

LOOM WORKS OF J. \& W. LYALL. NEW YORE CITY.

§riintific gmmrican.

HETABLIBHED 1845.
MUNN \& CO., Editors and Proprietors. pUBLISHED WERKLY AT
No. 261 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS POR THE SCIENTIPIC AMERICAN. One cony, one year pontage included...
One copy,

 Hemil oy posta? order. Address

NEW YORK, SATURDAY, SEPTEMBER 2, 1882.
Contonts.

TABLE OF CONTENTS OF
the scientific angrican suppleicent NO. 348,
For the Woek onding september 2,1852 . Price 10 cents. For sale by all newadealers.

 n. TECHNOLOAY AND CIIEMISTRT.-Some Chemioal Reactions. 8 Ansid

. memer
1v. 피잉

V. FThNOLOGY, ETC. On the Condition and Cbaratoritice of

VI. AREHITRCTURE, ART, ETC.-Towora.-SII Charles Anderson.

VII. HYQIENE, ETC.-Rerlier's Pnenmatio System of Semage. 1 ig.

THE MONTRBAL BCIEITIFIC MEETINGB.

Montreal is the summer gathering-place of American science this year, the convention of the American Association there having been preceded by a Congress of Foresters, August 21-28, and a meeting of the Association for the Promotion of Agriculture, August 21.
Undaunted by the ill-success of their first gathering at Cincinnati, four months before, the promoters of the

american conaress of forestry

came bravely forward to the number of two hundred or more, with many papers on subjects relating to the culture and conservation of forests. Among the members present were Dr. Franklin H. Hough, Chief of the Bureau of Forestry at Washington; Dr. Charles Mohr, of Mobile, Ala., of the Census Bureau, who assisted in preparing the forestry statistics of the Gulf States for the Census Bureau; Dr. John A. Warder, of Ohio; S. J. Russel, Crown Timber Agent for the Dominion; C. E. Bell, Crown Timber Agent for the Province of Quebec; William Saunders, representing the Ontario Government; and Professor Albert S. Bickmore, of the American Museum of Natural History, in New York. The Committee on Forest Fires presented a report recommending, first, the reservation of all pine and spruce lands unft for settlement for lumbering purposes exclusively; second, the prohibition of the burning of brush by settlers in the vicinity of fir trees during the months of May, June, September, and October; third, the division of the timber country into districts, and the appointment of police, under a superintendent with magisterial powers, whose duty it shall be to detect and punish offenders and provide for the extinguishment of fires; fourth, the cost of maintenance of this protection against fire might partially be met by the imposition of a moderate tax on those owning or leasing timber lands.
Dr. Loring, of the Agricultural Department, was elected president.

the agricultural convention.

The membership of the Society for the Promotion of Agriculture is limited to forty, a number too small to admit of its becoming popular in the broader sense of the word yet its contributions have usually been of high scientific value, so that the quality of its work may more than compensate for any lack in quantity. This was its third annual meeting. Mr. W. J. Beal, Professor of Botany and Agriculture in the Michigan Agricultural College, Secretary of the American Pomological Society, and President of the Society for the Promotion of Agricultural Science, occupied the chair. Among those present at the opening were C. Lewis Sturtevant, Director of the New York Agricultural Experiment Station, who offciates as Secretary of the Society; L. B. Arnold, Lecturer on Dairy Husbandry, of Cornell University; George H. Cook,' Professor of Chemistry and Agriculture in Rutgers Scientific School, and Blate Geologist of New Jersey; B. D. Halsted, editor-in-chief of the American Agriculturist; Levi Stockbridge, President and Professor of Agriculture in the Massachusetts Agricultural College; W. W. Tracy, Professor of Botany and Entomology, Superintendent of Gardeu Mission University, Sec retary of the Mississippi Valley Horticultural Society John Dougall, and a number of others.
Four new. members were elected: Major Alvord, of
Houghton Farm; Houghton Farm; Dr. Dabney, Director of the North Carolina Experiment Station; Professor C. V. Riley, of Washington,
and Dr. Ormsty, of the Storis Agricultural School, making and Dr. Ormsby, of the Storis Agricultural School, making the total membership thirty-eight. Papers were read by Professor Arnold, on "The Origin of Butter Fats;" by Professor Caldwell, on the "Maintenance Ration;" by Proessor Tracy, on "Seed Testing and the Influence of Light
and Air on the Germination of Seeds;" by Profossor Gully, and Air on the Germination of Seeds;" by Profossor Gully,
of the Agricultural College of Mississippi, on the "Food Value of Cotton Seed;" and by Dr. E. W. Hilgard, on the "Absorption of Moisture by Soils." Among the other
papers contributed were "Mineral Constituents in Plant Growth;" "The Yellows in Peaches;" " Non-albuminoid Nitrogen in Timothy in Different Stages of its Growth," by Professor W. H. Jordon; on "Vaccination," by D. E. Sal mon, Veterinarian of the Department of Agriculture, and others.
the american absociation.
The thirty-first meeting of the American Association for the Advancement of Science began August 23, with a large attendance of members and many prominent visitors. Among those from Europe were Dr. Samuel Houghton, and Professors Fitzgerald and Ormsby, of Trinity College, Dublin; John Rae, of London; Dr. Gilbert, President of the Chemical Society; Dr. Phine and Professor Wiltshire, of London; Professor Ernest Cook, of Bristol; Dr. Kowalesky, of Moscow; Dr. Szabo, of Hungary; Dr. Koenig, of Paris;
and Professor William B. Carpenter, the eminent microand Professor Willian
scopist, from London.
After the brief addrass of welcome by Dr. Dawson, Presi-dent-elect, a review of the growth of Montreal and of the growth of the association since the meeting of the association there twenty-five years ago, was given by Dr. T. Sterry Hunt, who expressed the hope that by another quarte century, or less, a meeting might be held in the City o Mexico.
The scientific work began in the afternoon with the customary addresses of the Vice-Presidents of Sections. The addresses were as follows:
Professor T. C. Mendenhall, of Columbus, section of Physics; Professor H. C. Bolton, of Hartford. section of Physics; Protessor H. C. Bolton, of Hartiord. section of

Trowbridge, of New Haven, section of Mechanical Science Professor William H. Dall, of Washington, section of Biology on "The Biology of American Mollusks;" Professor A. H. Little, of Columbus, section of Histology and Microscopy Professor Daniel Wilson, of Toronto, section of Anthro pology, on " Some Physical Cbaracteristics of Native Tribes of Canada;" and Professor B. Elliott, of Washington, sec ion of Economic Science and Statistics. The address of Professor William Harkness, section of Mathematics and Astronomy, on the "Transit of Venus," was read by Professor Eastman. The paper of Professor E. T. Cox, of San Francisco, section of Geography aud Geology, was giv n the next day.
In the evening, the retiring President, Professor George J. Brush, delivered the customary address. His subject was " The Progress of American Mineralogy."
The next morning, Dr. Carpenter, of London, gave, in the section of Histology and Microscopy, a lecture on " Angular Aperture in Relation to Biological Investigations," taking the ground that a dissolving lens of wide angle is not so good for general biological work as a lens of more moderate angle and higher deflining power. During the day papers were read by Professor Samuel Lockwond, of Freeliold, N. J., on "The Mastodon in New Jersey;" Professor Meehan, on "The Fertilization of Yucca;" Professor Elliott, on "International Time;" Professor Brewer, on "The Apparent Size of Magni fied Objects;" W. L. Stevens, on "Vision by Electric Spark;" Joseph Letoile, of Ottawa, "A Review on Subjects of Atmospheric Currents, Electricity, and Gases, with a view o Practical Aerial Navigation by Balloons;" and Professor Mupan, on "Variations in Nature." A paper on, " How Physical Law should be Taught," was read by Vice-Presi dent Mendenhall. Professor Trowbridge, of Harvard University, delivered an address on "The Importance of Expe rimental Research in Mechanical Science." Vice-President Cox, of San Francisco, read a paper on "Geography and Geology: 'Topography of the Rockies and Sierras." Professor Hall read an address on "Shells of America." Professor Mason, of the Smithsonian Institution, presented "A Scheme of Anthropology," and Professor Rau, of the same institution, described a stone grave of a Kaskaskia Indian, the first and of this form of burial among natives known to be modern. This day, August 24 , was also marked by an assembly of the ontario entomological societt.
An address was delivered by the President, William Saunders, editor of the Cantadian Journal of Entomology. Many prominent entomologist 3 from the United States were present, including Professor C. V. Riley, of Washingion; Dr. Hagan, of Cambridge; Dr. J. Lintner, New York State Entomologist; Dr. J. H. Comstock, of Itbaca; and B. Pickman, of Maine.

THE CRELY MOTOR DECEPTION.

Mr. William Boekel, mechanician, has reported the esults of his instruction by Mr. Keely, as required by the Court of Common Pleas in Philadelphia, and the stock holders of the Company are as wise as they were before.
The report was filed August 23, and runs in part as follows:
"First-That Mr. Keely has discovered a new force or notive power.
" Second-That the force or substance evolved by him through the instrumentality of his structure, designated by him under the varying nomenclature of 'vaporic force, etheric force,' and approximate designations, possesses properties peculiar to Itself, and wholly phenomenal in character, differing essentially in many particulars from those of compressed air or other gases, and requiring special machinery for its proper utilization."
Mr. Boekel begs for more time for Mr. Keely to perfect the utilization of his discovery, and for himself to enable him to master the subject so as to be able to give such a technical description of the motor as the law requires before the issuance of a patent. Though Mr. Keely, he thinks, has so far perfected his invention as to entitle him to Letters Patent, yet he (Mr. Boekel) does not yet "possess that intimate degree of knowledge of the entire subject to make it expedient, in his judgment, to recommend that the Court should now order such application to be made.
Those who have followed the history of this deception will remember that Mr. Boekel has been associated with Mr. Keely from the first, and has repeatedly given testimony quite as valuable as the foregoing. In 1874 be was one of the signers of the report of tests, on the strength of which the first stockholders were led to put money into the enterprise. In 1875 he wrote a letter (printed in this papei July 17, 1875), in which the correctness of Mr. Keely's claims were certifled upon "personal knowledge," and " intimate knowledge of the construction of the machine and its operation."
It is strange that the company should expect, or pretend to expect, from such an old ally of Mr. Keely, the information they are ostensibly seeking. In 1875, Mr. Boekel professed to lave intimate knowledge of the subject; now fter years of experience and a long course of special instruction by Mr. Keeley, he professes a lack of such knorledge. Whether the change is due to poverty of memory, or to the bewildering character of Mr. Keely's teaching, does not appear. But it is pretty certain that somebody pulled wool解 the eyes of the stockholders in getting Boekel apas if poor Keely himself had been appointed.

aspects of the planets for septeimer.

venus

is evèning star, and retains her ascendency throughout the month as brightest of the starry throng. A careful observer will readily notice her increasing size, her diameter now nearly measuring twenty seconds, while at the end of the month it will measure twenty-six seconds. It must, however, be remembered that the more her diameter increases and the more nearly she approaches the earth, the less of ber enlightened disk is turned toward us. If when, in December, she passes between us and the sun, her enlightened disk were turned towards us, she would indeed be an object glorious to behold.
The progress of Venus in September is made specially in teresting by the occurrence of an important epoch in her course. On the 27th, at two o'clock in the morning, she reaches her greatest eastern elongation, or most distant point from the sun on his eastern side. Those who have taken note of ber steps since her superior conjunction with the sun on the 20th of February, when she commenced her role as evening star, saw her about two months later as a faint star close to the sun for a short time after sunset. For seven months she has been traveling farther from the sun, setting later every night, and growing more brilliantly benutiful. She will, on the 27 th , reach the end of the invis ible chain that binds her to the sun; the golden bead strung on the celestial wire has reached the limit of its length.
Not a second farther she can swerve. The resistless attraction of the great luminary turns her course and directs her retrograde steps westward, until, in our view, she has retrod the eastward course, and arrived at her inferior conjunction and transit. Millions of observers are watching her receding steps with eager interest, for the goal toward which she bastens ushers in the great astronomical event of the year.
Venus at elongation is $46^{\circ} 36^{\prime}$ east of the sun. As 15° represents one hour of time, and it is possible for her to move farther from the sun than an average distance of 45°, it will be seen that she can never be visible much more than three hours after sunset. As the same laws prevai! in reversed order when she is morning star, for the same reasons, she can never be seen inore than three hours before surrise.
The increased velocity of the planet's motion after elonga tion is also to be noticed. While she has been nearly seven months in passing from superior conjunction to eastern elongation, she will be less than three months in passing from eastern elongation to inferior conjunction. In the former case the motion is direct, or in the order of the signs; in the latter case the motion is retrograde, and the planet appears to move faster. This most brilliant part of her course will form a planetary study for the student of the stars, as easily followed as it is interesting and illustrative of the laws that govern the inner planets as they oscillate in straight lines east and west of the sun.
The work of getting ready for the Transit of Venus goes on with increasing ardor as the time for the occurrence of the phenomenon draws near. At a moderate estimate, nearly a hundred transit expeditions have either arrived at their destinations, are on their way thither, are diligently making ready for their observing points, or are strengthening their resources at home. American astronomers are perfecting their plans. The Commission laving the arrangements in charge has been obliged to wait long for an appropriation from Congress to defray the expenses. But the starting-points have been selected, and the leaders of the different parties have been chosen. There will probably be four stations in the Soutbern hemisphere. One is at the Cape of Good Hope, under Professor Newcomb; one at New Zealand, under Edwin Smith, of the Coast Survey; one at Santiago, Chili, under Professor Boss; and one in Santa Cruz, Patagonia, under Lieutenant Very, of the United States Navy. Some of the stations in this country will be Cedar Keys, Florida ; San Antonio, Texas; and Fort Thorn, New Mexico. The directors will be Professors Hall, Harkness, Eastman of the Naval Observatory, and Professor Davidson of the Coast Survey.
Thus it will be seen that the United States will be worthily represented by some of her most famous astronomers, who will do valiant work for the cause. Photography is the weaon with which they will make their attack upon the sun, and the fairest of his family, and, if human skill can be relied upon, the sun himself will be made to record every feature of the transit. The French, who will observe at eight stations in the Western world, depend upon contacts for their means of attack, as also do the English and Belgians, while the Germans hope to accomplish great things with the heliometer. The Germans thus far have selected two stations farther north than those chosen by other foreign nations; one is at Hartford, Conn., and one is at Aiken, S. C. The ancertainty of the weather in the north temperate zone will prevent it from being extensively chosen as an observing locality, but some stations will be located there, in order to bring the observers at as widely separated points as possible. It is discouraging to think, that at only half of the stations clear weather may be anticipated, and that this expenditure of time, labor, and means will be all in vain as regards half of the observers. But the other half will have their labors crowned with a brilliant success, that will make up for the disappointment of those who equally serve the cause, though they "only stand and wait," while the whole band of ob servers will be rewarded by the gratitude of the generations
that will tread the earth during the one hundred and twenty.
two years that must intervene before the year 2004, when an Yenus sets on the 1
Venus sets on the 1st a few minutes after eight o'clock in the evening; at the end of the month, she sets not far from balf past seven o'clock.

MERCURY

is evening star, and wins the second rank on the planetary roll, on account of the incidents he contributes to diversify the annals of the mouth. On the 28th, at six o'clock in the afternoon, Mercury reaches his greatest eastern elongation, the day after Venus has touched the same point in her path. He is then $25^{\circ} 54^{\prime}$ east of the sun, while Venus was $46^{\circ} 36^{\prime}$ at her elongation the day before. Although at nearly his maximum distance from the sun, he is not favorably situated for observation on account of his southern declination, or the farther north the planets are the better is the oppor tunity for observing them. It is, however, the last time
during the year when there is the least probability of his eing visible as eveuing star.
The present will be an unusual opportunity for comparing the respective limits the two planets reach, as they travel eastward from the sun, and it will therefore reward diligent painstaking to obtaiu a sight of Mercury. The moon will be greatly in the way, and will make it difficult to pick im up before elongation, but he may be looked for immediately after. Venus will show her bright face in the west almost as soon as the sun has set, and will greatly help in finding where to look for Mercury. He will be found about midway between Venus and the sun, seven degrees farther north than Venus. He sets on the 28th, about half-past six o'clock. Venus sets on the same day, about half-past seven o'clock. An opera-glass will do good service in discovering the smallest of the planets, after the point in the sky where e may appear is approximately calculated.
On the 20th, Mercury is in conjunction with the first magnitude star, Alpha Virginis, better known as Spica. The point of nearest approach between the star and the planet occurs at eleven o'clock in the morning, when they are only twelve minutes apart, Mercury passing north. The time to look for them will be on the evenings of the 19th and 20th. On the former evening, Mercury will be west of Spica; on the latter, he will be east of the star. The scene of the conjunction between Venus and Mars in August will be repeated with different actors in the parts. A good opera-glass, or a small telescope, will bring the stars into the field, Mercury's position differing little from that marked out for the 28th. The Lone Star, as Spica is sometimes called, and the little planet will make a rare and beautiful picture on the twilight sky. Mercury sets on the 19th, a few minutes before seven o'clock, about three-quarters of an hour after the sun.
On the 21st, Mercury is in conjunction with Mars, at one o'clock in the morning, passing a little more than two degrees south. It is barely possible that bright-eyed observers may obtain a view of the planets near conjunction on the evenings of the 200 th and 21st, if the sky be exceptionally clear. Mercury is then ten degrees south of the sun, eight degrees north of Venus, and about two degrees and a half south of Mars. This active planet, besides reaching his east ern elongation, and playing a part in two conjunctions, is in his descending node on the 6th, and in aphelion on the 16 th . Thus, it will be seen that he isa busy member of the family during September.
Mercury sets now a few minutes after seven o'clock in the evening; at the close of the month be sets about half-past six o'clock.

suprtre

is morning star, but wins the third place on the list for the importance attached to his movements, and the fact that be reaches quadrature on the morning of the 23d. This mag nificent planet then hangs self-poised, midway between conjunction and opposition, ninety degrees from each point, rising about midnight.
The sky in the early morning now presents a charming picture, the beautiful scene amply repaying the early riser for the effort required in order to witness it. Saturn leads the starry host as he mounts to the meridian. He is almost in line with the glimmering Pleiades, while ruddy Aldebaran glows below him. The princely Jupiter appears farther north than his brother planet, heralded by the brilliant Capella and followed by the mighty Orion. It is seldom that the planets are attended by a court of such eminent rank, and every lover of the stars should behold the fascinating spec tacle at least once during the month.
Jupiter rises on the 1st about twenty minutes before twelve o'clock in the evening; at the close of the month be rises about ten o'clock.

gaturn

is morning star, and ranks pourth in importance on the monthly roll, though his path is marked by no incident of interest. This grand member of the solar family is steadily coming nearer, and has so far advanced towards his nearest approach or opposition, that at the end of the month his serene face will come glowing above the horizon at eight o'clock, to be followed two hours later by the more imposing mien of Jupiter. For two months to come the two planets, though not near in reality, will he insepar ably linked in the attention of the observer, who wil gladly welcome their appearance in the evening sky, though they are still included in the list of morning stars.
Saturn now rises a few minutes before ten o'clock in the
evening; at the close of the month he rises a few minutes lefore eight o'clock. mars
is evening star, and scarcely worth mentioning for any part he plays in September. Contented with the laurels won in August, when he played the subordinate part in the lovely pictures with which, in connection with Venus, be diversified the evening sky, as now approaching, now banging in close vicinity, and now receding, the two planets crossed the celestial track with devious steps. We have already alluded to the conjunction of Mars and Mercury on the 21st. By the end of the month, the ruddy planet will become invisible to mortal view, for, setting only a half-hour after the un, he is eclipsed in the solar rays.
Mars now sets about twenty minutes before eight o'clock n the morning; at the close of the month he sets not far from half-past six o'clock.

NEPTUNE
is morning star, and retains his place as the herald of the morning trio, pursuing bis unseen course without an event worthy of record. Those who would trace his place on starmaps, will find it, on the 1st, in Right Ascension 3h. 7 m ., and in declination $15^{\circ} 43^{\prime}$ north.
Neptune rises now about half-past nine o'clock in the evening; at the end of the month he rises about half-past seven o'clock.

URANOS

is evening star until the 11th, when, at three o'clock in the fernoos, he comes into conjunction with the sun, and is morning star for the rest of the month. He is the last of the our giant planets to reach this goal, turning the point when they are far on their way to opposition. At conjunction be is joined with the sun, rising and setting with him, and as completely hidden from human gaze as if he were blotted from the sky.
Uranus sets on the 1st a fer minutes before seven o'clock n the evening; at the close of the month he rises about half-past four o'clock in the morning.

THE MOON.

The September moon fulls on the 27th, twenty-six minutes after midnight. It is the superb harvest moon, one of the crowning glories of the autumn. On account of the position of the ecliptic in regard to the equator, she rises for several consecutive evenings with only a comparatively short interval of time intervening, and thus seems to prolong the day, as she pours her floods of silvery light over the perfection of nature's handiwork, the harvest of the year. Poets have always sung the praises of the harvest moon as the surpassing wonder of the antumn nights, but, in our view, the winter moon, as she "runs high" in the heavens in the crisp, cool nights, is the most beautiful moon of the year.
The waning moon is in conjunction with Neptune on the 2d, with Saturn on the 8d, with Jupiter on the 5th, and with Uranus on the 12th. The new monn of the 12th is in conjunction with Mercury and Mars on the 14th, and with Venus on the 16th, passing a degree and a half north of the radiant evening star, and thus giving to observers a view of one of the most lovely pictures the heavens present-the silver crescent, near the fairest of the stars.

THE TRLEECOPE.

Venus and Mercury will lose the gibbous phase when they reach elongation, botb presenting the appearance of the moon at the last quarter, half the disk being illumined. They will soon after take on the crescent form like the waning moon, and Venus will then become an object of increasing telescopic interest. The near approach of Mercury and Spica will be an interesting study, for it will bring in contrast the crescent of the planet and the unvarying point of light characteristic of the fixed star in the largest as well as the smallest telescopes.
September cannot be called a monotonous month on planetary annals. It presents to the student of the stars studies of exceeding interest. Venus and Mercury reach their greatest eastern elongations within a day of each other. Mercury appears in the twilight sky in close conjunction with a star of the first magnitude, the "lone" Spica, and again plays a part in conjunction with Mars. Jupiter reaches his half-way house, and, thenceforth, as we see, the stars hangs nearer the earth than the sun. He bolds his courl in the early morning, amidst a galaxy of stars that makes the star-lit sky tremulous with brightness. The four-duys-old moon, in conjunction with Venus, illumines the western sky with one of the loveliest pictures of the month. The harvest moon makes the nights of her sway among the most charming of the year. She reminds observers that fresh clouds have again been seen by the same observer floating over the Mare Crisium, and inspires the hope that the changes that have been noticed from time to time in lunar scenery may be substantiated by farther ohservation, and result in discoveries of startling interest phere.

Fant Packing of Shinglew

A sbingle packing contest for a $\$ 200$ prize was lately decided at Saginaw, Mich. Jack Lyons gained the victory, after ten hours of steady and rapid work, with a score of 59,250 . He was closely pursued by Robert Scott, who packed 59,100 shingles.

LYALL'S POSITIVE ROTION LOOK

In a former issue of this paper we gave the first published description of Mr. James Lyall's invention. We now take occasion to give our readers some idea of the growth of an industry then in its infancy, and to show how all we then predicted of it as one of the most remarkable products of inventive skill of our time has been realized.
We present illustrations of the exterior and interior of the machine shop where the looms are constructed, forming only a part of the premises owned and occupied by the firm, and where in all are employed from twelve to fifteen hunand where in all are employed from twelv
dred employes. The number of looms dred employes. The number of looms
built by them in the course of a year may built by them in the course of a year may
be conjectured from the size of the works and the number of hands employed. It is a large and steadily growing interest, sprung from the inventive skill of one man. Another picture is given of a twopiece loom with hundred-inch reed spaces for weaving patterns, known as a Jacquard loom, and having Mr. Lyall's positive moloom, and having Mr. Lyall's positive mo-
tion shuttle, thus briaging together two of the three inventions which we shall show to be all that there is of the loom to-day, in contrast to that of many centuries ago; also a four and a five piece loom. These very perfectly present to the eye the construction of the machine and arrangement of the works.
They are shipped to all parts North and South, South America, and Europe. China and Japan have them, in consequence of the report of an imperial commission sent here to inquire into their excellence. Indeed, wherever looms are used, they have been steadily supplanting those formerly in use for all kinds of weaving, whether of the coarsest fabrics or the most delicate silks, textiles of the fineness of spider webs, or screens of iron wire. Diplomas, medals, and decorations attest the high appreciation in which the invention has been held.
The reason for this pre-eminence will become clear upon a brief inspection of the loom itself in operation. It will afford those interested a pleasant hour to read the history of weaving from its rude beginning. Concluding with this description of the loom as it is, they will be impressed with the fact that Mr. Lyall's invention has made that radical change in the possibilities of weaving which the hot-air blast did in the manufacture of iron-simple enough in contrivance after it has been discovered, but so marked, so radical in character, that it amounts to the creation of a new art-a new art in the sense that it produces, in a new and better way, an article in all respects different from the old article, except in the fact that both are known as fabrics.
The art of weaving has made, considering its antiquity, singularly slow progress in its improvements. Beginning with the dawn of history and apparently simple as an art, there bave been but four notable improvements in the loom to this day, of which this is the last, and, we are tempted to believe, the most noteworthy. Until 1785, when John Kay, of Bury, England, devised the "flying shuttle." and was driven out of the realm to die in poverty by the men who were benefited by his invention, the art and the loom remained substantially as they were from the earliest times.
His contrivance reduced the requisite amount of labor, to produce a given amount of work, fifty per cent. of what it
had been up to his time. It was the first step taken in the had been up to his time. It was the first step taken in the direction of labor-saving in this art. The mechanical application of power other than that of the weaver to driving the loom, naturally followed-a great invention and prominent loom, naturally followed-a great invention and prominent
among the four. Power, as applied to machinery, implies not only labor-saving, but admits of elaborate workmanship, together with other advantages not necessary to enumerate.
In 1801 Joseph Jacquard invented the machine which bears his name, for mechanically weaving irregular patterns and designs. Like that of Arkwright, it has not been materially improved upon, remaining substantially as it left his hand, and marked an era. Thus, after mere repetition mere repetition and a most limited application of the weaver's
art, we flind a movement started, an innovation toward devices for saving labor, or, properly speaking, the production of greater quantities with the same amount of labor. And though opinions differ, it seems to us that the quality and variety as well as the quantity of the product must of necessity be superior when made by machinery instead of by hand.
John Kay and Joseph Jacquard were both mobbed. Ark wright and Lyall were fortunate in belonging to a more enlightened age, whose inventors are acknowledged as benefactors.

Improvement in any art, machine, or process, almost always shortly requires a corresponding advance in respect to
something which had been neglected and left behind in the march, and which now imperatively requires to be brought up to the same standard of excellence.
So it was in this instance. It soon became apparent that passing the shuttle through the shed of warps by means of the "picking sticks" (" the flying shuttle") in a power loom was surrounded with many and great disadvantages; for reasons we will explain hereafter.
Indeed, the shutle movement has always been considered the least perfect part of the machine, and especially was this true after the application of power. Since Arkwright, in

Fig. 1.--8HOTTLE AND CARRIAGE.
tical success. It seemed for years as though an insurmountable mechanical obstacle presented itself in the way of obtaining a pusitive motion, and so it remained until this invention.
It has been accomplished by means at once simple and reliable, admitting of no uncertainty of movement, and fills all the conditions required of it.
Fig. 1 is a side elevation of the shuttle and carriage. Fig. 2 is a section of lay, reed, and raceway, with an end view of shuttle and carriage. Referring to Fig. 1, the carriage, 0 , rests on the track, l. inside the raceway (not shown), the sides of which are even with the top of the carriage. Immediately over the top of both carriage and raceway, at right angles to them, is stretched the lower shed of warp, passing through the open space between the carriage and the shuttle, pp. The carriage propelled by the band. $u u$, in either direction, moves across under the shed of warps, while the shuttle resting on the carriage moves with it over the shed of warps. To prevent the shuttle ventors have been at work trying to solve the problem, and jumping off its carriage, it is beld down by the rollers, innumerable attempts have been made to bring the shuttle 5, 5, which play against a track above, W, shown in Fig. 2, movement up to a level with the mechanical efficiency of the rest of the parts, and until now without success. The "picking sticks" of Kay continued to hold their ground until this invention supplanted them.
It was a simple contrivance, and in its day valuable. Briefly, instead of the shuttle being thrown through by one hand of the operative and caught in the other, it was projected through by a blow of the picking stick, and sent back again by a blow from the other one. Not here to dwel

Fig. 8.-SECTION OF LAY. REED, AID RACEWAY.

upon the disadvantages of this contrivance, the problem was how to pass the shuttle through the sheds of warp by an action always under control, by an actuation which should be uniform and constant, not intermittent. The difflculty was, that when to accomplish this the shuttle was per manently attacned to the actuating parts of the machine, the sheds of warp, in changing position alternately from ahove and below, would weave this attachment along with the weft into the fabric.
It reminds one of the trials of the Chinese to make a bar rel with two heads. They could easily make one with one passing along the undel side of the upper shed of warps. This prevents it rising sufficiently to permit roller 4 to pass over roller 8, and escape from the carriage. The inclosed position of the rollers 4, 4, between rollers 3,3 , imparts the motion of the carriage to the shuttle, while the play allowed, mounting to something more than the thickness of a thread of warp, admits of the warp passing through where the rollers are in contact. The revolution of the rollers as indicated by the arrows, which motion is derived from the track, facilitates the passage of warp between them as the carriage moves forward. Friction is thus almost entirely removed.
The mechanism may not be inaptly illustrated by the cir-cus-rider standing on the back of his horse, and leaping over the ribbons as his horse runs. The horse represents the carriage, the ribbons the lower shed of warp, while the weight of the man really represents the upper rail keeping him down. The rider is the shuttle passing over the warp, while the horse, without absolute connection, carries him forward. The purchase which the shuttle gets from the carriage is the same, mathematically, which the man gets from the horse.
To enumerate some of the defects of the picking.staff shuttle will be equivalent to describing the merits of the Lyall machine, for it absolutely removes the objectiouable features of the former, and has in fact supplanted it. The friction of the fly-shuttle on the warp is sufficient to materially injure the threads and cause them to break. This is also frequently the consequence of the uncertain and unguided direction of the "projectile," as it has properly been called, plunging into the warp and snapping the threads. The irregular indentation of the leather due to the constant hammering often gives a wrong inclination, causing the shuttle to be deflected from its mark, and it goes anywhere at random.
Its eccentric conduct can frequently not be accounted for or remedied for days, and the weavers say it has the devil in it. Sometimes the blow is not strong enougb, and it stops short of the requisite distance; and, again, too strong, when it recoils from the opposite pick. This results in an irregular tensinn on the weft and a consequent defective selvage and irregularity in the texture. It must be borne in mind that every breakage costs time. which is money, and more money for repairs, as well as every defect or irregu-
larity in the goods costs in the reduction of market price.
However useful in its day, it is now anomalous that the most essential movement of a machine should be almost entirely independent and out of control in its action, while the other parts go on with the reliability of mechanism. Consequently, if it stops midway in the loom, the other parts move on, and then comes a "smash" and consequent suspension of work and expense.
It is a wayward sort of thing, and we need enumerate

the lyall pobitive hotion four web look.

head, but when it came to setting the other head they bad to put a man inside to assist the workman on the outside, and so when the barrel was finished, there was a man inside it. It was many years before they could deliver a complete barrel without a man in.
Innumerable attempts have been made. One was known as the "compressed air" sbuttle motion, which was designed to project the shuttle back and forth by the force of atmospheric elasticity; another was by means of quickly revolving rollers which caught the shuttle and expelled it from a sort of shuttle box; "clutch sticks" to pull it through, and magnets, have been tried, all without prac-
ings only so far as to say that it is irregular in its mo-
ings only 80 far as to say that it is irregular in its mo-
tion and violent in its action. Sudden and violent tion and violent in its action. Sudden and violent
mechanical movements have always been abandoned in all classes of machinery so soon as a more regular and positive means has been discovered which would perform even an equivalent of duty.
Let us now consider the positive merits of the positive motion loom. As a rule, substituting machine work for human skill secures a more perfect product. The machine does not tire nor lapse, and the fabric is more uniform than the best handcraft could make it. These advantages are all here secured. But the enormous strides they have made, and are
still making, in improving the loom and its products, can only be properly comprehended by personally inspecting the works of the firm. No written description can more than suggest it. The saving of labor is apparent at a glance. One girl can now run ten looms, that is, two looms of five webs each, that is, the work of ten weavers, and on cloth of a width which formerly could not have been made on any loom in the world.
Indeed, the possible width is practically unlimited with a positive motion shuttle. The uniformity and steadiness of its action naturally produces uniformity and perfectness in the fabric.
It further admits of the use of a much larger "cop" o thread for the weft. And here, again, is a very great advantage. Every " stop," for the purpose of renewing the cop, involves a defect in the fabric, for it is impossible to sta the machine with a new weft without, for one cause and an other, the new thread being noticeable in the cloth.
Hence, the fewer the stops the fewer the defects in the cloth. This machine, carrying a cop six times as long as formerly was possible, calls for only one stop in six of what was formerly necessary. These two advantages, referring to quantity and quality, are alone sufficient to make the fame of any machine.
To understate it, the advantage secured is ten to one in quantity, and six to one in quality
At the risk of repetition, we will conclude by briefly enumeraling the advantages secured by it:
The striking feature of the loom is that the picking stick, heretofore of universal use, is entirely dispensed with. The shuttle being drawn tbrough the warps, is, with all other parts of the machine, held, controlled and acted upon by a direct and continuous connection with the motive power; hence the linbility of a "smash" is removed, and no injury can happen the reed. In case of the loom being stopped during the passage of the shuttle, or at any other time, each part is in place for starting again.

The advantages may be briefly enumerated

1. The unlimited scope of the shuttle : it being drawn, instead of knocked, through the warps, enables the carrying of large quantities of weft any distance; which being kept at a uniform tension until it is beat gives a perfect selvage.
2. The friction of the shuttle on the yarn is perfectly overcome, therefore it does not wear the warps, nor break any threads, even in the finest fabrics of silk, wool, cotton or linen.
3. The weft is not subject to sudden pullsin starting, and may be of the most delicate texture, regardless of the width of the fabric.
4. The loom can easily be arranged to run a number of shuttles, weaving as many widths of cloth as there are shuttles, and with perfect selvage.
5. The width of the fabric may be extended indefinitely.
6. The loom runs with less power, much more quietly than others, and at any speed desirable
7. The great desideratum is, that it dispenses with the necessity for the skilled labor heretofore required, enables the weaving of very wide goods at no greater cost per square yard than that of narrow, and on ordinary cotton and woolen fabrics gives a large gain.

The looms are now running in a number of the largest and most important mills in this country and giving great satisfaction, and for Jacquard irregular and heavy sleyed fabrics it is indispensable.
Their four-piece loom is arranged with head motion, for from 4 to 12 harnesses for weaving seamless bags, jeans, crash, toweling, ticking. duck, canvas, bose, etc. They build the above loom to weave from 2 to 5 webs in each loom up to 36 inches wide. Using the large cops or bobbins (which are 4 to 10 times larger than those used in other looms), a girl can run two looms 5 webs each, equal to ordiuary looms. It has positive take-up for a large roll of cloth 30 inches in diameter; wrought iron crank shaft, tension or friction let-off, geared for any number of picks per inch, and beam heads from 18 to 24 inches in diameter, and stop motion for each web; harness are also arranged to work from cams 2, 3 or 4 harnesses. These looms are used for sheetings, quilts and blankets, 2 webs in each loom, 80 to 100 inches wide, and are arranged for "Jacquard" when required. They also manufacture cop-winding, spoolwiading and cop-compressing wachines, of similar ingenuity and value.

Electrical Unite.
The International Electrical Congress held in Paris decided to make use of the centimeter, gramme and second in all electrical measurements. They will retain the practical units, "ohm" for resistance, and "volt" for electromotive force. The intensity of a current produced by one volt. with a resistance of one ohm, will be called one "ampère;" and the quantity of electricity given by one ampere in one second will be called a "coulomb;" the term "farad" indicates the capacity of the condenser which, laden with a volt, holds one coulomb of electricity. The old term " weber," as unit of intensity of current, will not be used.
A. Large Steel Contract.-The contract for supplying steel for the new bridge over the Frith of Forth, Bootland, calls for 45,000 tons. This is called one of the largest orders for steel for bridge building.

BREAK IN THE HODSON RIVER TUMIEL.
An accident occurred at the New York end of the Hudson River Tunnel, Aug. 20, which may delay the work there for ten days or more.
Men were employed laying up the brick-work lining of a 15 -foot section, the iron shell of which had been completed, when a plate of the temporary bulkhead gave way and

Fig. 1.-SECTION OF THE TUNNEL, CAISSON, ETC.
allowed the compressed air to escape and the water to rush in. The temporary bulkbead was 65 feet from the west side of the caisson and 20 feet in advance of the fixed bulkhead carrying the air-lock. The men had ample time to ake refuge in the air-lock, and no one was hurt.
The process of working and the nature of the accident

Fig. 8.-THE TEMPORARY BULKHEAD.-TETHOD OF ADVANCING THE WORE
will be clearly understood from the illustrations herewith. Owing to the loose character of the soil on this side of the river, special precautions have been taken to protect the workmen against accident, and the value of these precautions has now been amply demonstrated.
Fig. 1 shows the situation of affairs in the tunnel at the moment of the accident: \mathbf{B} is the tixed bulkhead; \mathbf{A} the air-

fig. 3.-EsCAPE of the workicen
lock; C the temporary bulkhead; D the finished portion of the tunnel.
The novel feature is the temporary bulkhead, a plan of which is shown in Fig. 2, the dark spot indicating the plate supposed to bave first given way. This bulkhead is built up of eighteen courses of boiler plates, bolted together, and is alternately taken down and reconstructed from the top as the iron shell of the tunnel is advanced, and the earth removed. The method of proceeding is shown in Fig. 2.
The tunnel is advanced in sections of fifteen feet. A new section is entered upon by removing one of the topmost pair of plates of the forward bulkhead. The earth before it is dug out, and one plate of the iron shell of the tunnel is inserted. Then the second plate of the bulkhead is removed and a second plate of the shell is put in. The second course of bulkhead plates is then taken out plate by plate, the earth excavated, and the conatruction of the shell continued, both at the sides and in front, until the forward progress of the shell at the top has reached a distance of fifteen feet. Then the first course of a new bulkbead is inserted. After that, as fast as the earth is removed, the iron shell and the forward bulkhead are constructed simultaneously, until both are complete, substantially protecting the workmen against large or sudden escapes of air and inrushes of water. As the work goes on in each section, the air-pressure is gradually reduoed. The highest pressure is $261 / 2$ pounds.
The iron shell of a fifteen-foot section had been completed, with the temporary bulkhead in place, two days before the nccident. The bricklayers had built up the brick lining or inclosing wall of the new section of the tunnel as far as showu by the dotted lines of Fig. 2, when a hissing sound warned them of escaping air. As the air-pressure lessened water came in. and the workmen fled to the air-lock leading to the completed portion of the tunnel, closed the door, and were safe. The manner of their escape is shown in Fig. 3. It is supposed that by some neglect the marked plate in the fifth course of bulkhead plates, as shown in the plan, had been imperfectly bolted, and the defect precipitated the accident. The flooded portion of the tunnel has since been entered from the air-lock by a diver, who found the bottom of the broken section covered with sand and stones. The iron abell of the section, in front and on top, had been broken in several places, leaving considerable gaps. These breaks have been stopped by a flling of sawdust, sandbags, and other material, and the work of pumping out is now going on. New plates will he substituted for the broken ones, and the work will then go on as before.
It may be added that the New Jersey end of the tunnel is being advanced from twenty to twenty five feet a week.

Earthquake in Mexico.

The severest earthquake felt in Mexico since 1864 was ex perienced July 19, at 2:85 P.M. The shock lasted two minutes and thirty seconds, making it one of the longest earth quakes on record. The World's correspondent at the City of Mexico says that the shock was felt at Cuernavaca, Iguala, Tlaxcala, Toluca, Puebla, Orizaba, Vera Cruz, Queretaro, Oaxaca, Cuautitlan, and Yautepec, so it is estimated that the shock extended over an area of 1,688 leagues.
In the capital it caused much mischief. The walls of several houses fell, a great many edifices were badly cracked, and the churches suffered greatly. In the Cathedral are several fissures in the principal vaults and a wide opening in the north wall near the entrance. The parochial church, EI Sagrario, was very much cracked, as also those of San Fernando and San Salvador. In the National Palace and City Hall, and in the rooms occupied by the public archives, the walls are very badly cracked. The Mexican Railway Station also suffered. It is estimated that at least 80 per cent of the buildings in the city were more or less injured.

The water in the city fountains and tbat of Lake Texcoco overflowed in all directions. The earth opened in some places, and the ground sank in in others. The water pipes were broken and there was a great scarcity of water during the next forty-eight hours.
The monumental arches of the aqueduct of San Cosme and of the Salto del Agur suffered a great many fissures, from which the water flowed freely.
In Puebla nearly all the buildings were badly damaged. The inhabitants of Vera Cruz were fearfully alarmed; the shock was very strong there, and the sea roared furiously all the time. In the town of Yautepec the church and several houses fell. In Oaxaca it was accompanied by loud subterranean rumblings and caused much damage. The City of Huajuapam, in the State of Oaxaca, has nearly disappeared, as all the principal buildings, the churches, and the greater part of the private residences are in ruins; and in the thriv ing town of Huamantla, on the railway, very large rocks have fallen from that grand mountain, the " Malinche," causing great damage.

Fighting Fieid Firee with stoamer

A threatening field fire which had been fought by a large part of the population of South Lewiston, Majne, without staying it, was subdued by a steam fire engine sent down from Lewiston. Three thousand feet of hose was used, water being taken from a brook. By saturating the mossy ground the fire was speedily stopped, though a large timbering had been burned

Rallway Improvemente Needed.

American railway practice has changed in many particu lars since the last decade, and one of the results is that certain classes of accidents are more frequent than formerly. Some of these, as has been before mentioned in these columns, are the result of higher velocities and heavier trains. The increased weight of locomotives and train loads, with 20 and even 30 tons of paying load to the car, will scarcely call for any new inventions. All that is required on that a is stronger bridges and permaneut way and fixtures.
But the higher velocities increase the number of collisions, and bere is work for the inventor. The number of collisions of passenger trains have not increased in proportion to the increase in speed, for the reason that atmospheric and other brakes were opportunely invented; but as these brakes were not adapted to freight cars, collisions between freight and passenger and freight trains are on the increase.
The " butting" collisions average about twelve per month. Some of these are caused by bad management or disobedience of orders, and some by reason of the trains not being under control of the train men. This latter evil can be remedied by the use of a new style of brake, or perbaps the improvement of some that are now in use. "Rear" collisions are at the rate of twenty-five to forty per month, and from five to seven of these are caused by trains breaking in two, and the detached cars being in the way of trains following closely. These accidents may be prevented by safetycouplings when they are brought out. The remaining portions of these collisions, or many of them, may be avoided by obedience to orders and a better system of signals than is now in general use. We also have from one to three crossing collisions per month. The only sure way to prevent these disasters is for all trains to stop within, say, one hundred feet of the crossing, but as this rule will not be established or enforced on all roads, inventors are called upon to produce an effective signal for crossings.
Then we have from sixty-five to eighty derailments monthly. Many of these are caused by defect or failure of track or equipment, but from sixteen to thirty of these acci dents ure unexplained, that is, no cause can be assigned. Many of these derailments are of a serious nature, by reason of the locomotive and cars being upset, and here is where the inventor is wanted.
It is not expected that anything will be produced that will prevent wheels occasionally leaving the track, but something can be contrived that will act as a guard to prevent trucks straying down embankments and overturning
The.check chains in common use are a partial protection, but they are either too light to staud the shock, and break, or pull out their fastenings. It would seem that a kiud of "shoe" or "runuer" might be so arranged that, when the wheels drop from the rail, the runner would catch the rail and keep the wheels in line and close to the rail, and also act as a brake by friction on the rails, thereby preventing serious accidents. Something of the kind was brought out years ago, but it was poorly contrived and did not come into use. This is a matter well worth the attention of inventors.
Another class of accidents that is becoming quite frequent is "runaway locomotives." In May, of this year, three collisions and one derailment were caused by "runaways." A locomotive is standing on the track with steam up and no one aboard of her. Some car or engine collides with her and gives her a slight shock which opens the throttle, and away she goes, destroying life and property. Of course there are thumb screws and other devices for securing throttles; but they are neglected, and the results are frequently serious. What is wanted is an automatic locking arrangement that will secure the throttle when closed, and at the same time not interfere with rapid handling when doing yard work or switching.
Accidents from brake beams falling on the track are becoming quite frequent, and an improvement in the manner of hanging brakes is in order. Several accidents occur every month, except in the winter, caused by cattle on the track, the barbed wire fence being an insufficieut barrier to keep them off. We want an improved pilot, one that will throw live stock to one side, and not roll them under the wheels, and the trains in the ditch.
In these sweltering days it may be refreshing to consider the fact, that snow and ice cause from twenty-five to forty serious derailments and numerous collisions every ordinary winter in the United States. We can hardly expect inventors will produce anything that will prevent collisions in time of snow blockades or blinding snow storms, but there is yet room for improvenent in machinery for clearing snow and ice from railway tracks. One of the most important items connected with this work is keeping the flange-ways clear. If these are kept clear of hard snow and ice, locomotives have good footing (so to speak), and can force the
big plows through almost any depth of snow. What is big plows through almost any depth of snow. What is
wanted is scrapers attached to the front of locomotive truck wheels, so that the flange-ways may be kept clear at all times. It is not forgotten that several devices for the purpose are in use, but the best of them are far from being perfect. Derailments frequently occur on roads using the best appliances for clearing tracks, by reason of packed snow or ice. Even the monster plows are often derailed, and all the rolling stock behind it. In severe winters the expense of clearing tracks is enormous, as much of it is done with pick and shovel, and the inventor who will reduce this expense will be rewarded therefor.
The open draw still continues to swallow victims from
time to time, notwithstanding all that has been done to pre vent these horrors. Within the last nine years tweuty eight of these accidents have been reported by the Railroad Gazette, and in some instances the draws were provided with the most approved signals in use. Let us have something better-an audible signal that can be relied on. In April last a freight train ran into an open draw at Peekskill, N. Y. The usual signals were displayed, but were not noticed Had there been gongs or torpedoes placed at intervals along the track, the outer one a thousand feet or more from the draw, the engineer would have been forcibly reminded of his immediate danger, and a few dollars' worth of signals would have saved thousands of dollars' worth of property. An occurrence similar to the above was what happened to the pay-train on the Chicago and Northwestern Road, which went through the open draw of the bridge over the North Branch of the Chicago River, in Chicago, on the morning of December 21 last. The engine went into the river, but the draw was just closing and stopped the pay-car. The conductor was drowned and the engineer badly hurt. The usual signal was displayed, but was obscured by fog and smoke. Instances are not wanting to prove that no system of signals trusting to vision alone is safe.
Even when they are not obscured by smoke or fog, and are plainly visible, engineers are liable to get confused and mistake the danger for the safety signal, as has happencd on many occasions. An automatic audible signal should be placed far enough from the draw to give ample time to stop, and one placed at intervals up to the draw, for the reason that the draw might be opened after the train passed the
distant signal which was at safety, and gave no warning of distant signal which was at safety, and gave no warning of
dangers. It is hardly worth while to mention the fact, tha we have an average of seventeen locomotive boiler explo sions per annum, for inventurs can do but little to prevent this class of accidents under the reckless management the boilers too often receive. Similar remarks will apply to the forty-four failures of bridges and trestles that occurred in 1881. However, if inveutors cannot prevent all of these accidents, if they can diminish their number by some improved method of strengthening boilers and bridges, they will be deserving of both thanks and liberal compensation.

Some Usen of Parafin.

There is no substance of organic origin which displays such an indifference toward chemical reagents as paraffin, as at ordinary temperatures it is quite unaffected by strong nitric acid, sulphuric acid, or chlorine. Paraffin is a name applied by chemists to an extensive series of hydrocarbons, each one possessing a chemical composition corre sponding to the general formula $\mathrm{C}_{\mathbf{n}} \mathrm{H}_{\text {nat }}$, and ranging in kind of paraffin wax, which melts at about $140^{\circ} \mathrm{F}$.
The solid paraffin, or paraffin-wax, is, however, the form of this substance which is likely to do most service to the of this substance which is likely to do most service to the
photographer or the photographic experimentalist. This substance is found ready formed in nature to a consider able extent, either occurring as crystalline granules, inter
spersed through earthy matters, as in the case of the spersed through earthy matters, as in the case of the so calcd fossil wax or ozokerit; while Rangoon tar and ana fin was bituminous exudations contain abundance of paraf solid par. The principal commercial source, however, o fractionated, and the heavy portions refined by treatmen with sulphuric acid and crystallization from exceedingly light paraffln or benzoline oil.
The best qualities of commercial paraffin wax melt at about 140° F., and consist principally of a hydrocarbon containing $\mathrm{C}_{30} \mathrm{H}_{4}$, and such a product is excellently well adapted as a waterproofing material for wood-work, paper, and tex tile fabrics, as no trace of oily exudation tends to separate from it. A well-made wooden box, if soaked for half an hour in such paraffin heated to about 300° F., becomes so
thoroughly saturated as to become a tank fitted for any photographic purpose not involving the use of hot liquids and we have long had such a box in use to contain an electrotyping bath. It is well not to use nails in putting such a bath together, but either to dovetail or dowel the work Paraffined wooden boxes made in a similar way are excel lently well adapted for containing the nitrate of silver bath and other solutions which are easily injured by foreign matter.

A friend of ours, who bad to send some dry plates to the Antipodes, wrapped the boxes carefully in paper which was
well gummed at the folds, and, when the gum was dry, he well gummed at the folds, and, when the gum was dry, he dipped each package for an instant in a bath of paraffin maintained near its point of solidification. The plates thus protected arrived in better condition than others which were wrapped in lead-foil. This reminds us of the way in which ingots of sodium are sent into the market. Each ingot is dipped into melted paraffin wax, and this so far protects the metal from "xidation that the coated ingots may be kept in an ordinary tin canister. Sumething of the same kind was attempted a few years ago with jnints of meat; but it was found that the covering of parafflu was liable to become broken during the voyage from Australia.
The use of paraffin as a substitute for wax in rendering prints transparent was referred to in our columns some weeks ago, and our readers were cautioned against em ploying samples containing oily or viscous constituents. We have found that parafflo may replace white wax in the so-called encaustic paste used for facing albumen prints,
and it is quite possible that it may prove a more effectua and it is quite possible that it may prove a more effectual protective against damp than ordinary beeswax.

Stenhouse's method of waterproofing paper, cloth, and other textile fabrics with parafinin is of great practical value, and, as Dr. Nicol pointed out in our Year Bouk for 1876, admirable temporary dishes may be made from paraffined paper, the edges of the sheet being folded up, or kept in position either by pins or a lighi frame of wood. Dr. Nicol also mentions that friction with paraffin wax is an excellent preliminary to coating a plate with collodion for the wet process. The plate is warmed so as to be a few degrees above the melting point of paraffin, after which it is rubbed over with a lump of the solid material, and the excess is polished off with a warm flannel. We have tried this, and found it to yield excellent results, the collodiou adhering well during the development and washing; but when dry it can readily be stripped from the glass should a reversed negative be desired. The paraffin forms a chemically clean substratum, and covers up many impurities on the plate, rendering these impurities harmless. Paraffn has one decided advautage over albumen as a substratum; namely, that of not working the slightest mischief to the nitrate of silver bath.
Instead of employing a lump of solid paraffin and warming the glass, a twenty-grain solution in beazole may be used, this being uerely poured on the cold plate, and all xcess polished off, as in the previous case.-Photo. Ncws.

Curloum Hablts or Ants.

Sir John Lubbock's extraurdinary book on "Ants, Bees. and Wasps" will amaze readers. Fancy ants having slaves! Fancy these proverbial examples to the sluggard keeping certain insects as we keep cows, and building sbeds over them, and keeping others as pets! The aristocracy of ants seem to have all the vices which brought antique monarchies to destruction. Sir John writes soberly, as a philosopher should, and weighs his words no doubt, which makes his conclusions the more astonishing. The author quotes some of Huber's experiments, the value of which he has himself tested. The bloated ant aristocrats, it is said, " Lave lost the greater part of their instincts; their art, that is, the power of building; their domestic habits, for they show no care for their young, all this being done by the slaves; their industry, for they take no part in providing the daily supplies; if the colony changes the situation of its nest, the masters are all carried by the slaves on their backs to the new one; pay, they have even lost the habit of feeding. Huber placed thirty of them with some larve and pupe and a supply of honey in a box. 'At first,' he says, 'they appeared to pay some little attention to the larve; they carried them here and there, but presently replaced them. More than one-balf of the Amazons died of hunger in less than two days. They had not even traced out a dwelling; and the few ants still in existence were languid and without strenglh. I commiserated their condition, and gave them one of their black companions. This individual, unassisted, established order, formed a chamber in the earth, gathered together the larvæ, extricated several young ants that were ready to quit the condition of pupæ, and preserved the life of the remaining Amazons.' This observation has been fully confirmed by other naturalists. However small the prison, however large the quantity of food, these stupid creatures will starve in the midst of plenty rather than feed themselves. . . . I have, however, kept isolated specimens for three munths by giving them a slave for an hour or two a day to clean and feed.
them; under these circumstances they remained in perfect health, while, but for the slaves, they would have perished in two or three days.'

Some Large Lences.

The thirty-inch objective for the great telescope of the Russian Observatory at Pulkova was lately tested at the establishment of the grinders, the Clarks, of Cambridgeport, Mass., and found to be fairly perfect. The flaw discovered before the griuding, due to imperfect cooling, bas no effect on the definition, but lessens slightly the amount of light ransmitted. The flaw is too slight to injure materially the efflciency of the lens, yet another block of glass, of the same size, has been ordered to be placed at the disposal of Professor Struve. For testing, the lens is mounted in a temporary telescope, forty-five feet long, and weighing, with its ittings, about seven tons. The lens weighs 450 pounds, will cost when finished $\$ 80,000$, and will be for a little while the largest in the world.
The largest object-glass in use is the 26 -inch lensat Washington, with a focal length of 33 feet. Its light-gathering power is 18,000 times that of the unaided eye.
The Pulkova glass will soon be excelled by that of the Lick telescope, the disk of glass for which is now in the esrablishment of the Clarks. It is 38 inches in diameter and inches thick. When ground and polished it will be reduced to 36 incles. This glass is optically perfect. It was cast at Paris, France, where the Pulkova glass was, and weighs a little over 874 pounds. The casting occupied four days and the cooling thirty days.

A Large Tunnel.
The famous antique tunnel of Posilipo has a rival in a rail way tunuel under Posilipo, between Naples and Puteoli. completed August 5 . The new tunnel which brings into direct connection the modern representatives of the ancient cities of Neapolis and Puteoli, is over 30 feet wide by 36 feet ligh, and is said to be the largest modern tunnel in Europe.

Cortegumadeute.

Intermittent Vision.

To the Editor of the Scientific American:
The method of viewing animals in rapid motion, which is suggested by Mr. S. H. Brackett, is, doubtless, quite satisfactory, but it implies a greater amount of rapid motion on the part of the observer than is necessary. All that is wanted is intermittent vision; and this can be accomplished in a variety of ways. Instead of opening a shutter repeatedly by rapid motion of the fingers while lookiug through a tube, it will be found more convenient to look through an opening in a disk of cardboard, which is at the same time kept revolving. This may be controlled by clockwork (see Ritchie's "Catalogue of School Apparatus," No. 733); or, more cheaply, though less conveniently, as shown in Prof. A. M. Mayer's little book on "Sound," page 111-a book which every teacher of natural science in our country possesses, or is sure to possess as soon as possible after see ing it.
An advantage of this apparatus is, that the number of viers per second which the observer secures is controllable and the repetitions are quite regular. It is possible to dispense with tubes, so that the moving animal is more easily followed with the eyes. Moreover, by adjusting the disk in position so that the observer's interocular line is parallel to its plane and perpendicular to its radius, the opening passes so quickly before the two eyes in succession as to afford binocular rather than monocular vision.
The writer has employed this method quite satisfactorily in studying the forms of falling drops of liquid. He claims, of course, no originality in this, for the instrument has long been known under the name of the stroboscope.
W. Le Conte stevens.

40 West 40th street, New York, August 16, 1882.

Drylng Gelatine Platon.

J.J.S.Bird says, in a communication to the Bristol andWest of Eugland Amateur Photographic Association: An incon venience which has caused no little trouble to workers with gelatine plates is the length of time they take to dry. A collodion plate can be held to the fire and dried in a very short time; but a gelatine plate under the same conditions would melt and run. Now, a gelatine plate may, under different conditions, be dried quite as rapidly as a collodion plate; and 1 have frequently taken a negative, dried it, and printed a proof in considerably less than half an hour.
The principle is simply to remove the superfluous moisture before holding the negative to the fire, and this can be done by applying a picce of perfectly clean bloting-paper to the surface of the gelatine, using at first a moderate pressure, and increasing this pressure to any degree required. The blotting-paper will in no way injure the negative, and any stray pieces of fluff will dust off when the plate is dry. Still, it is better to carefully dust the blotting-paper and to remove any stray pieces of material before it is applied. It will now be found that the negative can be dried at any degree of heat in the space of from thirty seconds to two mi nutes. This fact led the writer to the following:
If a gelatine negative be dried as above, at only a moderate heat, it will not perceptibly differ from a negative which has been allowed to dry spontaneously; but if a negative from which the superfluous moisture has been extracted by bloting paper be exposed to a greater heat the whole com plexion of the negative is altered. Not only does the film become horny and tough, but the picture on it appears in ralief-so much so that it seems to me quite possible to pro duce a cast from the negative capable of being printed from in an ordinary press. This is an extension of the principle referred to in this year's annuals, in which hot water is used as a developer; but this does not seem either as simple or efflcacious as the method I suggest above. At all events, I think the matter is worthy of the consideration of the Society, and I commend the hints to my fellow-members.-Brit. Jour. of Phot.

The Electric Lixht an a Moth Catcher.

Dr. I. E. Nagle, of Vicksburg, Miss, suggests the use of uncovered electric lights for killing the moths, Alotia, from whose eggs the destructive cotton worm is hatched. He believes that a few lamps properly placed would attract and destroy the moths, so as to protect a wide belt of cotton country. The plan would be well worth trying wherever
electric lamps are in use. In some parts of the South electric lamps are in use. In some parts of the South
planters have found that brush fires or burning rubbish planters have found that brush fires or burning rubbish
will attract the moths in swarms; and every female moth promptly killed prevents the birth of many worms. Whether electric lamps would prove more efflicient or economical, only trial can determise.

Bursting of a Ship by Swelling or Cargo.

The Gazette Maritims et Commerciale, in its news regarding ocean disasters, relates the following curious example of the formidable power of molecular forces. The Italian ship Francesca, loaded with rice, put into port pn May 11, at East London, leaking considerably. A large force of men was at once put on board to pump out the water conined in the ship and to unload her; but, in spite of all e activity exerted, the bags of rice soased in water gradually, and swelled up. Two days afterward, on May 18, the ship was violently burst asunder by this swelling of her cargo.-La Nature.

The Performance of American Locomotives. At the recent American Master Mecbanics' Association convention at Niagara Falls, the following interesting paper was presented by Dr. P. H. Dudley:
The practical performance of the American fast express locomotive of to-day far exceeds what was thought possible ten years since, and we know from experience that the mprovements you are constantly making will increase its seed for heavy trains.
If the data in regard to fast ten and twelve car trains were all collected it would leave no doubt as to the ability to run them fifty miles per hour, on nearly level roads, or tive and six cars at sixty miles.
Having drawn with my dynagraph car fast express trains upon various roads, I present a brief tabulation of part of a trip, showing the performance of an ordinary locomotive upon a train composed of three 8 -wheel and six 12 -wheel cars; weight, 250 tons; total weight of locomotive ready for the start, 126,000 pounds, distributed as follows: Tender, 54,000 pounds; engine, 72,000 pounds; 48.000 pounds being upon the drivers, which were six feet in diameter; cylinders, 17x24; steam pressure gauge set at 135 pounds.
The first column shows the number of miles; the second, the time of run in minutes and seconds; the third, speed in miles per hour; the fourth, velocity of the wind in miles per our: the fifth, approximate grades; the sixth, foot pounds fork, shown by.the dynametrical curve, in drawing the ars per mile.
The seventh, foot pounds per minute expressed in horseower.
The eighth, approximate calculated foot pounds of work required to move the locomotive itself, expressed in horseThe
The ninth, the sum of columns seventh and eighth.
Column eight will vary with every locomotive, and could only be determined by direct experiment.

1	2:54	30.68		Level	24,116,288	862		
2	1:34	38.81	6	${ }_{5}^{5} 8$	20,085,258	369	281	500
8	1:22	43.90	4	${ }_{5}$	17.768,214	898	208	690
4	1:18	47.84	d	Level	15.904,273	383	418	791
5	1:11	50.70	$4 \cdot 5$	Level	14,871.528	882	406	788
6	1:19	40.81	6	${ }_{13}{ }^{1} \mathrm{fe}$	15,284,616	388	408	789
7	1:11	60.70	6	${ }^{18}$	14,458,430	389	488	795
8	1:08	52.80	5	18	18,219,186	354	451	805
9	1:07	58.70	5	8 feet	11,566,744	819	488	808
10	1:09	52.10	5	${ }_{5} \mathrm{f}$ fee	11,778.298	810	44	751
11	1:08	52.80	$4 \cdot 8$	Leve	11,778,298	816	447	763
12			5.2	${ }_{8} \mathrm{D}$ \% ${ }^{\text {feet }}$	12,806,0			
18	1:10	51.48	6	Level	12,882,940	324	443	767
15	1:10	51.48	$4 \cdot 5$	Level	12,87,6038	889	428	788
15	1:10	51.48	4	Level	18,425,685	351	480	771
16	1:10	51.48	8.5	Level	18.299, 188	345	415	780
17	1:08	62.89	8	Level	18,888,788	871	443	814
18	1:08	52.89	5		18,219,186	854	464	818
19	1:08	5888	8	2 feot	18,219,186	854	448	797
20	1:11	50.70	$8 \cdot 5$	10 f	14,888,783	879	408	785
21	1:18			10 feet		20	884	46
28	1:08	52.80	8.1 8.1		12,892,94	832	448	75
28	1:07	68.70		10 feet	18,186,801	888	462	787

In starting the train the locomotive would record a tension of 11,000 to 12,000 pounds for 100 or 200 feet of distance then by hooking up the cut-off and other causes would re duce to 2,800 to 8,000 pounds when the speed of 50 miles per hour was attained in the fifth mile. As the speed in creases the resistance of the air against the locomotive be comes greater, and more of its own power is required to move itself, and leas can be used to draw the cars. The in creased font pounds of work in the first fcur miles show less than oue-half of that required to overcome the inertia of the train for the speed of 50 miles per hour. Inertia is an important element of train resistance, especially on local trains, as it limits the speed for short runs and must be considered in choice of locomotive for the service. In starting a train the working adhesion of the steel-tired drivers, on dry steel rail, is usullly above 33 per cent. of the weight upon them, and reduces as the speed increases, but in what ratio, not ascertained by experiment; 18 to 20 per cent has been ob tained at 56 miles per hour, the percentage of slip not ex ceeding $1 \ddagger$ per cent.
The great and substantial improvement in the permanent way, of late years, permits a higher percentage of adhesion than formerly.
One of the most important features shown in the tabulations is the quick steam-generating capacity of the boiler; 800,900 , or 1,000 horse-power developed in the brief time of one minute may be expressed in figures, but the mind fails to gnin any adequate conception of the enormous power. At 135 pounds steam pressure, 300 or 338 pounds of water will be evaporated per minute with a consumption of 40 or 50 pounds of coal; this requires a very rapid generation of heat and its quick abeorption by the water.
Oring to the large amount of heat which is absorbed by the water before it makes any pressure of steam, a less pro-
pressures than low, therefore the rate of transmission per minute will be less for the heating surfaces.
The Swiss and German locomotives are reported to carry from 165 to 180 pounds pressure as a rule, with exceptional ones at 225.

In drawing fast and heavy trains on various roads, the greatest difflculty in making time has been want of steam. There are so many contingencies which may daily arise of winds, storms, etc, that provision must be made for a greater capacity than is required for ordinary occasions. In observing what the truin resistance would be for the above mentioned train, about 11 pounds per ton, it must not be concluded that this would also be true of any other weight of train; the resistance of the same number and class of cars increases in same ratio as the speed increases, and as we increase the tonnage number of cars the amount per ton decreases.
Another important element of train resistance is the condition of the track. Having upon my instrument apparatus for mechanically determining the condition of the track, it is found, even on the best roads, each mile cannot be in equal condition, owing to increased wear and quality of rail. On grades is this especially the case, and at stations where many trains stop and start. Experiments upon all classes of passenger trains are too limited to give any reliable formulas for geveral use. For long and heavy trains I have found the resistance per ton much less than that given by the latest formulas.

Proparations for Observing the Tramelt of Venus.

Work has been begun by the commission created by Congress to determine the methods to be employed in observing the transit of Venus, and to take the preconcerted observations next December. The commission is composed of Vice-Admiral Rowan, Superintendent of Naval Observatory; Profeseor O. C. Marsh, President of the Natinnal Academy of Sciences; Professor Hilgard, Superintendent of the Coast Survey; Professor Newcomb, Superintendent of the Nautical Almauac; and Professor Hall, of the Naof the Nautical Almauac; and Professor Hall, of the Na-
tional Observatory. Washington, D. C., will be the most northern station, and will be in charge of Professor William Harkness. The other United States stations within our own territory will be at Cedar Keys, Fla., in charge of Professor John R. Eastman; San Antonio, Texas, in charge of Professor Asaph Hall; and Fort Thorne, New Mexico, in charge of Professor George Davidson. The foreign stations in charge of Americans will be at Cape of Good Hope, Professor Newcomb, assisted by Lieutenant Casey; Santa Cruz Patagonia, Mr. O. B. Wheeler, late of the Lake Survey, assisted by Mr. Wm. Bell and Mr. Irvin Stanley, photo graphers; Santiago, Chih, Professor Lewis Boss, of Dudley
Observatory, Albany, assisted by Mr. Rock, of the Naval Observatory; and a New Zealand station, in cbarge of Mr. Edwin Smith, late of the Coast Survey, who will be assisted by Professor Pritchett, of Washington University, St. Louis. All the foreign parties will set out before the middle of September; those for home stations not before the middle of October.

An immense flagstone, which is said to be the largest ever quarried in America, and is destined for the sidewalk in front of R. L. Stuart's new brownstone residence at Fifth Avenue and Sixty-eighth street, stretched across the avenue from curb to curb yesterday, and made it necessary to close the street between Sixty eighth and Sixty-ninth treets. The greal slab is of river bluestone, and measures 6 feet and 6 inches by 15 feet and 6 inches. It is 9 inche thick, and weighs over 30 tons. If raised on edge it would make one side of an average seashore cottage. It is per-
fectly smooth, with the exception of a slight ridge through the center, which will be removed after it is in position. The stone was cut from the same quarry in Sullivan county as the great flagstone now composing part of the siderwalk in front of the Vanderbilt mansion, but it is much larger. It was brought down the Hudson from the quarry on the deck of a barge, and unloaded at the foot of Fourleenth street by being raised high enough with "screw jacks" for two heavy flat stone wagons to be placed under it, when it was drawn to its destination by eighteen powerful horses.

An Index to Public Documents.

The vast amount of valuable information buried in public documents is to be made accessible by means of a classifled, analytical, and descriptive catalogue of all government publications, from the foundalion of the government to the preent time. At the last session Congress provided an appropriation of $\$ 10,000$ for the work, which will be done under the direction of Major Ben. Perley Poore.

Is our description of the horse power hoisting machinery made by the Contractors' Plant Manufacturing Company, 298 Exchange Street, Buffalo, N. Y. (issue of August 12), the titles to Figs. 2 and 3 of the engravings were in some way transposed. Fig. 2 is a horse power for miners and builders, and Fig. 8 is the horse power for contractors. These machines, although similar in appearance, are somewhat different in their proportions. We learn from the manufacturers of these machines that they are being rapidly ntroduced, and are every where giving excellent satisfaction.

GEARED PETDULUE AIR PUYP.

The loss of power in the use of a fan or blower is acknowledged to be very great, even at small pressures; and as soon as a larger pressure, say $1 \frac{1}{4}$ pounds to the square inch, is desired, these kinds of machines will be found wanting, no matter how large a size should be procured. But there are a good many processes in the manufactories where streams of air under pressures from one to thirty pounds are required, or where the air has to be exhausted, or a certain gas or vapor has to be transferred from one receptacle to another. In all such cases only a regularly made air pump with light-closing pistón and
sfaction.
Mr. H. Weiudel, of 405 North 4th street, Philadelphia, Pa., has devised the pump shown in our engraving to supply this want for small establishments, which generally do not even have their own steam, but rent power in some large building, and have control only of a cer taiu length of shafting, running at a given speed, and to furnish a pump that could be put up without extra expense, and started or stopped as necessity required.
There is on the top a countershaft with tight and loose pulley, tlywheel, and two pinions. These latter gear into larger gear wheels provided with eccentric holes, in which the double-acting air cylinder is hung and perfectly balanced by counterweights provided on said gears. These, in their turn, are pivoted central on two rock-shafts, in which, on their upper end, the journals for the countershaft are provided. By turning this the large gears acquire a rotary motion, and as the cylinder can only move straight up and down between its guides the rock-arms will receive a pendulum mo tion, taking the gears with them. As thus, cylinder, crank-wheels, and rock-shafts have practically to fall a certain amount toward the end of each stroke and to be raised this same amount as long as the pressure is small, this goes a great deal toward equalizing the strain on the belts, giving a very steady motion to the pump. The outlet as well as inlet being stationary, the machine can be connected with receiver by rigid metallic pipes. The principal dimensions of the particular size illustrated are: Cylinder, 4 inches by $51 / 2$ inches stroke; double acting inlet, $3 / 4$ inch; outlet, $3 / 8$ inch; countershaft, ${ }_{1}{ }^{2}$ inches diameter; flywheel, 12 inches diameter; pulleys, 2×6 inches; speed of countershaft, about 260 revolutions; of pump cylinder, about 190 strokes, correspond-
ing to 85 revolutions of crank-wheels per minute. Weight of ing to 85 revolutions of crank-wheels per minute. Weight of whole machine, 130 pounds.
These machines can be built in the manner illustrated for low pressures, at least with cylinders up to 11 inches diameter; if required larger, the pulleys and belt would become too heavy. Then a steam cylinder is provided, preferably on the top, firmly connected with air cylinder by its piston. rod. The crank-wheels in this case have to be changed to fly wheels (same as on Mr. Weindel's hand pumps), and the rock-shaft is made use of to operate the valve gear in a manner similar to the engines on our side-wheelers.

ntproved iron planer

We give herewith an engraving of a very substantial and convenient iron planing machine made by the National Too Company, of Williamsport, Pa. The planer is from new Pa. The planer is from new
patterns of modern design. patterns of modern design. strong, the metal being so dispoeed as to resist the usual strains to which such machines are subjected. It has very heavy table with the slots planed true and very deep, allowing the surface to be planed many times before getting too thin sbove bolt heads. The pin holes in table are all reamed to standard size. The uprights are very strong and bolted to bed by heavy bolts, besides being firmly held to place by taper keys driven in suitable key ways where upright and frame join. The crossbar is also very heavy, and being provided with suitable gear ing is easily raised and lowered. The frame is deep and well provided with cross-
stays. All gears and racks
are cut, and the pinions are of steel. The shafts are heavy and the bearings are unusually long. The planer has cross, down, and angular feed, and is provided with an improved belt shifter, which shifts one belt from the tight pulley before the other engages it, reversing the table very quietly without shock or squealing of belts.
This machine has a friction feed running free, except while feeding, causing no friction or loss of power. By a simple device the table may be run back, to measure or ex amine work without moving the dogs, which every machinist knows are sometimes difficult to get exactly in the right place. When planing angles with the tool head thrown from operator, the tool may be fed down by the handle on the
splined cross shaft. The machine is adjustable for a fine or
very coarse feed, and is easily changed while it is in motion without the use of a wrench.
This machine planes 81 inches wide, 30 inches high, and 8 feet long. The same company also make a machine to plane 36 inches wide from same patterns, at a slight addi tional cost. The company bas the most flattering reports from users of the new planer.

Recent Accidents with Electric Wirea.

While a fire company were going to a fire in Brighton England, recently, the fire escape which they carried came in contact with an electric light wire overbead. The cur rent followed the ironwork of the escape, giving the carriers a shock which made them lose their hold Another mem-

WEINDEL'S GEARED PENDULUK AIR PUMP.
ber of the company thought the machine was falling and grasped the steering rod to steady it, receiving a shock which disabled bim for more than an hour.
More recently (August 6) there occurred at Paris a fatal accident, which suggests the use of electric wires as a bar to burglafs. During a display of fire works two men tried to clinab over the railing of the Tuileries Gardens, when, laying hold of an electric wire used in the illumination of the grounds, both werr struck dead instantly

Embalming the Unknown Dead.

The authorities of Leadville, Colorado, have introduced the practice of embalming the bodies brought to the city morgue. The object, of course, is to facilitate the identif cation of the unknown dead, should inquiries coucerning them be made within a year or two. The Chronicle, speak

NEW IRON PLANER

ing of the large number of cases in which legal complica tions have arisen through the lack of means for such identi fication, says that it is astonishing how many missing young men, belonging to good families in the East, are constantly inquired after there. Letters of that character are received by city and police authorities, ministers, and unde takers daily, but in most instances there is no clew. People come there from their Eastern homes with no definite object in view, probably spend their means in dance balls and gambling saloons, fail to obtain employment, and are too proud and sensitive to write home for assistance. They drift into the mountains as prospectors, or into neighboring mining camps, and perhaps die of disease or accident. Thus

A severe outbreak of typhoid fever which occurred last jear at Nabant, a rocky peninsula near Boston, inhabited during the summer by a small number of very rich cottage wners, was followed by an investigation, of which the results are made public in an article by Mr. E. W. Bowditch, in the Boston Medical and Surgical Journal. In such cases contamination of drinking-water is usually the principal cause of the spread of the disease, and the wells and cisterns which supply the houses were first examiued. Water was taken from one hundred and ninety of these and analyzed. Eight of the samples were pronounced "excellent," and seventy-one others "permissible," or "good." One hundred and eleven were classed as "suspicious," "very suspicious," or "bad." A bout eighty cases of fever occurred, nearly all of which could be accounted for by the actual condition of the drinking water used in the houses inhabited by the patients. In a few others the filthy surroundings furnished a probable source of infection, although the water appeared pure, as, in one instance, where analysis failed to detect any erious pollution in water taken from a well situated rithin ten feet of one leaching cesspol and fifteen feet of another, both overflowing, and of course ready to furnish ad occasional supply to the well during dry easons or under other circumstances. One or two more were probably explained by the fact that the ice used in the household was brought from a foul pond in the vicinity; and only one seemed quite inexplicable, unless perbaps the infection might have been brought by milk contained in cans which bad been rinsed in foul water. Mr. Bowditch's suspicion, that the infection was communicated in certain cases by contaminated ice, is strengthened by the fact that a very severe and fatul epidemic of typhoid fever was unquestionably caused in this way not long ago at a seashore botel in New England; and it is worth asking whether the public authority might not be employed with advantage in exercising some sort of surveillance over the collection and sale of an article which may ecome, and perhaps already is, far more dangerous than the trichinous pork or immature veal against which so many precautions are taken. In one place that we know of, says the American Architect, thonsands of tons of ice are annually gathered at the very edge of an extensive and well-filled cemetery, which slopes somewhat rapidly toward the water; and we have seen the winter product of a little pool formed by the overflow of what was practically the drain of a cluster of squalid houses regularly sold to customers.

Two Now Antiseplice

M. G. Le Bon bas just presented to the Academy of Sciences two new and very effective antiseptics, the glyceroborate of calcium and the glyceroborate of sodium. Both of these compounds have the advantages of being very soluble, destitute of odor, and free from all toxic action. When exposed to the air they both deliquesce with great rapidity, absorbing from the air an equivalent weight of moisture. Bcth alcohol and water dissolve twice their own weight of hese salts. They are powerful antiseptic agents even in very dilute solution; the most effective in a thera. peutic point of view ap pears to be the calcic salt. It is absolutely innocuous, and it can be applied in strong solution to so delicate an organ as the eye without bad results. In a hycienic bad results. In a hygienic
sense both can be employed sense both can be employed with advantage as disinfectants and as preservers of
meat and other alimentary meat and other alimentary protucts. M. Le Bon hạs transmitted meat simply coated with a varnish of the glyceroborate to La Plata, and it has arrived in a perfectly fresh and sound condition. He thinks both salts will prove very useful as antiseptics in Lister's mode of dressing wounds.

A Large Cattle Train.

A" bull train," said to be the largest ever seen on the Yellowstone, arrived at Bens?n's Landing, Montana, in July. The train consisted of ten teams of three wagons each, drawn by nine yoke of oxen, making in the aggregate thirty wagons and 180 head of oxen. The freight is estimated to have amounted to 150,000 pounds, and the outfit exclusive of freight was valued at $\$ 22,000$.

A NEw observatory connected with the Yale Horological bureau is now substantially finished. The main building is a small square brick building two stories high; on each side is a round brick tower forty feet high. The core is of stone, aid with great exactness. The lurret-revolving roof is of ron. The first heliometer is in positia' 2 , and will be used in observing the transit of Venus in Dec amber.

THE JABIRU OF EENEGAL

The Jardin des Plantes, at Paris, has been enriched recently by the acquisition of various animals. One of the most interesting of these, without doubt, is the jabiru of Senegal, which naturalists, in their not very harmonious language, call the Mycteria senegalensis. This bird belongs to a genus allied to the one containing the marabou, which is so well known to those who frequent zoological gardens, and to the same family as our storks. It is impossible in examining it not to make the reflection that animals possess a physiognomy in keeping with their luabits. The marabou, a bird of revolting voraciousness, which shares with the vulture the duty of disposing of carcasses and various kinds of filth lying around o fully as repulsive in its uspect as the jabiru is at ractive. It is, in fact, because the latter eats living prey and has the bold and free step of the bunter Living in the vicinity of ponds and rivers, it hunts and fishes by turns. It often flies, which is some thing that the marabou rarely does, as the latter is kept on the ground by its duty as a scavenger. The jabiru lives in pairs, and the male and female of each couple never leave one another. Its area of distribution is quite an extended one. From the Whis Nile ar the for northern limit the fourteenth degree of latitude it lives in the whole center and southwest of Africa, although now here abundant.
It is larger than our stork, and its back, the upper part of its wings, its head, neck, and tail are of a brilliant black, while the lower parts of its body are of a beautiful white. Its red and black bill is pro vided with two pendent wattles that have been likened to a suddle, and that have sometimes given the bird the name of the saddled stork. In captivity it is a pleasant companion. It respects its neigh bors, but wishes to be respected by them. Like the stork, it has great regard for its dignity and doe not allow any one to injure it. According to Beunett, who has made observations on Australian jabirus in captivity, the habits of which are much like those of the Senegal bird, and according to Dr. Bodinus, who has had several of the latter in his possession, they are easy to rear and do not suffe from changes in temperature. It would perhaps b possible, then, to acclimate them in our country where they might, while proving an ornament to our marshes, render service by destroying frogs, field mice, and other vermin. They would swallow here and there a few fish; but, since Europe will soon witness the-death of the last heron; it would prove a certain compensation for the friends of ani mals if they could replace that by a bird of more sociable habits, and which by that very fact would be more effectually protected. The new boarder a the Jardin des Plantes, to judge from the pale tints of its plumage, is still a young bird. It does not appear to us to enjoy very vigorous health. We have seen it often, and it was always seated and making a plaintive clucking, and partially opening with a sickly air its long bill, whose upper mandible had been mended with a piece of tin.-La Nature.

THE DABT SRAKE, OR MILLK SNAKE.

This truly pretty serpent is known by several names in dif ferent parts of the country. Thus, in the Eastern States it is generally called the checkered adder," in the Middle State " milk snake," and in Maryland and Vir ginia "house snake." The name adder came originally from the Anglo-Saxon word aetter (poison), and is now generally applied to a venomous species, which ou serpent is not It is called " milk snake" I have been informed, for the reason the I have been informed, for the reason that it frequents milk houses and drinks mil from the pans; yet I have leen told by farmers living in districts, where I knew these serpents to be numerous, that they were never found in their milk houses. It has occasionally been seen in cellars and outhouses, but so also have been garte snakes, black, brown, and other snakes. Consequently all of its common names are calculated to mislead in regard to its habits. I bave taken the liberty to call it dart snake, which I merely take from its generic name, Ophibolus. Whether thi name was given on account of the arrow javelin, or spear-head mark on its head or from its activity or flashy appearance I am not certain, but in either case the name is quite applicable.

As regular steps of variation have been observed, from the red snake. Ophibolus doliatus (Linn.), to our dart snake, its scientific name should be Ophibolus doliatus (Linn.) triangnlus (Boie), Cope. Dr. De Kay, in the "New York Eauna." named it Coluber eximius, not knowing that it bad previously been described by Boie as Coluber triangulum.
The dart snake is found from Virginia to Canada, and west to W isconsin. It measures in length from 25 inches to 3 feet 5 inches. The ground color of the body is pale gray or ash, with from forty to fifty transversely elliptical dark-
brown dorsal blotches, bordered with black, and one or t wo red with dark-brown or black spots.
Unlike our common garter and water snakes, whose young are at the moment of oviposition produced alive, this species is oviparous. The eggs are deposited under a pile of chips or dead leaves, where they are left to batch. The young, when they first quit the egg, are about four inches in length and are far prettier than the parent. The spots, which ar
species it was, for it agreed perfectly with a specimen in the museum labeled Coluber eximius.
C. Few Serse

The Progreas of Cremation.

The president of the New York Cremation Society states bat organized cremation societies exist in Italy, at Milan Udine, Cremona, Como, Rome, Bologna, Pavia, Codogno Padua, Genoa, Turjn, Modena. Florence, Venice, Ancona Padua, Genoa, Turjn, Modena. Florence, Venice, Ancona,
Novara, Brescia, Leghorn, Pisa, Placentia, and Parma. The subscribing members of these societies number upward of 5,000 . At Lodi optional cremation is made an official sanitary institution by the municipa authorities, and so has outgrown all need of an organized society. There are also corresponding commissions to propagate the principles of cremation a Asti, Mantua, Vicenza, Reggio, and Carpi-in all twenty-two societies and five propagating commis ions.
There are established and in practical operation crematories at Milan (two), Lodi, Cremona, and Varese. There is in process of building a crema ory at Rome; and it is reported that crematorie are about to be built at Turin, Como, Brescia, and Padua. The actual number of crematories of huma padies at points named have been down to the end of June, 1882: At Milan, 196; at Lodi, 20; at Cre mona, 8-making a total in Italy of 219 . At Goth here have been 69 cases. In this country there have been 20, of which 14 were in the Le Moyne furnace.
The inventors and patentees of crematory appara us are Gorini, Brunetti, Polli, Clericetti, Terruzzi Betti, and Venini, of Italy, and Siemens, of Berlin Dresden, and Gotha.
Gorini furnaces have been set up at Ludi, Milan Varese, Cremona, Rome, and London, and they ar preferred because adapted to any kind of light and nexpensive fuel. Siemens' method, however, ha the preference of all scientific experts, as being most rapid and perfect in its work, though a trifle greater n cost than the Gorini method.
The New York Society are confident that a cre matory will soon be erected near this city.
improvement in the Gait or Trotting Horsoe The improvement in the quality of gait of the trot ting horse within the last few years is one of the mar vels in trotting. Only a very few years ago the jump ing-jack kind of trotter was common in the very bes localities. Indeed, the skip-jack gait was cultivated and thought to be indispensable to fast speed in har ness. The large majority of trainers argued that the horse must learn to break and catch before he.could be relied upon in a race. For, said they, if he is not a good catcher, a break would put him behind the brown in the adult, are bright red in the baby snakes, and flag. Therefore, the horse must be spoiled before be wa hey then greatly resemble the typical red soake, O. doliatus. good for anything for a barness turf horse. A break rested There is perhaps no snake more useful upon farms than him, they said. "Give him his head, let him jump a few this, for it is a great destroyer of ficld and meadow mice. I rods, then set him down, and he can fairly fly." Such wer heard of one that was killed which had no less than four the erroneous teachings of former years.
field mice in its stomach. I saw a farmer plow up in a short To-day the gait of the trotter is as smooth and regular as space of time two of these snakes, and in both cases he stopped bis horses, pursued, and killed the snakes, and yet by so doing he wes throwing away several bushels of grain. the play of a piston-rod; as rhythmical as the most harmoni ous symphonies of musical composition. Why is it so? Because fashion dictated. Mr. Bonner bought only such and gentlemen of wealth everywhere fol lowed bis example. As soon as it became known that pure trotting gait was the cala ble thing trotters began to make rapid improvement in the quality of gait not only, but in quantity as well. The mod ern troter is, therefore, a model trotter. This was manifestly true of the horse that participated at Chicago this year, and are now engaged in the various circuit over the country. The change is not due to any particular improvement in the trit ting families themselves so much as to he new methods in use for their educa tion. There are few horses on the turf nowadays that pull a ton by the bit as was customary at one time. To trot fast the horse should not be hampered by any more harness than is necessary for his complete safety. Indeed, we look for the horse to trot best with no more harnes than bridle, reins. back-strap, saddle, and girth at an early day. - Dunton's Spirit of the 7 urf.

William stanley Jevons.

William Stanley Jevous, best known by his masterly work on "The Principles of Science," was drowned while bathing a Bexhill, near Hastings, England, Augus Bexhill, near Hastinge, England, Augus I have heard of one instance where one was killed in the act 15 . At the time of his death he was Professor of Political of devouring a young robin; but as the robin is a noted Economy in University College, London. cherry and berry thief, and has a great fondness for the useful earthworm-nature's worker of the soil-he should be classed with the injurious rather than the beneficial birds, and so the snake may be excused this change of its bill of fare. I can accuse this snake of one bad act: A gentleman in New York State found one swallowing a garter snake The gentleman wrote me that there was io doubt as to what

The Largest Coastwise Cargo

The cargo taken out by the steamer Chalmette, for New Orleans, August 12, is said to be the largest coastwise cargo ver taken from this port. It comprised 400 car loads of miscellaneous freight for New Orleans and Texas. The Chalmctie has a carrying capacity of 9,000 bales of cotton.

The Easily Oxidizable Sabatances in Planta.

Many expressed vegetable aud fruit juices, it is well known, gradually darken when exposed to the air. In other cases, the cut surfaces of roots and branches, of leaves and fleshy fruits, slowly acquire a brownish tone. This interesting property, which is of some importance for an under standing of the chemical properties of the living cells of plants, has been recently more closely examined in his study of the chemistry of protoplasm.
There can be no doubt that this phenomenon is due to an oxidation of certain substances in the sap, or juice, by the oxygen of the air. For, if we grate up some potato tubers, for instance, the upper layer of the magma, which is in conlact with the air, takes on a reddish color, and by frequent stirring this red color can be imparted to the entire mass. The juice that is expressed from potatoes has a yellow color, but in the air it rapidly acquires a reddish violet, finally a brown color. In time this color penetrates deeper and deeper, until finally the juice looks like brownish-black ink. By the exclusion of the air, the potato juice can be preserved for a long time colorless. On the other hand, it has been observed that this juice, which had become black if left standing until decay and fermentation began, loses color again, and that this can be accomplished by certain reducing agents like sulphur dioxide and sulphydric acid gases. [In the manufacture of evaporated apples the brown color is removed by burning sulphur before the drying is begun.Trang.]
The juice of the sugar beet, the pure white Beta vulgaris, is still more sensitive to the oxidizing action of atmospheric oxygen. In contact with air it immediately turns a dirty wine-red, then purple brown, and finally almost black.
These facts show that easily oxidizable substances are present in the living cells of plants, and that they attract atmospheric oxygen with avidity, forming with it oxidation products. Since these products, which are so easily recognized by their dark color, do not occur in the unwounded cells, it follows that there is either no free oxygen within the cells, or that, besides these oxidizable bodies, there are otber substances having reducing properties, which prevent the oxidation of the former, or that in protoplasm oxidation produces other substances which are colorless.
[A fourth possibility which Reinke did not consider is that this easily oxidizable substance is produced by rubbing, cutting, or crushing of the cells.]
To decide which of these three supposable cases really exists is not yet possible. It is worthy of notice that a sugar beet cut smoothly across preserves the surface colorless for a long time, while the grated tissues rapidly darken.
The importance, from a physiological view, of the occurrence of an easily oxidizable substance need hardly be mentioned. When engaged in the study of the existence of oxidizing processes in the living celly of plants, one of the first questions that presents itself is, whether there are subtances within the cell which at ordinary temperature unite with the oxygen of the air without need of the active assistance of living protoplasm.
To get a nearer view of this oxidizing process, it is, first of all, necessary to isolate that oxidizable substance and learn its chemical composition. For this purpose Reinke made the following successful experiments with the juice of sugar beets and putatoes.
He first proved with certainty, by chemical test, which we need not repeat here, that in the cells of the sugar beet there is a chromogen, soluble in water, but precipitated by acetate of lead, which can be extracted by ether. He named it rhodogen, because it oxidizes in the air to a red dyestuff. A direct chemical analysis was impossible because it changed so easily in the air. The properties of the red dye, " beta red," formed by the oxidation of the rhodogen, were examined. The chemical reactions, as well as the physical properties, particularly the absorption spectrum, exhibited so striking a similarity to alkanet red, that the two dyestuffs must stand very near each other chemically. At all events, like groups of atoms must be present which produce he characteristic spectra. The only difference was that the alkanet red changes less readily in the air than beet red.
'This investigation proves that there exists in the color less cells of the sugar beet an isolatable, very easily oxidizable, colorless body, which of itself, without the aid of living protoplasm, is able to split the oxygen molecule (by reduction if you wish), and to oxidize itself to a colored ubstance.
The fact already mentioned, that the cut surface of the beet can lie exposed to the air for days and remain colorless, that no " beet-red" is formed in the living cells, seems to point to a noteworthy distinction between living and dead cells. Reinke does not think it probable that the absence of free oxygen in the living cell is the cause of its remaining colorless, nor that the oxidized rhodogen molecule should be immediately reduced again in the living cell. He considers it more probable that in the living protoplasm of the cell rhodogen suffers a much more energetic oxidation than in the air, so that instead of forming a dye, the rhodogen molecule is totally destroyed, forming carbon dioxide and ther end products.
The isolation of the chromogen of the potato did not succeed so satisfactorily as with the beets. By a series of reactions a substance was obtained from the juice of the potato, which, of the known aromatic acids, corresponded most nearly with the bydrocaffeic acid. The quantity obtained was too small for a nearer chemical analysis.
The root tubers of the dahlia also yield a juice that
becomes colored in the air. Similar treatment of this juice showed that they coutain an easily oxidizable substance like Similar oxidizable bodies were discovered in the Fitha lium septicum, and the juice of the grated roots of Daucus carota.
The general results and conclusions are thus summed by Keinke
These experiments prove that there exist in the tissues of plants of very different families easily oxidizable substances, which probably belong to the aromatic series. That these substances perform a not unessential function in the ex change of matter can scarcely be doubted. In quantity, it is true, they are inferior to other constituents, and it would be a very tiresome and tedious labor to establish their exac chemical constitution, because for this purpose large quan tities must be used. But it is just those very substances which are always present in very small quantities that inte rest the physiologist, because they are supposed to belong to the important members in the process of the interchange of matter (stoff wechsel), aud which, therefore, never can accu mulate in large quantities, but without a knowledge of them there can be no real understanding of that process.

The most natural hypothesis regarding the bodies mentioned is that from a physiological point of view they belong to the retrogressive series, and are, perhaps, formed directly by a splitting up of the albuminoids, or by synthesis from the products into which they split. We may also surmise that there is some connection between them and the func tions of breathing.
In regard to this last point a short remark may be per mitted. If in the living cell, for example, the rhodogen is oxidized to carbonic acid and water, and the former escapes in the breathing process, we could think that the whole breathing of the sugur beet consisted in this oxidation of rbodogen, and that other substances like sugar, that disappear in the breathing process, are only consumed indirectly to produce more rhodogen. But this supposition does not seem to me to be the most probable one. I believe that we have no cause for doubting the direct oxidation of carbo bydrates by taking up oxygen; only such an oxidation is scarcely supposable unless the oxygen is first rendere active. Now, inasmuch as the rhodogen is able to split the O_{2} molecule, and unite with one of its atoms of oxygen, i may render the other oxygen atom disposable for carrying out an energetic oxidation elsewhere. Thus, rbodogen may act as an oxidizing agent, analogous to what Hoppe-Seyle bas proved for atomistic hydrogen. The theory advanced by the last-named investigator of physiological oxidation permits of a grent widening, if we grant that not only na scent bydrogen, but also certain compounds which break the molecule of oxygen, possess the power of rendering the oxygen active. In this way we arrive at a principle of ox dation which is capable of the broadest application.-Natur forscher, No. 20

TROUT WITH ELASTIC BAND

Our correspondent, Mr. W. Hearder, of Plymouth, has ent us the following drawing to illustrate a curious circum stance of a trout not only living but thriving with its gills compressed in what one would imagine to be a very painful manner, highly prejudicial to bealth. Mr. Hearder writes " Mr. Charles Clarke, while tisiong in the Plym, hooked a trout about eleven inches long, which had an India-rubber band over the head. The band slipped back over the gil

covers, and was compressing the gills. The horny part of the fish, which extends from the center of the lower jaw to the belly and divides the gills, is deeply dented where the band has evidently been pressing, and it has made quite a cavity under the lower jaw. I should like to know if any body has marked the fish with the band, or whether it go its bead through in an attempt to take it for a bait. How the fish lived is a mystery. It is in splendid condition, and I have preserved it for my museum."-Land and Wator.

How singers shonld Live

Women singers, especially in the country, are addicted to three habits which are about equally prejudicial to them as singers. These three habits may be described as the habit of taking irregular and insufficient food, the habit of tight lacing. and the babit of eating candy. I know half a dozen bright American girls, who have really excellent prospects as singers, whose voices are already beginning to betray the fact that their owners live on "lunches" and "candy" rather than three square meals a day. It is very certain that there never will be any tone to a voice that comes from an insufficiently and irregularly nourished body. On the subject of tight lacing a book might be written with ease.
Many a girl who now finds great diffculty in taking a high
note might do so with comfort if she would only give berself room to breathe. In brief, it may be truly said that no teaching however able, no industry or talent however great, in the pupil can amount to anything unless the would-be singer is content to live a good, clean, honest, healthful life, trusting to good common-sense rules of living, and plenty of fresh air rather than to quacks and nostrums. If vocal eachers, before commencing their lessons, would take the rouble to find out how the pupil lives, and would refuse to give any instruction until the pupil was ready and willing 0 conform to the simplest rules of hygiene, a great many roubles, especially throat troubles, would be a voided, and he act of singing, instead of being a painful, miserable, ear orturing effort, would be easy and as pleasurable to the inger as to the listener. The rules of life, which the student should observe, are just as important for the singer, private or public ; if anything they are more so, for the strain is greater. One thing is certain, the reliability of a singer depends absolutely on the method and manner of life.-Music.

Earth Vibration

Professor H. M. Paul ingeniously employs reflected light as a means of testing the vibration imparted to the earth by moving vehicles. His arrangement is a very simple one. He sinks a stout post some four and a balf feet into the ground, and upon this is a plank supporting a reservoir of mercury-or, rather, of amalgam of tin and mercury. The surface of the mercury is obviously a mirror, and when any vibration is felt by the carth the surface of the mercury is disturbed more or less. An object of a suitable kind is relected upon the mercury surface, and when there is no vibration this reflected image is, of course, sharply defined. as soon, however, as any vibration occurs, the image moves. and becomes more or less exaggerated.
Professor Paul has hitherto employed a telescope to note the amount of vibration, taking optical notes the while; but be Photographic News thinks there is little doubt that phoography would help materially in registering the degree of change or vibration. He has found that an express train passing at a distance of one-third of a mile affects the mercury very considerably for a space of two or three minutes, and a one horse vehicle, passing at a distance of five bundred feet, caused a disturbance of the image on the surface f the mercury whenever one of the carriage wheels passed over a stone.

Dinner Within a Statue

A few days ago M. Bartholdi, the designer of the colossal statue of "Liberty Enlightening the World "-which is to be erected near New York in commemoration of the American War of Independence-entertained a party of his friends at luncheon. The table was laid in the lower folds of the drapery of the figure. MM. Gaget, Gauthier \& Co., of Paris, the contractors for the erection of the statue, have been obliged to take a plat of ground adjoining their foundry, and covering 8,000 square meters, upon which the scaffolding has been fixed. The interior of the statue contains an iron backing, to which are attached the exterior parts, consisting of bronze plates, about one-tenth inch thick by 4 feet $71 / 2$ nches square-the largest size made in the trade. The plates are kept together by rivets that are invisible from the outside. The plates of bronze are made to correspond with the contours of the model in an ingenious way. A skeleton of fine ickerwork was first formed, and this was covered with a thick coat of plaster moulded to an exact reproduction of the original. Upon the plaster 6 -inch templates oi thin wood are adjusted, and are then given to the bronze-workers for models. The weight of the figure will be about 150 tons; the height from head to foot about 110 feet; and from the end of the torch raised in the right hand to the feet, 140 feet. The cost of execution will exceed $£ 28,000$, and the work will require five years for completion.

Torpedo Experimente at Nowpor

The examination of the graduating class at the Newport Torpedo School was completed August 4. Part of the exercises consisted in a public test of the device of Captain T. . Selfridge for protecting a ship at anchor from an enemy's orpedo by means of a net and countermines. The vessel is surrounded by a line of torpedoes, which can be individually exploded so as to destroy an attacking torpedo passing near t. The same device can be used to guard the entrance to a arbor.
Another important experiment was a demonstration of the working and efficiency of Lieutenant J. C. McLean's electrical machinery for controlling the movement of a torpedo launch from the shore. The launch, no one being on board, was made to slart, stop, back, go to port and to starboard, and to drop and fire mines and countermines, which were rigged at the ends of spars placed on each side of the launch's bow. Lieutenant-Commander Royal B. Bradford, who was at a keyboard on shore, had perfect contmo of the aunch by the aid of one wire. The electrical part of the experiment was in charge of Lieutenant-Commander Caldwell, who was in the electrical building at the torpedo staon, at a long distance from the spot where the keyboard was located.

The State Bureau of Statistics has compiled from the eports of township assessors a statement of the number of ods of drainage tile laid in the several counties of Indiana The aggregale shows nearly $\mathbf{2 6 , 0 0 0}$ miles of tile drainage, The aggregate shows nearly 26,000 mile
with nineteen counties to be heard from.

RECENT INTENTIONS.

Car Coupllig.
An automatic car coupling recently patented by Mr. Michael J. McCrone, of Louisville, Ky., is shown in the ac companying engraving. The drawhead of the car is U-shaped, and in the end of one of the shanks a short vertical spindle, B, having a curved lateral hook, C , on one side and a spiral shoulder, D, on the opposite side, is jour naled. In a recess in the shank, back of the spindle, B, a latch, H , is pivoted that is raised and lowered by a cam fluger attached to a transverse shaft journaled in the side of the drawhead, and is operated by a series of levers attached to a chain reaching to the top of the car. The
 latches, H, rest in the bottom of the recess with their ends against the hottom of the spiral shoulder, D and prevent the hooks, C, from swinging outward. In coupling the hooks, C, will face each other, and swing inward sufficiently to allow the shanks of the drawhead to pass into each other, when they swing out and the cars ar coupled. When the latch, H , is raised and the cars drawn apart, the hooks, C, turn each other outward and the cars separate.

Roof Seat.

A novel and convenient seat, designed to be used in shin gling roofs, has been patented by Mr. William P. Thomson of Joliet, Ill. In the cut A is the top of the seat, B the front perpendicular support, and C side braces uniting the two. The top is secured to the front support by screw fastening that pass through the top, thereby adaptthe top, thereby adapt-
ing the seat to roofs of different inclinations. To adapt the braces, C, to this adjustment of the top they are rigidly secured to the sides of the support, B, but are adjustably attached to the top, A,
by screws that engage with a series of holes in the sides of the top. The back end of the top and the bottom of the support are each provided with spurs to prevent the seat from slipping on the roof. The seat is simple, firm, easily con structed, and well adapted for shingling roofs.

Sad Iron Heater.

The accompanying engraving shows an improved sadiron heater patented by Mr. Platt McDonald, of Plymouth, Ind. The heater consists of a metal box provided with transverse swinging lids, having lugs projecting from the under sur faces, and also baving recesses in the swinging edges. When the sad iron is passed into the passed into the box the bottom
of the irnn of the iron
strikes against
 the lugs and closes the lids automatically. The lids are also opened automatically when the sad irons are withdrawn and the lids are provided with check studs to prevent them from opening too far. The heat is retained in the box, as the lids fit closely to the sad irons.

Horse Collar Cap.

The device shown in the accompanying engraving is a new horse collar cap, recently patented by Mr. Andrew Waugh, of Carthage, Jefferson county, N. Y. The collar cap, A, differs from the ordinary cap by having the ends more rounding, and it is secured by rivets to a malleable iron frame, B, of the form shown in the engraving. The part of the frame between the middle and the ends is made narrow, so as to be more flexible the middle is in skeleton form, and the ends are perforated to allow the air to come in contact with the cap, A. Loops are formed on the top of the frame for the collar straps to pass through to hold the cap to the collar. The advantages are that as the cap is more rounding it is not so liable to chafe the horse's neck, and the frame being made so as to be flexible is casier accommodated to the shape of the neck. The perforations keep the cap cool and comfortable, and the loop for the collar straps being iron will not wear out by coming in contact with the hame strap.

Fireproof shutter.

An improved fireproof shutter that will not warp by beat has been patented by Mr. Cornelius Berrian, of Clinton, Ia. The shutter is formed of strips of wood, A, against the edges of which are placed chan nel irons, B, as shown in the en graving, the flanges of the irons verlapping the strips on the sides. The backs of the irons are in contact-as shown-and on the inner and outer sides of the shutter are metal plates, D, held to the shutter by rivets, E, that pass through the plates and the strips, A. As the plates rest on the flanges of the channel iron, B, small air spaces are formed between the plates and he surface of the strips, A, hat protect them from heat,
 and the strips prevent the channel irons from warping. Even if the wooden strips are charred the shutter will not break, as the rivets hold it together.

Oar Coupling.

Mr. Peter Zehner, of Mifflin, O., has patented a car couping that operates automatically for coupling, and can be uncoupled from the outside of the car. In a recess in the draw head, A, of the car is journaled a vertical shaft, D, to which is attached a swinging flanged plate, C , the flange projecting

oward the outer end of the drawhead when the plate is thrown forward. The shaft is.provided at its upper end with n arm projecting at right angles to the swinging plate. A ope, K, attached to the end of the arm passes through a block on the drawhead, and is attached to levers that can be operated from either the top or side of the car. The coupling pin, J, is also attached by a rope to the same levers, and when the levers are pulled the pin is raised from the couping so that the link, O, can be withdrawn, and at the same ime the flanged plate swings under the pin opening, so that when the levers are released the pin will rest on the flanged plate. When the cars are coupled the link strikes the plate, pushing it back, permitting the pin to drop and couple the cars.

LONDON FIRE EERVICE.

Capt. Eyre M. Sbaw, Chief of the London Fire Depart ment, now visiting this country, gives a number of interesting facts with regard to the system and material for fire protection in use in London.
The area to be protected is 121 square miles. The force employed numbers 536 men and officers of all grades, onethird of the number doing duty by day, and two-thirds by night, each set working twelve hours. The equipment of he department comprises 53 land fire engines, 121 fire es cape engines, three floating steam fire engines, eleven movable land stations, four floating stations, three large land fire engines, thirty-five small steam land fire engines, two steam tugs, four barges, twenty-nine hose-carts, fifteen vans and two trollies.
The movable land stations are large vans that are taken to a designated spot every night at 8 o'clock, each one drawn by four horses. The horses are then returned to the enginehouse to which they belong. They are sent the next morning at 8 o'clock to fetch the vans back. In each van is an engine and a number of men, who are always ready to attend a fire in the immediate neighborhood where the van is slationed. The department is forced to use these movable stations on account of the cost of building permanent stations. The engine does not leave its place, but depends upou its ength of hose to reach a fire.
The system of telegraph alarms fifty-three telegraph lines with forty-four "call points" or alarm boxes, and seven tele phone lines. The intention is to replace all the telegraph lines with telephone lines. The city is divided into four secions or fire districts, each with a central office, communicating with headquarters. The area covered is so great that a ingle system like that of New York would not answer.
Captain Shaw was greatly interested with the method em ployed in this city of lonsing the horses from their slalls by electricity on the sounding of an alarm, and the automatic
harnessing. The London horses stand in their stalls harnessed. All the London firemen are given a two-months course of instruction and systematic drilling before they are sent out for actual service. The department has discarded rubber hose entirely, and use " fabric hose," which is much lighter, costs one-third as much, and lasts three times as long. It is manufactured at Dundee.

Telephone Sounds.

The Operator says: " Mr. Nat. G. Warth, manager of the Midland Telephone Company, Gallipolis, O., writes: ' Please give some one the chance of explaining this phenomenon This morning early, while in temporary communication ove a Western Union wire with Major R. B. Hoover, at Pomeroy, O., twenty miles away, I could distinctly hear the croaking of frogs and the singing of birds. The wire passes through dense woods and along large streams between the two points. There were only the two sets of instruments in circuit. The sounds certainly were taken up and transmitted from some point between us. Now, by wha law could this occur? Could the sound bave been induced by a damp atmosphere?'"
The Review of the Telegraph and Telephone says: For wan of a better explanation, we put forward our own ideas:
Every telegraph line, and every telephone line, too, for that matter, has necessarily a certain number of joints in it every one of these joints is, unless soldered, a microphone of more or less power; the more perfect the joint the less perfect the microphone, and vice versa. A microphone is nothing more or less than two or more conductors connected together electrically by an imperfect joint. The Blake transmitter is a good example of this. In it, the point of contact between the button of carbon and the point of platinum is the imperfect joint, which, when varied ever so slightly, correspondingly varies the resistance of the circuit, thus producing changes in the strength of the current these changes in turn causing variations of the magnetic power in the telephone magnet, which of course are made manifest to the listener by noises in the telephone identica in character with those originally inducing the varying re sistance of the bad joint.
A battery current on the line is, however, necessary to vitalize the imperfect connection, and enable it to act mi croplonically.
Our explanation, then, from the foregoing premises, is this:
The line in question had at some point near the locality where the frogs were croaking and the birds were singing in the morning an imperfect joint, which was affected by the noises of the vicinity, and its resistance accordingly varied. Being a Western Union wire, it is possible that a battery was at the time in circuit, though unmentioned by the inquirer
But, if such was not the case, it is unquestionable that suff cient current would constantly leak from other and parallel telegraph wires to charge the wire which was being used at that time for telephonic communication.
This effect might be aided, and probably was, by the damp atmosphere referred to.

Proposed Dutch Colonial Exhibition.

The plan of the Colonial Exbibition to be held in Amsterdam, Holland, next summer, has been extended so as to admit exhibits from all countries. It is now styled an "In ternational Colonial and General Export Exhibition," and will be divided into five sections:
(1) A colonial exhibition, (2) an exhibition for export trade, (3) an exhibition of fine arts and arts applied to industry, (4) special exhibitions, (5) scientific conferences. This last division will include meetings for the discussion of subjects pertaining to colonial public education, teaching, domestic and public hygienc, political economy, the relatious between colonies and the mother countries, etc. The exhibition will offer special advantages to manufacturers who make articles likely to find a sale in any of the Dutch colonies, as these latter will be well represented at the Exbibition by their products and agents. Articles for exhibition must be on the ground before the 20th of April, 1883. The Exhibition will open in May and close in October. Information and application forms will be given by the Netherlands Consul, 47 Broad street, New York.

The Rag-Pickers, Hiarvest.

As many as 2,000 rag-pickers find employment about the streets of this city. They are almost exclusively Italians, who have displaced the Irish and Germans who used to do the work. Their gatherings of rags are valued at $\$ 750,000$ a year. The hand cart dealers do a business of $\$ 3,000,000$ a year The aggregate rag trade of the city amounts to $\$ 30,000,000$ a year. A prominent dealer estimales the number of rag dealers in the city at 800 , about a fifth of them doing a large business. The general trade is controlled by a few extensive dealers. Last year the cotton rag importations reached $\$ 10,000,000$ in value, the home gatherings being worlh $\$ 12,000,000$; the paper mills taking the whole supply. The cotton rags are worth from $1 \frac{1}{4}$ to 6 cents a pound; the woolen rags from 8 to 85 cents a pound. The latter are used in making shoddy goods. The rags are sorted by women, who earn $\$ 5$ a week, and packed by men, whose whyes range from $\$ 12$ to $\$ 14$ a week. Some of the larger dealers have accumulated large fortunes.

MECHANICAL INVENTIONB.

Mr. Auguste Jacques Hurtu, of Paris, France, has patented improvements in the class of sewand a rotary hook. The shaft carrying the hook is mads in two parts, connected by gearing so constructed that while the main shait receives continuous uniform
rotary motion, the other part which carries the hook rotary motion, the other part which carries the hook
receives, during purt of each revolution, a faster or slower motion than the first, in order that the needle thread shall be thrown rapidly off the shuttle. The the plate to which the devices for holding the shutil are attached is also easily removed and replaced.
New and useful improvements in ca Prames have been patented by Messrs. Thornton \mathbf{A}.
Brant and Calvin D. Harris, of Mattoon, IIJ. The end sills, side sills, and stringers of a railmad car frame an connected by angle frons, so that the sills and suringers can be readily detached and replared when desired without distarbing the car floor. As no mortises or
tenons are required in making the frame, Mighter timbers can be used than when the frames are constructed in the ngual manner
An improved expansion joint for metal tub ing has been patented by Mr. John J. Moss, of Chicago Ill. A tube whose diameter is slightly greater than the tubes to be joined has its midale portion formed into spiral by cutting a helical V-shaped groore entirely
through its walls. This part of the tube forms the jount proper. A case and proper devices for tgghtening and pipes to be joined are passed into the joint, and the de vices tightened, the pipes being held tilght enough to prevent their contents from escaping, and loose enongh to permit the pip

Messrs. John Creagan and Charles D. Tyler Jr., of Cleveland, O., have patented a machlne to facil tate the setuing of springs. To the end bars of it sliding plates that move on the rods. On the surface of these pate is a series of movable transverse bars placed in such a position that the form of the space between their adjacent ends shall be of the desire
shape of the spring. These bars are rigldy held it place by suitable devices. One of the sliding plates is
moved back and forth by a screw, and ithen the spring moved back and forth by a screw, and then the spring
to be set is placed in the space between the transverse to be set is placed in the space between the transverse
bars the screw is revolved, and the plates close together, bars the screw is revolved, and
An improved carriage brake has recently been patented by Mr. Walter R. Mortimer, of Rogate
Lodge. Eng. In consuructing the brake, a sleeve that projects toward the carriage is attached to the rear end projects toward the carriage is atcached to the rear end provided with a projection extending beyond the sleeve Inside of the sieeve on the whecl a divided spring ring is placed, that is covered on its outer surface with
leather, and is of such a size that the wheel can revolve withont friction. The sleeve is connected to a lever that when the lever is moved the spring is pressed out against the sleeve, acting as a brake to the wheel.
An improved tool for setting or extracting jewels in watches has been patented by Mr. William
B. Atkinson, of Franklin, Ky. The bed platel of the tool has the usual slots and clamps by which the plate to be jeweled is held in position, and is secured to the lower arm of a bracket, the upper arm of which is perforated vertically for holding a cranked drill rod, in the watch plate is centered on the bed plate at the point to be jeweled, and by the nse of properly shaped tools in serted in the lower end of the drill rod, the hole is pre pared for the insertion of the jewel.
An improved jointer in which a number of shinglee may be jointed at a time has bern patented
by Mr. Robert Holbon, of Alpena, Mich. The machine is provided with a number of saws secured at differen distances apart upon a mandrel by means of collar and set screws. The edges of the saws project a little
distance above a table, and roughened feed rollers that distance above a table, and roughened feed rollers tha
revolve near the table carry the shingles to be jointed past the saws. As the shingles leave the machine they are struck by the ends of revolving arms and separate from the refuse of the machine.
An iuvention for governing the motion of mechanism, in which a train of wheels is driven by a
weight, has been patented by Mr. Thomat R. Gibson, of Fremont, Neb. Upon a suitable frame, a train of gea wheels is placed, and to the shaft of the primary whee ries a weight. A centrifugal governor is connected to a of the train, so as to bear on the rim of the shait when brought down by the rise of the governor balls. The governor is operated by a belt connectia
ley on the power shaft at the end of the train

An improved machine for boring the fellies of wagons has been patented by Mr. Vincent Cox, of
New Vienna, 0 . The frame of the machine consists of a base apon which the felly rests, having an open
guard on its front against which the front of the felly beare. Δ biza case, that has at is adjus outer end eye, in which a vert for the shaft of the auger, the shaft fitting loosely in the post. With this construction a stralght hole may
be bored through the felly without gauging or marking

electrical inventions.

Mr. Louis H. Spellier, of Doylestown, Pa., has patented an electric motor for clocks. The
motor consists of a wheel or disk with a series of armatures. and a corresponding series of inclined teeth com-
bined with an electro-magnet which acts armature, and with a wetghted lever with bearing rolle resting upon the inclined teeth, the parts being arranged to produce a progressive fntermittent feed movement
of the wheel in one direction, one movement being of the wheel in one direction, one movement being
effected by the magnets in attracting the armature, and effected by the magnets in attracting, the armature, and
then, when the current is broken, the welght-bearing
roler, acting upon an inclined tooth of the wheel, causes the wheel to move farther in the sume direction, on of the magnet.
An automatic circuit closing device, applied o a telegraph key of ordinary construction, has been patented by Mr. Jolin A. Timmerman, of Odessa, Can. tone side, and on one of the pivots of the lever of the key, its forward end, extending upward through the sey button and above the button, is provided with a disk. At its rear end the lever is attached u a spring that draws it and ralses the disk above the key bution,
and it also cloees the circait. When the telegraph key and it also closes the circult. When the telegraph key
is used the disk is held to the top of the key button, is used the disk is held to the top of the key butwo,
opening the circuit by the action of the auxiliary lever, but when the key and disk is released, the spring closes matically.
Mr. William S. Parker, of New York city, has patented a dynamo-electric machine in which the the armatures is greatly reduced. The armature consiste of a shaft to which are attached circular heads, and to the edges of the heads at equal distances are secured bars of
soft iron provided at each side with flanges, the fanges soft iron provided at each side with fianges, the fanges
Corming the poles of the armature magnets. The armacorming the poles of the armature magnets. The armaby the flanges. Spaces are left in the flanges at suitspaces also serve to prevent the circulation of currents. The pole blocks of the machine are cast and fitted on their faces with bars of soft iron, the soft fron heing
more easily magaetized, and inducing a more powerfal ction in the machine.
Mr. Robert J. Pratt, of Troy, N. Y., has which the carbone of the lamp are automatically regawhich the carbone of the lamp are automatically regu-
lated and held a constant distance from each other. Clamping devices operated by an electro-magnet hold way that the corrent is weakened and the carbon drope into or nearly into contact with the lower carbon. The ower carbon is balanced between the tension of a spring
which carries it ap, and an electro-magnet that pulls it ind
down. If the upper carbon drops too close to the lower one, the increased strength of the current causes the electro-magnet 10 bring down the lower carbon to the
proper distance from the upper one.

AGBICULTURAL inventions.

Mr. Adolphus F. Gibboney, of Belleville, Pa., has patented improvements in "force feed " seed-
ing machines. The frame and hopper of the machine are of the usual construction, and a seed cup is eecured o the lower face of the frame under the lower end of
he hopper. A feed wheel that is corrugated on fte surhe hopper. A feed wheel that is corrugated on Its surrace is revolved in the seed cup, by a sleeve that has
corrugations on its inner surface to correspond with corragations on its inner surface to correspond with by means of a lever upon the surface of the feed wheel o form acut-off, for increasing or diminishing the quantity of grain sown. The lower edge of the opeaing In the seed cap id oblique to the corrugations in the
eeed wheel, this form of opening distributing the grain ore evenly
Mr. Thomas Bower, of Waterburg, N. Y., has patented improvements in tree protectors. The protector consists of a series of upright slats, that are
spaced to admit light and air, and held together by lastic bands. These slats encircle the tree for a limited distance from the ground, and terminate at their ends outwardly bent barbed extensions, and may be made Whortions of metal.
Improvements in hay and cotton presees invented by David P. Burkett, deceased, have been pat-
ented by K. M. Burkett. administratrix. The press box is provided with two followers, each operated by separate and independent mechanisms. When the box is wheel one of the followers is drivon tord by a hand levers to the opposile follower, thoroughly pressing the bale. The do
A device by which trash is removed from In front of the hoes of grain drills, withont stopping the drill or raising the hoes from the ground, has been patA gear wheel formed of three segments is attached to the axle of the drill, and each segment has fonr teeth haft, from which arms hang the sides of the drill hoes. When the axle is revolved, the segments engage and move the shaft forward, giving a forward movement to lower ends of the arms, and clearing off the
trash accumulated in front of the hoes. A spring hrows the shafl back when the segments disengage. Mr. John Quin, of Wakeman, O., has re cently patented improvements in constracting monid
boards of plows, that consist in the pecullar formation the extring, chat lay nould boards, so that they shall be adapted to do the work in the best manner possible, and with the least mount of dranght.

MISCELLANEOUS INVENTIONS.

A portable head rest to be used in all kinds of public conveyances has been patented by Mr. William
H. Wooldridge. of Lonisville, Ky. At the npper end of a tandard is pivoted an annular wire frame suitable for supporting a pad or cushion. The standard has a cen-
tral longitudinal slot, in which a thamb screw is inserted, and on its rear side is placed a slotted bar, through which the thumb screw passes and secures it to the standard. Below the slot the bar is curved and serves as a clamp to hold the head rest to the back of
the seat. The standard and bar both being slotted allows the device to be made mach shorter, and it may be used alther upon the end
upon the back as a head rest.
An improved earth closet has been patentei

The seat is attached to the inner side of the wall of the closet, and above the seat on the outer surface of the
wall is attached a hopper, baving in its upper part wall is attached a hopper, baving in its upper part a
sliding sieve, that has a handie for reciprocating it. siling sieve, that has a handie for reciprocating
The bottom of this hopper is closed by a slat rastened on the top of a hopper that is hinged to the bottom of sition under the upper hopper. A mod attached to th hopper for moving it projects from the seat. By suit ably arranged devices, ashes placed in the upper re ceptacle are let down in mall quantities to the swing
ing hopper, and when the rod is pulled the hopper is ing hopper, and when the rod is pulled the hopper is
inverted and the ashes fall to cover the excrements in the plt ander the seat.
Mr. Alexander L Griffth, of Beallsville O., has patented improvements in triangular road
scrapers, by which they may be easily muved from place to place, and by which the depth of the cut may be re gulated. Near each end of the land side of the scraper lateral prese ure. At the recal scraper is placed a wheel that is adjusted up and down by means of a lever secured to the mould board by board may be given any desired opward inclination de part of the roadway
Mr. Robert W. Chambers, of Sidney, 0. has patented improved devices for loading and unload ing sulky carth scrapers. The scraper is of the naual
form and has small wheels near its rear end, and has it end gate hinged near its upper edge, so as to swing on crapeng the gcruper, ping pass through recesses at the rear edge of the scrape botom. The pins are secured to a shaft nuderneath
the bottom, and moved ap and down by means of a band lever, which when the pins are up is retained by a keeper. The scraper 18 drawn by bars pivoted to its front and to the tongue, and the front end is raise sheaves on the axie, the axle being revolved for wind ing the chains by being geared to oue of the wheels by Mr Max H
Mr. Max Hallheimer, of Brooklyn, N. Y. closet. The clos receptacle for the pillows and bed clother. The sid rails of the bed are hinged to the top of the base, and have an inwardly projecting flange at the bottom, and which they are hinged. When the bed is folded, the rails rest against the sides of the clooet, and the fange
against the front, the legs of the foot boards resting against the under surface of the fange of the side raile and projecting from the top of the closet. The foo board is ornamented and forms an ornamental top for
the closet. The cloeet is divided by a partition into the closet. The cloest is divided by a partition into a
front with doors. The mattress has slats across it to form for raising and lowering
Mr. George W. Dudley, of Waynesborougb Va., has patented an improvement in reamers. The
reamer is first made in the shape of a square in cross section and having the proper amount of taper, and and the whole piece is then twisted to form a spira cutting edge. In giving the twist the reamer is turned
upon its longitudinal axis, so that its spirals wind in a reverse direction to the ordinary gimlet. This reame cuts at all points in its circumference at the same ume and makes a perfectly roand hole,
A new mechanical musical instrument ha been patented by Mr. George W. Van Dasen, of Brook lyn, N. Y. In the top of the air chamber of the instru ment are two openings that lead into air passages that
are cloed alternately by a double value. Openings in the air b a rud by a rud, su that one will open and close when th
other closes and opens. Reeds and reed valves ar operated by perforated sheet music and by the air
pressure. By this coustraction of the bellows and valves they are nearly balanced and their movements
are prompt, and the music will be given with animatlon.
A novel device for holding the rolled cur tains of carriages has been patented by Mr. William
H. Weaver, of Emmettsbarg. Md. A circular curved spring hook is swiveled apon the top rall of a carriag top, so that it can be turned to project from the ral When the curtain is raised, or be placed parallel with ralsed it is rolled up in the usual manner, and the rolled curtain is held above the hooks, the free end of which is palled outward to admit the curtain. When the hook

A machinc for making ditches for drain pipes has been patented by Mr. Francis Pldgeon, of wheels carties at one end a device for raising and dropping a wide, heary knife, in the same manner as the ramming block of a pile driver is raised and dropped earth is not scooped ont. but pressed to the sides When a portion of the ditch equal to the wdat of the platform is moved in the line of the trench a distance equal to the width of the knife.

An improved glove and mitten fastening has recently been pateuted by Mr. William Gufford, of Schenectay, N. Y. Strips of meal are punched out in
such shape that they may be hinged at one end, the edges of jection from the side of one of the strips has an aperture at its outer end, that is adapted to be hooked over a rivet attached to the opposite side, thus locking strong, and protects the edges of the slit from bein

A saddle pad that can be attached to and detached from the saddle, and is not destroyed by the perspiration of the animal, has been patented by Francis . Hake, of Caero, Tex. The pad is formed of an upper and lower cover. made of warproor material, and Atted between with layers of felt or woolen cloth. aut in the deaired shape of the pad. The apper and have pockets adapted to receive the front and rear projecting parts of the saddle tree side bars, and lacey attached to the pads serve to secure them to the saddie A
An invention to prevent the escape of rounds when pouring coffee from coffee pots has been In the inside of the coffee po: ls an apright. finely perorated in its upper part, and secured to the sides of the ot in surin a position as w cover the hole leading to he spout. When the pot is inclined to pour out coffee the gronnas are kept back, by the solid lower part of
the plate, while the coffee passes through the perforations of
Mr. William E. Harris, of New York city has patented improvements in the process of extracting
gold from ores. The ore, after being roasted and chlor idized, is then placed in amalgamaiing pans, and mixed ith bromide of sodium in the proportior of two pounds of bromide to a ton of ore. Water and quicksilver are then added, to produce a proper amalgama ion of the metal, and the amaigamator is run about hree hours, and the pulp is discharged through separ解
Mr. William R. FJeming, of Newark, N. J., has patented improvements in "German student"
lamps by which the movable reservoir of the lamp is die xcept that the filling cup is left out, and the top of the ceservoir is provided with an airtight plug, and a stop cock is placed in the tabe that conrects the reservoir and the lamp. The stop-cock is tarned to close the tabe when the lamp is illed. When the tube is opened the oil alls the burner to the top of the connecting twbe, and as it is barned away below the edge of the cabe,
the vacuum in the oil reservoir causes a bnbble of air to pass up the tube, and oil is let down again.

Mr. Monroe Ingraham, of Dadeville, Mo., has patented a reel for oolting purposes, in which the rom the shaft in the usual manner, are attuched to heels for support, and are rims that roll on friction interior space of a reel is free, and fane are fastened to the shaft, that are revolved in opposice direction to the reel for arging the meal from the center, to and through
the boiting cloth, by gentle carrente of air. By this the bolting cloth, by gentle currente of air. By this
construction the capacity of the bolt is largely inceased.
An invention to facilitate the reversing of windows for cleaning them from the inside has boen
pateuted by Mr. Henry Becker, of New York city. The upper half of the window jambs are adapted to swing on pivots, and the lower sash is raised until it is tion. Both sashes are then inverted by turning the winging frame half way over. By this means the cotsides of the sashes are torned to the inside and chey
may be cleaned by a person inside the room, avulding may be cleaned by a person inside the room, avulding

Mr. Alonzo Chappel, of Brooklyn, N. Y. has patented a combination casel. consisting of the eaeel, drawing board, portfolio, and drawers. The easel is hinged upon one edge of a shallow box and forms the
cover of the box. This box forms the apper crose-piece cover of the box. This box forms the apper crose-piece
of the easel frame, and under the box is a drawer diof the easel frame, and onder the box is a drawer di-
vided into compartments for brushes and paints, and velween the drawer and the lower cross-plece of the frame is a portfolio. Suitable devices for retaining the when nicely constructed and finished, makes a nice piece of furniture for a drawing-room.
An apparatus in which the amalgamating gold or siver ores is very easily effected has been
of A basin of suffient size to contain a large amonut of melted lead, or metals capable of amalgamating gold or silver ores, is placed over the fire chamber of a furnace. At a suitabie distance above this basin and furnace a
similar basin and furnace is placed, and from an aperture in the upper basin a vertical pine from an aper near the bottom of the lower basin. A funnel ane pended in the apper baelin, discharges into the vertical pipe. From the hopper the pulverized ore is forced by the lower insin. the fannel, and from the fannel into is mixed with the meited metal in the vertical pipe, and as it passes out at the end of the plipe a series of devices moves the ore abont until every particle of the
gold or silver comes in contact with the lead and is re-
Mr. Gordou Dinsmoor, of Kirksville, Mo. has recently patented improvements in school desks.
The improvement consists of a foot rest sliding in grooves in the desk frame, and connected with the front edge of the hlinged seat, whereby the hinged seat and the foot rest are simuitancouss y rased and lowered out of the way of the hroond when che seatis raiked is out of the way of the broom in sweeping.

ENGINEERITG ITVENTION

An apparatus for removing sand bars from rivers and harburs has been patented by Mr. John H. boat is provided for carrying the machinery, the boat being propelled by a stern wheel driven by an engine and aleo has a hydraulic pump worked by the engine Δ hydraulic tabe, into which water is forced by the pump, Is itted to the bow of the boat, and reaches to
the bottom of the river, and the sand or mud is remored the bottom of the river, and the sand or mud is remored
by projecting a jet or number of jets of water againetit.

2usivest aud exersonal.

The Charge for Inertion under this head is ons Dollar
a line of each insertion; about eight coords to a line.
Adner tiemmente mut te reised

Mr. J. W. Arnold, Garrison, Benton Co., Iowa, has pur-
ehaed the entro patent of Cokely's Washing Machine, Which was illontrated in the scirstivic Axinices
 poaseesed by this overallo other wabhing machines. . M any
of the features are entirely novel. It is conventen ceally managed, eaellis operated, and readilly and cheaply constructed. A pasing thing to make or sell. Yor terr

A Great Bargaln. - We bave thoroughly examined the heastacte to asas that, without exception, it is one of the beer constructed, slmplest. and most perrect hreech-load ligg rifies for the price ere have erver been. O wing to the failure of the Brans Rine Co.. Meserra. E. G. Rideoout Co. have boarbt a larree quantity of these Ritese at a
prioe so
low that they are of Fitteen Dollara, which is about one-half the coost Or manuffacture. Our bustneses experience with Mesesra. E. G. Rideout $\&$ Co. has been most satisfactory, so thai our readera, knowing all will be farily and honorably our readora, knowing all
American Fruild Drier. Free Pamphlet. See ad., p. 142 Fire Brick, Tile, and Clay Retorts, all shapes. Borgne Peck's Patent Dmp Press gee 1 ,
For best Portable Forges and Blacksmiths' Hand Paragon School Desk Extension Slldes. See adv. p. 141 Drop Forkings. Billings \& Spencer Co. See adr., p. 141. Brase \& Copper in sheets, wire \& blanks. See ad. p. 141 The Chester Steel Castings Co., office 407 Librarys st. Phileaelphia. Pan. can prove by 15.000 crank 8hatts, and
10.000 Gear wheels, now in use, the superiorty of thelr over all othera. Ciroular and p The Improved Hydraulic Jacks. Punches, and Tube Milistone Dresing Diamonds. Simple, effective, and

Eagle Anvilis, 10 cente per pound. Fally warranted. Tught and Slack Parrel machinery a specialty. John Lathes, Planers, Drills, with modern improvemente The Pratt \& Whitney Co., Barttord, Conn.
C. B. Rogers \& Co.. Norwch, Conn.. Wood Working achimery of every kind. See giv., pare 142.
Knlves for Woodworklng Machinery. Bookbnders, and
Paper Mulus. Taylor, stlues \& Co.. Riegelsville, N. J . The Sweetland Chuck. See illus. adv., p. 188. Common Sense Dry Kin. Adapted to drying of all ma,
Lightring Screw Plates, Labor-aaring Tools. p. 12 .
Engines, 10 to 50 horse power, complete, with governor. 2 des

Mr. T. D. Lockling, care U. S. Consul, Panama, U. S. Colombla, will sell the whole or a portion of his, pat
Cor umbrellas, illustrated on p. 88 , this rolume.
Air Pumpe for High Pressure, Hand, or Steam Power,
at low prices. C . Beseler, 28 Center Street. New York. Draughteman's Sensative Paper.T. H.MoCollin,Phlli, Pa
For Mill Mach's \& Mill Farnishing, see illus. adv. p. 108 . See New American File Co.'s Advertisement, p. 110. Steam Pumps. See adv. Smith, Valle \& Co., p. 109. Books for Engineers. Catalogues tree. E. \& F. N. pon. 4 Marray street. New York.
Boatwick's Giant Riding Saw Machine, adv.,page 88. Woodwork'g Mach'y. Rollistone Mach. Co. Adv., p. 92. Small articles in sheet or cast brass made on contract. Send models for estimates to H. C. Goodrich, es to
Ogden Place, Chicago, ml . Improved 8kinar Pi.
. Brie, Pa Combination Roll and Rabber Co., 88 Warren street,
v. Y. Wringer Rolls and Moulded Goods Spechaliles. Pore Water furnished Cities, Paper Mills, Laundries, Steam Bollers, etc., by the Multifold System of the
Newark Filtering Co., 177 Commerce St.. Newark, N. J. "Abbe" Bolt Forging Machines and "Palmer" Power List 28, describing 8,600 new and second-hend Lachines, now ready for distribution. Send atamp for mache. B.C.Forsalth \& Co.,MAncheater, N.H..and N.Y.olty. Nickel Plating.-Sole manufaciarers cast nickel anodes, pore nickil salts. polishing compositions. etc. Complete outat for placing, etc. Hansonn \& Van Win
Newark. N. J., and 92 and 9 Liberty St., New York.
Latest Improved Dlamond Drills. Send for circular Mi. C. Bullock Mig. Co.. 80 to 10 nari First Class Ragine Latbes, 20 inch swing, 8 foot bed
Ice Making Machines and Machines for Cooling Breweries, etc. Pletet Artiodial lice Co. (Limited.
Greenwich Street. P. O. Box \$ 2088 , New York alty.
Jas. F. Hotchkise, \&i John St.. N. Y.: Send me yo free book entitled "How to Keep Bollers Clean," conrree book entitiod "How to Keep Boilers Clean,", con-
tadning aseful information for steam users $\&$ engineers. Steel Stamps and Pattern Letters. The best made. J.
catalogue free. Machinery for Light Manufacturing, on hand and For Power \& Economy, Alcott's Turbine, Mt.Holly, N. J. Wood-Working Machinery of Improved Denign and orki Pollp. Cordesman. Eean o, Split Polleys at low prices, and of same strength and
appenrunce as Whole Pulleys. Yocom \& Son's Shafting Wponrance as Whole Pulleys. Yooom
Presses, Dies, Tools for working Sheet Metals, etc.
Hratt and other Can I'ools. E. W. Biliss. Brookign. N. Y.

Supplement Catalogne.-Persons in parsait of information on any special engineering. mechanical, or scien-
tinc subject. can have catalogue of contents of the SciThe SUPPIEMENST COntains lengthy ait to them free. he wholi range of enginneering, mechhnicse, and phyal-
hal solince. Address Xunn Co.. Publishers, Now York
Prenses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Presses \& Dies (fruit cuns) Ayar Mach. Wks., Salem,N.J.

4) Hexe (Qunis

 HINTS TO CORRESPONDENTSNo atrention will be paid to commanications unless writer.

Name

Wen to inquirers.
We renew our request that correspondents in referrin former answers or articles, will be kind enough to oame the date
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then published, they may conclude that, for good reasons, the ditor declines them
Persons desiring special information which is purely should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and lahor obtain such information without remuneration.
Any numbers of the Scientific Ambrican Supple-
wENT referred to in these columns may be had at this AENT referred to in these columns may be had at this
Cen. Price 10 cents each. Correapond 10 cents each.
Correspondents sending samples of minerals, etc. or examination, should be carefal to distinctly mark
 (1) "Objective" writes: I have a couple
or fint sections. I don't know exactly what the cement may be; its color now is a pale straw, fridescent in re flected light. How can I separate and clean: A. The Canada balsam that is used for cementing the glasses
of your objectives has shrunk. This sometimes occars of your objectives has shrunk. This sometimes occurs
when glasees are cemented with balsam that is too thin. When glasses are cemented with baisam that is too thin.
As the glasses are probably burnished in, it is a serious As the glasses are probably burnished in, it is a serios
matter to take them out and reset them centrally unless you have the proper tools and are expert at that kind of work. If they are American objectives, write to the makers, they are the only proper persons to reset the glasses. Probably any good optlician can reset the
glasses for yon. If you desire to try the job youreelf glassès for you. If you desire to try the job youreelf
remove the lenses from the cell, put them in water a the atmospheric temperature, bring the water to a boil then while the lenses are still hut separate them if yon can. If you ind this impossible, soak them in benzole the lenses thoroughly with turpentine first, then with alcohol. Finally, warm the llenses, put on each a dro of thick Canada balsam and press them together firmly Wipe off the surplus baisam and tie a string around the lenses, or clamp them together in some other way, and the cell.
(2) T. F. P. asks what kind of an attach ment to put on a common turning lathe for turning
round balls? A. As you do not state the kind of balls-
, vood or metal is not stated-we give the process for tarning wooden balls and biliard balis. First, turn b possible. Then make a chuck of wood and fasten it to the mandrel in any way the moet convenient. Turn out the chuck hollow so that the ball will enter nearly hal a hemisphere. Chack the ball at right angles to the
position that it was first tarned in. Turn off the out bide or projecting part true by nearly obliterating the nee of the first tarning, then rechuck and turn the othar hemisphere. Il great nicety is required, as in
biliard balls, you will have to continue the chucking in several other positions and tarn very carefolly with carved tools. A little chalk in the chack will help th ball to stick. If you have difficulty in holding the ball in, you may put a small false center aqainst the bal made of iron, with a thin piece of leather waxed upon to prevent scratching. If this is done nicely you may What shonld be the diameter of the ball so deep. ${ }^{2}$ long to transmit twenty five horse power A As do not give the speed and weight of palleys to be car ried by this shaft, it can only be answered approximately. A shaft of 2% inches diameter, with bearings 12 fee apart, running at 100 revolutions or over, with pulleys dis ribated along the line, would do the work. With les speed, or the whole power delivered at the end of the shaft, 40 reet from the source of power, then a 224,0 nchirements of machinery driven, whether to nature or
(8) G. W. A. asks: How much would ecrease the friction on a flat-bearing (engine crosshead have a bearing of about y inches on each slde? A None. The bearing surface wonld wear away much more rapidis. The best practice is to have a very large sarface.
(4) W. C. Y. writes: I wish to build an Diameter, 2 inches, length proportlons so far correct inder $3 / 2$ inch, steam ports $1 / 4 \times 5 / 4$, exhaust $1 / 2 \times 1$, distance between ports $\%$ inch. If not correct, please inform me what the proportions shonld be, and also give me the proper diameter for piston-rnd and width of piston for bove engine. and what distance the piston shoold be center? What size hoader when the shaft is at a dead for 200 ponuds presure A. 4 inch thick is spmcient for cylinder, make steam and exhaust openings $11 /$ inch length. Work piston within is inch of heads. Make
piston-rod $\%$ inch alameter. We cannot inform yo about boller, withont knowing the
tions per minate you intend to work.
(5) W. B. asks for recipe for cheap black paint for iron. A. A good cheap black paint or (solid) wood tar, 10 pounds; lamp black or mineral black 13/4 pounds: oil of turpentine, 51/2 quarts. The tar is Arst heated in a large fron pot to boilling (or nearly so
and the heat is conulnued for abont foar bours. The and the heat is conunued for abont foar bours. The
pot is then removed from fire out of doors, and while pot is then removed trom ire out of doors, and while
still warm (not hot) the turpentine mired with the still warm (not hot) the turpentine mixed with the
black is stirred in. If the varnish is too thick to dry quickly, add more tarpentine. Benzine can be nsed in stead of turpentine, but the resalts ary
Asphaltum is preferable to the cheap tar.
(6) Referring to the dynamo-electric ma chine described in Suppleitint, No. 1a1, A C. D asks: 1. Conid not the magnets be cast together and
then omit puting the brass plate ander them; if not what is the reason for using braes to connect them instead of iron! A. Iron woald close the mapnetic cir cuit, so that the magnet would have very little effect on the armature. 2. Coald not the armature be made o soft wrought iron as well as cast? A. It might be made
of wronght iron if homogeneons metal could be ob of wrought iron if homogeneous metal conld be ob
tained. 8. Is there no substtate for the vulcanite cyl inder used in the commutator: if so, what is one that is more easily procured? A. Hard wood or bone may be nary white cotton cloth.
(7) R. L. McI. asks: 1. Would there be nuch loss by evaporation in keeping kerosene in a lar? A. If the barrels are well painted the loge wil be very silight. 2. Can you tell me what causes the apottering heard in the receiver of a telephone? Sometimes find it almost imposeibee to understand what is sald. A. It is due to the infanence of indaction from the earth Irom neighboring wire. Atmospheric electricity also ickel plating! A. You will ind recelpts and direcdickel for nickel plating in Surpisment, No. 810.
(8) A. T. S. asks: What progress, if any, as been mare toward photography in natural colors nd are there any complete theories or processes exta ratural colors" in Ste A. See "Photography We know of no other late comprehens. Wo and 218 the subject.
(9) W. T. writes: Please state in the colomns of the Sctrantifio Amerrican what a mogul drivers, and others say they are ten-wheelers with elght rivers. Which is correct? And, if neither, what is? A. Kight-wheelers with sir drivers. Ten-wheelers with ight drivers are called "consolidation engines."
here are ten-wheelers with six drivers and a fors There are tel
wheel truck.
(10) H. W. B. asks: Will you please de cribe some good and cheap method by which I can H. K., page 75 (11), current volume.
[OFEICIAL.]
INDEX OF INVENTIONS
MOR whige

Letterm Patent or the United Stater were Granted in the Week Ending

August 8, 1882.
and each bearing that date.
[Those marked (r) are relssued patents.]
A printed copy of the apecifcation and drawing of ens patent in the annexed list, also or any patent issued
ince 1886 . will be furnished from this office for 25 cents. In ordering please state the number and date of the patent desired and remit to Munn \& Co., 281 Brond
way. corner or Warren Street. New York dty. We also furnish ocoples or patents. Nrawted prior to 1888 but at increased cost, as the sp
printed, must le copled by band.
Advertising derico, F. s. Newby.
dvertising devioe. automatic, o. s........ Alarm. See Burglar alarm. Door alarm. Anchor. R. R. Spedden
nimal tte, E. C. Newton.
Apple corer and slicer. .L........
Arithmetical frame, J. Gould.
Bale tie, wire, L. E. Evans (r)
Ballng press, J. J. Stopple
Balls, manufacture of
Bar. See Header bar.
Earrels, derice for rolling R H Dowing
Bed bottom. spring. P. H. Mellon.
Bed bottom, spring, s II Reere
edstead, spiling, S. H. Reerves (\mathbf{r})
Bedstead. Yolding spring,
Bell, team, A. A. Beetin..
Bench,
Berth, sleeping car. H. A.
Hind table, R. Herman 262.222 .11
Blind. Inside window. A.C. \& W. W. Gibson.......
Board. See Ironing board.
Bobbin bullder for yarn-winding machines, etc.
C. E. Bean.
Boller. See St

Boller. See Steam boller.
Boller covering. H. W. . Joh
Bolt. See King boit. Meal bolt
Boot or shoe, L. E. Moor
Bottle envelope. H. Bell
Bottle wrapplng, . aurpet Hining, etc................... J. H. McLean
Bottling machine, M. L. Severy
Bottling machine. M. L. Severy.............
Box. See Fare box. Match box. Paper box.
Box nalling machlne, F. Myers

Bor trimming machine, Casey \& Stevens
Brake. See Vehicle brake Wafon brake.
 Buggy. F. \& M. D. Doherty
Bugy, E. C. Hulebrand

Burial casket. A.W. Taylo
Button, G. Feisenthal......
Button, E. I. Royce ot al
Button, G. Felsenthal..
Button, E. H. Royce et ai
Button, W. Ste
Button, W. Steed
Buttons,
Buttons, ornamenting, O. Barthels
Cabinet, wrter's. W. H. Roerden
Caniter
Canister, J. H. Tingman...
Car brake, Dawley \& Spenlin
Car brake, Dawley \& Spa
Car coupling. W. Deets.
Cur coupling. L. Grannan...
Car coupling. W. E. Grisham
Car coupling. J. J. Eepnedy
Car coupling. M. J. MeCrone
Car coupling.

Car conpling. H. D. Thorp........
Car conpiling, P. Zehner..........
Car conpling tool Rarrett \& Rose
Car, Preight. E. McManus.
Car starter. E. A. Jarris.
Car starter. E. A. Jarris.
Car starter, R. C. Smith

Carpet cleaner. M. Beltmiller.
Carpet cleaning machine. J. \mathbf{Z}
Carpet stretcher, H. . De Detert.
Carringe. chlld's, W. C. Lewls.
Cartridge sbellos, box for packing, A. A. Reed
Cuttle tie, C. M. \& L. Baker...................
Chair. See Reolining chatr

Cheose boxem, machine for reducing the hetght
of, N. N. \& F. J. Fairchlld................ 202,38
Choper
Chuck for centering und securing pulleys to
shafts, J. Eme
Clamp. A. Kraiss.

202,211
202,25

Clay and clay shale pulveriser or disintexrator, J .
(lay tor bricka, tiles, etc., coloc.......................... 202,s83
Cleaner. Bee Carpet Cleaner
Clip. Bee Vehicle clip.
Clip. Bee Vehicle elip.
Coftee roaster, G. Fisher.........
Colter. rotary, A. J. Manny................................ 2822.46
CookIng apparatus, gas, E. D. Lyons............ 282,44

Cot. folding. J. S. Burton.............................. $282,2 \pi$
Cotton chopper, w. O. Rains................... $282,4 \pi$
Coupling. See Car coupling. Pipe ooupling.
Thill coupling. Whifletree coupling.
Cranial perforator. s. Slater........................... 2802480.481
Cuitivator, w. Beott.........

Catter. See Pipe cutter.
Digging machine, land. Crosbby \& Carey........... 202,577
Diak outter holder. rotary, A. MaDonald 202,227

Rlectical conductors, conduit for, S. D. Strohm. 282,490
Eleotrical generators. cooling device for, J. H.
Irwin.................. 288,428

202,595

rave box, Alexander $\&$

2820268
282.48

Cochran... 2
Nence wire, barbod, C. G. Bodman
Fifth wheel, F. L. Ezell
Free bailoon, G. A. Llllendah
FYre escape. H. Reenan...
Fire escape, \mathbf{H} D. Wilson
FIre escape, in. D. Wilson...............................
Mrah trager. J. Otter............

Frame. See Arithmetical frame. Pocketbook
frame.
Frutt jar, F. H. Perry.............................. 2
Fruit Jar, F. H. Perry................................. 202
Furnace. See Henting furnace. Hydrocarbon
furnace. Portable furnace. Smoke conen
furnace. Portable furnace. Smoke consum-
ing furnaco.
282,477
$.22,461$
Furrow opener. G. W. Nutter
Geas and electric light Axture, combined. Berg
mann.. 26
mann...................................
Gas by electricty. apparatus for lighting, J. P. P.282,280
Tirrell450
Gate. See Farm gate. Railway gate.
Generator. See Steam generator.
Glass and glassware, manufacture of ornamental.
T. D. Farrall............................ 220.388
Glass. oven and roll for fattening, Stevenson \&
Glass, oven and roll for dattening, Stevenson at
Glove, C F. A. A. Eeohier...............................
Glovee, shoes, etc , fastening for, s. Florshelm.
Gloves, shoos, etc , fastening for,
Grain binder, G. H. Spaulding.....................
Grain, etc., device for conveying, G. Crebore..
Grain elovator, stop mechanism, J. A. MoLennn
Graln, proceas of and apparatus for cleaning.
Lrapleter.... Stone................
Guard. See WIndow guard.
Hammer, T. Partlan........
Handle. Se Sar handie.
Harrow, s. Darle........

AGENTS Wanted whenome Bowibles

PATENTS. AYERICAN, continne to es amine Improvemente, and to act as Solicitors of Patenta or Inventors.
In this line of business they have had thirty-fien yearr' auperience, and now bave unequaled facilitios for he preparation of Patent Drawings, Specifications, and
the prosecution of Applications for Patents in the United States, Canada, and Forelgn Countries. Mesers. Munn \& Co. also attend to the preparation of Caveats, Copyrights for Books, Labels, Reiseues, Assignmenta, and Reports on Infringements of Patents. All basinese
intrusted to them is done with special care and prompt. intrusted to them is done with
A pamphlet sent free of charge, on application, con. taining fall information about Patents and how to pro Care them; directions concerning Labels, Copyrigity signments, Rejected Cases, Hints on the Sale of Pa-

We also send. free of charge, a Synopsis of Foreign Patent Laws, showing the cost and method of securing patents in all the principal countries of the world.
WUNN \& CO., Solfcitors of Patonta
261 Broadway, New York.
BRANCH OFFICE - Corner of F and 7ih streeta, Washington, D. C. Welght 8\%ilss.

 an minto, and wiction
to
APPEAR ACAIN:

 S.

KEMP'S MANURE SPREADER,

A $\$ 40 \%$ TWENTY-SIX SHOT SPORTING RIFLE Forar $\$ 150!$
 THE EDANS TWENTY-SIREATEST BARGAN EVER OFFEREDETING RIFLE. Maid

The Westinghouse

Without the
CORRESPONDENCE
The Westinghouse

ROOT'S NEW IRON BLOWER.

 P. H. \& F. M. ROOTS, Manufacturers,
 SEND INE:W YORRK
 SPEAKING TELEPHONES. THE AMERICAN BELL TELEPHONE COMPANY, $\begin{array}{cc}\text { THE AMERICAN BELL TleLEPHONE COMPANY, } \\ \text { W. H. Forbes } \\ \text { President. } & \text { W. R.DRIVER, THEO. Na, VAIL, } \\ \text { Treasurer. } & \text { Gen. Manager. }\end{array}$ Alexander. Grabam Bell's patent of March \%, 1876 ,
owned by this company, covers every form of apparatus owned by this company, covers every form of apparatus,
including Microphones or carbor Teephones, In which
ine voice of the spenker causes electric undulations the voice of the speaker causes electric undulations
corresponding to the words spoken. and whith articular
tons produce similar articulate sound at the reever
ton
 junctions and final decrees have been obtained on them.
this oompany also owns and controls all the other
telephonic inventions of Bell, Ediso, Berliner, Gray,
Blake Phels, Watson, and others. Deseriptive catalogues forwarded on application.)
Taelethones for rivivet line club, and
can becial systen
procured
directly or through the author ze agents of the company,
All telephones obtained except from this company,
its authorized licensees, are infrimements, ind tion
ind
 Address all communications to the
AMERICN BELI TELEPRHONE COMPANY,
95 MIIk Street, Boston, Mass.

GOLD

PENS.
PENCILS, HOLDERS, CASES, \&c. The CALLI-CRAPHIC Pen
 pocket. Atways ready for nse, a linxury for
who care to preserve their individuality in writin 180 MABIE, TODD \& BARD, OUR Goods Are Sold by FIRST-CLIASS DEALERS.

cured without an operation or the injury trusses inflict
by Dr J. J. SHERMAN'S metho.
omece 251
Broadway, New York. His book, with Photographic Hroadwa
of bad cases. before and after cure. mailed for 10 .

PURIFIECR

To Electro-Platers.
$\mathrm{B}^{\text {ATTERLES CHEMCALS }}$ AND MATE

 FOR HEAVY PONCHES, SHEARS, Boller Shop Rolls, Radial Drills, Etc. HILLES \& JONES
Before buying lathes see the "Whitcomb," made
AMMEICAN
ATCE
TOOL CO., Waitham, Mase. RUBBER BACK SQUARE PACKING.

\qquad

m Engines
 This Packing is made in lengths of about 20 feet, and of all sizes from $1 /$ to 2 inches square.
JOHN H. CHEEVER, Treas.
NEW YORK BELTING $\&$ PACKING CO., 29 Par
Seen recial NOTICE.-Owing to the recent great Are in the "World" Buildiag, our oferk

WIRE ROPE, BRIIGEE CABLES, SHIP RIGGIMG, Tramway Ropes, Champion Barbed Wire, etc.

Diamonds

Clarbon far Mioing Drill Oldest. Establishe
House in the U.S. d: ?ixwiz
ROOFINC.

The " MONITOR." $|$| Beest Boiler Feede |
| :---: |
| in the worid | A ABW LIFTING AND NON

Horizontal Steam Engines,

H.W.JOHNS' BUILDING FELT,

OR LINING UNDER FLOORS, SHINGLES, STRICTLY FIREPROOF. In rolls of 75 to 100 pounds each, 3 inches wide, two
thicknesses, weighing 10 and 15 pounds to 100 square
H. W. JOHNS M'F'G CO. 87 Maiden Lane, New York. sole Manufacturers of H. W. Johns' Genuine ASBESLER COVERINGS, PAINTS, ETC.
BOILE Special prices to large consumers. Send for sample.

Engineering, Physics, Chemistry

 SEND for Illustrated H.BICKFORD.

USE MACHINERY WIPERS.

KORTING UNIVERSAL

 NO ADJUSTMENT FOR VARYING STEAMOMTIOS PRESURE. OFFICES AND WAREROOMS:

HARTFORD
STEAM BOILER Inspection \& Insurance COMPANY.
W. B. FRANKLIN.V. Pres't. J. M. ALLLEN, Pres't.
J. B. PIERCE. Sec'y.

§
 ```FOR 1882```

The Most Popular Scientific Paper in the World

Only 83.20 n Year, including postage. Weekly.
This widely
This widely circuiated and splendidly illustrated
paper is published weekly. Every number contains sixteen pages of useful information, and a large number o original engravings of new inventions and discoveries representing Engineering Works, Steam Machinery Chemistry, Electrictty, Telegraphy, Photography, Arch! tecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readers find in the Scientifio AMrerican a popular resume of the best scientifle in-
formation of the day; and it is the alm of the publisher to present it in an attractive form, avolding as much as
possible abstruse terms. To every intelligent mind. possible abstruse terms. To every intelligent mind
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in
every community where it circulates
Terms of Subscription.-One copy of the Scienpostage prepaid, to any subscriber in the United State Canada, on receipt of three dollars and twenty cents by the
months, 81.00 .
Clubs.-One extra cony of the Scientifio Amikri-
OAN will be supplied gratis or and
at
as.20 each; ;additional copies at same proportionate rate.
 for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dolars by the publishers.
The safest way to remit is by Postal Order, Draft, or ecures. sealed, and correctly addressed, seldom goes stray, but is at the sender's risk. Address all lettere

PRINTIINIG INKES
T ES "Scientilic American." is printed with chas.

