumps. See adv. Sinith, Vuile \& Co., p. 398. Engines, 10 to 50 horse power, complete, with governor.
geven hundred in use. For crrcular address Heald $\&$
Morris (Drawer 127), Baldwinsville. N. X.
Brase Finishers' Turret Lathes. 181/2 $\times 4$. $\$ 165$. Lodge,
Barker \& Co., 189 Pearl St., Cincinnati, O.
Thomas Camp, of Covington. Georgia, Gencral Azent for the sale of Portable steam Engines. has a trade of
$8: 00,000$ per annum iu that State. Manufacturers will \% 50,0000 per annum in that state. Manufacturers will
find this the best medium in the south through wheh to sell such goods. None but frist-chass engines suld.
Best of reference given and required.
Wanted.-Patenteci artirles or machinery to make
and Introduce. Gaynor \& Fitzgerald, New Haven. Conn. To stop leaks in Boiler Tubes use Quinn's Patent
Ferrules. Address s. M. Co., So. Newmarket, N. H. Latest Improved Diamond Drills. Send for circuiar
o M. C. Bullock Mig. Co.. 80 to 88 Market St., Chicago. II .
Water purifed for all purposes, from honsehold snp-
phes
nanuractured by the Newark Filtering Co., 17 Com
nerce St.. Newark, N. J.
Aseays and Analyser of ores and all commercial pro-
ducts. Advice given and investigations made in ducts. Advice given and investigations made in all
branches of chemteal induastry. Send for circular. branches of chemical industry. Send for cl
N. Y. Assay Laboratory, 40 Brondway, New York.
Sheet and cast brass goods. experimental tools, and
ane machinery. Estimates given when models are fur-
nished. H. C. Goodrich. 66 to 72 Ogden Place, Chicazo.
Guild \& Garrison's Steam Pump Works, Brooklyn,
N. Y. Steam Pumplng Machinery of every descrip-
Combination Roll and Rubber Co., 68 Warren street,
F. Wringer Rolis and Moulded Goods Specialies.

First Class Engine Latbes. 20 inch swing, 8 foot be
own
F C.eady Improved Skinner Portable Engines. Kirie, Pa.
Ice Making Machines and Machines for Coolit Breweries, etc. P'tctet Artitfia, Ice Co. Lifmited
Greenwlch Street. P. O. Box akis. New York eity. Steel Stamps and Pattern Letters. The best made. For Power \& Econony, Alcott's Turbine, Mt.Holly, N. J. Split Pulleys at low prices, and of same strength anc appenrunce as Whole Pulleys. Yocom \& Son's shaftin
Works. Driuker st., l'biladelphia.l'a. Supplement (Catalogne. - Persons in parsuit of infor mation on any special angineering. mechunical, or scien
titic subject. can have catalogue of contents of the sci-
 The whole ranke of enaineering, mechunics, amb physiMachinery for Light Manufacturing, on hand and Presses \& Dics. Ferracute Mach. Co., Bridgeton. N.

HINTS TO CORRESPONDENTS.
No attention will be paid to communications unles accomp

Names and addr

We renew our request that correspondents, in referring Yormer answers or aricicles, will be kind enough !
name the date of the paper and the page. or the number of the question.
orrespondents whose inquiries do nol appear afte a reasonable time shouid repeat them If not then pub-
lished, they may conclude that. for gooil reasons, the lished, they may conc
Editor declines them
Editor declines them.
Persons desiring special information which is purel or a personal character, and not of general miere as we cannol be expected to spend time and lahor obtain such information withont remuneration
Any numbers of the Scientipic Ampinican Supplif
uENT referted to in these columne may be had at ti: MENT referred to in these co
office. Price in ceuns each
Correspondents sending sampies of minerals, etc for pramination, shonld be careful to distinctly mark
label their specimens so as to avoid error in their identification.
(1) E. C. S. asks: 1. What is most satisfac ory for heating a private dwelling-steam or hot water aste or prejudice of owners as well as the depth taste or prejudice of owners as well as the deptho
their purses. Hot water is cheapest, easiest managed and gives a very even temperature, but somewhat clumsy in its get up. Steam has also its advantages in
carrying its heat through smaller pipes, and allowing carrying its heat through smaller pipes, and allowing
of more complex distributiou than water with its clnmey pipes; requires rather more care and costs more than water. 2. What is the best material for radiators
(direct radiation, and what the best formp A. Wrought and cast iron are used, and made into forms to suit the conditions of the place to be heated. Radiators ro
stores. offices, and rooms in dwellinge, pipes running along walls or overhead in coils, for factories or other
paces where rough and cheap forms may be desirable for economy. 8. What ratio should there be between the radiating surfaces and the cubical contents of the rooms: A. The ratio of surface is emprical, and re-
quires judgment and experience in dealing with all quires judgment and experience in dealing with all
kinds of expoures in rooms and halls, quantity of glass, ventllation, and kinds of occupation. Upon an
average, $1:$ quare foot of steam heated surface to 125 cubic feet of space, with variations of 25 per cent, covers mort cases. For water, 50 per cent more. 4. What
heating surface should the boiler have for each 100 feet of radiating surface? A. 10 to 12 square feet of heating
surface in boiler to 100 square feet radiation surface in surface in boiler to 100 square feet radiation surface is
the usual practice. 5 . What builer pressure will give the usual practice. 5. What boiler pressure will give
begt reaults? A. All pressures under 100 pounds are best results? A. All pressures under 100 pounds ar
used -1 to 5 pounds is considered the most economical and safe. 6. Is there any standard or reliable book
published ousteam or hot water heating: A. Write to booksellers who advertise in our columns. 7. What is the thinnest saw (50 or 54 inch) advisable to pat in a
light mill to saw white oak lumber green, to be run hy light mill to saw white oak lumber green, to be run hy
light power? A. Abont three-sisteenths of an inch thick.
(2) D. M. F. writes: I am working in the tele craph offce here, and I find that sometimes when the line is wide open, without any donth, I can hear a
times a minute scratching sound on the relay, which cannot change by adjusting. 1 hear it sometimes when
the line is closed, but cannot adjust for it. At times it is quite plain, at others very faint; onr relays are a box relay of 200 ohms, in regular use, and a pocket relay of
310 ohins, hoth of very fue workmanship. 310 obins, hoth of very fine workmanship. made by the
Western Electric Manufacturing Company, of Chicaso and New York. The latter I nse sometimes for amascmho is and with it I can tell very neariy where any on question is this: Is it (the scratching sound-I can almost read it sometimes) caused by induction from the wires hanging on the same poles which are being worked at
the time? Old operators can give me no explanation of the time? Old operators can give me no explanation of
it. A The souncs may proceed from carth currents or A The souncs may proceed from earth currents or
they may be produced by induction. By placing a telephone receiver in the circnit, or in a shont' around the
relay, you will probabiy be able to interpret the soands. (3) J. W. M. asks: What is it the bras rounders use to make the brass flow easily and dill up the in a large uprght office soviv in melting scrap brasa sand crucible. In pouring in mould, it would blubb
casting, weight one pound, compact form, after cooling
I would find the casting all full of holes, and sometimes I would find the casting all full of holes, and sometimes completely hollow; tried twenty times, always the rame
resalt, both witu borax and with charcoal, and without reait, both with borax and with charcoal, and without
anylh:ng, fux nature; used stove monlder's sand. A anyl..ng, fux nature; used stove monlder's sand. A
Heat the brass no hoter than is necessary to make it run clean. Your sand mould must be as dry as possible. Vent the mould so that the air will escape by some other passage than the one yon pour through. In
melting brass, never boil it. ©A high temperaure vapor melting brass, never boil it. ©A high temperalure vapor
izes the metal, and fills it with vesicles that are not asily got rid of. Try again.
(4) O. R J. asks: Will you be kind enough to infurm me how chilled iron globules or iron sand is the uspd in grinding pistons and valves? A. You can make the iron globules by cautionsly pouring molte iron into water and breaking the smail globules formed
by running thmugh steel rollens. This wonld be poor etuff for grinding valves, cocks, or pistons. If the material to be ground is iron, grind with fine emery, and inish with powdered glass or fine moulding sand. It of brass or composition, nse no emery anless the sur fazes are very rough. Gronnd glass is most in use by
machinists. Moulding sand, such as is used in brass machinists. Moulding sand, such as is used in brass
foundries, is much nsed, and makes a fine seat finish
(5) C. E. S. asks: Which, under the same conditions, will give the greatest speed to a boat-ihe
side wheels, or tho screw propeller? A. If with a boat of limited draught of water, the side wheels; if of deep draugh
peller.
(6) W. P. B. asks: Will the exhaust from an engine, if allowed to enter the chimney, increase the draught, and if so to what extent? The chimney is 70 fect high, 12 inches wall, 8 feet at base, and 4 feet at
op, no inside flac. At what height would the best op, no inside flae. At what height would the best
reanlcu be obtained? A. Yes; the amount depends upon the pressure at the mouth of the jet pipe. It is gen-
erally thought best to introdnce the oxhaust just at or rally thought best to introdnce the oxha
bove the flue discharge into the chimuey.
(7) P. S. M. asks: 1. Can the vapor of gasoline, or rather air charged with that vapor, such as
is proiuced by the various gas machines, be need instead of coal gas to drive gas engines, and for gas lowpipes: If snch gas were nsed to heat the boiler of a menall engine, shomld it be delivered under much press.
ure, and should it have a greater proportion of nir to gasoline vapor than if used for illuminating: A. Yes; under pressure it would answer for both, and the
(8) G. J. E. asks how to keep ticks off of altoged cattle. satisfactory. A. Tse a strong solation from pure Dalmatian insect powder.
(9) J. P. B. asks: Can water flow through siphon whose ehort arm is more than 83 feet long! A.
No; you cannot calculate safely on more than about 24 feet. 2. Will the flow of water through a siphon te in.
creased by lengthening the long arm: A. Yes. 8. If creased by lengthening the long arm! A. Yes. 8.IIf
the long arm is more than twice the length of the short rm. will the water begin to flow by flling the long arm only9. A. It might, if the short arm was not too long
(10) G. J. asks: 1. Is the gas and carbonic acid from sulphuric acid and bicarbonate of soda car-
ried into a lead chainber and passed through water, pare red into a lead chainber and passed through water, pare
and harmless? A. Yes, generally. 2. Does bicarbouate of soda solution injure vulcanized India-rubberf A. blcarbonate of soda and carbonic gas? A. Yes.
(11) W. S. H. asks how chemical bronze prepared to give brass a black color. I have been innade as yet deposits s thin fllm of the metal platinum on the surface of the brass that has a silver white color I cannot get the black color I desire. A. Use a strong olution of hyposalphite of soda in water.
(12) "Subscriber" asks for the best method of tempering spring leafs in an ordinary shop where here are no special facilities for doing such work. A. pered without some speclal facilities, such as a long,
even fre and a trough of water or oil long enough to lake the required length of spring sidewise or parally end wise. You can make a long fre, even if you
(13) T. E. H.asks: 1. How are the brass plat
sed by book binders in embossing covers of books made They seem to be cast and afterward chiseled deeper. fom patterns made speciully to suit the decion, ao as to economize the cutting away of so much metal as re. preseuts the blank spaces. They are easily made by glung upon a piece of board of the proper size und thickness, thin pieces cut to represent the lines, borders, cor-
ners, and inside lettering, or vignette in outline. When he casting is faced off. it is ready for the graver. Where metal routing machines are in use, it is about as cheap to rout as to make a pattern. 2. What causes aponold type metal and the papier mache process, plates a enerally good on face but apongr under the surface or on the back. Fiequently a line of blow holes follows or occupies the direction of the flow where poured in. Perhaps your monld is corroded or dirty on the back, or it may be that you do not take sufficient palns in pour ing your metal. If poured too hot it would be likely to
(14) J. W. H: It is probable that you have
(15) J. F. F. writes: In -almost every issue of the scientific american in column Answers to Correspondents are specific directions for making elecdevelop, or that is required to operate them; also answers to questions of a theorelical as well as practical nature. Please tell me if your knowledge of these sabjects is derived from the stady of books or is the resalt workshop experience, or both? What books wonld
you recommend to the stady of and what course of ex
periments or practice to a person desirous of becoming
an electrical engineer? In what books will I find the an electrical engineer! In what books will I find the Begin with "Ganol's Plyysics;" then purchase "Elec tricity and the Electric Telegraph," by Proscott: Higgs' ." Electric Light:" Dredge's "Electric IlluminaLton;" Gordon's "Electricity and Magnetism;" and "Electric Batterien," by Niaudet. Supplement your studies by experiment, making your own apparatus.
If possible, take a couree in one of our technical institutions.
(16) F. N. Y. asks: Can you give me a receipt for glae, such as is used by paper box makers?
A. Soften a pound of fair glue by digestion for an A. Soften a pound of Pair glue by digestion for an
hour in hot water, sufficient to cover it. When soft. ardd hour in hot water, sufficient to cover it. When soft, add
sufflecent water to form the desired thickness and melt by heating in a glue pot or bath of water. in which the by heating in a glue po
glue vessel is placed.
(17) J. H. E. writes: 1. I have a small engine of $1 / 2$ horse power. Would it be practicable to construct a dynamo machine, for ranning one or more
Edison incardescent lamps, small enough to be run oy Edison incardescent lamps, small enough to he run oy
the engine? A. Ye.e. 2. How many lamps would it be capable of running A. Two or three three-candle lamps. 3. Whare can I find directions for making such a machine? A. In Supplement, No 181.
(18) A. E. I. writes. I have among a lot of it is of a light yellow color and smelle sirongly of ether. Could you through the columns of your valuable paper tell me how to prepare it for use? A. Use it as it is, if of pure light color. 2. What is meant in chemistry by the term "excess;" for instance, " add an excess of
acid"? A. Sufficient to just overestimate the alkali or acid present, as shown by reddening litmue paper when acid is in excess and bluing red litmus paper whe being exposed to the light for some time, does not shin in the dark; what is the reason? A. It was not properly made or kept, and had oxidized to sulphate of lime by exposure to the air. It should be kept in an air tight bo tue. 4. Is the gravity battery constant. or
must it rest to regain its euergy? A. The gravity is ery constant.
(19) J. S. asks: What are the products of combustion of the gas generated by gasoline as used in
cas machines, and whether they are iujurious to heal lli? gas machines, and whether they are iujurious to health:
A. They are variable mixturce of carbonic acid gas and A. They are variable mixturcs of carbonic acid gas and
a small amount of carbonic oxide, and consequently are deleterious; the above apparatus may be used in a well
(20) T. N. M. asks (1) how to etch on steel. A. Cover the surface with a thin coat of asphaltum var-
nish of fine quality, then cut the design through to the surface of the steel, and etch with a weak solution of nitric acid in water; finally wash with hot water and how to make impresain paper used by etchers on steel. A. See method of manufacture, in Soirstifio american, No. 10, vol. xivi., page 148, March 11, 1888.
(21) C. F. P. asks if there is anything that can pot into glue in a ilquid state that will keep from tainting or spoiling without interfering with its adhenive quality. A. Add a little of a solution of bi-
(22) T. S. asks: 1 . Is celluloid a good in sulator of electricity or not? A. Yes. 2. For connect-
ing it firmly with metallic parta-say by ing it firmly with metallic parts-say by screws or any
other means-what will be the safest method to avold other means-what will be the safest method to avoid
its partial inflammation? A. Coas it with a solution of sotta percha in hisulphide of carbon.
(28) J. S. asks: Can you give us a reccipl for a waterproor leather cement such or similar as is
used on leather belting? A. See receipts for cements in Suppleatent, No. 158.
(24) F. R. S. asks: 1. Does back water affect the power of a turbine water wheel, if the head remains the same? A. Yes. 2 Is the outward press
ure greater at the hottom of a tub full of water than at the top? A. Yes. 3. What part of a boiler receive
(25) W. E. P. writes: 1. Please give direc tions through the Scientific Ambrican bow io splice a several of the wires are broken in one por stace Con mend it without having to cat in two and splicing! A wire rope is suliced in the same manner as a hem rope. Any old esailor should do it. You can mend only
by splicing. 2. Is an injector as reliable as a boile by splicing. 2. Is an injector as reliable as a boile leeder as a hot water pump? A. An injector require more careful use; any chip or other foreign matter will stop its operation, but its stoppage is at once indicated
(26) P. N. $\dot{\mathrm{K}}$. writes: 1 am told that if air leaks into the smoke box of a locomotive it will canse
the gases therein to ignite. If this a case of "ciemical the gases therein to ignite. In this a case of "chemical combination" If so, please give cquation. A. The
access of air to hot carbonic oxide will cause it to ignite and burn to carbonic acid. $\mathrm{CO}+\mathrm{O}=\mathrm{CO}_{2}$, if the tempera'ure
smuke.
(27) C. F. writes: There is a discussion at our shop abour the mode of reducing bronze powder to an mpaipable condition, that is, metallic bronze. So
will you please let us know through the Scientiric Angrican! A. Metallic bronze is pulverized by tritu ration in a mortar, and the coares is scparated from the fine by elutriation. The ordinary bronze powder
(28) H. and G. ask: Can you give a good manufactured "cider that has the exact flavor of real apple cider and keeps longer, bat we don'। know how it is made. A It is a solution of the required strength of tartaric acid in water to which the necessary amount of
caramel (sagar coloring, has been added to give the required color. Sometimes it is sweetened with glncose and a small portion of bisulphite of soda or salicyilc

종 durxtisturyts.
Inside Page, each insertion - - 75 cents a line Back Page, ench insertion--81.00 a line. Engravings may head adver tisements at the same rate per line oy measurement, as the letter press. Adver
tisements must be recived at publication oftice as early
as Thursday morning to appear in next issue.

office of the Comptroller PIITY or Alleakeny,
Notice to Engine Builders and Boiler Sealed proposals whl be recelved at this offioe until
January 15,1283 . for the construction and erection of one

 oilers now in use aty works.
The contractor must
drawings of type of engine and specifications and detail be marnished, drawings of tyye of engine and boilers to be furnished,
also plso of tell and pump house, the well to be su con-
structed that extra pumps can be placed therein when required d.
The whole to be erected and completed. and in accordnee with such plans as may be selected by the superinCoumittee and Councilsof and altypof Alleghene Prenna.
Contractors must specify when the work will be comAll information in regard to the above work will be
furnished by Edward Armstrong, Supt. of Water Works, City Hall, Allegheny, Penna.
No proposal will be recived unless accompanied with a bond equal in amount to the bid.
The Committee on Water reserves the right to accept
or reject any or all bids. Comptroller of the BROWN of Allegheny. patio.
jum: $\boldsymbol{7 9} \$ 6.50$ only for an Exhansting, and $\$ 4.50$ for a Compressing Air Pamp.
 and Gas Pumps. Large varietyof Hand
Pumps. Guarct Power and smail steam
Pumps. Write to H. WEINDEL. SOUTHWARK FOUNDRY \& MACHIVE COMPANY Engineers \& Machinists, Porter-Allen Automatic Cut-uff Steam Engine

8

The Eclipse Engine

TIER BOIFMTMIFPO AMMFIRTOANT
 FREE SEED DISTRIBUTION, ALITITE ONE YEAR FOR \$4.40.
 Foreign Patent Rights for sale of a very valuable
invention. Address Capt. Lewis Davis, Jackson, Ohio. VALUABLE PATENTS FOR SALE. My interest In MARTIN RR1CK MACHINE

ERICSSON'S

New Caloicic Pamining Engine dWELLINGS AND COUNTRY SEATS. Simplest cheapest, and most economical pumping engine
for oromestic purpoess. Any servant
Absolutely pan operate DELAMATER IRON WORISS C. H. DEIAMATER \& Co., Proprietorn,
No. 10 Cortlandt Street, New York, N. Y.
 Our 10-Horse Spark-Arresting Threshing
Engine has cut 10.000 fret pine lumber in 10 hours.

NUT TAPPINC durrell's patent.
 Capacity of ${ }^{7}$ Spindles, 8,000 per
Acknowledged ho hous.
able to indispen Mon Manufactured by HOWARD BROS.,

SEND FOR CIRCULAR AND PRICE LIST OF

HARENNA \rightarrow FIRE -AND- VERMIN: PRO○耳
Sample and Circular Free by mail.
U. S. MINERAL WOOL CO., 22 Courtlandt St, No. \mathbf{Y}_{0}
 KEUFFEL \& ESSER, New York Drawing Materials in Largest Variety.

EVERY LSER OF MICHINERY
 Useful information on this sublect
is given in our "atal tague No.
Sent free to any address.
Novelty Turning Company,
Plain and Ornamental WOOD TURNTERS. Knobs, Handles, and Ornaments from For-
eign
Woode a specialty. Samples and ock specifications solicited.

STEMWINDING Permutation Loek

PATENTS.
ication of the scientific American, continue t amine Improvements, and to act as Solicitors of Patents for Inventors.
In this line of business they have had thirty-five years' experience, and now have nnequaled facilities fo
the preparation of Patent Drawings, Specifications and the preparation of Patent Drawings, Specifications, and
the prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs Munn \& Co. also attend to the preparation of Caveats, Copyrights for Books. Labels, Reissues, Assiguments, and Reports on Infringements of Patents. All business intrusted to them is done with special care and prompt A pamphlet sent free of charge, on application, con-
taining full information sbout Patents and how to pro
cure them; directions concerning Labels, Copyrights Designs. Patents, Appeals. Reissues, Infringements, As We also send. free of charge a Synopsis of Foreig
Patent Laws, showing the cost and method of securing MUNN ac CO., Solicitors of Patents, BRANCH OFFICE - Corner of F and 7th Streets

January 6, 1883.1 CUTLER'S POCKET INHALER
 Carbolato of Iodino
INHALANT. INHALANT.

 Watkene

O Nroceip of fadress will send poa a vatabiot treat

 189 BROADWAY, TODD \& BARD,

The untold miseries that result from indiscretion in
early life may bealleviatedand curec. Those who onoub
this assertion should purchase and read the new medica

Sicintifir Amrnican.

CONTRACTORS' PLANT M'F'G CO., 129 Erie Street, Buffalo; N. Y.

RUBBER BACK SQUARE PACKING.

For Packing the Piston Rests IN THE WORLD.

This Packing is made in lengths of about 20 feet, and of all sizes from 14 to 2 inches square.
SPECIAL NOTICE.-Owing to the recent great fire in the "World" Building, our New York.

"BLAKE'S CHALLENGE" ROCK BREAKER.

Them

 blake cresher co.. Sole Makers, New Haven, Conn.
THE DUPLEX INJECTOR.
The constantly Increasing demand for this Boller

WITIIERBY, RUGG \& RICHA RDSON. Manufacturers

The Westinghouse
WIII make Special Contracte
Epeed Machinery, to
THE WESTING
oorbespondmatoe Send for illus

 Machine Company with Manufacturers of high
DRIVE DIRECT with
HOUSE ENGINE use of Belts.
$\boldsymbol{S O L I C T E D}$
trated circular t
The WestInghouse +

Chlcage, June 8, 1882.
We are MORE THAN SATISFIED with our Plctet Refrigerating Machines We are MORE THAN SATISFIED with our Plctet Refrigerating Machines,
and consider them THE BEST IN THE MARKET. We have two of the largest size in full operation. Your attention is called to above certificate

THE PICTET ARTIFICIAL
ICE
142 Greenwich Street,
P. O. Box 3083.
 ELECTRIC POWER.
The Double Induction Motor and Auto
matic Battery (imitation walnut case) matic Battery (imitation walnut case),
with all attachmots for drivig the
Family Sewing Machine........ 835 Family Sewing Machine......... 83500
The same, with battery in ebonized case... 40 Where, light power is required for driving
jewelers' lathes, other small lathes, dental and surgical tools, jig saws, etc., this apparatus is
unexcelled. Ah hways ready for use. Under perfect control. No dan-
ger No noss. Numes.
Manufacture of ger. No notace. No and for sale by

THE ELECTRO-DYNAMIC CO.,
Hhite for catalogue.

MAFER \& GRose, Monroe street,

IRON REVOLVERS, PERFECTLY BALANCEL, Has Fower Parts than any other Blower. P. H. \&F. M. ROOTS, Manufacturers, S. B. TOWNGEND, Gon. Agt., © Oortiand St, 8 Dey St.,
 END FTIRVO FORET.

MORPHINE

 ano WHISKEY FOHLORIDE OF GOLDE: REMEDIES. 5,000 cures. Bonks FREE. CESLIE E. KEELEY. M. D.,Errgeon C. \& A. Railroad.
Dwht, In CLARK'S RUBBER WHEELSS
This Wheel is unrivaled for durability,
simplicity, and cheapness. Adapted for
 CONSUMPTION.

 EpILEPTIC EITS. ,

hagic lantern catalogue. 150 pp . ${ }^{\text {mRER. }}$ MAGIC LANTERNS AND VIEWS $\$ 6$ MAGICAL MEGASCOPE, \$2.50 ORGANSONLT $\$ 6$ AUTOMATIO-CABINET. Play Any TUNE
MUSICAL WONDER CATALOGUE, FREE HARBACH ORGANINA CO. Rep Findem fis CORRUGATED AND GRIMPED IRON
 SPEAKING TELEPHONES. THE AMEBICAN BEIL, THELEPIIONE COMIPANY,
W. H. Fohbes,
W. R. DRIVER, THKO. N. VAIL,

 The Commissioner of Patents sand the U. S. C. Crucuit Court
have decded this to the true meanig or hit claint
the validity of the patent has been sustanned in the Crir-
 junctions and final decrees have been obtained on them
This oompany alio wns and contril all the onhe
telophonic Inventions or Bell. Edison, Ber:iner, Gray
Blake. Phelps. Watson, and others.

 makethorized licensees. are infringements. and the
makers. .eellers and users will be proceeded agind.
Informatlon furnised upon application.
Address all

CTELEPHONES!

MACHINISTS' TOOLS. Send tor ner IIINustratea catalosute. NEw HAVEN MANU, Drills, dic. - Now haven, conan

MACHINERY
cyduertisements.

Our No. 6 VISE opens 10 inches, with 8 inch
Jaws; has Solid Boxes and Screws $13-4$ inch
dameter, with 26 inch Lever. Wake five
Fisher Double-Screw Vise Stronger than any other Leg Vise, and 1s the best Vlise for Machine Shops and Blacksmithss
and for all heavy work. ACU RATE ANO DURAELER EAGLE ANVIL WORKS,

Double Screw, Parallel, Leg Vises,

THE J. L. MOTT IRON WORKS,

W. BAKER \& CO., Dorchester, Mass.

WIRE Fope

 Moore County Grit CORNMILLS Corn Mill Stones,

 ELESCOPES Microscopes, Operat Hlases,

SHAETS PULLETSHANGES

RUBBER BELTING, PACKING, HOSE.
 Steam Hose, Suction Hose, Pump Valves
 Car Springs Wagon Springs Grain Drill Ter Rolls, Corrugitubes, ber Matting

Stevens' Roller Mills, GRADUAL REDUCTION OF GRAIN

 watchmenploying seng forght
calarste E. IMHAUSER,
New York.
To Electro-Platers.
 al for Gold, Siller, and Nilekel Plating.
Send for Illustrated catalomomele.

H.W.JOHIS'

 ASBESTOS ROPE PACKING, ASBESTOS SHEATHINGS,ASBESTOS GASKETS, ASBESTOS BUILDING FELT. H. W. IOHNS M'F'G CO., 87 Maiden Lane, New York, Sole Manufacturers of H. W. Johns Genuine
ANBETOS RIGU1D PAINTS, ROOF
PANTT, ROOFING, STEAIM, PIPE FIREPROGT COATORINS,
CEMENTS, ETC.

AGRICUITUURIST

 The Great Agriciciltural Journal of the World!

Full of NEW LIFE ! More Vigorous than Ever ! Our corps of writers includes an the leading authorities on Agricuiture,
Floriculture, Stock Raising, \&c., and many leading popular

GERMAN AGRICULTURIST!

SUBSCRIPTION PRICE, \$1.50 per Annum, English or German; 4 coples, $\mathbf{\$ 5 . 0 0}$

EVERYSUBSCRIBER $\begin{aligned} & \text { recelves a perfect plate copy of Dupre's las } \\ & \text { great painting, "IN THE MEADOW." }\end{aligned}$

KORTING UNIYERSAL Double tube. INJECTOR Mif NO ADJUSTMENT FOR VARYINGी STONDMTINS PRESSURE. OFFICES AND WAREROOME CIRCULAR. PHILADA, 12 Th A THOMPSON STS. N NEW YORK, 109 LIBERTV
 HARTFORD
STEAM BOILER Inspection \& Insurance COMPANY
W. B. PRANKLIN.V. Pres't. J. M. ALLEN, Pres't. J. B. PIERCE. Sec'y,

UPRIGHT DRILLS IGToGOINCHSWING BORING \&TURNING MILLS TOSWHGG 48:69\%84NGHES H. BICKFORD

ROOFING.

 THE NEW OTTO SILENT GAS ENGINE.

The " ${ }^{\text {W MONITOR." }} \left\lvert\, \begin{gathered}\text { Best Boiler Feeder } \\ \text { in the world }\end{gathered}\right.$ A NEW IIFTINGAND NONGreate world.
 EJECTORS Wator Hilevidirs,

WM. A. HARIIS
(PARK STREET)

COLUMBIA Bicycles.

 597 Wnshington trreet, Bosion, Minas.

 FOR A
COMBINED Punch and Shears
 ambertville Iron Woiks, BOOKS ON BUILDING, WATCHMAKERS.

PRINTING INK ${ }^{6}$

