

A WEEKLY JOURNAL OF PRACTICAL INFORMATION. ART. SCIENCE. MECHANICS. CHEMISTRY AND MANUFACTURES.

VOI. XLV VII.-NO. 15.]
NEW YORK, OCTOBER 7, 1882.

THE ITALIAN IRONCLAD DANDOLO.

The new twin-screw, double-turret vessel Dandolo, belonging to the Royal Italian Navy, completed, not long ago, the trials of the machinery previous to joining the squadron in the Mediterranean. Excepting the omission of the interna torpedo deck, she resembles the sister ship Duilio, in her gene ral arrangement, but she has considerably surpassed her in speed. The Dandolo was built at the Royal Naval Arsenal at Spezia, under the supervision of Director Borghi, at whose suggestion the whole of the bow plating is worked flush, instead of the plates overlapping as usual. The length of the vessel is 337 ft .8 in . ; the breadth $62 \mathrm{ft} .31 / 2 \mathrm{in}$. ; the mean draught at the trials with armament on board was 28 ft .9 in. ; giving a total displacement of 11,225 tons. The battery is heavily armored, and is placed in the middle of the vessel ; the two turrets rise above the weather deck, and are placed diagonally in the battery, so as to enable all four guns to be fired fore and aft. The armor of the turrets is impenetrable to all except the heaviest modern artillery. Each turret contains two 100-ton Armstrong guns made at Elswick, having a bore $17 \cdot 72$ inches, throwing a shot $2,018 \mathrm{lb}$. with a maximum of 511 lb . of powder, the ordinary charge being 355 lb . The turrets and guns are moved and worked by a complete system of hydraulic gear made at Elswick. The loading is also done by the same means, the rammers being below the weather deck and arranged to enter the gun when the muzzles are depressed for the purpose. Between the turrets is situated the mast, which really assumes the function of a lookout tower, as there are no sails.

The vessel is fitted with Forrester's steam steering gear,
as well as very powerful hand steering gear, and has a beautiful self acting arrangement, designed and fitted by the Italian constructors for checking and holding the tiller ; in case of the chains breaking the tiller would lock itself amidships and remain at rest till the new chain was reeved.
The Dandolo carries four large steam launches, and eight other boats, all hung upon hinged davits, which are worked from the steam capstan, and which will hoist them right in board. The Dandolo is propelled by twin screws, worked by two iudependent pairs of engines, which were contracted to indicate a maximum power of 7,500 horses. These engines, together with the pumping and blowing engines, were constructed by Messrs. Maudslay, Sons \& Field, of London. They are the first compound engines which were ordered for the Royal Italian Marine, though they have been awaiting the completion of the ship at Spezia since 1876, when they were brought out in the royal transport Europa. Each set of engines is placed in a separate water-tight compartment, one at each side of the vessel; instead of being side by side they are situate one in advance of the other, the alternate spaces being occupied by the magazines, which are placed immediately below the turrets. Each pair of engines has one high pressure cylinder, 64 in. in diameter, and one low pressure, 120 in . diameter, with a stroke of 4 ft . Steam of 65 lb . pressure is supplied by eight large oval and double-ended boilers, having 32 furnaces in all. Four boilers are placed forward of the engines, and the other four aft; but each pair of boilers is contained in a separate watertight compartment. The chimneys, which are ample in size and height, are built of one-inch plate from the main
deck to the flying deck above the turrets, so as to enable them to withstand the great shock produced by the discharge of the guns.
A very perfect system of fans and ventilating pipes has been carried out, so that the whole of the cabins and even the engine room are kept perfectly sweet and fresh. There is also another arrangement for ventilation very closely resembling in principle the furnace system of ventilation in a mine.
On the 25th of May the Dandolo proceeded to sea for her first official trial, under the command of Commandante E Acton, who was accompanied by Admirals Martin-Franklin and Caimi. The run to Genoa and back was accomplished without stopping in 6 hours and 28 minutes, with a mean indicated horse power of nearly 7,200, and a maximum of 7,415 horses, and the speed obtained was $151 / 2$ knots, with a consumption of $51 / 4$ tons of coal. The main object of the run was to ascertain the consumption of fuel on a prolonged full-power run. Ou the 29th of May the vessel was taken on the measured knot trial, when a speed of 15.55 knots was obtained with 8,050 horse-power. Our engraving is from La Ilustracion Espanola.

Among the instruments described during the late meeting of the British Association was one exhibited by Sir F. Bramwell, employed for ascertaining the velocity of trains and the efficiency of brakes. With this apparatus it was found that a train weighing 125 tons ran 5 miles 5 yards after steam was shut off while traveling at a speed of 45 miles an hour. The line was level and the day calm.

Srientifir Ammrican.

HSTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
pUBLISHED WEEKLY AT
No. 261 BROADWAY, NEW YORK.

o. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIPIC AMERICAN. One cony. one jear nostage included...
One cony, slx months postage included

 granis for every clut orsame proportionate rate. Postasere
Remit wy postal order. Address

MUNN \& CO., 281 Broadway, corner of Warren street, New York
The Selentific American Supplement

Sclentific American Export Edition.

NEW YORK, SATURDAY, OCTOBER 7, 1882.

Contents.	
Curonorktaph tor engineerting	
entions, agricuitural........... 234	

table of contents of the bcientific american supplement, NO. 353,
For the Woek ending october 7. 1882. Price 10 cents. For sale by all newsdealer 1. ENGINEERINGAND. MECHANICS.-Chenot's Atmospheric Roock

min.

BLUE FIRE AS AN EXPLOSIVE.

Last winter a fire the pyrotechnic establishment of Professor Sumuel Jackson, at Chester, Pennsylvania, re sulted in an explosion more severe and disastrous than could be accounted for by the quautity of explosive material known to be stored in the building.
The recent occurrence of an explosion in the yard of a New Zealand chemist who bad compounded an unsatisfactory blue fire, and bad sent an assistant out to destroy it, bas put Professor Jackson on the track, he thinks, of an ex planation to the mysterinus explosion in his establishment. The New Zealand explosion resulted from throwing a little water on the burning blue fire. Professor Jackson remembered in a small building attached to his factory there were stored a number of blue light stars. He had made blue light for nearly forty years, and had never known it to de velop extraordinary force; yet, acting on the hint given by the New Zealand accident, he set about making experiments, which have convinced bim that blue light powder fired hy a detonating compound is not only explosive, but more powerful than dynamite in its explosive effects. In a public experiment to test the explosiveness of blue fire, made at Woodbury, N. J., a tube containing a couple of pousds of he blue fire was placed in the earth and a buge stone laid on top of it . The party went off a couple of bundred feet, and the detonation was caused by electricity being applied o a percussion cap. The effect was startling. The stone was shaitered into fragments, a large hole was dug into the ground, and a cloud of dirt and dust thrown into the air at least a hundred feet. The same amount of powder was exploded under exactly similar conditions, but the result was nothing worth speaking of. A little gunpowder was placed in the top of the can of blue tire, and it was exploded with about the same result as the previous one had been. Fire was applied to a can of the blue fire, and it merely burned Speaking of this and subsequent experiments, Professor Jackson said to the Philadelphia Record that concussion will always cause a detonation of blue fire, especially when it is bighly heated. He believes that the Chester explosion resulted from a spattering of water on the lighly heated cars containing the blue fire mentioned. A direct stream of water, he thinks, could not possibly bave resulted in an explosion.
Professor Jackson believes that blue fire will be found valuable as an explosive for blasting purposes. It is more powerful than dynamite, and safer, since it is a more stable compound, and is not liable to explode when struck with a hammer or when dropped. By means of a percussion cap, or the concussion of exploding gunpowder, it explodes readily, wet or dry
There are two kinds of blue fire made. One is composed of chlorate of potash, three parts by weight; sulphur, one part; and ammonio sulphate of copper, one part. Another and safer kind is made without sulphur. Its formula is: Ammonio-sulphate of copper, eight parts; chlorate of potash, six parts; and shellac, one part. The salts should be dried on a plate or shovel, powdered separately, and then carefully mix ed with a spatula on a sheet of paper.

THE COIKMON MUSHROOI AND ITS POISON

The current belief is that, while many fungi are virulently poisonous, others, including the common mushroom, are free from poison and may be eaten in any quantity. When mushroom eaters show symptoms of poisoning, it is accord ingly assumed that a blunder has been made, and noxious species taken for or with wholesome ones. The fact that an eminent English fungiologist is numbered among those who have 1ost their lives by the alleged mistake, would seem to throw grave doubt upon blunder theory, unless it be true as some bave held, that the edible species are mimicked by those that are poisonous so closely that the most expert is iiable to misjudge them. The fear that this may be the case deters many from making any use of this savory and nourishing but treacherous vegetable.
At this season, when the fields abound with wild mushrooms, and wher multitudes might find in them a cheap and enjoyable addition to the daily bill of fare if they were not afraid to eat them, it is \& matier of considerable importance to have the real standing of fungi as food stuffis made clear.
According to recent investigations by Professor Ponfick, of Breslau, the question seems to be, not how to distinguish poisonous from harmless species, but how to treat mushrooms of every sort in such a way as to remove or neutral ize the poison which they all contain, with the proper pre caution of using this class of food stuffs at all times with moderation.
Professor Ponfick finds that repeated washing with cold water removes most of the poison of mushrooms, and cooking, especially boiling, dissolves out the rest. The water in which mushrooms are boiled, however, is always poisonous, more so even than raw mushrooms. Experiments made upon dogs showed that if a dog ate one per cent of its own weight of raw mushrooms it fell sick, but recovered; one and a half per cent produced violent illness; and if the dog ate two per cent of its weight, the result was always death. Of boiled mushrooms dogs ate ten per cent of their weight without harm. When the mushrooms were well washed with cold water, a larger quantity could be eaten raw without bad effects than was possible with those that were not washed; but simple washing never removed the poison entirely. Dried mushrooms were found to be dangerous for
had been boiled. They were not really safe until after four had been boiled
months' drying.
The moral is: treat all mushrooms as poisonou8; carefully throw out the water in which they have been washed of boiled; cook them well, and never eat them in large quantities. If wen are no more susceptible than dogs are to the poison, a man can as safely gorge himself with well boiled mushrooms as with beef or any other highly nitrogenous food. When otherwise cooked, or wheu the species is doubt ful, a sparing use is always prudent.
The fact that all mushrooms and allied growths are more or less poisonous should be no bar to their use as food proper care being taken in the cooking and eating. The common potato is not free from poison; and the juice of the root from which tapioca is made is a virulent poison. The latter poison is expelled by heat, and the former is in quan tity too small to be harmful, as is the case with many other useful vegetables.
In preparing mushrooms for the table, safety is assured not by looking for specific characteristics supposed to indi cate harmlessness, but in considering all as poisonous and requiring judicious treatment to destroy or remove their noxious qualities. This properly attended to, musbrooms and many other fungi are not only edible, but really delicious and valuable food stuffs.

MODIFICATION OF THE TRADE MARE LAW.
The following act, relating to the registration of trade marks, was passed at the last session of Congress:
Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled. That nothing contained in the law entilled "An Act to authorize the registration of trade-marks and protect the same," ap proved March third, eighteen lundred and eighty-one, shall prevent the registry of any lawful trade mark rightfully used by the applicant in foreign commerce or commerce with Indian tribes at the time of the passage of said act.
Section 3 of the law relative to the registration of trade marks, approved March 3, 1881, expressly prohibits the re gistration of a trade-mark which is merely the name of th applicant.
This rule was found to discriminate seriously against old, well-established, and valuable trade-marks, like "Collins" Axes," " Fairchild's Pens," and others. Accordingly an act was passed at the last session of Congress, and approved August 5, 1882, so modifying the above-mentioned section as to nuthorize the registration of the prohibited class of trade-marks, provided they were in rigbtful use by the applicants in foreign commerce or commerce with Indian tribes at the time of the passage of the act of 1881.
As the matter stands, new trade-marks which are merely the names of the applicants canuot now be registered, nor can such trade-marks, if brought into use since March 3, 1881. If they were in use before that date, they can be registered.

The Cure of Saccharine Dlabetea.

In a paper by Dr. G. Félizet, read before the Academy of Sciences, August 14, says the Journal d'Hygiene, the author claims to have discovered a remedy for a disease usually regarded as incurable-saccharine diabetes. The autho states that he has succeeded in putting an end to glycosuria artificially produced in animals, and that the medicine that suppresses that artificial glycosuria -will likewise cure diabetes in a few weeks or months. There exists, says he, a bond of union between artificial glycosuria, intermittent diabetes and confirmed diabetes, and that bond is irritation of the rachidian bulb. It is not, then, in masking the disease by submission to the severities of a regime exempt from bread, feculents, sugar, etc., that we succeed in curing it, but by tapping the very source of the production of sugar, that is to say, by suppressing the irritation of the bulb. Bromide of potassium, by the elective action of se dation that it exerts on the functions of the bulb, suppresses the effects of such irritation with a rapidity that is often surprising, and, in large and repeated doses, cures the diabetes.

The Building Neios relates a singular misfortune which has occurred to a small church in Andover, Mass., which seems to be in process of being eaten up bodily and swept away. The church was erected about six years ago, and is finished with what is said to be ash, but bas more the ap pearance of chestnut, which often closely resembles the coarser kinds of ash. A year or two after its completion the sexton noticed little beaps of dust on the carpet near the walls. These grew more and more frequent, and appeared in various portions of the building, so that they had to be gathered up regularly every week, and on searching for their cause the wood of the base-boards and portions of the pews was found to be completely riddled with holes made by small, round, black or blue worms, the debris of whose borings fell out occasionally upon the floor in the form of dust. Unlike most boring worms, this species seems not to object to the taste of varnish, for the polished surface of the wood is pierced in thousands of places. The stock was re garded as completely seasoned and in good condition when put into the building, but it would seem that it must have contained the embryos of the insects, for the finish of the gal leries is attacked equally with that of the ground floor. If any of our readers, adds the Nenos, met with a similar case we should be pleased to receive an account of it, and if any know of a remedy, the trustees of the church would be glad know of a remedy, the tr
to avail themselves of it.

MR. GOLDING'S THEORY OF HISSISSIPPI FLOODS AND

 their prevention.The Mississippi River Commission, to whom is allotted the planning of works for the improvement of navigation and the prevention of disastrous overflows along the Mississippi, are working on the theory that the existing channel of the river is ample for the discharge of all its waters, and needs only to be made uniform in breadth and depth, and kept within bounds by protected banks, to meet all possible requirements. Where the river is narrow the velocity of its flow enables it to carry a heavy load of silt, which is largely dropped in the wider places, where the flow is naturally less rapid. In this way vast sand bars are built up, at once a hinderance to navigation and a source of danger during floods. The commission believe that the proper work to be done is to confine the low-water width of the channel to about three thousand feet by systems of jetties wherever bars or shoals are found, thus compelling the river to scour out a deeper channel. In times of flood the spaces outside the corrected channel are expected to be built up by earthy materials dropped by the river, the ultimate effect being to develop new and stable shore lines, and secure conditions requisite for a uniform velocity for all stages of the river. This done, it is believed that the discharging capacity of the channel will increase so rapidly with the rising of the flood level, owing to the augmented rapidity of flow secured by uniform width, that any serious overfiow will be practically impossible. This system naturally involves the restoration of the broken levees and the closing of all outlets save those at the river's mouth.
Our correspondent, Mr. William Golding, of New Orleans, argues that the work proposed by the commission will be mischievous rather than beneficial. The view he takes of the prohlems presented by the Mississippi and its overflows are novel, to say the least; and as an independent contribu tion to the discussion of those problems his argument, which we present substantially in his own words, certainly merit consideration.
There is, he insists, nothing peculiar in the Mississippi River. The power of the river is fixed by its height a Cairo above the level of the Gulf; and this power, whatever it may be, is entirely consumed in overcoming the friction of the river bed, which in length is eleven hundred miles. If there be made at proper places outlets by which the river may reach the Gulf by a shorter route, the friction of the bed will be reduced in proportion, and the rate of incline for the remaining portion of the bed will be increased. The dynamic store remaining the same, the discharging capacity of the river as a discharging trough, he thinks, will be greatly ncreased by such shortening.
In regard to scouring, be holds that for the river to scour or do any other work requires power, and as this powe must be taken from the dynamic store of the river it must essen the discharge.
In regard to contracting the river for the purpose of scour ing, he holds that the first effect will be to lessen the inflow or pastflow at the point contracted. The next effect will be to raise the head until the increased velocity, due to elevation, will discharge the original quantity. Therefore, if we contract the river at an indetinite number of points we will have an indefinite number of steps, the aggregate of which will be an inclined plane extending from Cairo to the Gulf. And in the same proportion as we narrow or contract the river, we reduce the discharging capacity of the trough.
He also holds that to deepen the river by any means to a
point lower than the outlet or gulf will not increase its dis point lower than the outlet or gulf will not increase its dis charging capacity, for the reason that the water which is below the outlet does not progress, but merely rolls over, just as the bed rollers of a sawmill carriage do.
For instance, the river in front of New Orleans is $\mathbf{1 3 0}$ fee deep, yet the surface is only 14 feet above the Gulf surface. Now, if the entire bed progressed like a block of marble, the friction to be overcome would be, first, the bottom, 3,000 feet, and two sides, 100 feet each-say 3,200 feet of contact surface. Whereas, if only the depth of the water above the Gulf be counted as progressing. the contact friction will be 14 feet on each side, and the bottom friction will be only that required to maintain, in a rolling motion, the bed water, which might be termed an anti-friction roller. Special stress s laid upon this feature of water moving in a trough.
In regard to levees he holds that nature has shown that to convey the Mississippi water and material 1,100 miles re quires a fall of 322 feet. If we build levees as high as the land above and at Cairo, and taper them down to the Gulf, the river will not, at its present width, discharge a single cubic foot more water than it does at present. And if the river bed were deepened to a point 100 feet below the surface of the Gulf, for the entire distance from Cairo to the Gulf, the discharging capacity of the river would not thereby be increased. Therefore, to increase the discharging capacity of the river we must, in his opinion, widen the trough-not contract it; and to increase the velocity of the flow we must either raise the head or shorten the trough. The fact that the river water is muddy and bears with it to the Gulf a large quantity of soluble and insoluble material creates no new aw; neither does it necessarily add to the complexity of the ubject.
The theory that outlets cause the river to shoal below such ontlets he disputes, as unsustained by fact.
We must concede, be continues, that the river will not leave its bed to follow a longer channel to the Gulf; and where an outlet is opened which offers a shorter route there can be no new phenomena in the course of the river in pur-
suing this new channel, nor can any new conditions arise after it enters the Gulf. The passes, as they are called at the month of the river, are neither more nor less than outlets, ad there is no renson why anot
The periodical overflows to which the Mississippi is subject, Mr. Golding believes to be due to other causes than the malformation of its trougb. Cbief among these causes he places the attractive influence of the sun, moon, and the everal planets when in conjunction. This planetary theory f Mississippi floods is decidedly novel: how well founded may be in the nature of things may be left to astronomers and bydraulic engineers to determine.
The tides raised by solar, iunar, and planetary influence in pen seas quickly subside for the reason that there is nothing o prevent the water's flow. Altogether different, Mr. Golding holds, is the effect of the planetary influence upon the iver, in which the water is entrapped by the numerous bends and right angles, and in many places reverse curves, and its progress to obey the law of gravity is halted by the higher law of planetary attraction.
If the spring floods are released during the time that the several plancts which produce the tides are approaching conunction, the effect of the planetary attraction will be to impede the flow due to gravity to some extent cach tide, and o gradually fill the banks of the river and tributaries at the point where the planetary influence is greatest, which be assumes from the experience of last spring to have been at Helena, Arkansas.
When the planets separate and change position the attraction gradually weakens, gravity again asserts its sway, thus precipitating the immeasurable accumulation of water upon the lower river.
To reccive and bear away this avalanche the utility of properly constructed and properly located outletscannot, he holds, be seriously questioned.
He does not maintain that the tidal water is drawn up rom the Gulf, but that the inflow is retained by the bends in the river. Thus, supposing the "planetary" influence to be equal to the attraction of the water only one foot above he natural line, as soon as the influence is gone the water would have to run at two miles an hour twenty-two miles 0 get to its normal level, yet before this point could be reached the planetary influence would return and call it back, which condition would be repeated every day for four een days, when the influence would begin to weaken. At his stage the flood in the lower river commences.
This, he believes, is exactly the condition experienced last spring, and be is confldent that if the flood water bad flowed into the lower river fifteen days sooner, or fifteen days later, there would have been no flood to speak of
To substantiate this position he cites the fact that the Atchafalaya, which is 1,200 feet wide, and usually a very sluggish stream, was conveying more water past Morgan City in the forepart of April than the Mississippi River conreyed past New Orleans, its depth then being 60 feet and its elocity estimated to be 7112 miles per bour.
In addition to this there was flowing over the Morgan Railroad bed, between New Orleans and Morgan City, a stream twenty miles wide by five feet deep, flowing with a velocity of three miles per hour, fully ten times more water than the Mississippi River conveyed past any point below Cairo. It was water which had been held back by planetary attraction.
Mr. Golding believes that the proper way to improve the iver is to remove the levee in front of selected outlets during low water, and construct brickwork facings with alternate openings to receive the water and blanks to exclude driftwood. Suitable levees should conduct the flow from the outlets to the swamp. He wculd place these openings at every available place on both sides of the river between the mouth of Red River and the Gulf. The swamps all connect in some way with the Gulf, so that there would be no danger of filling the swamps unless by turning in too much any one place. He would also restore the broken levees. The effect of these outlets would be, be thinks, equivalent to bringing the Gulf level to the mouth of the Red River. The slope of the river bed above that point would thus be ade steeper and the flow of the stream much faster, the risk of overflow being correspondingly diminished.

TILE FISH.

During the past summer the United States Fish Commision has searched in vain for the tile fish (Lopholatilus chamceleonticeps), formerly so abundant along the inner edge of the Gulf stream, south of Long Islund; and in the early fall the search has been continued without taking a single pecimen.
It will be remembered that this valuable food fish was dis covered in 1879 by the Fish Commission, by means of the method of deep trawling which the commission had newly introduced. During the two succeeding years large quantiies were taken by the same means, the excellent quality of the new fish making it a most acceptable addition to our list of edible fishes.
An illustration of the tile fish, with an account of its characteristics and history, so far as known, appeared in our issue for Δ pril 29, 1882, about the time of the sudden and unexplained appearance of the fish, dead and dying. in vast multitudes upon the surface of the sea. According to the testimony of ship masters, compiled by Captain J. W. Col lins, of the Fish Commissiou, the belt of dead fish--largely
tile fish-extended along a line of at least 170 grographical miles, with a width of 25 miles, some accounts indicating a much greater extension of the drift of dead fish southward It is hard to form a conception of the vastness of the multi tude of dead fish reported, the area over which they were profusely strewn equaling that of the State of Connecticut at least, and possibly that of the State of Massachusetts. The minimum estimate of the weight of the dead fish, made by Captain Collins, excceds fourteen hundred million pounds and it may have been twice or thrice that amount.

The cause of this general mortality appears to be beyond discovery. The effect is seen in the apparently total disappearance of the tile fish from its original haunts. Only time can tell whether they have been wholly exterminated. If any survive it is hardly possible that their former abundance can be restored for many years.

Heavy Work on the Weat Shore Rallroad.

The construction of the Hudson River division of the New York, West Shore, and Buffalo Railroad involves some exceed ingly heavy work. The contract for this part of the road is in the hands of the North River Construction Company. The Weebawken tunnel, 4,000 feet long, is to be completed De cember 1. Thence to Haverstraw, where the road comes in cember 1 . the Hudson River again, the work is well advanced and will be ready for tracklaying by the time the tunnel is finished. The tunnel at Haverstraw, which is 1,600 feet long, will be blasted by October 1. The work from Haverstraw to Krum Elbow, along the west bank of the Hudson River, is of the heaviest and most expensive character. The profle has the appearance of huge saw teeth. West Point Tunnel, which is 2,700 feet long, will be ready for the track by the 1st of December. The line on this part of the road passés alternately from a high rocky point or projection to the water's edge of the river, where the water is from 10 to 125 feet in depth. In three places the great depth of the water and the steep slope of the bot tom necessitate spanning the deep gorge with iron bridges; in one instance a 290 fool span bridge, which is probably Ihe longest double track bridge ever built. For the other two places bridges of 200 and 137 foot spans are used. The numerous accidents from blasts along the Hudson River in this vicinity are occasioned by the haste and energy used in prosecuting the work. At Krum Elbow the road gradu ally ascends the sloping hillside sufficiently to leave the river again. At Rondout there is a tunnel of 350 feet, with a very high viaduct spanning Rondout Creek.

Boring with Bort.

In the course of some boring operations, which bave re cently been carried on by the Government of the Cape of Good Hope in the search for coal, it occurred to the geolo gist in charge to make trial of native bort in lieu of the Brazilian carbonado, which had, until then, been employed. The experiment proved a complete success. The last six crowns used were of three inches diameter, set with bort. It was found that these bored through 1,100 feet of sand stone and shale, part of it exceedingly hard, being indurated by contact with intrusive rock. The average boring per crown was therefore 183 feet, and the last crown is nearly as good as new. Of the above six crowns, one bored througb 322 feet 7 inches, and was still usable; while another bored through 850 feet. In precisely the same class of country, eight crowns supplied from London and set with carbonado bored only 30 feet each. The boring effected with the latter cost at the rate of 27 s . 6d. per foot; while the work done with bort, in the same class of rock, cost less than 2s. per foot bored. The advantage in the use of bort is increased by the fact that, owing to the grenter depth bored by a single crown, there is less delay caused by the resetting of the stones. Great care is, however, necessary in the selection of bort for the purpose, as a very large percentage of the ordinary bort of commerce is unsuitable.
[The African " bort" here mentioned consists of smal diamonds, not good enough for gems. They are used for polishing brilliant diamonds and other purposes. The Brazilian "carbonado" spoken of is a black diamond, that is, an impure carbon. It is extensively used in diamond drills and forms the cutting edges thereof. Black diamonds or carbonados look like bits of anthracite coal.]

\triangle Panama Canal Projected in 1846.

Thirty-six years ago this month (September) the Scren ific American contained the following paragraph on the projected Panama Canal:
"It has for several months, not to say years, been a mat er of incomprehensibility to us that the French should persist in this project of constructing a canal from the Atlantic o the Paciflc Ocean, while there has been such palpable demoustration that ship-railroads must inevitably take the preference; but certain recent developments throw much light on the suliject, by representing that the mountains through which the canal is (or was) to be cut are supposed to bound in native gold. All probability of the completion of the great commercial enterprise is therefore ended."
[Exactly what idea was intended by the last few lines of bis paragraph we do not recollect, but certainly the project a ship-railroad was clearly foreshadowed in this paper thirty-six years ago. -ED.]

EEW OLD FASHIONED HOUSES.

We give herewith an example of the prevailing tendency in some branches of architectural designing, which is to go back to the good old times of the forefathers. Our engraving which is from the London Building News, represents a new dweiling house lately erected in Chester, England, a city that is well known for its various quaint structures.
The house is "half-timbered," and designed in accordance with the old houses in the city, the period being from 1600 to 1650 . On the center brest-summer is inscribed "The Fear of the Lord is a Fountain of Life," following the Latin inscription, "Timor . Domini. Fons . Vitæ," on a shilinscription, "Timor. Domini. Fons . Vitæ," on a shiltance from this is the interesting house known as "Bishop Lloyd's," with its carved panels, Adam and Eve, Cain Slaying Abel, Abrabam's Sacrifice, the Immaculate Conception, the maculate Conception, the Sorrows of the Virgin, and other devices. The house has been built by Mr. N. Dutton, for his residence, and contains dining and sitting rooms, five bed-rooms, bathroom, w. c., closets, kitchen, scullery pantry, ellars, yind also the ellars, ynrd, also the builders' yard and work shops in the rear

Putrefaction and Anti-

 exptice.In the course of researches on this subject, M. Le Bon has lately obtained results which seem to have important practical bearings. The so called "normal liquid" he used for putrefaction was an aqueons solution containing hashed meat to the extent of a tenth of its weight. He finds (1) that the disinfectant power of any antiseptic is weaker the older the putrefaction (new products are given off, in time, by the putrefying liquid that are not so easily destroyed). (2) Measuring the power of antiseptics by their disin. fectant properties on a given weight of the normal liquid the strongest mal wida, the strongest disinfectants appear to be
(in order): permanganate (in order): permanganate
of potash, chloride of of potash, chloride of
lime, sulpbate of iron acidifled with acetic acid, carbolic acid, and the glyceroborates of sodium and potassium. (3) There is no parallelism between disinfectant action and action on microbes (or minute organism). Thus, permanganate of potash so strong in the former respect, has no appreciable action on microbes; alcobol, a strong preventer of microbes, is very weak as a disiufectant. Nor (4) is there parallelism between the power of preventing pu trefaction and that of stopping it when it has arisen. Alcohol and carbolic acid, preservative agents par excellence, have very little effect on putrefaction once commenced. (5) With exception of a
very small :umber of substances that are strong poisons (as bicbloride of mercury), most antiseptics, and notably carbolic acid, have very little action on bacteria. M. Le Bon has at present carbolized solutions several months old. and rich in bacteria; indeed, be thinks this acid one of the best liquids for preserving live bacteria a long time. (6) There is no parallelism between the virulent power of a substance in putrefaction and the toxical power of volatile compounds given off by it; indeed, these properties seem to be even in inverse ratio. A frog is placed in an inclosure with some of the liquid. When putrefaction sets in a very fetid odor is produced, and the liquid swarms with bacteria, and is known to be very virulent if injected under the skin of an animal • but the frog, merely breathing the afflivia, takes no
harm. After two months the liquid ceases to have virulent properties, but the animal breathing its volatile products is killed. (7) The very small quantity of advanced putrefac tion necessary to kill an animal by simple mixture with air proves these volatile alkaloids to be extremely poisonous M. Le Bon ascertained that they are so to man. He knows only a very small number of substances, such as nicotine prussic acid, and the new alkaloid he lately extracted from tobacco, that are as poisonous. (8) The experiments explain the evils arising from bodies long buried, and prove that the atmosphere of cemeteries (contrary to what has been affirmed on the score of there being few microbes present) afflrmed on the score of there being few microbes present)
was rung at unreasonable hours and unnecessarily $\mathrm{l}_{\mathrm{On}_{g} \text {, and }}$ was therefore a nuisance. The mill proprietors replied that was necessary to employ some means for calling the operatives to their work, and that the bell was of suitable size nd was rung at suitable hours for the purpose and in a proper manner. The court decided that the ringing was a nuisance, and granted an injunction.

The Edelwelse.

The curious and interesting Alpine plant, edelweiss, which travelers in Switzerland have so oftell carried away for its ocal and poetic associations, and have as uniformly failed in the attempt to cultivate it, has at last been reduced to
cultivation by an English gardener. He treats the plant as a biennial, and raises a batch of seedlings every cear. This year the seed was ripe July 25 , and was immediately sown in a peat soil covered with a little silver sand. Ordinary seed pans were used. In a fortnight many seedling plants were above the surface and growing satisfactorily. The soil in the seed pans is kept moist, and the plants well shaded from the sun under the plant stage of a greenhouse. The young plants are kept in the pans all winter, then pricked off singly into small pots in March. In May they are planted out in a rock garden, where bey grow freely and bloom profusely. Sandatone appears to suit the edelweiss well; the roots seem to fasten themselves to it and produce vigorous plants. A position in the open sun appears to be best suited, in Eng. land, to the wellbeing of the plant. In this country more shade would probably be necessary.

The demand for edelweiss bas been so great among travelers in the Alps that several cantons have prohibited the sale of the plants, lest they bould be entirely exterminated.

Teehnical Art at the Metropolitan Musenm.
The class in carriage raughting and construction carried on in connection with the Metropolian Museum of Art chools will begin its hird season October 9, under the auspices of the arriage Builders' National Association. The class will be in charge of Mr. John D. Gribbon. The course of instruction covers linear designing, including scale and full size drawing, the geometry of carriage construction, carriage body-makng, construction of cariage gearings, wheel making, and the principles involved in the suspension of carriages. The entire course of hirty-two weeks, every vening in the week. may had for the nominal sum of eight dollars. The
action of microbes on certain organic substances are doubtless largely active.

Factory Bell Ringing

It appeared on a recent trial before the Supreme Court of Massachusetts that the factory proprietors placed a large steel bell on the mill, which they caused to be rung at five o'clock ou the morning of every working day in winter, and again at various hours during the day. Two persons who occupied houses near the mill, one three hundred feet and the other a thousand feet away, complained that the ringing disturbed the quiet and comfort of their homes, and repre sented that the bell was unnecessarily large, that it was of
no use for any purpose of trade or manufacture, and that it
class will also be favored with free lectures by specialists on subjects connected with carriage mechanics.

Large Circular saw

A Sheffleld (England) firm has recently turned out a circular saw 87 inches in diameter, which is claimed to be the largest saw of the kind ever made. This claim is disputed by another firm of the same place who assert that they have manufactured several saws of 88 incbes diameter. When the great difficulty of producing suitable plates of this size is considered, the expense of the working appliances, etc., these saws are certainly worthy of notice and bighly cred-
itabie to the manufacturers.

Ligit or the sky.

Captain Abney lately read a paper before the British Association on the light of the sky at high altitudes, based upon observations made in the Alps on the Riffel, at a height of 8,500 feet. His investigations proved that in high altitudes the light of the sky diminishes very much so as to maike photography difflcult, and that it is only a tenth or a t wentieth of that which is found on the surface of the earth. There was a remarkable absence of the rain band spectrum. On the Riffel he only saw it once, and that was during a shower. The solar spectrum was the same on the Riffel as in London. He did not believe that aqueous vapor was present in the upper regions, at all events in the form in found that the benzine and alcohol which had been found to exist in the atmosphere actually increased in strength in the higher regions, and he could only suppose that benzinc and alcohol are not of terrestrial formation but come to us from space. Dr. Glaisher said he had never failed up to five miles in getting a deposition of vapor, and there was no part of the earth's atmosphere probably in which there was no aqueous vapor. At a height of seven miles in a balloon be had seen cirrus clouds still higher, and there was a great difference between the state of the atmosphere in a free balloon and on a mountain side. Professor 8 . \mathbf{P} Langley, of Allegheny, Pennsylvania, in a paper on the dis tribuition of energy in the solar spectrum, stated that he had investigated the infra-red spectrum at a beight of 13,000 feet in a very dry region, and found that it extends very much further than had been mapped heretofore. The wave lengths of the visible parts of the red end of the spectrum are only one-fourth of those in the infra-spectrum so that three-fourths of the energy were invisible. His observations proved the existence of great gaps in the spec trum, and be was inclined to support Abney's conclusions on the existence of benzine and alcohol in space.

Vaporm of Metals.

M. Eugene Demarçay has recently obtained volatilization at much lower temperatures by diminishing the pressure of the gas by which they are surrounded. His apparatus consists of a crystal tube 12 centimeters in diameter, containing the metal and closed at its extremities. The heating is effected by vapors of sulphur, mercury, aniline, water, and other substances, giving temperatures ranging from 440° Eent. to 100° Cent. The vacuum is obtained by a Sprengel pump, and the tube is then heated in the vapors mentioned, at the same time that the pump is worked. A fine U tube, which enters the crystal tube until its bend is about two centimeters from the piece of metal, is traversed by a current of cold water and serves to condense the volatilized metal. When the heat is applied a considerable quantity of vapor is given off, and this condenses rapidly on the bend of the cold water pipe forming a dark deposit, which in time acquires a metallic tinge. Cadmium, zinc, antimony, bismutb, Itad, and tin bave been volatilized in this way, at temperatures of 180° Cent., 184° Cent., 292° (antimony and bismuth), and 360° Cent. (lead and tin) respectively. At higher temperatures the deposits are more abundant; but M. Demarçay has not proved any volatilization at inferior temperatures to these given. He does not doubt, however, that volatilizatiou at lower temperatures does exist; but it is masked by the formation of a thin layer of suboxide of a deep color, which is less volatile than the metal itself. In such cases the metallic sublimation begins after this protective skin is broken.

NEW ALARI REGISTER.

We give herewith an engraving of a novel self-setting alarm register, invented by Mr. C. H. Stoddard, of Kansas City, Mo. Tbis instrument is capable of counting up to $1,000,000$, and will give an alarm by ringing the bell at any prescribed number from 1 to $1,000,000$. The instrument represented in the engraving has a capacity of 10.000 only.

Two sets of register wheels are geared together, an upper and a lower set. The lower wheels are displayed in the face of the register, while the upper set, which is concealed and only set is connected to a kuob on top of the bell by a rod, by raising which the wheels are raised out of gear with the lower set, and are free to be turned in either direction to the number at which the alarm must be given. In the engraving the top set of wheels have been raised and turned to show 1860. By lowering the knob on top of bell the register is ready for work, and will not give the alarm until 1860 have been counted and registered on the lower set of wheels. When the number has been run the alarm will be given, and will then continue to sound until the press or other machine to which the register is attached is stopped, giving one tap of the bell to each number run over the prescribed number.
In places where a good many runs are made daily, the man in charge may forget to set the register before starting
his machine. In this case the register will immediately
seen when the alarm is open, is for setting the alarm. This |supposed to suit reptilian needs. The new reptile house
warn him of the fact by giving the alarm. If the register is oot properly set it will also sound the alarm.
But this is not all that this register will do. The automatic setting atiachment is a most valuable feature. The gures seen on the lower set of wheels may all be instananeously returned from any number, by simply raising the kuob on top of bell. This at the same time raises he upper set of wheels out of gear.
This register may be used at any time without the alarm, and without adjustment, it being put in condition to operate in this way by simply raising the bell hammer untilit is held by a catch made for that purpose. It can then be used as any other counter or register, with the advantage of the self setting arrangement, and will never have to be opeued.

This register can be attached directly to any kiud of a machine, or to the wall or post. The crank or lever at the side is held to its shaft by a thumbscrew, and can be worked from above, below, or from the back by a cord or rod.
We are informed that this instrument is now used by some of the largest publishing houses in this country, and has proved itself retirely reliable.
Further information may be obtained by addressing Mr. C. H. Stoddard, Bu, 1139, Kansas City, Mo.

Now Reptlle Houce.

The Zoological Gardens of London are the largest and have the greatest variety and most interesting collection of animals, birds, and other natural history subjects of any public gardens extant. The reptile stock has increased so nuch that new quarters are about to be built on designs

STODDARD'S ALARM REGISTER.

 at the front and rooms in the rear for the keepers and workmen. It seems that such a house must face due south, and have a roof slated on the north slope and with ample sky lights on the south slope. It is to be of brick, with stone trimmings, and iron work for the roof. Fixed cages will occupy the north, east, and walls, while the south wall, almost entirely of glass, is to be left for some movable cases containing the light weights among the reptilia and batrachia. A large oval pond for crocodiles will occupy the center, and two smaller ponds for other aquatic reptiles. It is to be heated by hot water pipes. The Zoo now owns 57 tortoises, 10 crocodiles, 95 lizards, and 88 snakes, amung which latter 10 are large pythons and boas. Almost every issue of Nature contains a goodly list of animals bought by, issue of Naure contains a goodly list of angiven, loaned to the Zoological Society.

IMPROVED PORTABLE WATER CLOBET.

We give an engraving of an improved commode or portWe water closet recently pateuted by Mr. Jorn McAuliffe, of Gilderslecve's Landing, Portland, Conn. This commode is cleanly, odorless, and readily taken care of.
The brox or case is made of suitable size and shape, and is provided with a loose cover or seat that sets over the upper edges of the box, the latter being provided with a packing strip which renders the joint between the box and cover air light. The bowl has a pan suspended beneath it by means of jointed links, on which it is made to turn by the knob and connecting rod.
The main cover is hinged upon the seat, and is made hollow to serve as a reservoir for holding water. This cover is filled through an cpening in the edge stopped by a screw cap.

Within the cover is a partition which cuts off the water from the cap when the cover is closed, so that the water cannot escape hy the air inlet opening in the cap. In the cover is a tube of V form, one end of which passes out through the bottom, while the other end is connected to a small tray or pan, which is fitted in cover near its hinged end. The position of this tray is such that when the cover is raised the tray is filled, as shown in the larger view, and when the cover is closed the tray cuts off a certaiu quantity of water from the main reservoir, and the water in the tray escapes by the V shaped pipe to the bowl and pan. This ingenious device insures a supply of water to the pan at every opening and closing of the cover.
A pail is placed in the box beneath the pan, in position for receiving the conteuts of the pan.
Further information in regard to this invention may be obtained by addressing the inventor as above.

A Now Food Fish.

During the latter part of September, Captain J. W. Cullins, of the United States Fish Commission, renewed, without success, the search for tile fish. But the cruise was re warded by the discovery of a new food fish which may take the place of the vanished tiles. The new fish is described as very beautiful, with a warm red luster and black and cream colored mottlings. The specimens, a dozen or more in number, weighing from one to four pounds each, were brought up in the trawls from a depth of about 120 fathoms brought up in the trawls from a depth of about 120 fathoms
in latitude $40^{\circ} 2^{\prime}$ north, longitude $71^{\circ} 2^{\prime}$ west. The fish in latitude $40^{\circ} 2^{\prime}$ north, longitude $71^{\circ} 2^{\prime}$ west. The fish
was found to be a new member of the family $8 c o r p o n a$, first described by Jordan in 1880. Two specimens were cooked and pronounced the most delicious of fish, the flesh being firm and crisp, with a delicate crabby fiavor.

Making a Dead Man's Heart Beat.

James Tracy was hanged for murder at Chicago, Septem ber 15. The neck was broken. One minute after the body was taken from the gallows Drs. Mann and Bluthardt began the experiment of applying electricity with a view to resuscitation. The result is described by the doctors as follows:
"The experiment was begun by applying one pole over the spinal cord and the other over the heart-the latter by means of three needles, one over the apex and two over the base of the beart. The needles were inserted beneath the skin, so as to bring the electric curreut in direct communication with the beart. On turning on the current the effect was very marked. Muscular contortions began wherever the electric current reached, but especially in the face and neck. The heart began to contract feel,ly, not regularly. With the ear over the heart we could distinctly hear, or rather feel, the beart's contractions. By removing the electrode we could produce a variety of facial expressions. The arms would contract, the legs move with consider able force, and the muscles of the abdomen contract strongly. The most significant fact, however, was the rhythmic action of the heart, notwith standing that the neck was broken. It is probable that a considerable proportion of criminals who are lianged in this country are either mechanically strangled - that is, choked to death, or killed by shock-that is, death is the result of the terrible impression made upon the nervous system. In cases where the neck is not broken and the spinal cord is not lacerated, we are of opinion that resuscitation would not be impossible. It might be accomplished by electricity friction, artificial respiration, the hot bath, and other wellknown means of restoration. In this present case resuscitation was impossible, as the neck was broken."

The Sydney Exhibition Bullding Burned.

A dispatch from Lnndon, dated September 22, announces that the Exhibition Building, at Sydney, New South Wales, has been destroyed by fire with all its contents. The building destroyed we nuderstand to be the bandsome main building, styled the Garden Palace, erected for the Interaational Exhibition of 1879-80, and kept for permanent exhibition purposes. Its loss is a grave misfortune to Syd ney and to the colony.

Aspects of the planets for october.

baturn

is morning star, though be is now near enough to opposition to lend a charm to the October evening sky throughout the whole month. A few minutes before eight o'clock, he may be seen serenely rising in the northeast, taking on a more superb aspect than he has manifested for thirty years. He may be easily recognized by his soft, steady light and his near vicinity to the Pleiades. He rises earlier each night, and, at the end of the month, comes beaming from the eastern horizon a quarter before six o'clock.
When it is remembered that Saturn travels round the sun at a mean distance of eight hundred and eighty-one million miles, twice the distance of Jupiter, and that his mass is only one-third of that of his giant brotber, it seems unaccountable that, from his far away home, be should shine as a star of the first magnitude in our sky. But observation substantiates the theory that Saturn as well as Jupiter, and probably the two other giant planets, Uranus and Neptune, have only partially cooled from a condition of incandescent heat, that they are somewhat in the condition of the sun, and give out heat and some light to increase their beautiful appearance in our sky.
It is possible, before the waters and atmosphere of the earth are absorbed into her interior in the long process of decay, and she becomes a dead world like the moon, that terrestrial observers may witness the gradual cooling of these gigantic planets, and the paling of their luster among the stars. Never in the lifetime of present observers will a more eligible opportunity occur for observing with the naked eye the grand appearance of Saturn as during the three coming months. Never will the telescopist enjoy more delightful views of this magnificent and complex system of worlds than those which will delight his eyes for three years to come.
Those who wish to trace Saturn's position on the starmaps will find him in right ascension 3 h .35 m ., in declinaion $16^{\circ} 52^{\prime}$ north. His place in the heavens is in the constellation Taurus, and his nearest brilliant neighbors among the stars are the clustering Pleiades and Hyades. He has reached his extreme northern declination and will now travel slowly southward. His diameter now measures about eighteen and a half seconds.
Saturn now rises at a few minutes before eight o'clock in the evening; at the close of the month he rises about a quarter before six o'clock.

JUPITER

is morning star, and glorious to behold as he comes darting above the horizon, two hours after Saturn, the most princely star that adorns the firmament at the time of his rising. About eleven o'clock the eastern heavens are aglow, with Jupiter and Saturn for the principal actors, surrounded by the sweet influences of the Pleiades. Orion with the symmetrical bands that no one can loose, and the brightest of the northern brilliants Capella.
As Jupiter is only half as far away as Saturn, and very much larger, we see him under much more favorable circumstances, and the amount of heat and light he probably gives forth is in proportion to his giant bulk. It is generally conceded that he is surrounded by a cloud atmosphere some twenty thousand miles in depth, and that commotions in this cloud atmosphere are the cause of the beautiful belts that adorn his disk. It is probable that we never see the body of the planet, unless it may be through some of the enormous rifts that are frequently seen on his surface.
The right ascension of Jupiter is 6 h .4 m ., his declination is 23° north. His diameter measures $38 \cdot 6^{\prime \prime}$. His place in the heavens is in the constellation Gemini, about midway between Capella and Betelgeuse, and northeast of Sirius.
Jupiter rises on the 1st a few minutes before ten o'clock in the evening; at the end of the month he rises a few minutes before eight o'clock.
is morning star and retains his place as berald of the morning trio. Those who wish to trace his position on the starmaps, and thus track his unseen steps, will find him in rigbt ascension 3 h .6 m ., and in declination $15^{\circ} 34^{\prime}$ north. His place in the heavens is in the constellation Taurus, a short distance southeast of Saturn. There are but twenty-five minutes difference in the time of transit of the two planets.
Neptune rises on the 1st at half-past seven o'clock in the evening; on the 31st he rises at half-past five o'clock.
dranus
is morning star, and as he has but recently taken on the role, he has not progressed very far from his near proximity to the great luminary. Planetary students will find him on the star-maps in right ascension 11 h .25 m ., and in declinaion $4^{\circ} 36^{\prime}$ north, just entering the constellation Virgo.
Uranus now rises about half-past four o'clock in the morning; at the end of the month he rises about half-past two 0° clock.

mercury,

as if often the case, may be said to be on the fence, for he is evening star until the 22d, and then morning star for the rest of the month. On the $2 \because \mathrm{~d}$, at eleven o'clock in the evening, he comes into inferior conjunction with the sun. He then passes between the earth and the sun, and if his orbit were not inclined to the ecliptic or sun's path he would make a transit over the sun's disk.
On the 13th Mercury is in conjunction with Mars at eight o^{\prime} clock in the morning. Mercury being $3^{\circ} 25^{\prime}$ south. They
count to terrestrial observers. Indeed, four of the planets,
Neptune, Uranus, Mercury, and Mars, might as well be dropped from the montlly record as far as any visible par they play on its annals is concerned. But the student who is thoroughly interested in these mysterious wanderers will find pleasure in tracing their unseen as well as their visible course. Knowing their right ascension and declination be will find their place in the heavens on any reliable starmaps.
Mercury's right ascension is 14 h . 2 m ., his declination is
$15^{\circ} \mathbf{4 5}$ south, and his diameter $7^{\prime \prime}$. His place is in the con $15^{\circ} 45^{\prime}$ south, and bis diameter $7^{\prime \prime}$. His place is in the con
stellation Virgo, and bis most brilliant starry neighbor is Spica or Alpha Virginis.
Mercury sets on the 1st about half-past six o'clock in the evening; at the end of the month he rises shortly after five o'clock in the morning.

mars

is evening star, and pursues his slow course too near the sun to be perceptible to the most sharp-sighted star-gazer. There is nothing in his present movements to interest the student. He has dwindled to insignificant proportions, lost bis ruddy hue, and his light is dim among his peers. Sixteen months must pass before his next opposition takes place, and ten years must. roll their annual circuit before he takes on his most brilliant phase. We have already drawn attention to his conjunction with Mercury.
His right ascension is 13 b . 47 m ., bis declination is $10^{\circ} 57$ south, and bis diameter is $4^{\prime \prime}$. His place in the heavens is in the constellation Virgo, between Mercury and Spica.
Mars sets now about half-past six o'clock in the evening at the end of the month he sets about half-past five o'clock.

venus

is evening star, and though we place her last on the list, she leads the solar brotherhood in size, beauty, and general magnificence during the short stay she makes in the western heavens. She is now near enough to her period of greatest brilliancy to be easily seen before sunset-by those who know where to look for her, and she is bright enough to cast a perceptible sladow. No observer can look unmoved upon the Queen of the Stars, as every clear night she makes ber appearance in the evening sky, or fail to admire the fascinat ing grace with which she retraces her steps toward the sun. Her charming pensile loveliness is beyond words to describe as she hangs like a golden lamp suspended by invisible chains from the star depths, fed by celestial fire, forming a picture never two evenings alike, and never ceasing to cal forth the reverent admiration of the beholder.

Venus is traveling from her greatest eastern elongation to her inferior conjunction, pursuing her retrograde course with flying feet.
Sbe gets up a charming tableau as she proceeds on her winding way. On the 16th, at five o'clock in the afternoon, she is in close conjunction with the flrst magnitude star Alpha Scorpii, better known as Antares, the familiar red star in the constellation of the Scorpion.
Δt her nearest approach she is only eight minutes from the star, and as planet and star will be visible soon after that time, the opportunity for observation will be unusually favorable and will form a delightful study for observers The contrast in dimensions between Venus, when vearly at her brightest, and a first magnitude star, and the contrast in color between the red tint of Antares and the soft golden hue of the planet, are points to be noted, as well as the exceeding beauty of the scene in which the actors are sure to appear as soon as the short autumnal twilight fades.
Antares is almost as easily found as Venus, being a brilliant red star east of the planet. Observers will find great pleasure in watching their gradual approach from night to night until they meet and pass each other on the celestial highway, approaching at conjunction more closely than any other planet and star bave done before during the year.
The right ascension of Venus is 15 b .26 m ., ber declination is $23^{\circ} 38^{\prime}$ south, and her diameter is $268^{\prime \prime}$. Her place in the heavens is in the constellation Scorpio, where she may now e seen approaching Autares.
Veuus sets on the 1st about nineteen minutes after seven o'clock in the evening; at the end of the month she set about half-past six o'clock.

Successfal and Unsuccessfal Inventorn.

Why are many apparently good ideas not successful when brought before the public as new inventions? This is a question, adds an English contemporary, which many in. ventors have asked themselves, and in answering it have blamed the world all round, but never themselves. This may seem singular to many people, but let us see how this ocurs.
Inve
Inventions, no matter of what kind, but especially those with the with manufacturing, originate generally either as serson occupied with manufacturing as master or machines and tools used by the former. The manufacturer, operative or not, finds that bis goods are not as perfect as they should or might be; his competitor is doing as well as himself, and may soon dislance bim through being backed by larger means; so he begins to think how he can distance
him; how he can increase this production and diminish the cost, and thus do more with a smaller capital; or bow he can make a superior quality out of the same material, and so make his goods more acceptable to the consumer.

The machine maker is in the same position as the manu-
has to work for the manufacturer; but still he has the same motives as the latter to produce something new or cheaper, and the prime motive with him is likewise the competition of others. He makes, we will say, a loom such as is used in his district, and for which there is always a demand, but this demand is supplied not only by Smith, but also by Jones, by Robinson, and by Taylor. As Smith is not an easy-going man, but one with brains, he endeavors to get precedence of the others, which he can only do by producing looms more cheaply or better. To make cheaper, without making them as good as the others, would be impossible, as competition has only allowed a narrow margin of profit; so he must make them better by furnishing a loom which will either produce more cloth, or one which takes less power to drive, or less attendance on the part of the weaver, or in other respects accomplishes more than others. In order to produce something better than their competitors, both manufacturers and machine makers try to invent improvements, very often spending over them much time and money. If they succeed they generally reap the reward of their excrtions. When, however, inquiries are made among the general body of inventors, many are found who have a different tale to tell. Many have spent their money, wasted months and years, ruined their health, and finally have died poor and broken-bearted. And yet bow many have come before the public, satisfied with their inventions themselves, only to find that the thing is poob-poohed or pronounced ingenious but impracticable! There is still another class of equally unfortunate inventors, who are successful enough as far as it goes, but who go and upset their own inventions as soon as they are introduced by another which supersedes them, and which is, in its turn, put aside after awbile by nnother, all of which are only different ways of doing the same thing, but none of which have any material advantage ver existing modes of working.
Where there are so many failures, there must naturally e something wrong somewhere, and we think we have not far to search to find the cause. Generally, no one is to blame for it but the inventor bimself. Not that he does not understand his subject-for we are not considering outsiders who think that they are geniuses and cure-alls-but because they are working unaided and looking at the object in view only from their own standpoint, while, if they had the assistance of others, possessing the knowledge of which they themselves are defic:ent, their labor would either not be wasted or be more successful. How often does it occur that a machine maker thinks be can improve a machive, but when it comes to work it is not so handy for the operative, or the latter finds it too complicated; this or that part gets out of order under certain conditions of working; or it will do for one material, but not for another, for which it is quite as needed; or a hundred other inconveniences which nly the operative who attends to it can discover. The manufacturer is no better off; he finds that the machines he is using have this or that defect; he watches them hour after hour, day after day, and thinks how this could be mended. At last be has found the reason of the defect, and be sets o work to carry his improved ideas out; but here he meets with innumerable difflculties. There ought to be a wheel bere, but there is no room for it; there he wants a forward motion, but all the moving parts at hand have a rotating motion, and at a speed which is useless to him; here this is in the way, and there that, and if at last he gets all bis motions, there are so many parts about it, that all his time and attention are required in keeping them in order.
Now, if the two could be brought together, the manufacurer would tell the machine maker at once, or very soon, hat he was on a wrong track, that the alterations would be unsuitable for certain materials, and his experience with the latter would enable him to show that they require quite a different treatment; or the machine maker would show the manufacturer in a few minutes how to overcome certain mechanical difflculties which are only child's-play to bim, but are a puzzle to bis friend. The latter is, perhaps, the more frequent case, and is the reason why so many inventions soon pass from the hands of the operative manufacurer into those of the mechanic, who remodels and often reaps the principal benefit from them. Only very recently a case in point occurred where an old workman, one who thoroughly understood his business, had spent many years in producing an invention which turned out to be ureless hrough mechanical faults of the arrangement, and which, when abandoned by the inventor, passed into the hands of machine maker who had the thing working successfully in less than three months.
In advocating the co-operation of manufacturer and mechanic, it may be objected that it is often dangerous to communicate one's ideas to auotber who might see through them at a glance and appropriate them. Such things are possible, and have been done more than once, but generally only where people have trusted an unworthy person. We think, on the whole, it would be better for the inventors of both crasses if they took the trouble to look for a capable man with a good reputation, and who possesses the qualities in which they themselves are deficient, even at the risk of laving to give up a share of the profts, for at the end heir gains would be more than if they worked for a length of time in the dark.
MM. Pellicot and Jaubert claim to bave destroyed the winter egg of phylloxera, and arrested the multiplication that pest by treating the vincs with a solution of 1 kilo of sulphate of iron in 2 liters of water.

eforvespondemit.

Removing River Obstrucilons.

To the Editor of the Scientific American:
In your issue of the 16 th inst. I noticed an article on the removing of sand bars, etc. The idea of floating or washing out obstructions of this kind in rivers is not new to me, as I have advocated the system for the Mississippi, with its wonderful shiftings, on the following plan. Have large flat bottom boats with heavy steam machinery, and supplied with fans or force pumps whose power would be conveyed to the oliject to be removed through hose weighted so as to drag on the bottom when the power is being exerted against the obstruction. The hose (one or more) to be put out from the forward part of the boat and adjustable to the depth required. In the after part of the boat, and at proper depth below the surface of the water, bave revolving attachments, constructed so that they will draw the water from under the center of the boat and throw a swell toward each side which will carry a quantity of the floating or dislodged mat ter beyond the channel. To prevent creating an obstruction by the settlings down stream, it would only be necessary to run further down each time the route is gone over. To keep a river open in this way it would require boats to be stationed at such distances as could be gone over each day, or as occasiov required, and I believe the cost would be much less than dredging, and certainly always leave a clear channel.
R. H. Andrews.

Washington, D. C., Sept., 1882.

NATURAL HIBTORY NOTES.

Insectioorous Plants.-A. F. W. Schimper, in the Botanische Zeitung, gives a detailed description of several insectivorous plants native of North America. He describes in this paper more fully than has been done before the ascidiform leaves of the side-saddle plant (Sarracenia purpursu), and has determined that the products of decomposition of the insects and other organic substances found in the "pitchers" enter the cells of the leaf, as is shown by the changes which take place in the protoplasm of the cells thus affected. In these cells the author noticed a phenomenon closely resembling that described by Darwin as occurring in Drosera, under the name of "aggregation of protoplasm." In Sarracenia, however, the aggregations consist of a concentrated solution of tannin-a substance always present in the cell sap. Of North American Utriculariz (bladder warts), U. cornuta was especially examiped and found to present several very singular points of structure. The plant possesses no true root the rbizome branching into several root-like organs, which
bear the bladders in great quantities, and which the author bear the bladders in great quantities, and which the author
believes to be homologous with the floating leares of believes to be homologous with the floating leaves of the aquatic species. The bladders are similar in form to those of U. vulgaris (but want the "anteña""), as is also their bistological structure, which he describes in detail. They contain, in addition to inorganic bodies, small auimals and algr, especially diatoms, rotifiers, and crustacea. The ani mals were never found alive, but usually much swollen and decomposed; and this was also the case with the diatoms, the contents of the bladders being apparently poisonous to both animals and plants. The hairs of the bladders appear to act as organs of absorption; and in the contents of their cells changes were observed similar to those described in the cases of Sarracenia and Drosera. As in Dionaa, an excess of nutriment is injurious to the plant.
The Elephant in Ceylon.-At a meeting of the Leeds Naturalists' Club, the president (Mr. B. Holgate, F.G.S.) related some curious particulars which had been furnished to him by the Rev. R. Collins, of St. Silas's Church, Hunslet, who has spent twenty-five years in India and Ceylon. Mr. Col lins states that elephants are not now allowed to be shot, as they once were, but are permitted to wander at will in the forests belonging to the government. They live to the age of about one hundred and thirty years, and "come of age" at forty. There are three sizes of them in the same herds, and when they are young the size that they will attain is pretty nearly known by the number of their toes. Those which grow to the largest size have eighteen toes, five on each of the two fore feet, and four on each of the hind ones. Those which grow to a medium size bave seventeen toes, five
on each of the fore feet, as before, and four on one bind font, and three on the other. The least size of elephant has sixteen toes, five on each fore foot, and three on each hind foot. No Singhalese elephant has a fewer number than sixteen toes. The mahout, or elephant driver, rules his elephant by means of an iron hook, with which he touches a most sensitive part behind the ear, which causes the nost unruly elephant to become submissive. When Mr. Collins
was in Kandy, an elephant which had killed its keeper, and which had been shot in the head before it could be captured, bad to undergo the operation of having the bullet extracted, which was performed by the native doctors, the elephant lying quietly down while the mahout kept bis hook on this sensitive part. The elephant drivers are a drunken set of men, and sometimes, while drunk, will treat their charge unmercifully, and the elephant itself is an animal which bears grudges-the result being that nearly all elephan keepers are sooner or later killed by their elephants.
A New North American Rose.-Dr. Geo. Engelmann describes, in the Bulletin of the Torrey Botanical Club, a new species of rose that appears to present peculiar botanical and horticultural features. It was discovered by a party of botanists, consisting of Dr. Parry and Messrs. M. E. Jones
and C. G. Pringle, while they were riding along a road skirting the shores of All Saints' Bay, in Lower California Forming as it did a most conspicuous and agreeable feature in the arid landscape, with its finely divided foliage and showy piuk or white flowers, it at once attracted the attention of the whole party. It has been named Rosa minutifolia by Dr. Engelmann, who describes it as "a most striking and lovely species, distinguished from all other roses by its minute deeply-incised leaflets." The species is quite peculiar among its American congeners, and even among the roses of the Old World, so that it is difficult to determine its true position. As seeds have recently been collected, we may hope to soon see the plant in cultivation.
The Colors of Flowers.-In a lengthy and interesting article by Grant Allen, in Nature, on "The Colors of Flowers, as Illustrated by the British Flora," the author says: "The different hues assumed by petals are all, as it were, laid up beforehand in the tissues of the plant, ready to be brought out at a moment's notice. And all flowers, as we know, easily sport a little in color. But the question is, Do their changes tend to follow any regular and definite order? Is there any reason to believe tbat the modification runs from any one color toward any other? Apparently there is. All flowers, it would seem, were in their earliest form yellow; then some of them became white; after that a few of them grew to be red or purple; and, finally, a comparatively small number acquired various shades of lilac, mauve, violet, or blue. Some hints of a progressive latw in the direction of a colorchange from yellow to blue are sometimes afforded us even by the successive stages of a single flower. For example, one of our common English forget-me-nots, Myosotis versi color, is pale yellow when it first opens; but as it grows older it becomes faintly pinkish, and ends by being blue like the others of its race. Now, this sort of color-change is by no neans uncommon; and in almost all known cases it is always in the same direction-from yellow or white, through pink, orange, or red, to purple or blue. Thus, one of the wallflowers, Cheiranthus chamoeleo, has at first a whitish flower, theu a citron-yellow, and finally emerges into red or violet. The petals of Stylidium fruticosum, are pale yellow to begin with, and afterward become light rose-colored. An evening primrose, Einothera tetraptera, has white flowers in its first stage, and red ones at a later period of development. Cobra scandens goes from white to violet; Hibiscus mutabilis from white, through flesh colored, to red. The common Virginia stock of our gardens (Malcolmia) often opens of a pale yellowish-green; then becomes faintly pink; afterward deepens into bright red, and fades away at last into mauve or blue. Fritz Muller noticed in South America a Lantana which was yellow on its first day, orange on the second, and purple on the third. The whole family of Boraginacea begins by being pink and ends by being blue. In all these, and many other cases, the general direction of the changes is the ame. They are usually set down as due to varying degrees of oxidation of the pigmentary matter.

Milk as a Curative Agent.

Under the above heading a writer in Harper's Weekly, after warning in respect to the quality of milk to be used, the becessity of good pasturage and pure water for the cows, as well us the care in keeping the milk in a cool, cleanly place, treats as follows on the digestibility of milk and its benefit o dyspeptics for complaints.
The writer's views so accord with the experiences of one of the editors of this paper in the use of various kinds of milk in an obstinate case of dyspepsia on a member of his family, hat we are able to indorse the write
Milet for the ailment he specifies.
Milk tas the power to absorb obnoxious gases and efflavia from the air around it, and it should not be forgotten that the purest butter that ever was made may become tainted and poisoned in one short hour by objectionable surrouvdings.
Comes now the question of the digestibility of milk.
A glance at a table of the composition of cow's, ass's, and goat's milk would naturally convey the impression that that of the goat is the richest. This is so, but it is on that account the more difficult of assimilation. It cannot, therefore, be recommended for the very delicate, but it is a grand adjunct to the diet of those who are just beginning to regain strength after long, severe illnesses. A residence at the seaside to induce a healthy appetite, and a diet consisting largely of goat's milk, would restore many a convalescent far more speedily to health without the aid of drugs than anything I know of.
A course of goat's milk may often be taken with advantage in the autumn by those who suffer much from cold during the inter months, but who do not care to take cod-liver oil. The extract of malt would go well with it as a tonic adjunct. The milk ought to be taken on the principle of little and ften, not drunk wholesale.
Ass's milk contains a larger proportion of water, more actine, and less oil and caseine. This is the reason it is so easily assimilated, and is so often prescribed by the physician for patients who have delicate digestions. It is possible that it may be of a somewhat too laxative nature for some but this is easily corrected.
Cow's milk most invalids can take. It is often an advantage to give it in conjunction with a little acrated water; and in cases where it has a tendency to turn sour or disagrees with the stomach, it should be mixed with a little lime water. It should be remembered, bowever, that lime
termission, or evil results may follow. Cream, if taken fresh in the morning, and if it can be well borne-which it usually can-is an excellent tonic and restorative. It should be taken with breakfast, and the more fresh it is, and the more good and pure the milk from which it has been taken, the better will be the result. The cream of goat's milk is probably better than even that of the cow.
Skim milk is very nutritious, but, of course, being deprived of a large proportion of cream, it is not calculated to sustain the animal heat so well.

It is not every invalid who can take buttermilk, but it has, nevertheless, much to recommend it as a cooling nutritive summer drink. I might almost claim for it tonic properties; however, there is no doubt that, taken an hour or two before any of the ordinary meals of the day, when a feeling of emptiness and fatigue is experienced, it is of great service. The delicate should bave it as fresh as possible.
Milk, talking physiologically, is demulcent, and therefore of great service in many cases of cough and lung irritation, as well as in dyspepsia. I need hardly say a word about the virtue of milk as a medicine for those suffering from consumption. In this case it ought to be drunk warm from the cow; it is certain then to be unadulterated. Too muich of it can hardly be taken, so long as it agrees.
In all sinds of internal irritabilities, even in dysentery itself, milk is invaluable, and the emollient effects of milk warm from the cow are well marked in cases of chronic or winter cough.

A shiling Mountain in Oregon.

The government engineers engaged upon the ship canal around the rapids where the Columbia River cuts through the Cascade Mountains, and the engineers of the Oregon Retil way and Navigation Company, whose railroad runs beside the government canal, have discovered that a point of the mountains, of tremendous beight and three miles in extent, is moving down an incline into the river. The fact of a moving mountain is strange, but not incomprehensible. It seems, says an intelligent correspondent of the New York seems, says an intelligent correspondent of the New York
Times, that the great river and the ravines that point to it Times, that the great river and the ravines that point to it
have cut their way down through a superincumbent mass of basalt into a substratum of sandstone. This sandstone, we will suppose, presents a smooth surface, with an incline to ward the river; the river cuts under the basalt into the sandstone, and the natural effect is for the superincumbent basalt, acting like a similar formation of ice in a glacier, to slide down hill.
The same gentleman says, on the authority of Mr. Thiel son, engineer in chief of the Western Division of the Northern Pacific Kailroad, that when an examination was made a year ago of a disused portage tramway past that point, the track was found to be twisted as much as seven or eight feet out of the true line in some places, caused beyond doubt by a movement of the mountain. It seemed certain to Mr. Thielson that there was a movement of a tremencious mountain spur opposite this piece of road. The correspondent goes on to eay :

It is a fact well known to all river men that above the Cascades, where the river is tranquil, the waters cover a submerged forest, whose trunks still stand with their projecting limbs to attest some wonderful phenomenon. It has been a query in the minds of all as to what convulsion of nature or process of time caused this overflow of waters. Over thirty years ago I saw the dead trunks standing beneath the waves, and the interest in this connection was in creased by learning from the Indians that among their traditions was one that ages since the mountains rose precipitions was one that ages since the mountains rose precipi-
tously at the river's side, and a great arch of stone spanned tously at the river's side, and a great arch of stone spanned
the river from shore to shore, and that their canoes passed under it. Tradition further says that in course of time a great earthquake threw down the arch and blocked the river, causing the cascades as we see them now. It is not often that Iudian tradition is so specific in detail. As the records of the aborigines of this region are very transient, it is pos sible that this story rests on some fact of natural history of not very remote occurrence. Joining tradition and specu lation with the discoveries and deductions of science, we must conclude that some convulsion of nature has thrown great masses of rock into the stream sufficient to deaden its flow for eight miles above and to submerge the forests just above the rapids. Mr. Brazee, who has been engineer of the navigation company that owned the Portage road around the falls, informs me that he has watched the movements of the mountain for twenty years, and that it is oo myth."

Barnard's Comet (D 1882).
This telescopic comet was discovered by Mr. E. E. Barard, on September 14, 1882, in right ascension, 7 h .17 m . 33.7 s .; north declination, $16^{\circ} 14^{\prime} 52^{\prime \prime}$. It was then near the star Lambda Geminorum. On the mornings of 24th and 25th inst., I observed it in Canis Minor, about three degrees N. E. of Procyon. It is moving southeast about one degree daily, and nearly on a line drawn from Epsilon through Lambda Geminorum.
It is a bright telescopic comet in the 9 inch reflecting telecope, round, without tail, and somewhat condensed at the center. Observers with only small telescopes will be repaid for their trouble in looking it up and watching its motion among the stars. It is increasing in brightness.

William R. Brooks.
N. Y., Set. 25,1888 .
Red House Observatory, Phelps, N. Y., Sept. 25, 1882.

CHRONOGRAPH FOR ENGINEERING PURPOSES, WITH THE HIPP RSCAPEMERTT.
The two engravings given herewith show the general construction and details of an improved chronograph for ongineering and other purposes.
The instrument has been successfully applied to some of the different types of large pumping engines, such as directacting fly-wheel engines, geared pumping engines, and the "Davey engines;" it has also been used to determine the motion and relative motion of pump rods and pumps some 2,500 feet below the surface engine driving same, and at intermediate points. The results are exceedingly interesting and instructive, and as numerous indicator cards were taken from the engines and pumps simultaneously pumps simultaneously with the motion diagrams, nearly al conditions of motion and power, during the time under consideration, were definitely determined, and may bereafter form the subject of other papers. Some very important results of the elasticity of long pump rods are clearly set forth; in one case, a rod at a point 1,800 feet below the surface sbowed a positive pause, while the engine driving it was nearly at its point of maxi. at its point of maxi-
mum motion, and mum motion, and pumps attached to the rods may, and do have, strokes in excess of or deficient to the stroke of engines driving same, and to an important extent. Hence it can be definitely stated that any consideration of motion of pumps, or discharge capacity of same capacity of same,
driven by a long line of driven by a long line of pump reds based upon the motion or stroke of a surface engine alone, will in no way be even approximate, unless the elasticity and effects of counterbalancing by balance bobs on that elasticity are also considered.
The effects of different degrees of compression upon the engines and motion of the pump rods in passing the ceuters have been considered, and the diagrams clearly show the importance of considering it in connection with the strength of the rods and balance bobs.
The latest use of the instrument in conjunction with an engine test has been to determine, if possible, the rate of condensation of steam, per second, in the steam cyliuders of a pumping engine, where the change of motion, due to each fractional part of the stroke, was determined. Also, a

Fig. 2.-CHRONOGRAPH FOR ENGINEERING PURPOBRS.
the tracing point, h_{o}, off the paper and replacing it at any desired point to be especially observed.
d, electro-magnet on separate carriage, $k \boldsymbol{k}$, adjustable on parallel bars, f, operating the steel tracing point, g, attached to the armature of d, for the purpose of recording seconds on the margin of the paper or at other parts of same as required.
i, chronoscope or watch supported on frame, X, the second hand of which awings the light platinum wire, J, breaking contact with the insulated wire, k, thereby break ing circuit with d, and recording seconds through the trac ing point, g, on the paper.
q represents the adjusting screw for the wire, J.
a, steel spring of es capement. This spring is securely clamped in Y, its flexibility being controlled to a certain extent by means of the thumbscrews, o and p. -W. R. Eeckart.

The Cost or Bom

 bardment.Speaking of the monetary cost of bombarding the Alexandria forts the London daily Neros says that every round fired from the four 80 ton guns of the Inflex ible cost the nation $£ 35$ 10s. (about \$125) per gun. The 25 -ton guns, of which the Alexandra carries two, the Ma Téméraire four, Téméraire four, cost $£$ per round per gun The 18 -ton guns, of which the Alexandra carries ten, the Sultan eight, the Superb six teen, and the Téméraire four, cost $£ 558$. per round per gun. The 12 ton guns, of which the Invincible carries ten the Monarch two, and the Sultan four, cost £is
C C, cast-iron baseplate covered with sheet brass, upon 128 . per round per gun. The Penelope, which alune carri-s
which the mechanism is secured.
B, metal frame containing gearing for driving drum, A, and escapement wheel, b; motion communicated by means of adjustable weights, D.
A A, light brass drum accurately balanced, revolving on triction rollers, 88 , at both ends.
$f f$, parallel guide bars, upon which the tracing point, $h_{\text {o }}$, and its carriage travel back and forth, receiving motion, in one direction, from the engine or other moving parts, chrough the cord, P, passing between the bars, f, and attached to the tracing carriage; the return motion is derived rom a coiled apring in the spring drum, \mathbf{C}.
$e e$, small electro-magnets on tracing carriage, for raising 9 -ton guns, has eight of them, which were discharged at a cust of $£ 2$ 15s. per round per gun. The Monarch and the Bittern each fired a $6 \frac{1}{4}$-ton gun; the cost being $£ 1$ 15s. per round per gun. The Beacon and the Cygnet have two 64-pounders each, the cost of discharging which is 18s. per round per gun. The Penelope carries three 40 -pounders, the Beacon two 40 -pounders, and the Bittern two 40 -pounders, the cost of discharging which was just 12s. per round per gun.

Death or a Fronch Eloctrician.
M. Leclanche, inventor of the Leclanche electric pile and other improvements in electricity, is dead.

Fig. 1.-CRRONOGRAPH WITH THE HIPP RSCAPRMEET.

THE HELODERMA HORRIDUK

The discussion of the curious lizard found in our Western Territories and in Mexico, and variously known as the "Montana alligator," " the Gila monster," and "the Mexican heloderma," is becoming decidedly interesting.
As noted in a recent issue of the Somentific American, a live specimen was sent last summer to Sir John Lubbock, and by bim presented to the London Zoological Gardens. At first it was handled as any other lizard would be, without special fear of its bite, although its mouth is well armed with teeth. Subsequent investigation has convinced its keepers that the creature is not a fit subject for careless handling; that its native reputation is justified by fact; and that it is an exception to all knowu lizards, in that its teeth are poison fangs comparable with those of venomous serpents.
Speaking of the Mexican reputation of the lizard, in a recent issue of Knooledge, Dr. Andrew Wilson, whose opinion will be respected by all naturalists, says that "without direct evidence of such a statement no man of science, basing his knowledge of lizard nature on the exact knowledge to hand, would have hesitated in rejecting the story as, at least, improbable. Yet it is clear that the stories of the New World may have had an actual basis of fact; for the Heloderma horridum has been, beyond doubt, proved to be poisonous in as high a degree as a cobra or a rattlesnake.
" At first the lizard was freely handled by those in cbarge at Regent's Park, and being a lizard, was regarded as harm-
third part of the "Mission Scientifique au Mexique," which being devoted to reptiles, has been edited by Messrs. Aug Dumeril and Bocourt.
The heloderm, according to M. F. Sumichrast, inhabit the hot zone of Mexico-that intervening between the hig mountains and the Pacific in the districts bordering the Gul of Tehuantepec. It is found only where the climate is dry and hot; and on the moister eastern slopes of the mountain chain that receive the damp winds from the Gulf of Mexico it is entirely unknown. Of its habits but little is known, as it appears to be, like many lizards, nocturnal, or seminoc turnal, in its movements, and moreover, it is viewed with extreme dread by the natives, who regard it as equally poison ous with the most venomous serpents. It is obviously, how ever, a terrestrial animal, as it has not a swimming tai flatteved from side to side, nor the climbing feet that so characteristically mark arboreal lizards. Sumichrast further states that tbe animal has a strong nauseous smell, and that when irritated it secretes a large quantity of gluey saliva In order to test its supposed poisonous property, he caused a young one to bite a pullet under the wing. In a few min utes the adjacent parts became violet in color, convulsions ensued, from which the bird partially recovered, but it died at the expiraion of twelve hours. A large cat was also caused to be bitten in the foot by the same heloderm; was not killed, but the limb became swollen, and the cat continued mewing for several hours, as if in extreme pain. The dead specimens sent to Europe have been carefully ex
fed them raw egg and milk; the latter they take with great relish. At one time a small canine came too near the mouth of our alligator (mountain alligator, we call them), when it instantly caught the pup by the under jaw and held on as only it could (they have a powerful jaw), nor would it reease its hold until choked near to death, which was done by taking it behind the bony framework of the head between the thumb and finger, and pressing hard. The pup did considerable howling for half an hour, by which time the jaw was much swollen, remaining so for two or three days, after which it was all right again. By this I could only conclude that the auimal was but slightly poisonous. I never knew of a human being having been bitten by one. My sister kept one about the bouse for several weeks, and fed it from her bands and with a spoon. The specimens have generally been sent (through the Deseret Museum) to colleges and museums in the East.
' The Indians have a great fear that these animals produce at will good or bad weather, and will not molest them. Many times they have come to see them, and told us that we should let them go or they would talk to the storm spirit and send wind and water and fire upon us. An old Indian I once talked with told me of another who was bitten on the haud, and said it swelled up the arm badly, but be recovered. From some reason we never find specimens less than 12 or 14 inches long. Inever saw a young one. There is a ice stuffed specimen, 18 inches long. in our museum here." Sir John Lubbock's specimen, shown in the engraving

THE HELODERMA HORRIDUM.

less. It was certainly dull and inactive, a result probably due to its long voyage and to the want of food. Thanks, however, to the examination of Dr. Gunther, of the British Museum, and to actual experiment, we now know that Heloderma will require in future to be classed among the deadly enemies of other animals. Examining its mouth, Dr. Gunther found that its teeth formed a literal series of poison fangs. Each tooth, apparently, possesses a poison gland; and lizards, it may be added, are plentifully supplied with these organs as a rule. Experimenting upon the virulence of the poison, Heloderma was made to bite a frog and a guinea pig. The frog died in one minute, and the guinea pig in tbree. The virus required to produce these effects must be of singularly acute and powerful nature. It is to be hoped that no case of human misadventure at the teeth of Helodorma may happen. There can be no question, judging from the analogy of serpent-bite, that the poison of the lizard would affect man."
In an article in the London Field, Mr. W. B. Tegetmeier states that this remarkable lizard was first described in the Isis, in 1829, by the German naturalist, Wiegmann, who gave it the name it bears, and noted the ophidian character of its teeth.
In the Comptes Rondus, of 1875, M. F. Sumichrast gave a much more detailed account of the habits and mode of life of this animal, and forwarded specimens in alcohol to Paris, where they were dissected and carefully described. The results of these investigations have been published in the
have been made, which demonstrate the existence of a canal in each, totally distinct from and anterior to the pulp cavity; but the soft parts had not been examined with sufficient care to determine the existence or non-existence of any poison gland in immediate connection with these perforated teeth, until Dr. Gunther's observations were made, as described by Dr. Wilson.
Hitherto, as noted in a previous article, American naturalists have regarded the heloderm as quite harmlesa-an opininn well sustained by the judgment of many persons in Arizona and other parts of the West by whom the reptile has been kept as an interesting though ugly pet. While the pe Indians and native Mexicans believe the creature to be venomous, we have never heard of an instance in which the bite of it has proved fatal.
A correspondent, "C. E. J.," writing from Salt Lake City, Utah, under date of September 8, says, after referring to the article on the heloderm in our issue of August 26 :

Having resided in the southern part of this Territory for seventeen years, where the mercury often reaches 110° or more in the shade, and handled a number of these ' monsters,' I can say that I never yet knew anybody or anything to bave perished from their bite. We have often had two or three of them tied in the door-yard by a hind leg, and the children have freely played around them-picking them up by se nape of the neck and watching them snap off a small
bit ". oin the end of a stick when poked at them. We have
herewith, for which we are indebted to the London Field, is about 19 iuches in length. lts gencral color is a creamy buff, with dark brown markings. The forepart of the head and muzzle is entirely dark, the upper eyelid being indicated by a ligbt stripe. The entire body is covered with circular warts. It is fed upon eggs, which it eats greedily.
It would be interesting to know whether the northern specimens, if venomous at all, are as fully equipped with poison bags and fangs as Dr. Gunther finds the Mexican specimen to be. Some of our Western or Mexican readers may be able to make comparative tests. Meantime it would be prudent to limit the use of the " monster" as a children's pet.

The Largent American Cable.
Q ecable which the Baltimore and Ohio Telegraph Company laid Septeinber 20, across the Narrows at the entrance of New York Harbor is believed to be the largest cable made in this country. It contains seven conductors of No. 14 copper wire, insulated with kerite, and wound with galvanized iron wire. Its length is 6,500 feet, diameter $21 / 4$ in. ches, and weight 8,600 pounds. It was made by the Kerite men ith the West and South has hitherto been through cables across the Hudson. The new connection is by wires across the East River Bridge, thence to Fort Hamilton, crossing the Narrows to Staten Island by the cable. A cable across the Kill von Kull will connect Staten Island with the main land.

A Now Port for London

This new means of communication has been obtained by the Southeastern Railway Company, acquiring the line of the Hundred of Hoo Railway Company, who obtained their act two years ago. The new line leaves the North Kent system about three miles below Gravesend, and reaches the banks of the Medway at Purt Victoria, as the new port has been called, a point nearly opposite to Queenborough in the deep-water channel of the river. The advantages claimed for the new line and the docks whicb it is intended shall form part of the completed scheme, are that it shall al once give facilities for loading and unloading the largest sea going vessels, in any state of the tide, at a point within fifty minutes by rail of London, and without any of the delay which necessarily result from navigating the tortuous and crowded waterway of the Thames between Gravesend and the docks; with the additional prospect when the new pie is built of having the means of accommodating, for loading and unloading purposes, vessels in twenty-seven feet of water at low water in ordinary spring tides. The pier, which has already been completed, is four hundred and fifty feet in length by fifty feet wide, and has, close in, a depth of twenty-two feet at low water. The main pier, which wil be commenced immediately, will be built in the stream abou one hundred yards distant from the present structure, and will have a length of six hundred feet and a width of sixty feet. The trains will run directly on to the pier over lines laid on cylinders and latticed girders, and will discharge passengers and cargo directly into the vessels moored along side. By this means much of the inconvenience to passen gers and delay in the transit of merchandise, now existing not only in the port of London but elsewhere, will be avoided, and it is expected that the commercial advantages afforded by ocean steamers of the largest tonnage combined with rapid railway communication between London and al parts of the world will be attained. The company have se cured some five hundred acres of ground in the neighbor hood of the port, on which it is intended to construct dock capable of accommodating the largest ships afloat, and which will be further utilized in such other ways as may be neces sary for the success of the undertaking. One great advan tage of the scheme will be that. the railway now having com munication with Woolwich Arsenal, a heavy train of mili tary stores can be discharged on shipboard within a few hours of quitting Her Majesty's storehouses. The line and the existing pier have been constructed by Mr. Franci Brady, engineer of the South Eastern Company, unde whose superintendence the entire works will be completed. Alone.
The London Lancet relates a distressing case of suicide of a boy ten years old, who had been shut up in his bedroom as a punishment. The editor comments adversely on leav ing children or young persons and the weakly or troubled in mind alone:
" The solitary state is abhorrent to the nature and mind of man. Whether the brain be immature in its development or morbid in its state, it is wrong in a scientific sense-tha is, opposed to the laws and teachings of physiological sci ence-to leave it alone. The possibility-we will even con cede the probability-of a subsidence of excitement is no a sufficient set-off against the dangers of a self-destructive intellectual activity. The mind always works to its own injury when it works alone. Reflection, introspection, and self-examination are essentially abnormal processes. The proper action of mind is on the outer world, or on such con ceptions of fact and object as may be readily corrected by present observation or experience. Abstract processes of thought are never safe for the young or the weakly and troubled in mind. Healthy activity, so far as these two con ditions of mind are concerned, is directly relative. It is not good for man to be alone in any sense. We would there fore again protest against the recourse to solitary confline ment as a punishenent for children, and against 'seclusion in any form for the unsound of mind. The two methods o treatment stand on the same footing, and they are both equally bad."

Halistorms and Forents.

The Geneva correspondent of the London Times writes under date September 1: "Hailstorms, as is well known often play sad bavoc in Switzerland as well as in other parts of Europe. They generally last only a few minutes, but in that time the crops of a whole district may be destroyed, trees stripped of their fruit and leaves, and even potatoes in the ground hacked to pieces. Birds are sometimes killed by the hundred, and a grape-vine touched by a hailstone is ruined for ever. Seven years ago there was a hailstorm in this canton, which in less than five minutes did damage estimated at a million of francs. In some districts there are mutual hail insurance societies, as in other countries th are mutual ire insurance societies. In these circumstance everything relating to the phenomena and causes of these visitations is studied with great interest, and papers on the subject read at the late meeting of the association of Swiss Geographical Societies, beld this week at Geneva, by Herren Beaumont and Riniker, of Aargau, are attracting considerable attention in scientific circles. The utility, of forests as a safeguard against avalanches and a hinderance to tourment and snow-drifts has often been pointed out, but it has never before been suggested that forests are a preservation against
hailstorms. Such, however, is the opinion of Herr Riniker, who is chief forester of Canton Aargau. He says tha
where there are forests there are no hailstorms, and in support of this theory he adduces a remarkable fact, for the accuracy of which he and many others can personally vouch. In the south of Aargau there is a little chain of mountains known as the Lindenberge. The Lindenberge are about twenty kilometers long, of an average height, above sea level, of some eight hundred feet, and completely covered with wood. About twenty years ago, the forest was divided in two places by wide gaps, with the consequence that the valleys at the foot of the mountains were soon afterward visited with frequent hailstorms. The bail-charged clouds were seen to traverse the gaps. In 1868 the wider of the open spaces were closed by a plantation of firs, and since 1871 no hailstorm has crossed the forest. In explanation of this phenomenon Herr Riniker suggests that, as hailclouds are saturated with positive electricity, and trees conduct from the earth negative electricity, the meeting of the two currents develops sufficient heat to prevent the complete congelation of the clouds and even to thaw the hailstones contained in them-for the clouds of this description pass very near the earth-and so convert the frozen particles into rain. If further observation should confirm the accuracy of Herr Riniker's conclusions in this regard, the importance of forests in countries where hailstorms are frequent will be greatly increased.

NEW KEY RING.

A novel and convenient key ring has recently been paented by Mr. Bryant H. Melendy, of Battle Creek, Mich. The ring, A, is made of steel or other suitable spring metal, the body being flat, and stamped out in the shape shown in Fig. 1 in the accompanying engraving, the ring being separated at the top, and having holes near each of its ends. The form of the ends permits the ring to be opened side-

celendy's key biva.
wise, but prevents its opening edgewise. The clasp, B, of he ring is stamped out in the shape shown at Fig. 5, and when its sides are bent over the clasp is as shown in Fig. 4. he projections at the ends of the clasp fitting into the holes in the ends of the ring, the sides of the clasp springing sufflently to allow the projections to pass into the holes. At Fig. 2 the ring is shown with clasp closed, and at Fig. 8 with the clasp opened.

White Water of the Maine Coast.

A curious belt of whitish water is reported off the coast of Maine. The white streak is about 80 miles in width, and exends from Monhegan in a northeasterly direction, 65 to 70 miles. The line of demarkation between the blue water and the white streak is plainly marked and as regular as a wall. The white water is semi-transparent, and mackerel seen beneath the surface have a reddish appearance. Fishermen say that mackerel passing from blue to white water are peculiarly affected by the change, becoming wild and rushing madly to and fro. They do not come to the surface, but their movements can be plainly seen under water. No explanation is given of the phenomena. Captain Stephen J Martin, a veteran fisherman and an employe of the United States Fish Commission, says the same condition of things existed at about the same place in 1849, and that a similar phenomenon occurred on the southeastern part of Georges Bank in 1851, when from aloft sword fish could be seen porting beneath the surface a quarter of a mile distant from the vessel.

The Ear Drum Raptured by Diving.

Dr. H. A. Wilson, aural surgeon to St. Mary's Hospital, Philadelphia, reports two cases of rupture of the drum of the ear caused by diving. In both cases the hearing was seriously impaired, but the wound healed in the course of en or fifteen days. Dr. Wilson says:
The mechanism of the rupture is not difficult of explanation. The water, forcibly impinging upon the column of ir in the external auditory meatus, suddenly increased its pressure upon the membrane, while the normal pressure upon the inside remained unchanged. The eustachian tube permitted the air to escape from the middle ear, and thus it will be seen that there was no resistance given to the inernal coluinn of nir. The internal force of resistance being suddenly exceeded by the external impinging force, the upture ensued. To prevent rupture when diving, it is ecessary that the pressure upon the membrana from withut should be compensated for by an equal resisting pressure from within. To accomplish this, a full inspiration should be taken prior to diving; the mouth kept shut; and,
to prevent the escape of air by the nose, the posterior nare should be closed by elevating the soft palate. This is done almost involuntarily, and retains the inhaled air in the lungs, buccal and aural cavities, its compression being pro duced by the contractions of the chest and cheek muscles. The act of swallowing will force sufficient air through the eustachian tube into the middle ear to resist the pressure from without.

Holding the nose is not essential to the closure above re ferred to, but is a crude method of accomplishing the same result, and is resorted to by those who either have not sufficient control over the palatine muscles, or who do so through fear of swallowing the water.
Bathers should be careful to guard against accidents of his nature, which Dr. Wilson believes to be more common than is suspected.
After a rupture of the drum-head, if the parts do not unite, there will be left a permanent opening, and the incon venience caused by air whistling through it is not the only thing to be dreaded. The delicate structure of the middle ear being directly exposed to the action and changes of the atmosphere, serious inflammatory changes are apt to take place, and purulent discharges and permanent impairment of hearing result.
The eye being exquisitely sensitive to the slightest touch takes cognizance of the presence of the most minute irri tant, and prompts the patient to seek immediate relief The absence of this sensibility in the ear is very frequently the cause of neglect to attend to it when injuries of this organ take place.

American Inutitute Falr.

The prevalence of heavy rain during the week preceding the opening of the American Institute Fair, September 27, prevented the installation of many of the promised exhibits; yet, in spite of the general state of unreadiness throughout the hall, there were abundant indications that the exhibition would prove one of the best. The exhibition will be open daily for ten weeks, from 8 A.M. to 10 P.M.
There will be a floral and borticultural exhibition from the 11th to the 14th of October, and on November 8 an exhibition of chrysanthemums.

Pnoumonia an Infoctious Disoaso.

That acute, lobar, croupous pneumonia is considered by some an infectious fever, with evident tendency to the lungs, or as now better expressed, a zymotic disease, caused by the inhalation of bacilli, which accumulate mostly in a lowe lobe of one lung, we have often had occasion to note. The proofs of this statement secumulate daily.
Dr. Kohnhorn found that the disease had become endemic in one of the barracks at Wisel. Occasionally it broke out as a local epidemic. The regiment stationed there bad suffered frequently from the disease. Not a year passed without many falling a victim to pneumonia. The regiment was then placed in other quarters, and no further case happened in this regiment. The barracks were torn down, the soil disinfected most thoroughly, as also all the building material. Since the regiment has been camping in these rebuilt barracks not a solitary case of pneumonia has made its ap-pearance.-Medical and Surgical Reportor.

Ashbel Welch.

Ashbel Welch, President of the American Society of Engineers, died at his home at Lambertville, N. J., September 25, in his 71st year. Mr. Welch was born in Madison County, New York. His first employment as civil engi neer, at the age of eighteen, was on the Lehigh Canal. He soon became prominent as a railway and canal constructor. For many years be was identifled with the New Jersey Railroad system, and for fifteen years was president of the United New Jersey Railroad and Canal Company. From 1840 to 1845, he was engaged with Captain R. F. Stockion in the experiments which resulted in the building of the war steamer Princeton, the first screw steamer built in this country, and the pioncer naval vessel of the class.
At the time of his death, Mr. Welch was consulting engi neer of the New York, West Shore, and Buffalo Railroad, now under construction.
snow in Melbourne.
The first recorded snowfall in Melbourne occurred July 28. There are traditions of snow during the first decade of Victorian history, but the meteorological records of the colony do not confirm them. The late snowfall extended over the whole southeastern portion of the colony, and on the higher lands was quite heavy. At Kiandra, near the source of the Snowy River, the ground was covered with wenty inches of snow.

A Long Ditch.

The Colorado Coal and Iron Company are preparing to open an irrigating ditch from a point on the Arkansas River, 31/2 miles below Cañon City, across the tableland in a southeasterly direction to the St. Cbarles River, a distance of 76 miles. The ditch is to be 30 feet wide, carrying 5 feet of water.

A Great Northern Railroad train, with an 8-font single driver outside cylinder engine, lately ran from Leeds to London, 1864 miles, in exactly 3 hours- 62 miles an hour.

mecent inventions.

Mouldes Anti-Rattling Thill Coupling.
A novel and simple device, by which the rattling of ordinary thill couplings is prevented, recently patented by Mr. William Mould, of Saugerties, N. Y., is shown in the annexed engraving. The axle and bow of the axle clip are of the usual construction. The clip bar is slotted to receive the ends of arms of the clip bow, to which it is secured in place by nuts screwed on the arms. Upon the forward end of the clip bar is formed a spring, which extends upward, and is curved forward to fit upon the inver side of the eye of the thill iron. Should the thill coupling beShould the thill coupling b come loose and rattle, by slightly loosening the nuts of the clip bow and striking the rear end of the clip bar with a hammer, the spring on its end will be firmly pressed against the eye of the thill iron, taking up the wear and holding it so firmly that it will not rattle.

Combined Miner's Candlentick and Loading Tool.
Mr. Charles P. Des Moineaux, of Leadville, Col., has recently patented a device in which the tools required by a miner in preparing blasts are combined with a candlestick in such a manner that they may be compactly folded. The frame is formed of metal strips placed parallel and connected at the ends, as shown in the engraving, the strips being curved at one end to form pockets for the ends of some of the implements. A series of longitudinal compartments are formed in
 the same manner as in an ordinary knife, in
which are pivoted the ends of the implements, as in a knife. The implements consist of a knife blade, a pointed prong, and a hook. One end of one of the side strips is curved outwardly to form a spring loop for receivin a candle. The groove shown on the cap of the fuse, that holds it to the fuse, is formed by inserting the cap in a recess formed in the ends of the pointed prong aud hook, and pressing the two apart. With this device the implements are folded so as to occupy but little space.

Dinner Pell.

A dinner pail of convenient form and of such construction as to enable the user to carry a great variety of food without danger of mixing one kind with another, has been patented by Mr. William C. Dabney, of Princeton, Ky. The pail has attached at one side, to the top, a rectangular exten sion for containing boxes for condiments, and also a casing for receiving a knife, fork, and spoon. The pail is also provided with three compartinent food pails for carrying different kinds of food and vegetables, each kind being separate from the other. A canteen for containing liquid forms a part of one of the pails, and a cover hinged to the back of the pail covers the whole, and is adupted to be secured by a padlock. The pail is especially adapted for the use of travelers, laboring men, and school children, and is mucb more cleanly than pails of ordinary construction The device is clearly shown in the engraving.

Wallises Calligraph.

An instrument, called by the inventor a "calligraph," for bolding the hand and fingers, as well as the pen or pencil, in proper position for writing, is shown in the annexed engraving. The frame of the instrument is made of wire, or metal strips, and has at its lower end two curved prongs, bent toward each other to form an open ring to reoppn ring to re-
ceive the forward ceive the forward
part of the fore part of the fore
finger; and it has finger; and it has
at its upper end a at its upper end a
ring formed in a ring formed in a
similar manner to
receive the upper part of the finger. The upper ring has a projection on its outer side, upon which the penholder rests. A similar device, except the rest, is provided for the middle finger, and the two are connected together by a chain. A ring is also provided for the third and fourth fingers, that may or may not be used, as desired. With this device the pen will be held at the proper angle for writing, so that it will pass smonthly and evenly over the paper, and the fingers are compelled to remain in the correct position, which soon becomes natural to the writer. This instrument has been patented by Mr. Claude I. Wallis, P. O Box 507, Atlanta, Ga.

Deckerys Improved Gate.

A gate adapted to be opened and closed by a person at a distance from it has been patented by Mr. Jobn M. Decker, of Kingston, \mathbf{O}. The gate is formed by attaching crossbars to the opposite sides of the ends of horizontal bars, and is strengthened by crossbars and by incliued bars, as shown in the accompanying engraving. The rear lower corner of the gate is notched to receive a pivoted cross piece, the ends of which work in blocks secured to posts placed on each side of the gate. The gate is strengthened vertically by triangular braces attached to the roller and laterally by iron
brace rods attached to the roller and gate. The gate being hinged at its rear lower corner, it is raised by means of rods secured to the sides of the gate near the rear end, and at the opposite end to the inner ends of levers pivoted in posts set at each side of the gate, the outer ends of the levers being extended and provided with a rope by which they are pulled down to raise the gate. The gate is secured when it is lowered by a sliding latch that engages with a recess in a post set at the lug of the gate.
The Alcohol of Fermented and Distilled Liquors.
It has generally beeu assumed that the alcohol of fermented and distilled liquids is identical, but it is by no means certain that such is the case. We know, says the Brewer's Guardian, that alcohol is produced by fermentation, and can be concentrated, and even isolated, by distillation, but it is possible that the action of heat necessary for distillation modifies and perhaps changes the chemical constitution of this substance. Although there is no direct evidence of the exist ence oi these two kinds of alcohol, it is not altogether unreasonable to suppose that the action of heat causes a partial dehydration, and that in this way the alcohol of distilled spirits differs somewhat from the alcohol of fermented liquids. This bypothesis is supported by the well known fact that distilled spirits have a different and more injurious effect on the human system than the alcoholic liquids produced by fermentation. Medical men often prescribe beer and wine, but probibit the use of brandy, whisky, gin, and all spirits which have undergone the process of distillation. It is within the personal experience of many that a wine which bas been fortifled by the addition of distilled spirit is far more potent, and, we may even say, unwholesome, than a wine of equal alcoholic strength, but produced by fermentation only; in like manner we believe that a larger quantity of alcohol may be safely consumed in the form of beer than in that of spirits. The question deserves further investiga inn, not only in the interests of the brewing trade, but in the interests of temperance and health.

The oldest Newspaper.

The oldest newspaper in the world is the King Pau, or "Capital Sheet," published in Pekin. It first appeared A.D. 911, but was irregular in its issues until 1351. Since then it has been published weekly until the 4th day of June last, when by order of the reigning emperor, it was converted into a daily, with three editions, morning, midday, and evening. The first edition appears early and is printed on yellow paper. This issue is called Hsing-Pau ("Business Sheet"), and contains trade prices, exchange quotations, and all manner of commercial intelligence. Its circulation is a little over 8,000 . The second edition, which comes out during the forenoon, also printed upon yellow paper, is devoted to official announcements, fashionable intelligence, and general news. Besides its ancient title of King-Pau it owns another designation, that of Shuen-Pau, or "Official Sheet." The third edition appears late in the afternoon, is printed on red paper, and bears the name of Tilani-Pau ("Country Sbeet"). It consists of extracts from the earliest editions and is largely subscribed for in the Provinces. All three issues of the King Pau are edited by six members of the Han-Lin Academy of Science, appointed and salaried by the Chinese State. The total number of copies printed daily varies between 13,000 and 14,000 .

Penalty for Stealling an Invention.

The attempt to steal an invention and the consequences is told by the London Building and Engineering Times.
The prosecutors were Messsrs. John Wright \& Co., of Essex Works, Birmingham, gas engineers, and the theft by a clerk was of certain memoranda and drawings made by a member of the firm concerning a new invention which they are about to patent. The memoranda have never been seen but by the principals, and bence they are, so to speak, the inventor's private thoughts and property. The clerk had possessed himself of these, and was engaged copying them, as he averred, for his own private information. The report does not tell us under what act the appropriation of unpublished ideas is defined as felony, so we are left to guess that in all probability the actual charge related to the pieces of paper on which the copy was made. Paper is property, and perceptibly more so than ideas are, and for annexing one or the other the prisoner became amenable to the law, and he was therefore senteneed to three months' imprisonment. During that period of solitude he may, if he can, work out the plan which bis employer's experience suggested to him.

An Early Gas Engine.

In looking over an early volume of the Scientific AmeriCaN, we find in the issue of July 28, 1846 (thirty-six years ago), the following description of a gas engine which had just been invented, and which, the article says, might have been seen at the store of Samuel Perry, in Front street, near Whitehall, in this city. This was probably one of the earliest gas motors constructed:
" The machinery consists in part of a cylinder, piston, pitman, flywheel, and governor; in this respect similar to a steum engine. A small quantity of spirits of turpentine is kept in a warm state, and the vapor arising thercfrom is mixed with fifty times its volume of atmospheric air. A small quantity of this bydrogenated air is drawn into the cylinder, and ignited by a movement of the machinery, producing a slight explosion, whereby the remaining air-at ducing a slight explosion, whereby the remaining air-at
least nine-tenths of the whole-becomes so heated that it least nine-tenths of the whole-becomes so heated that it
drives forward the piston with great force. This engine is said to be capable of working ten horse powers, and it is intended to substitute rosin instead of turpentine, which will reduce the expense of feeding it to about 50 cents per day. The ingenious inventor has had some difficulties to encounter in the construction of the first engine, but has a fair prospect of being well remunerated for his labor."

Areas of our states.
The total area of the United States is $3.025,606$ square miles, divided as follows among the various States und Territories:

Alabama.......... 52,250	Missouri 69,415
Arizona118,020	Montana.................... 146,C80
ArkanRas 63,050	Nebraska 76,855
Califoruis155,980	Nevada110,800
Colorado........ 108,825	New Hampshire............. 9,805
Connecticat... 4,980	New Jersey.................. 7,815
Dakuta 140,100	New Mexico.. 122580
Delaware 8,050	New York....... 49,170
District of Colambla......... 70	North Carolina. 88,250
Florida 58,680	Ohio........ 41,060
Georgia 59.475	Oregon. 96.030
abo.. 84,800	PennsyIvania................ 45.215
Illinois 66,650	Rbode Island................ 1,250
Indlana. 86,850	South Carolina............... 30,570
Indian Territory. 64,600	Tennessee 42,150
Iowa 56,025	Texas........................285,780
Kansas..... 82,080	Utah 84,870
Kentucky..... 40,400	Vermont. 9,565
Louisiana 48,720	Virginia... 42,450
Maine. 88,040	Washington................ 69,180
Maryland.. 12210	West Virginia......... 24.7¢0
Massachnsetts............ .. 8,815	Wisconsin 58,040
Michigan 58,915	Wyoming....... 97.880
Minnesota. 88,865	Unorganized territory....... \quad b,740
Mississippl.................. 46,81	Delaware Bay

Of the above area 56,600 square miles is water surface.

New Explonive.

An Austrian patent for an explosive, which is said to ffer less danger than others in use, has just expired. It was aken out only a year ago by Koeppel. The inventor claimed for it that it is cheaper than any other, gives no injurious smoke or gases, and does not explode from concussion or friction. It is manufactured in two kinds, of which the following is the composition. No. 1 is specially adapted for hard rocks, basalt, etc. ; and No. 2 for sandstone, lime, etc.

	No. 1. Parts.	No. 2. Parts.
Saltpeter		42
Soda.	19	22
Refined sulphur...	11	1850
Sawdust.	9.50	19.00
Chlorate of potash	9.50	
Charcoal.	.. 6	7
Suiphate of noda	4.25	5
Prussiate of potash	2.25	
Refned sugar.	$2 \cdot 25$	
Picrin acid	1.25	150
	100	100

Each ingredient is finely pulverized and passed through a sieve, then flixed in a mixing cylinder of copper or wood, until the sawdust is hardly noticeable. From 10 to 15 per cent of water is then added, and the whole stirred until large pieces are formed.

A Horse in spectacles.

In a paper on nearsightedness lately read before the New York County Medical Society, Dr. W. F. Mittendorf told of a fine horse in Berliu that became intractable, and on examination proved to be suffering from myopia. The owner bad a pair of glasses made for it, and it became as tractable as ever. American students, Dr. Mittendorf said, are not so subject to nearsightedness as German students. Sedentary occupations and want of exercise develop myopia, and women, therefore, are likelier than men to contract it. It generally sets in in childhood; rarely appears after 21 years of age. Blindness often follows neglect of it. Glasses should be worn early in life to prevent its progress. They should be rather weak thau strong, and a slight blue tint is desirable.

The total population of the United States is, in round numbers, fifty millions $(50,000,000)$; of which $43,476.000$ are ative born, and $6,680,000$ are foreign born. The colored people number $6,689,549$. Thus about every seventh person, nearly, is a negro; and every seventh person, nearly, foreign born.

ENGINEERING INVENTIONS.

An eccentric having means for connecting adjubtably to a shaft, so that the moton imparted by the eccentric may be reversed, bas been patented by
Messrs Georree T. and Dwight \mathbf{W}. Mecealif of Hillsdale, Mich. The eccentric is sioteded and is io ioselely se-
cured to a block that io is rigily fixed to the bast. cured to a block that is rigidy hated to the shatt. A
slide inclosing the block and having a diagonal rib that Ats in a corresponding groove in the eccentric is that its in a corresponding groove in
adapted to move longitudinally upon t
revering the action of the eccentric.

Improvements in steam piston valves bave been patented by Mr, William \mathbf{S}. Hughes, of Long island City, N. Y. The engine cylinder is formed with the usual exhaust and steam ports, and the valve case
is cored longitudinally to receive a tube that forms the seat for the valve, the valve being a bollow piston, to one end of which the valve rod is connected directly,
the valve working steam tight and ueeding no stuffing ox. By a suitable arraigement
valve it is made self-balancing.
Improvements in rotary engines have been patented by Mr. D. M. Johnson, of Trinity College, bas formed in it a series of cavities alternating on the hap formed in it a series of cavities alternating on the
opposite sides. A steam chest or bornet fits snugly to the face and sides of the wheel rim so as to cover the
cavities. A transverse slide fits openinge connected with steam ports, and is operated to oscillate to admit steam to the cavites by alternating pins placed on
face of the wheel.
Messrs. William H. Sanders and Henry H. Talley, of Petersburg, Tenn.. have patented improve-
ments in sawmill dogs. The head block of the sawmill moves transversely on the log carriage. The dog is
pivoted to a scandard on the head block, and has at its pivoted end a segmental geared head that engages with a corresponding seemental head on a lever to which
power is applied to force the dog into the log. The tandard is adapted to be raised and lowered according o the size of the log, and to be rotated to tarn the dog
away from the log.
An improved
An improved water elevator has been paFrunce. A partly covered drum is secured to an upFrunce. A partly covered drum is secured
right rotating spindle, and uppotates with the drum. A fixed pipe is so bent at one
end as to present its open end to the current of water. The other end of the pipe leads to an ejector nozzle immersed in a reservoir of water. The velocity of the
water in the ejector carries it to a height depending the speed of the cotatio the drum.
An improved car coupling has been paented by Mr. Frederick W. Brooks, of Oak Grove, ready for coupiling the cars, by means of a vertically liding fro the drowh when by the bard together, causing the pin and frame to drop, and the
pin to pass through the drawhead and coupling, thas utomatically coupling the cars.
Mr. David E. Grove, of Dallas, Texas, has patented an improved plow for removing snow from
railroad tracks. A car has an adjustable funuel at its front end, that raises the snow from the track, and endless aprons carried upon rollers at the bottom and sides
of the car carry the snow back to a second series of of the car carry the snow back to a second seriess of track and out of the way.
An improved rotary engine has been paented by Mr. William D. Couk, of Harvard, Neb. The ing an annular space between them. At one side of the piston au abutment projects against the inner surRace of the cylinder. Steam is admitted through suitable ports, and carries the piston. When it is nearly around the steam escapes through an exhaust port.
After paseing this port the abotment raises a valve, After passing this port the abutment raises a valve,
and passes again in front of the steam pressure. Suit
devices are provided for reversing the engine. has patented an improved car coupling. The moath of the coupling bead is made hopper shape, and is formed
in two parts, the upper part being hinged to and atted in a recess in the lower part. In a recess in the throat of the coupling head, back of the pin hole, is a stirrup that holds the pin in an elevated position. When the cars are backed together the link moves the stirrup
back, allowing the pin to drop and couple the cars.
Mr. Otis D. Thompson, of Elkhart, Ind., has putented improvements upon a windwheel for which
letters patent were granted him December 14, 1880. letters patent were granted him December 14, 1880.
The improvements consist in the peculiar manner of ttaching the salls to the rims of the wheel, and also in attaching the vane or governor to the wheel in such a
manner that a strong wind will strike it hefore reaching the wheel, and turn it on its pivot, to put the wind wheel out of the wind to protect it from being shocked y sudden gusts.
Messrs. David Clark and John Lee, Hazelton, Pa., have patented a steam brake mechanism
for locomotives and tenders. A small steam cylinder attached to the rear part of the engtine frame, and to the piston is hinged an arm that connects with a rock-
ing shaft and levers to operate togrle bars, to the outer ing shaft and levers to operate toggle bars, to the outer
ends of which are pivoted brake shoes that engage ith the rims of the drive wheels. From the rock crakes of the devices are also operated to move the brakes of the tender. The deve cab of the engine.
Improvements in fan blowers have been patented by Mr. Edward F. Schneider, of Racine, Wis. A pair of fan wheela having spiral blades, the blades
of the two wheels being pltched in opposite directions. are arranged side by side, a little diotance apart. on the same shaft. When the wheels are turned, the air is
delivered each way along the shaft into hoods, and cardelivered each way along the shaft into hoods, and car-
ried by branch pipes into one main pipe. The two Mr. John McLachlan, of New Or

Orieans, La. has patented improvements in ue runing gears of
railway cars. The irucks of the car are provided with
a tougue that has at its end a curved head piece that
abuts against the curred face of a block on the bottom are spral springs, and when the wheels of the truck have passed round a carve,
wheels back to a parallel line.

metalldraical inventions.

Improvements in mortars for stamp mills have been patented by Mr. Henry Bothoff, of Central
City. Col. The mortar ts divided horizontally, a aboat the middle, tnot two sectlons, an upper housing acecton and the lower section, the mor marap proper. The
two two sections have an elastic packing between them and
are connected by bols. The nuper section is also diare connected by bolts. The nuper section is also di-
vided vertically, the parts being held together by bols. vided vertically, the parts being held together in poicces
By this construction the mortar can be taken in pien for tresportation
Improvements in apparatus for amalgamating gold and sulver ores have been patented by Mr We suitable lengnth oconveys the ore discharged into it b. ar chute, to near the bottom of a large basin part) filled with amalkamation maturial. The apper part of the
pipe pases
through a alre chamber, pipe pasees through a are chamber, ro that the ore ig
properly heated, the welght of the ore causing it to be mating material
Mr. Humilton has also patented an apparatas in which apper and lower pans are connected by upper to the lower vessel, and an elevator for raising in again from the lower to the upper vessel. A fornace keepe the amalgamating substance melted, and suitable
devices are also provided for distributing the ore and devices are also pro
removing the refuse

ELECTRICAL INVENTION

Mr. John W. Weakley, Jr., of Bond Hill, O. has patented an improved electric brush. This
brush is for the relief of nervous complaints. On the back of an ordinary metallic brush is placed a battery ontaining a copper or ot to rest on the metallic pins of the brush. The electric current is carried throagh the pins to the scalp or body.

textile invention

Improvements in perforated plates for c. Palmer, of South Norwalk. Ct. The perforate plate is made with three radial division lines and a has angular plates attached beneath the radial division ines. With a plate thus constructed the bat will be Pormed in sections, and the edges of the body sections the body when finished of even thickness.

AGRICULTURAL INVERTIONS.

An improved form of cultivator tooth, by which a more perfect and unlform pulverization of the soil and easier araught are secured, has been patented
by Mr. Robert L. Turner. of Olena, O. The tooth is formed with a shank portion, and a wider blade portion, the end of which is carved to one side. The body of the tooth is secured to the frame in an inclined position,
and the blade portion enters the ground with a shear and the blade portion enters the ground with a shear
cat, while the carved portion scrapes and pulverize cat, while the carved portion scrapes and puly
the earth more and more to the end of the blade.
Improvements in peanut planters by which chey are adapted to drop peanuts accurately withou Mr. James R. Ayers, of Petersbarg, Va. The feed cesses formed on itn periphery. Conical cupe are se cured to the projections, that are adapted to receive one peanut at a time from the hopper and deliver it by
gravity into the recesees, the recesses carrying it to the Mr. John C. Ferree, of Marysville, Ia., has recently patented an apparatus that combines all the machines a farmer needs, after plowing the ground, to put in a crop of grain. The devices combined are a
harrow to prepare the ground, a device for marking the ground, for sowing the seed, for harrowing in the seed
aud for rolling the ground, thus completing the work in once going over the ground.
Improvements in straw cutters bave been patented by Mr. James T. Flanagan, of St. Marys, Kentucky. The cutter bor is made with inclined side in and a flat bottom. The knives on the cutcer bar are in opposite the bottom of the box. This arrangement
gives long catting edges, and all the edges draw cut, thas making a straw catter that culs easily and rapidly. Mr. Edward O. Cook, of Worcester, Mass. has patented inprovements in potato diggers. A sco set in an inclined position, so that its forward end will ported from the axle of the digger, and adapted to be raised or lowered from the driver's seat. Paddles operated from the axle push the potatoes and soil
back over the scoop and on to a vibrating screen that Messrs. James M. The earth.
oy. all of We M. Thomas D., and Nelson check row attachment for corn planters. To the seed boxes of the planter is atcached a cross bar that pro-
jects beyond the sides of the planter frame. On the jects of the bar are pivoted gulde pulleys which carry a rope that extends across the field and is knotted a sultable intervals. The knots of the rope pass through chanism

Mr. Jacob Van Zandt, of Marshall, Tex. has patented improvements in cotion gins. The gin is
of the usual conatruction, and below the brush roll beveled edged boards are placed, with the beveled edges in the form of an arc, concentric with the brush roll and extending from a point near the saw to a poin
opposite the lowest point of the dust roll. The boarde serve to straighten the cotton
fier and lighter appearance.

MSGELLANEOUS INVENTIONS.

A machine for compressing lozenges from dry powder, and for other work of a similar character
has been patented by Mr. Charles Killgore, of Utica N. Y. A circular disk is pivoted at its center to turu on
N. a bed plate. The disk has near its edge suitable aper tares to form the compressed article, and the bed plate has corresponding apertures. By means of cam me chanism, vertical plungers having dies at their lower
ends compress the sabstances fed into the apertures om a hopper, the device being automatic and work grapidy
Mr. Thomas McNicholas, of Memphis, Mo. has patented improvements in brick monids, con-
sising in a monid having its bottom divided longitudinally into narrow strips, corresponding in number to cells of the mould. the strips being connected at thei more freely, under the bottom, at the beginning of rise when lifted of the bricks, permitting the bricks to pass easier from the mouid and leaving them smoother
there is no suction in the mould.
Mr. Jacob F. Scherer, of New Bremen, w., has patented improvements in sawing machine iniended for sawing logs and cordwood. The working parts are supported by a horizontal frame, and consisk
of devices by which the circular motion of a crank of devices by which the circular motion of a crank
wheel is converted into rectilnear motion for operata drag eaw. A curved bar. that is hinged at one en the frame, passes over the log to be saw and

Mr. Cbarles S. Barnard, of New York city has patented a drop haudle. The bandie is formed of a krob having a longituuinal perforation forming shoulder near the upper end of the knob. Upon thi end a cap is placed and eecured by filling the cap and the perforation with melted metal. The knob is se-
cured to the front of the drawer in the unual manner. cured to the front of the drawer in the unual manner a stamped
pletes it.
An elastic bearing for spinning spindles has been patented by Mr. Albert R. Sherman. of Pawing or oscillating bolster permitting it to vibrate freel with the bolster, so that it will run steadily and at high rate of speed, the bolster leaving the spindle free
to ruck slighty for maintaining ita center of gravity hen carrying an unevenly wound bobbin.
Messrs. Andrew B. Banghart and Charles H. Treat. of Frankford, Del., have patented improve ments in wooden table casters. Wy which they are so constructed thal they will not warp or spiti. The base, center part, top and bottom holder, are held together b screws into the top post. The varions parts of the caster are made of timber bailt up of veneens of differ ent colored woods.
An improved method of attaching the block of a brake ehoe to the brake bar has been patented by
Mr. Edwin S. Davis, of Kelseyville, Cal. The block are secured to the brake bar by means of clamping jawe and a clamp ecrew, the jaws being formed on
band clip fiting around the brake bar. By this devic the block is armly held to the bar, and
Mr Jean Jacques Magne
Mr. Jean Jacques Magne, of Les Lilas France, has patented a process for reproducing al
kinds of printing with absolute exactness and withou injury to the original. The process consists in impreg nating the prints to be reproduced with an acid solu tion contalning alcohol, prior to taking the impression. Mr. Magne has also patented a fuid ink composed of albumen, bichromate of an alkali; ferrocyanide An a suitable coloring matter, and water
An improvement in iron fence posts has been patented by Mr. Frank Schmitz, of Cornell, II. The buse of the post is constructed in two parts, each are joined together the base is pyramidal in form, to are joined together the base is pyrumidal in form, to
resist being thrown out of the ground by acrains or are formed to correspond with the shape of the base, and the parts are held together by iron bands.
A cheap and strong bale tie, that can be fatened without compressing the bale, has been pa tented by Mr. John B. Allen, of Nashville, Tenn. A
elliptical ring is alrst secured to one end of the bele strap, by passing the end of the strap through the ring and bending it back to form a loop. A second ring is
then placed on the band over the lap, and when the strap is put around the bale, the free end is passed through both the rivgs, and back over the second ring the ifst, securely locking the strap.
A hand lever press for pressing dried fruit etc., into emall parikages. has been patented by Mr. An-
drew J. Hunt, of Albany, Or. To a suitable base nprights and cross plece are secured, forming a vertical rame. To the crosspiece a lever is pivoted in such that retains it in that position, the follower in the bos keeping the fruit pressed until another box is flled The fruit becoming set docs not expand when the pres A combine
een patent calendar and letter box has III. The inted by Mr. William L. Caldwell, of Chicago to hold in its front and expose successively a series of calendar cards. Hack of the calendar cards is a space the cost being such as to make it a suitable artic Me or adveruising purposes.
Messrs. Henry C. and Joseph R. Still, of saddlex .. have patented improvements in the forks The fork and pommel of the saddletree are cast from malleable fron in one piece, the neck of the pommel
being cast hollow for greater lightness. The upper end being cast holiow for greater lightness. The upper end
of the pommel is cast open. the opening being cloeed An improve which An improvement in wire netting, by whic no catch on objects, has been patented by Mr. Gustay

Plckhardt, of Darmetadt, Ger monany. The link sections of the netting are formed of one or more spirals, hrough the loops formed of the overlapping parts of the spirals. The ends of the spiral wires and the connecting wires are bent over on the

Mr. Alfred S. Clark. of New Orleans, La., has patented a novel combination, conaisting of a foot ared brush is secured the the back of the scraper for leaning the bottom of the boot, and a brush hinged at each side ofthe scraper is used for the sides of boots. apart to permit passing the foot between them, and
Mr. Harvey W. Burr, of Gloversville, N. Y. Hed improvements in gloves and mittens tha revent the ripping or tearing of the wristets from rom the glove across the wristlet, so that the glove nay be drawn on to the hand by palling on the tongue instead of on the wristlet.
Improvements in twine holders have been atented by Mr. Charles W. Jones. of Lowell, Mass The twine spool is mounted on a shaft journaled in eye a ring suspended from the ceiling. In this is arm ing is attached that surrounds the ring in which the pool shaft is joarnaled. This outer ring is hung eccen trically, and the outer end. The twine passes through this ye, and when it is pulled down the weight swings a μ, and when
Mr. John A. Conwell, of Aurora, Ind., has atented a sled that is so constracted as to fold at the to fold along the middle of the top, the object being to enable the manufacturer and shipper to economize pace, and also to allow the si

An improved chocolate package, consisting a box provided with a grater cover, that can be re hocolatem the body of the box and ased w grate the New York city, In patented by Mr. Henry McCobb, of logeed from the aticky nature of the substance. With bis box a grater is provided with each package, so that when the box of chocolate is used ap and the grater comes illed it may be thrown away
An improved device for securing cover: pon cans has been natented by Mr. Epaminondus fange near its top and has the usual sealing rat a cover. On top of the cover is placed ang ring and having three arms that reach a little past the cover heir ends being tarned np to form l!ps that receive and hold wire loops that are bent at their opposite ends to re applied by
Mr. Thomas F. Palmer, of Painesvillc, O., bas patented improvements in re-enforcing seamless ending the coxtiguons sides of the metal around each corner, and connecting them at the ends by the surplus metal betwepd the extensions, thus forming three
thicknesses of metal around each corner, and making the cor
tight.
An improved frame for car gongs has been patented by Mr. James M. Matheny, of Woodstock, Ill The gong is of the usual construction, and is secured by screw bolt to a metal holding bar that passes within dges of the gong the gong being suspended from th rame with its outer surface downward. With thi haped frame ine ber ret
Mr. Adam Metz, of Burlington, Ia., has patented an improved meat chopper consisting of a
rocking knife suspended by rods from a rocking shaft the rocking shaft being connected by euitable connect ing rods to a rotating shaft. The rocking knife being aspended in this way cannot cut into the block, and on the block.
Mr. Isaiah W. Shoemaker, of Rosston, Pa., has patented a ire place fender for attachingto the hearth
a grate. It is so constructed that it will fold down compaclly within the hearth when not required for uee or the front may be wholly or partly open. The acre is also constructed so as to entirely inciose the are, or The top be wholly or partly open, or if it is desired the
op of the screen may be made of sheet metal to serve a shade.
An apparatus for removing snow and ice rom the sidewalks and streets has been patented by Ists of revoling on rollers attached to the head of a furnace naide the roller, and held from revolving by suitable rovicer, and the roller melus the snow as it is drawn along roller, and
An improved sash cord fastener has been patented by Mr. Charles Bush, of New York city. In op and edice a poctel of the pocket a slanting hole is made to the unter end of the sash. In th.s pocket is placed a plate that has on its inner aide an eye plate in which the knot of the sash cord is secured.
An improved device for fastening earrings Aracelets, etc., has been patented by Mr. George Kre-
nentz, of Newark, N. J. The fastener is composed of wo segmental parts having at their upper ends knobe n ear wite acbs ing recessed to receive the ond of plates adie secured in the olker, and ather to esving on of the segmental plates out of the plane of the earring

2usiness aud 23 ersoual.

The Charge.for Insertion under this head ts one Dollar a line for each insertion ; about eight voords to a line as eatly as Tlurraday norning to appant in next izesue.

For Sale.-Engine and boiler. Steam cylinder, 10×20, boiler, 22 feet long, 4 teet diameter; two fues. 12 Inches diameter. Aloso one stom rendiering tank, 10 . feet long.
5 foet diameter; of threoelghthe
Iron. One onen square 5 feet dameter; of threeolghths iron. One open square
Iron tank. $7 \times 4 \times \times 4$ feet hlah ; threeelkhths iron. All at very low prices. Farmers' Fertliser ''ompany, $61 \mathbf{W}$. Water Street. Syracuse, N. \mathbf{Y}
Wanted.-Liberal inducements and facililies for locat ing larze tron works. Address Iron, Manohester. N. H. In writing it is well to remember the rule that the ap strokes should be ourves and the down strokes straikht
The Emeterbrokk's pens will be found adapted for elther The Eaterb
operation.
Schools open.-Send for Catalogue of Drawing Mate rials. Keufel a Esser, New York gine, with fywhel and band eheels 140 slide valve engine, with aywheel and band Fheels and Huntoon governor compiete. In perfect ranning order, and can be
seen running. Address Engine, Box 658 , New York Pust Woodworking Mc'h'y. Bentel, Margedant \& Co., see

p. 220 . | p. 220. |
| :--- |
| 25^{\prime} |

251' Lathes of the best design. G. A. Ohl \& co
East Newark, N. J. Magic Lanterns and Stereopticons of all kinds and prices. Views wustrating every subject for public ex
hibitions. Sunday sohools, colleges, and home entertain ment. 116 page lllustrated catalogue free. McAllister Manufacturing Opticlan, 49 Nassau St., New York. 50,000 Emerson's Hand Book of Saws. New Edition.
Free. Address Emerson. Smith \& Co., Beaver Falls, Pa. Copies Wanted.- London Engineering, issues Janu ary 2d. 9th, 18th. 23d, and March 5th, 1880; also Septem
ber 20th, 1881. 50 oents each is oftered. Address B. R Western, No. 8 Broad Street. New York.
Cope \& Maxwell M'r'g Co.'s Pump adr., page 220. Steam Hammers. Improved Hydraulic Jacke. and Tub Expanders. R. Dudgeon. 24 Columbla St., New York.
Diamond Saws. J. Dickinson, 64 Nassan St., N. Y. The Berryman Feed Water Heater and Purifer and Feed Pump. I. B. Davis' Patent. See illus. adr., p. 220. For Pat. Safety Elevators. Holstlng Engines. Friction Clutch Finess, Cat Gould \& Eberhardt's Machinists' Tools. See adv.,p. 221 Empire Gnm Core Packing, Soapstone Packing, and
all kluds of Rubber Packing. Greene. Tweed $\&$ Co. Barrel, Key, Hogshead, Stave Mach'y. See adv. p. 222 For Heary Punches, etc., see illustrated advertise ment of Hilles \& Jones, on page 220.
Red Jacket Adjustable Force Pump. See adr., p. 220. Vertical Engines, varied capacity. See adv., p. 221. Upright Self-feeding Hand Drilling Machine. Excel-
ent construction. Pratt \& Whttney Co., Hartford, Conn. constructioa. Pratta Whitney Co., Hartiond, Conn
Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drlll Co. Box 423. Pottsvillo. Pa. See p. 2e0. For best low price Planer and Matcner. and lates Improved Sash, Door. and Bliny Machinery, Send to
catalogue to Rowley \& Hermance, Williamsport, Pa.
The only economical and practical Gas Engine in the market is the new "Otto" Bllent. bullt by Schleteher.
Sohumm \& Co., Philadelphia. Pa. Send for circular.
The Porter-Allen High Speed Steam Engine. South The Porter-Allen High Speed Steam Engine. South-
work Foundry \& Mach. Co., 430 Washington A ve., Phil Pa Common Sense Dry Kiln. Adapted to drying of all ma-
terial where killn, etc., drying houses are used. See p.220. 4 to 40 H. P. Steam Engines. See adv. p. 220. Baxter's Adjustable Wrenches it peculiar corner Where no other
Co., New York.
Collection of Ornaments.-A book containing over 1,000 different designs, such as Crests. Coats of Arms Virnettes. Scrolls, Corners, etc., will be malled free on
recelpt of $\$ 1$. Address Palm $\&$ Fechteler, 6 West 14th treet, New York.
For Sale.-New Planer, $27^{\prime \prime}$ by 84^{\prime}, with $6 \times$ ft. table
 New Crank Planer, $18 / \times 151$, with 1
tool ; \$350. S. M. York, Cleveland, 0.
The Sweetland Chuck. See illus. adv., p. 190.
Steam Pumps. See adv. Suith, Vaile \& Co., p. 188. Knives for Woodworking Machinery.Bookbinders, and
Paper Mills. Taylor, Stiles \& Co.. Riegelav!lue, N. J. Send stamp to Morse Yellow Dock Root Sirup Co. Providence, R. I., for descriptive circular and sets of elegant Advertising Card.
Drop Forgings. Billings \& Spencer Co. Seeadv., p. 205 C. B. Rogers \& Co.. Norwich, Conn.. Wood Working Machinery of every kind. See adv., page 200
Lightning Screw Plates, Labor-saving Tools. p. 206. Engines, 10 to 50 horse power, complete, with gover nor. $\$ 500$ to $\$ 550$. Satisfaction guaranteed. Six hundred in use. For circular addr
127), Baldwinsille, N. \mathbf{Y}.
Air Pumps for High Pressure, Hand, or Steam Power Improved Skinner Portable Engines. Erie, Pa Combination Roll and Rubber Co.. 68 Warren atreet Pure Water furnished Cities, Paper Muls, Laudries Steam Bollers, etc., by the Multifold System of the
Newark Fitering Co., 177 Commerce St.. Newark, Latest Improved Diamond Drills. Send .for circular
to M. C. Bullock Mfg. Co.. 80 to 88 Market St., Chicago, 1 ll . First Class Engine Lathes, 20 inch swing, 8 foot bed now ready. F.C.\& A. E. Rowland. New Haven, Cónn. Ice Making Machines and Machines for Cooling
Breweries, etc. l'tctet Artifcial lce Co. (Limited), 142 Brewerles, etc. l'tetet Artlacial Ice Co. (Limited).
Greenwleh Street. I. O. Box 3083 , New York city.
Jas. F. Hotchkiss, 84 .John St., N. Y.: Send me your frea book entitted "How to Keep Botlers Clean," con-
taining aseful information for steam users \& engineers. taining aseful information for steam users \& engineers
(Forward above by postal or letter; mention this paper.) Stpal Stamps and Pattern Letters. The best made. J
F.W.Dorman. 21 German St., Baltimore. Catalogue free

Machinery for Light Manufacturing, on hand and
bulut to order. E. E. Garvin \& Co., 122 Center St., N. Y For Power \& Economy, Alcott's Turbine, Mt. Holly, N. J Wood-Working Machinery of Improved Denign and Presses, Dies, Tools for working Sheet Metals, et ruit and other ('an T'ools. E. W. Bliss. Brookiyn. N. Y. Supplement Catalogue.-Persons in pursnit of info mation on uny special engineering. mechanical, or scien NTIFIC AMKRICAI SUPPLKMKNT sent to them free The supiligment contains lengthy articles embracin Che whole range of engineering, mechunics, and physiPresses \& Dies. Ferracnte Mach. Co., Bridgeton. N. J Presses \& Dles (fruit cans) Ayar Mach. Wks., Salem,N.J. Split Pulleys at low prices, and of same strength ani Pance as Whole Pulleys. Yocom \& Son's Shaftin orks. Drinker Sc., 1'biladelphla. P'

HINIS TO CORRESPUNDENTS.
No attention will be paid to communications anless riter
Names and addresses of correspondents will not b Wen 20 inquirers.
We renew our request that correspondents, in referring oformer answers or articles, will be kind enough :name tue date of the paper and the page, or the numbe the question.
reasonable time should inquiries do not appear after lished, thes may conclude that, for good reasons, the ditor declines them
Persons desiring special information which is purel a personal character, and not of general intere hould remit from $\$ 1$ to $\$ 5$, according to the subjec as we cannol be expected to spend time and
Any nombers of the Scresturic Aspration
ANT referred to in these columns may be had at fifce. Price 10 cents each.
Correspondents sending samples of minerals, etc or examination, should be carefal to distinctly mark o tabel their specimens so as to avoid error in their iden ication.
(1) G. A. C. sends formulæ for solder for nickel. They are the result of practical experienc
and may be recommended. The solders are mor malleable than those recommended in sciestrex Anerican, August 12, but not so white. They are For fine or high grade nickel, 8 parts yellow brass, part coin silver. For low grade nickel. 15 parts yello orass, 5 parts coin silver, 4 parts zinc (pare or plate zinc) melt the hrass and silver with borax for a lux, and add the zinc in small pleces, stir with an fron rod. poar in lab monid, and cool dow, when it can be rolled th
(2) S. K. H. asks: 1. Is there any prepara ion which can be applied to horses and catcle, as we as to men, that will effectually keep away flies and mos quitoes? A. Some one of the mixtures containing oil of
pencyroyal might answer. 2. How long will one appll cation be fective A. Whtl its presen ceaces to perceptible by Its odor. 8. How can the preparation be rocured or made A. See Scientifio Aigericaty Angupt 5, 1888.
(3) J. R. S. writes: 1. I am about to build boat 19 feet long, 8 feet 10 inches broad. and 18 inches depth in center. Are my proportlons right for a screw neel yacht for speeds? \mathbf{A}. We think 20 inches or 2
nches better depth, and if 3 feet longer, would be bette or speed. 2. What size engine and boller, also whee are required to run it from 8 to 10 miles per hour? inches diameter of cylinder by 4 inches stroke; boile ach a boiler cost? A. It will depend hon the kitw boiler yon use probably 8200 to 8200 ; propeller inches to 24 inches diameter, and 86 inches or 88 inche pltch. 4. Will such a boat have to be inspected? It to be run only on a small river. A. Yes.
(4) J. F. L. asks: Can a locomotive pull more than its own weight? Example: If a 70 ton en gine had 70 tons of solid matter in one cart attached to it, could it draw it? If so, could it pall it more easily than if it wers pat into 7 cars of 10 tons each, th
engine not to use any snbstance to assist it, the track to be straight and level? A. Yes, the friction and re sistances of air, etc., are less to one car than to a large weight of the load, but mer:ly the resistance due to fric hion, resistance of alr, etc. See "How mach will Locomotive Pall," in SUPPLEMENT 184.
(5) B. A. L. asks: 1. Is there anythin that is really straight, or is it possible to draw a tru straight line? A. Depends npon what is meant by
"really straight," and "true straight line." A mathe matical straight line is not a "thing." A conventiona straight line is a mark which more or less exactly cover the shortest distance hetween two points. The imper fection of our means for describing anch a line make it practicaly imposeible to attaln ahoolute straightness des how is it demonsurated? A. A circle practicall "true "can be made. An absolute "true" circle cal not be made. 8. What means were used in showing that the carth itself exerted attractions on bodies, such a drawing a plamb line from the vertical? A. Every ralling body proves it. 4. What influence has the moon eather wherf A. The mon's la lience apon the weather is so exceedingly slignt that its amount is no wet and dry moons very frequently and mostly com the moon's changes ". Weather predicions based o dicted."
(6) E. M. C. writes: 1.1 am erecting a ractory in which I shall have occasion to convey steam tances and in considerable quantities. Boller pressure will be abont 80 pounds. Would there be any advantage either in economy or otherwise in superheating the are by the traverse of the pipe. and have higher temperature for boiling. 2. What is the best material and mode of protectung the pipes. many of which will traerse open air invervals, where the thickness of the covering may be carried to any desirable extent with out inconvenience? A. Hair. felt, asbestos, and mineral wool are all good if not expoeed to moisture. 8. Can ou refer me to any work in which the qualities and reated in a practical manner! \mathbf{A}. This information is cattered through varions works on steam and the steam (
(7) D. H. R. asks how to make good black or red indelible ink; red is preferable. A. See "Inks,"
(8) ${ }^{\text { }}$ C. B. J. asks: Please describe a cheap olation for rendering wood waterproot and freproof
(9) C. C. R. writes: I am building a three linder engine to take steam at one end only of each cylinder The cylinders are 24 inch bore, with 4 -inch stroke, with a boiler pressure of 75 pounds; engine to ran 400 revolations. How can I agare ont the power of anid engine? A. You can calculate the engine as a sin gle cylinder, takiug steam at brit ends, and then add so per cent to the result for the third cylinders. Bat the hree cylinders than in one cylinder giving out the same
(10) G. M. writes: A and B have a contro(10) G. M. Writes. A and B have a concerning a hollow brick wall built to exclude the heat of summer. A claims that the inclosed air nd no circulation B clalms that the circulaion should be as free as possible. Which is right? What is the best way to build such a wall? A. B is right. Build the wall donble, with an "ccasional header,' Lo tie tho wals worer, blo to be hall crack the walls.
[OFFICIAL.]
INDEX OF INVENTIONS POR which
Letters Patent of the United Staten we
Granted in the Week Ending
Septemior 12, 1882.
AND EACH BEARING THAT DATE.
[Those marked (r) are reissued patents.]
A printed copy of the specification and drawing of any
patent in the annexed list, also of any petent lissued Ince 1986. will be furnished from this ofice for $\%$ cents. atent desired and remit to Munn \& Co 261 Brose way. corner of Warren Street. New York eity. We
also furnish coples of patents granted prior to 1888 but at increased cost, as the spectications not being
printed, must be copled by hand.

Advertising matoh box. C. Greenwood.............. 2
Aerial ship, R. L. Downton........................
Agricaltural boller and feed steamer, J. K. Purin-
Agricaltural boller and feed steamer, J. K. Purin-
ton...
Alarm. See Rallway crossing alarm.
malgamating and separating gold, etc., from
their ores, anparatpu for. 8. L. Trippe
Amalgamator, schmidt \& Streernwitz....
Annealnng furnace. James \& Handley
Atomizer. J. G. Justin
Augers, slate or earth. J. N. Ralne
Axle, car, G. W. Miltimore. .
Axle labricator, N. H. Davis.
Arle lubricator, N. H. Dav
Baa fastener, J. W. Estes.
Bark cuttIng machine. J. C. Hagerty..................
Battery. See Galvanic battery. Ore bettery: Seoondary battery.
Bed spring, J. \& R. Aln

Bell p pIll, C. L. Bates...................................
Bell ringing apparatus pneumatic, в. P. Garsed.
Belt fastener, B. Hogan...............................
Belt fastening. waist, I. Cairn
Be
Berel gauge. F. H. Breet
Billiarde trable, C. Joerkens.
Blind, window, G. P. Gee...
Block. See Snatch block.
Board. Sea Dash board.
Boller. See Agricultural boiler. Cooking boller. Boller. J. T. 8mith........ Boller feeder, D. C. Walter...........................
Bone black kilns, automatic cut-otr for, Regner
Stenhouse...............
sook rest, w.
Bottle cleaner, W. O. Bald win
Cox. Soe Advertising match box. Cigar box
Clearette box. File bor.
Brake. See Car brake. Carriage brake. Sowing
machine tension brake. Vehiole brake.
Brick, burning. A. Yates
Brick kiln. E. E. Polster.
Briok kiln, A. Yates......
Brick
Bridge, T. Rarland.
Bridle and halter, S. A. Marker
Bucket valve. well. W. H. Roe.........
Bullet greasing apparatus. H. S. Burn
Bullet greasing apparatus. H. S. Burn
Burguthing mactine

Calipers, beam. J. A. Reece.........................
Can. Bee Cracer can. Fruit can. Milt can.
Sheet metal can.
 Car coupling, J. B. Goodwin.
Car Car coupiling, S. J. A. Mendenhal Car couppling, D. D. S. Senulute.
Car spring. J. D. Thomas Car spring, J. D. Thomas
Car starter, F. E. Allen Car starter, M. M. Barnes
Car starter, W. H. Barnee Cars, wall safe for J. H. Laske
Carbureting apparatua. A. W. Carpet stretcher, J. B. Farler.
Carpet sweeper, P. C. Writh Carpet sweeper. P. C. Wrigh
Carrlage bow. I. C. Smith......
Carrige chid Carriage, child's W. A. Hepburn.
Cartage brake, child's, G. R. Pea Carriage seat. T. Weaver (r).............................
Cartridge shells, apparatus for capplng, uncap
 Casters, manufacture of, J. E. Merriman ${ }^{26}$
Chain, cable, J. M. Dodge....................
Chain, drive, H. M. Gray........... Chain, drive, H. M. Gray.........................
Chalr. See Opera chalr.
Cheok row wires, knot or stop for, R. Faries. Cherry row wires, knot or stor, J . Baker.
Ctgar box, F

Cigar box, F. Mc Winnle...... Cgarette box, M. T. Moore.

Clock, watohman's. C. Weinedel........... 261,8
Clothes
Clothes hook, Grims \& Dunn
Coin separator, J. M. Quinn
Coiter. rollthe. B. Klose
Citter. rolitng. R. Kloss
Commutator brush holder., W. K. Froeman
Condensers for
Condensers for
J. Mappole.
Cooking boller. grali.....................
Conier. See Beer cnoler. Milk
Cooler. See Beer cooler. Milk cooler
Coop. fowl. J. M. Householder.
Coop. Tow. . Hambujer.
Corset. A. Strouse....
Corset-biaplopg apparatus...............
Coupling. See Car coupitn. Aouse
Coupling. See Car coupling. Shaft coupling.
Cracker can, I. Sexton. Crate. See Folding crate
Croashead for engines, etc., J. E. Sweet............ 264388
Crusher. See Stone and ore crusher.
Cultivator, 1. B. Beard
Cultivator, 1. B. Beard
Cultivator, J. J. Mize.
Cultivators, rotary hand, B. Colvin.
Cuitivarars, rotary hand, BI.
Curtain Axture, W. . Kell....
Cartain Axture. C. J. Truemper
Curtain ixtare. C. J. Truempe
Cut-off for cisterns, G. Wilson.
Cutter. See Straw cutter
Dash board. W. Callaway

Dle and stamping press, F. \& O. Kampfe.
Ditching machine, J. P. Bondell.....
Ditching machine, rall way. D. E. Gr
Dranght equalizer, T. Harding.
Draught equalizer, P. G. Ro
Drawer pull, J. F. Johnson.
Drier. Soe Fralt drier.
Drill. Soe Ratchet dril.
Driling machine, metal. F. Dubral 284.283
Dropper. See Seed dropper.
Drying fruit, veeretables, grain, and analogous

204,246
264,358
246,282
254,299
Electric machine, dynamo, G. W. Beardslee
264, $2727.284 .28,281,220$
W. Beardslee.. 284,23
Kilectric motor, W. K. Freeman.......

Electrical conductors, coupling device for. E. H.
Johnson $\ldots . ~$
2s4,298
Melervator safety devilee, W. H. Skerritt............ 284,352
Embroldery pattern, C. Preisig.................. 2s4,19
Engine. See Oscillating engine. Self-adjusting
engine. Steam engine. Traction ensine. Wind
engine.

Fence, J. DennIng.
Fence barb, wire, J.
Fence barb, wire, J. F. Scutt....
Fenee, barbed wire,. . M. Harris................
Fence, combination post and rail, s. w. Lahue....
Fence, hedge, H. GIllbert
Fenoe. hedge, H. Gllbbert 264,17
Fencing. apparatus for the manufacture of
Fencing. apparatus for the manufacture of
barbed, $\mathrm{E} . \mathrm{S}$ Lenor......................... 264,17
Fibrous plants, machine for dressing and strip-
ping the leaves of, A. Angell.............. 254,06
Mie and file holder, combined paper, J. H. Lin-
Mle
n
n
Fute
ner
Frrearm, breech-loading, Wefever \& Smith.
Firearm, brevelv-loading, Lefer
F. Moore
Fire escape, E. A. Costig

Fish hook, F. De Yorest........... 26
Fishing reel. Marthews ${ }^{26}$
Fishing rod ferrale, T. H. Chubb 26
Fishing wheel. s. Wilson.
Flood gate, \mathbf{H}. Handsohy
Flour boiting machine. A. R. Smith......................... 24
Flour. middlings, etc., apparatus for dressing

Flower, artincial, J. Lambert..................................28,20
Folding crate. W. B. Van Hutton............. 28,37
Frame. See Picture frame.

Furnace. See Annealing furnace. Locomotive
furnace. Smoke and gas consuming furnace.
Furnace for burning cane thrash, peat, or similar
fuel, M. Gros-Desormenux................... 264,00

Tounded by Mathew Carey, 1785

BAIRD'S BDous

FOR PRACTICAL MEN.

FOR SALE-A SACRIFICE-ENTIRE right of the best Safety Extinguisher Lampi When

TME BIREE8T THINR OUT TMustrated WE CIVEITFREE!

 Wanted. - manuracturkers invintors

MAHER \& GROSH, 0 Monroe Street TOLEDO, OHIO.
ICE MAKING MACHINES,
And Machines for Cooling Breweries, Pork Packing Establishments, Cold Storage Warehouses, Hospitals, etc. end for illustrated and descriptive oirculars.
PICTET ARTIFICIAL ICE CO. (Limited), P. O. Box 3083. 142 Greenwich St., New York City, N. Y.

ROOFINC.

CHARLES CHURCHILL \& CO,

21 Cross Street, Finsbury, London, E. C., England. NEW YORK OFFICE, 495 GREENWICH ST.
We have been introducing American Machinery and Tools in Great Britain, the British Colonies, and the European Continent since 1882, and are the agents of many of the largest

Having extensive facilities and connections, we are prepared to introduce new goods, especially in the line of Machinists' and Woodworking Tonls and Machinery, and would invite
given.

ROCK BREAKERS AND ORE CRUSHERS.

NEW YORK BELTING AND PACKING COMP'Y.

 JOHN H. CHEEVER. Trene.

WIRE ROPE, MRIDGE CABLES, $\begin{aligned} & \text { man } \\ & \text { SHIP } \\ & \text { SHIP }\end{aligned}$ Tramway Ropes, Champion Barbed Wire, etc, Omice and Works: $\}$ Sond for $\left\{\begin{array}{c}\text { Omice and Warehouse: }\end{array}\right.$

ROOT'S NEW IRON BLOWER.

IRON REVOLVERS, PERFECLLY BALANCED, Has Fewer Parts than any other Blower. P. H. \&F. M. ROOTS, Manufacturers
 SEND FOR PRICED CATALOGUE.

Gold, Silver, and Nickel Piating.

 Cosp ANY, Manasela, Obio.

RUPTURE

SPEAKING TELEPHONES.

the american bell twlephone company
 Aleandef Graham Bells patent of Marab p. 1 Ris

IRELAND of TO-AYY\#N.

WATCHMAKERS.

EVAPORATINC FRUIT

 AMERICAN HANUFGGCO.

 1 TM

$\$ 5$ to $\$ 20$ pardast idome

2adurtisempats.

Inside Page, ench insertion -:-75 cents a line.
Back Paze, ench insertion --. 81.00 an

The " MONITOR.'

Thed hifting and no
 $\xrightarrow{\text { To Anchen }}$ Pyrometers. For showing heat of

Stevens' Roller Mills, GRADUAL REDUCTION OF GRAIN. THE JOHN TT. NOYE MFG. Co., Buffalo, N. X. THEETHE OUIWBEBWATCH CASE WAGICIANTIERINS 2Fawe

H.W.JOHNS'

 BUILDING FELT,
FOR LINING UNDER FLOORS, SHINGLES,

STRICTLY FIREPROOF Tn rolls of 75 to 100 pounds each, 36 inches wide, two
thicke.
feet.
H. W. JOHNS M'F'G CO., 87 Maiden Lane, New York. ASBESTOSROOFING, STEAM PACKING,
BOILER COVERINGS, PAINTS, ETC: Special prices to large consumers. Send for sample.

Machinists, Tools. Send for new inustrated catalogue.
Lathes, Plans.
new Haven NEW HAVEN MANUFAGTURING CO.,
 JENKINS PATENT VALVES $\boldsymbol{\$}$ MANEESTANDARD GENKINS BROAM METTAT

TRANSFORMATION OF BACTERIA.An account of a series of experiments carried out by
Dr. Rosenberger, of Wurzberp, and which have led him
to a new theory in reard to

Model Engines.

 \rightarrow NATIONAL STEEL TUBE CLEANER. For cleaning Boiler Tubes. Saves its cost every time
is used; indorsed by best Engineers. Asbeston Materinis, Fiber, Millboard, Adress CHALMKRS SPENCR COMPANY,

SHAFTS PULLEYS YMUGEMS

2. $\mathrm{A}^{\text {A }}$

NEW AMERICAN FILE CO PAWTUCKET R.I. U.S.A

THE SEIBERT CYLINDER OIL CLP CO.,
Establ'd EACLE ANVILS. 1843. Solid CAST STEEL Face and Ho
ranted. Retall Price, 10 cts. per lb.

BACKKNIFE GAUGE LATHE, For all variefy of Chafr Legss eto, tet

The Phosphor-Bronze Smeiting Co, Limited, 12 Areh street, Philadelphia, Pa

PHOSPHOR - BRONZE Planished Pump Rods, Bolts, Nuts,
Valves, Spring Metal, and Wire. Specialties of great durability, gtrength, and resist-
nine to corroxion, for Minine Marine, nnd
Hydraulic Work.
Pamphiets nnd Particulars on Application.
OWNERS OF THE U. S. PHOSPHOR-BRONZE PATENTS.
COLUMBIA Bicycles.

597 Washington Street, Boston, Mass.
 HA ORTHIN-CORLINS E EGGINE

 Nawaik
まuwaw ixiz C. B. ROGERS \& CO.,
 Planing, Matching,
Moulding, Moulding, Mortis,
ing, Shaping, Gain: ing, Vertical and Horizontal Tenon-
ing and Boring Maing and
chines.
 Band, Scroll, Split, Cut-off, and Resaws. Turning Lathes.

Manufactory, Norwioh, Ct.
Wareroom, 109 Liberty Street, New York.

This CK's RUBBER WHEELS

Steam Fitters' \& Plumbers' Supplies. sturtevants fan blowers. JOHN S. URQUHART, Successor to

Scirutific Amrerican

The Most Popnlar Scientific Paper in the World. Only 83.20 a Year, including postage. Weekly.

This wid aper is published weekly. Every number contains sixoriginal engravings of new inventions and discoveries representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures, Chemistry. Electricity, Telegraphy, Photography, Arch
tecture, Agriculture, Horticulture, Natural History, ete. All Ame Ambrions a popular resume of the best scientific inCormation of the day; and it is the aim of the publisher o present it in an attractive form. avolding as much as possible abstrase terms. To every intelingent mind. eading. It is promotive of knowledge and progree in very community where it circulates.
Terme of subscription.- One copy of the screvTHTC AMERIOAN will be sent for one year-62 numberspostage prepald, to any subscriber in the United State ents by the publishers; alx monthe 81.00 ; thre months, 81.00 .
Clabn.-One extra copy of the Sccientipio AMERI-
OAN will be supplied gratis for every club of fve nubeciber and racis for every club of sve subscriberr rate.
One copy of the Scixntific Amirrican and one copy
of the ScIEsTITIC AMERICAN SUPPLEMENT will be ent or one year, postage propald, to any subscriber in the United States or canada, on recelpt of seven dollars by the publishers.
The safest way to remit is by Postal Order, Draft, ar xxpress. Money carefully placed inside of envelopes. astray, buf is at the sender's risk. Addreas all letters and make all orders, dratts, etc, parable to

MIUNTN \& CO 261 Broadway, Nen York. To Fore ikn Subscribers.-Under the facilities of
he Postal Union, the Sci kripic Anrican is now sent post direct from New York, with regularity, to subcribers in Great Britain, India, Australia, and all other Rusala, and all other Kiropean States; Japarmany, Mexioo, and all States of Central and South America. erms, when sent to forelign conntries. Canada excepted, S4, gold, for Scientipic AMERICAN, one year:
for both geientic ne year. This includes postage, whioh we pes. Beait y. Remit MUNN \& CO., 281 Br

PRINTING INEES

