
a Weekly journal of practical information. art. SCIENCE. MECHANICS. CHEMISTRY and Manufactures.
 Fir. 3

Pig. 6.

Fig 8

Striuntifir ${ }^{\text {g mmorican. }}$

MUNN \& CO., Editors and Proprietors.
published weekly at
NO. 3 ' ${ }^{3}$ PARK ROW: NEW YORK.
O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One cony, one year postage included...
One copy, six months, postage included
Clubs.-One extra copy of The Scientific American will be supplie gratis for every club of five subscribers at $\$ 3.20$ each : additional copies ame proportionate rate. Postage prepaid
Remit by postal order. Address $\begin{gathered}\text { MUNN } \& \text { Co., } 37 \text { Park Row, New York }\end{gathered}$
The Scientific American Supplement
is a distinct paper from the Scientific american. The Supplement is issuad weekly. Every number contains 16 octavo pages, uniformin size
with Scientific Ambrican. Terms of subscription for Supplem 35.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold b all news dealers throughout the country.
will be sent for one year postage free american and Suppiemmen papers to one address or different addresses as desired
The safest way to remit is by draft postal order, or registered letter
scientifl American Export Edition.
The Scientific Ammrican Export Edition is a large and splendid peri-
odical, issued once a month. Eich number ccntains about one hundred large quarto pages, profusely illustrated. embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Scikvificio
AMLRIGAN, with its splendid engravings and valuable information: Commercial, trade, and manufacturing announcements of leading houses Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the orld. Single copies 50 cents. Manufacturers and others who desir o secure foreign trade may have large, and handsomely disp
nouncements published in this edition at a very moderate cost. The SCIEMTIFIC AMmirican Export Edition has a large guaranteed circuation in all commercial places throughout the world. Address MUNN co. 3 F l'ark Row, New York.

NEW YORK, SATURDAY, OCTOBER 1, 1881.

TABLE OF CONTENTS OF
the scientific american supplement,

NO. 300,

For the Week ending October 1, 1881.
Price 10 cents. For sale by all newsdealers.

 ${ }_{\text {silum }}^{\text {Ex }}$

- ARICHITECTURE, ETC.-Glasgow Cathedral.-Fullpage illustra-

field and forest fires.

During the fire week of September a large part of two counties and a portion of adjoining counties in the triangle between Saganaw Bay and Lake Huron, in the eastern part of Michigan, were swept by fire, destroying not only the remaining forest, but many small villages and a large num ber of the outlying houses and barns of the settlers. In the newer districts everything was destroyed and many lives were lost. Much of the country had but recently been cleared, and every where there were large areas covered with brush and other food for fire, thoroughly dried by the longcontinued drought. For two months there had been little or no rain, and as usual small fires were burning almost every where. Ou Monday, September 5, a high wind arose, and for several subsequent days everything was aflame. The volume of fire was so great that the ordinars means of resist ance were useless; woods, fields, villages, farm buildings, fences, crops, live stock, and their hapless owners were over whelmed without chance of escape. Whole families wer burned in their houses, or in the fields and roads while fly ing for refuge, or smothered in wells, their only resort from the flames which swept the surface. The Mayor of Detroit estimates that 750.000 acres were burned over, and as many as 15,000 persons made homeless and destitute. The whole area of the afflicted district was perhaps 10,000 square miles with a population of 50,000 or more. Most of the people were new settlers, just getting a start in life, though the loss of property in the older settlements was heavy. The in mediate loss of life is estimated at from three to five hundred Many more were seriously if not fatally burned, and the exposure of houseless and bereaved women and children entailed great additional suffering, if not hazard of life.
Thanks to prompt and liberal contributions from Eastern and Western cities, much has been done for the relief of the victims; but hundreds have been impoverished, and years must elapse before the lately prosperous settlements ca regain their lost position,
Lessons of this nature, happily not so severe, occuralmos every year, certainly every dry season, teaching the unwis dom of the common practice by new settlers of surround ing themselves with materials for future conflagrations Forests are cleared, and vast accumulations of brush, tree limbs, waste lumber, and the like are allowed to form on all sides. At last there comes the inevitable drought, with chance that the rubbish will not yield to small and isolated fires. Ordinarily the brush fires are confined to the clearings, and are easily kept under control. Occasionally, as in the recent instance, and similarly ten years ago, a general con flagration ensues, and a terrible price is paid in property and suffering and loss of life for the veglect to burn the brush heaps in detail and at seasons when they will not burn so readily.
It is only by concerted action on the part of all the mem bers of a new settlement that this serious hazard of thei lives and properties can be kept down, and it would seem possible that something in the way of general legislation might be devised to compel wood-cutters to clear up and burn up their rubbish as they go along. Without such laws for all wooded regions we must expect the periodical recur rence of calamities such as has now overtaken Eastern Michi gan.

metallurgy of nickel.

At the recent exhibition of the German patents and designs the metallurgy of nickel and cobalt was illustrated in an interesting manuer by Fleitmann \& Witte, of Iserlohn. Dr. Kollmann describes it as follows:
It is only within a few years since the discovery of pure malleable and weldable nickel by Dr. Th. Fleitmann, tha nickel has entered the rank of those metals which are tech nically employed ou a large scale. Previously only the alloys of nickel with copper and other metals could be easily wrought, while pure nickel could neither be hammered no rolled. The reason of this was that pure nickel absorbs (occludes) gases while melted (Fleitmann thinks it is car bonic oxide), and the nickel cannot be worked until these gases are removed.
Fleitmann's process for making nickel malleable consists in adding a very small trace, only one-twentieth of a per cent of magnesium, which is introduced in the form of a bar into the liquid nickel while in the crucible. This small percentage of metallic magnesium renders this brittle metal perfectly malleable, and it can even be welded. Magnesium is well known to oxidize very easily (at high temperatures) and hence serves to remove these injurious gases. (Would not phosphorus accomplish the same end?)
The extraordinary technical importance of the new discovery (which is already patented in all countries) is evident at once. Formerly alloys with comparatively only a little nickel could be used, say, for coin. The German 10 pfennig pieces (like the American 5 cent piece) contain only 25 per cent of nickel to 75 of copper. Now, on the other hand, we can have pure nickel cast in any desired shape, and also forge it and roll it like iron or steel. We may, indeed, assume with tolerable certainty that if Fleitmann's method had been known ten years ago we Germans would not have
been pestered with our unhandy little 20 pfennigsilvercoins, been pestered with our unhandy little 20 pfennig silver coins from pure malleable nickel. Pure nickel, in addition to 'ts malleability, possesses the great advantage that it does not lose its luster in moist air and is unaffected by organic acids, while its alloys, we know too well, gradually lose acids, while its alloys, we
their luster and turn reddish.

Fleitmann, in his very interesting investigation, also made the discovery that pure nickel treated with a very little magnesium became weldable just like iron, and upon this he founded a method of welding nickel to iron. This dis. covery has gained very considerable importance, since we are now able to weld plates of nickel on both sides of the ron or steel instead of merely depositing on it a thin coating by electricity.
The question of welding, which is not yet settled in the metallurgy of iron for Bessemer metal, for example, may perhaps be solved in a manner similar to that in which Fleitmanu solved it for nickel. Its importance technically and economically hardly can be overestimated. Nickel made by the new process with magnesium has a resemblance to arbureted malleable iron.
Kollmann made a series of tests of strength with Fleitmann's nickel, and arrived at a surprising result, namely, that the elasticity as well as the absolute strength corresponds xactly with those of medium hard Bessemer steel.
The expansion by rolling and forging of the two metals is the same, so that they can be rolled together.
Kollmann then gives some of the numerical results of his tests, which we omit, but they go to show that the physical properties of nickel and iron are very analogous, so that the thou ght arises that perhaps nickel is, after all, only an alloropic state of iron
Since nicke! and steel expand equally, blocks of nickel can be welded on both sides of an ingot of steel, and the whole rolled out into sheets of any desired thickness already covered with nickel. Iron wire covered with nickel could be drawn out just like ordinary wire. Another advantage is that the welding as well as the melting temperature of steel and nickel is close together, so that the nickelized steel can be welded as before.
Cobalt can be rendered malleable and weldable in the same manner, $i . e$. , by the addition of a little magnesium.
Fleitmann has also discovered that not only can nickel and cobalt be welded on steel and iron so as to form nickel plated wire and sheets, but that it can be welded on to the alloys of copper and nickel, which can be rolled at a very high temperature. In this operation the metals to be welded are surrounded with thin sheet iron, which is afterward dissol ved off, or is heated in an air-tight apparatus. In this way, too, sheet iron can be combined with alloys of copper and nickel by welding.
To prevent articles made of nickeled steel or iron from rusting on the cut surfaces the iron beneath is dissolved way at the edges with dilute acids, and the projecting ickel then hammered down and welded over it. In Birming. ham H . Wiggin makes nickel malleable by adding 2 to 5 per ent manganese.

the germinal value of new truths.

In his presidential address before the recent Medical Congress in London, Sir James Paget dwelt at considerable length upon the necessity of special studies in science and the impossibility of making any just comparative estimate of the relative value and importance of the several divisions of the science of medicine, or any other science, bowever widely they may seem to differ in present utility. This mainly for the reason that every fact in science, wherever gathered, has not only a present value, which we may be able to estimate, but a living and germinal power, of which one can guess the issue. The speaker added:
It would be difficult to think of anything that seemed less likely to acquire practical utility than those researches of the few naturalists who, from Leeuwenhoeck to Ehrenberg, studied the most minute of living things, the Vibrionidæ. Men boasting themselves as practical might ask, "What good can come of it?" Time and scientific industry have answered, "This good: those researches have given a more rue form to one of the most important practical doctrines of organic chemistry; they have introduced a great beneficial change in the most practical part of surgery; they are leading to one as great in the practice of medicine; they concern the highest interests of agriculture, and their power is not yet exhausted.'
And as practical men were, in this instance, incompetent judges of the value of scientific facts, so were men of science at fault when they missed the discovery of anæsthetics. Year after year the influences of laughing gas and f ether were shown: the one fell to the level of the wonders displayed by itinerant lecturers; students made fun with the other. They were the merest practical men, men looking for nothing but what might be straightway useful, who made the great discovery which has borne fruit not only in the mitigation of suffering, but in a wide range of physiological science.
The history of science has many similar facts, and they may teach that any man will be both wise and dutiful if he will patiently and thoughtfully do the best be can in the feld of work in which, whether by choice or chance, his lot s cast. There let him, at least search for truth, reflect on t, and record it accurately; let him initate that accuracy and completeness of which I think we may boast that we have, in the descriptions of the human body, the highest instance yet attained in any branch of knowledge. Truth so recorded cannot remain barren.

The second-class steel armor-plated turret ship and ram Conqueror was launched September 8, at Chatham, Eng. She is of 6,200 tons, and her engines are of 4,500 hors power. Her armament will be two 25 -ton guns.

The Removal of the President

The successful removal of President Garfield from Washington to Elberon, on the New Jersey coast near Long Branch distance of 240 miles, on the morning of September 6 afforded a striking illustration of the perfection of modern means of transit. The vitality of the wounded patient had sunk so low that it was morally certain that he could no survive for many days the heat and bad air of the Capital. As a last resort it was decided to remove him. The railway companies were notified, and in a few hours the necessary arrangements were made, including the construction of about a mile of railway from the Elberon Station to the cottage the President was to occupy.
Mr. Garfield was burne on a stretcher from the White House to a wagon, and slowly drawn to the railway station where he was as carefully transferred to a car expressly fitted up for the occasion. The seven hours' journey by way of Baltimore, Wilmington, Philadelphia, and Trenton to the sea was admirably endured, a speed of a mile a minute being maintained at times without greatly discommoding the patient.

Opening of the Mechanics, Fair in Boston
The second of the great exhibitions which Boston is hav ing this fall was opened with due "pomp and ceremony," September 13, the Governor of the State, the Mayor of the city, aud numerous other officials participating, with the military in the exercises. The attendance was large, so that the great building in which the fair is held was comfortably filled, and this, too, without lessening the crowds which al day flocked to the other exhibition, which had been about four weeks in progress. The fact that two such great shows are so well attended at the same time in a city no larger than Boston, and but moderately populous suburbs, not only speaks well for the management of these exhibitions, but ells of the active interest which nearly everybody in New England feels in manufactures and the mechanic arts.
The building in which this exhibition is held is an orna ment to the city, and is so well fitted for the purposes for which it was designed as to reflect great credit upon the managers of the Massachusetts Charitable Mechanic Association. It is triangular in ground plan, having a rontage of 600 feet on Huntington avenue and 300 feet on West Newton street, a section of the city which has been wholly made by "filling in" the "back bay" on the Charles River, and all of this new portion is being built up with public edifices and private buildings which reflect great credit upon Boston architects.
The exhibition building is in the Renaissance style, with free treatment. Distinct lateral lines, except that desig nating the basement, have been avoided. Arches of graceful curves rise nearly to the coping-giving space within their sweeps for numerous windows, through which the in teriors are thoroughly lighted. These arches and the adjacent walls are massively laid in red brick with sills and caps of Longmeadow freestone and terra cotta ornaments. On ne side of the main arch is a head of Franklin, on the other that of Oakes Ames, representing respectively elec tricity and railroading. They are surrounded by spandrels of palm, oak, and olive branches, in which appear the arm and hammer of the association's seal. Around the structure is a wide space of sodded ground, through which is laid a brick sidewalk, and in which are placed numerous gas and electric lights, under whose combined glow the beautie of the front are to be seen almost as plainly by night as they are by day. In the verdant triangle, at the eastern end of the building, a fountain of highly ornamental design is placed. An octagonal tower forms the easterly termination It is about 40 feet in diameter and 90 feet high, and has in its upper story a lookout, from which a fine view may be obtained. There are two wide entrances into the tower, one directiy from Huntington avenue sidewalk, the other through a covered porch and steps twelve feet wide, from the covered carriage porch, built of brick and stone, with hard pine open timbered and tiled roof. In the center of the octagon is the ticket office, and leading from it, and sep arated by a fence with three turnstiles, is a corridor 20 feet wide, which is the main avenue of approach to the ex hibition halls. The administration building, which adjoin the tower, has a basement 15 feet high and three stories abov it. At the left of the corridor, which runs through the build ing from the main entrance to the exhibition hall, is the president's room, a large apartment for the use of the presiident and directors of the association. Adjoining this is the treasurer's room; then comes a large room fitted with desks for the accommodation of the representatives of the press; and beyond this is the superintendent's office. At the right of the corridor is an elevator running from the basement to the upper stories; adjoining this is the janitor' room, the remainder of the space being occupied by toile rooms and coat rooms. On the second floor of the adminis tration building is the dining hall, measuring 34 by 84 feet, and well finished. On the same floor, and separated from it by a corridor corresponding with the one on the main floor, is a private dining room for the managers of the association the serving room, and ladies' toilet rooms. In the third story is a hall, 46 by 84 feet, which, during the fair, will be used for the military museum. At the close of the fair it will be handsomely finished for the use of the association and will also be let for concerts, theatricals, lectures, balls etc., the seating capacity being about seven hundred. I will have an open timbered roof, finished in hard wood, hard wood floor, suitable for dancing upon, a stage, ladies
and gentlemen's dressing rooms, toilet rooms, committee rooms, etc. Five elevators are conveniently located in dif-
ferent parts of the building, giving ready access to each of the four floors on which the exhibits are arranged, and it is thought that, after the exhibition, and the reservation of the portions which the association will permanently occupy, the other parts may be so let as to cover the interest on a large portion of the money invested in the structure.

BOILER EXPLOSION ON A DRY DOCK.

The steam boiler on Bollman \& Brown's floating dry dock, foot of Essex street, Jersey City, opposite New York exploded with astonishing violence on the morning of September 13. No intelligent engineer who examines, even i cursory manner, the principal witnesses, namely, the cor roded safety valve and the torn crown sheet, will be likel o doubt the cause, while the responsibility may almost a readily be placed.
Capt. L. D. Decker, of the iron tug Gladwish, and James Tammany a calker were instantly killed, both being

nearly abreast of the boiler and on the tugboat Gladwist which was on the dock and about to be lowered after hav ing undergone repairs. The names of the deck hauds who were injured are John Smith, Alex. McQuinn, Walter Everson, who had temporary charge of the boilcr in the absence of the regular attendant, and Victor Lambeck Three of these persons will doubtless die of their injuries. Sketch No. 1 shows how the boiler, which was of the loco motive type, was located ou an overhanging platform, buil upon the second section of the dock, about 20 to 25 feet,

according to the stage of the tide, above the street level furnished steam to a $14^{\prime \prime} \times 24^{\prime \prime}$ horizontal engine which trood alongside of it, through a $21 / 2$ inch wrought iron pipe langed to the body of the safety valve, as shown in the engraving. The engine and boiler were covered by a shed building having a tinned roof, and they were used in connection with suitable gearing to pump the water from the four pontoon sections that composed the floating dock. The boiler was 16 feet long, including the 4 feet of the fire box

part (see Fig. 1) which was blown to pieces. The origina form of this part is shown in dim outline, while the exter nal sheet, with the screw stays attached, is seen spread out in the act of commencing its flight to parts unknown. Up to this time this plate has not been found.

The top and sides of the inner shell of the furnace were lat and formed of a single plate, which was driven down upon the grate bars by the pressure as soon as the overloaded stays gave way by pulling through this plate. It fell upon the dock in the background of Fig. 1, and its condition is shown in Fig. 4. It is five sixteenths of an inch thick; and in another part of the firebox the quality is indicated as Glasoow C H No. 1 flange, tensile strength 50,000 . The barrel of the boiler is three eighths, single riveted, and contained 37 tubes 3 inches in diameter and 10 feet long. The boiler itself, well made, is clean inside, and shows no defects indicating long use. It is said to be four years old. There was no indication of overheating of the plate shown inFig. 3, which would be the first uncovered portion of the fire

surface in case of low water in the boiler; but there was unmistakable evidence that the so called safety valve was and had been for some time absolutely inoperative. The iron stem of the valve was immovably fixed by corrosion in the iron bonnet of the valve case. This valve; which is of the wing pattern, is $21 / 2$ inches diameter, was loaded by lever and weight to blow off at about 60 pounds when in order.
On the morning of the explosion the engine was not running, the temporary attendant was alisent, a brisk fire was burning, and there being no outlet for the steam the pressure accumulated till the boiler gave notice by leaking steam through the weaker seams of the fire-box. The young man in charge, on seeing this, was in the act of running to open the furnace door when the explosion took place. The stay bolts pulled through the inner plate, and the flat top of the furnace was forced down upon the furnace grate bars, and the outer shell plate was forced upward, as indicated in the sketch No. 1. The whole furnace part of the boiler was thus separated from the barrel, which, impelled by the issuing con tents, flew like a rocket in nearly a direct line of its projected axis, as indicated by sketch No. 2, up Essex street, plainly marking its trajectory upon buildings and signs; it reached the ground after turning about one-fourth of a revolution on its axis, at a distance of about 300 feet, where it encountered and cut down a fire hydrant, leaving the marks of the fluted

No. 5.
 casting plainly embossed in the iron of the dome, which was crushed and detached from the boiler, as shown in sketch No. 5 . At this point in its course it struck the curbstone, and several rivet heads were ground smoothly off as though by contact with a fast running dry grindstone, changing the iron to a blue color by the heat of the friction. Here also it struck two large trees near the ground and the man-hole yoke was broken off. It was diverted by contact with these objects slightly to the left, and thereby prevented from entering a large dwelling house, and continued by a single bound up the middle of the street to \dot{a} total distance of nearly 7.50 feet from the starting point-demolishing two wagons, killing a horse, and finally resting upon a two-wheeled truck to which the animal was attached. The explosion was followed by a terrible roar of the expanding water, which so frightened the horses along the street that they ran away; and the people fled terror-stricken into the nearest buildings.
The safety valve was found after the explosion firmly fixed in its seat, in which it is rusted in. The coroner proposes to weigh the force that will be necessary to move the safety valve from its seat, and no doubt there will be many guesses at the pressure that was required to do this work of destruc tion.
This case is very nearly parallel to one that occurred at the works of the Standard Oil Company, in Centerville, N. J., in 1878, and from the same cause-overpressure from a defective safety valve. Some of the parts of that boiler, which was also of the locomotive type, flew a distance of 1,200 feet. The boiler was broken into twelve principal fragments, and scattered over several acres of open ground
The lesson taught by these disasters is obvious and should be learned by every steam user. It is that no steam boiler is safe without an efficient and well kept safety valve.

The worn-out theory of low water as a common cause of boiler explosions must soon give way to the more common causes-defective safety valves and weak boilers. It has become a trite remark among engineers that the most stupid boiler attendant knows enough to keep plenty of water in his boiler, while, on the other hand, many well-informed engineers are too careless about their safety valves, and seem to think if once well fitted and properly proportioned it will remain a safety valve without trouble and care. There is now more than one observer of boiler explusion that believes that the Eleventh street explosion in New York City arose from leaving the fastening upon the valve after the annual hydrostatic test, simply forgotten by the person who placed it there

Strong Magnets.

For some time past \mathbf{M}. Trouve, the eminent Parisian instru ment maker, has been engaged in discovering the best mod of making powerful magnets of identical strength. For this purpose he has investigated the best kinds of steel, the most suitable degree of temper, and the most practical and simple method of magnetization. In testing the different kinds of steel, he cut the pieces of the samedimensions and magnetized them, then measured their portative force. They were after ward tempered and magnetized anew. The portative force after this second magnetization has led M. Trouvé to the conclusion that the best French steel for making bar magnets is that of Allevard, as already known. He also finds that the portative forces, as determined after the two magnetiza tions, are connected by a simple law, which can be expresse by saying that they are to each other in the ratio of $n: n$ that is to say, if the portative force of the first magnetization is represented by 2,3 , and 4 , that due to the final or saturated magnetization is represented by $4,9,16$. As regards the temper of the steel, M. Trouvé finds that a regular temper is necessary, and to insure this condition he employs a muffle furnace heated by gas to a constant temperature. The actua magnetization of the bars is performed by placing them in wo solenoids injuxtaposition, and closing the magnetic cir cuit by means of two plates of soft iron. The solenoids are then electrified by means of the current from six Wollasto elements. By proceeding in this manner M. Trouvé succeed in preparing bar magnets which will sustain from twelve to fourteen times their own weight, and if they are ben into the horseshoe form the portative force is quadrupled, that is to say, it becomes from forty-eight to fifty-six time the weight of the magnet.

dbsorption of Oxygen in Coal Mines.

The Belgian Academy of Sciences has received a report on the researches made by M. Fabre, regarding the disease to which coal miners are especially liable. He finds that as coal alsorbs rapidly up to one hundred times its ow value of oxygen, the air which the miners have to breath is deprived of oxygen to a hurtful degree; the atmosphere of a mine is also further vitiated by the gaseous carbo compounds given off by the slow combustion of the coal M. Fabre concludes that a supply of air is more essentia than that of light, and even the best ventilated mines require better ventilation.

A Suspended Aqueduct.

A cheap suspension aqueduct was invented and used by sme miners in California in 1852. A river ran between two bluffs, one of which was considerably higher than the other. Water was available on the one, but it did not " pan out" as well as that upon the lower. Some sailors, including the mate of a whaler, took up a claim, and succeeded in making a hose of strong duck, about eight inches in diame ter, and stretching it from the higher to the lower hill, by means of a strong rope running through it. Water wa then carried through this weak hose, which could not have resisted the pressure if lowered into the valley, and the ingenious sailors realized handsome fortunes out of the land that had been hitherto worthless.

AN EASILY MADE CHAIR.

We give an engraving of a very cheap yet strong and com fortable chair which may be made as elegant as the tastes of seems to differ from the calcium reflectors that were often fortable chair which may be made as elegant as the
the maker may dictate. The chair, as will be seen by reference to Fig. 1, consists merely of a barrel cut off above the second hoop so as to form a complete back with half arms at the side. The barrel thus cut is mounted on two strips of wood, having casters under their ends, and brackets above to form the legs and to add to the appearance of the chair. A head is fitted to the circular portion, and the whole is neatly upholstered, as shown in Fig. 2.
Of course it is necessary to select a good barrel bound with iron hoops, and a little care should be taken in the upholstering to disguise the barrel form as much as possible.

A Strong and Handy Cement.

One of the strongest cements, and very readily made, is obtained when equal quantities of gutta percha and shellac are melted together and well stirred. This is best done in an iron capsule placed on a sand bath, and heated either over a as furnace or on the top of a stove. It is a combination possessing both hardness and toughess, qualities that make it particularly desirable in mending crockery.
When this cement is used the articles to be mended should be warmed to about the melting point of the mixture. and then retained in proper position until cool, when they are ready for use.

Whooping Cough

The capacity of the stand is increased by two or more ver tical rods, provided with cups at the upper ends for receiving flower pots.
The flaring rim around the stand supports the foliage and prevents water from getting on the floor while sprinkling the plants.

A Naval Experiment with the Electric Light.

The Providence Journal gives an account of a trial of the electric light as used to detect the movements of vessels, at night, especially torpedo boatsin time of war. The light is placed in a parabolic reflector, which is pivoted to turn in ny desired direction and moved by a small electric engine in the horizontal plane of the motion. In this respect it

RECENT INVENTIONS

Mr. John K. Harris, of Springfield, Ohio, has recently patented a novel and comparatively simple construction of buttonhole worker, applicable to the ordinary sewing machines, which, for neat and substantial work, bids fair to reatly extend the use of this class of devices. In its gencral organization it comprises a cloth clamp that holds the loth and oscillates it under the needle at right angles to the line of feed, first on one side of a center line, and then (after shifting its position at the end) returns on the other side of the center line, which center line is then opened or cut with a knife to disconnect the two lines of stitching and form the buttonhole. The cloth clamp is oscillated by a connection with the needle bar of the machine. The prominent feat ure of the invention is to be found in causing the lateral oscillation of the cloth clamp to be converted directly into a secondary intermittent progressive feed longitudinally with the buttonhole, by the direct impingement of the cloth clamp against an adjustable stop or resistance that causes the cloth clamp to react and move longitudinally, the length of feed and depth of stitch having always an automatic correlation to each other. This, in connection with the other features of the device, gives a nicety of adjustment and accuracy of work that must be seen to be fully appreciated. Mr. Harris has also patented other constructions aiming at analogous results.
Mr. Rece W. Trude, of Lock Haven, Pa., has patented a cheap, simple, and durable folding drier for drying clothes. Mr. John J. McLean, of Hillsborough, Ill., has patented an improved folding case or cabinet for holding and preserving court and other papers for use particularly by clerks of courts. It is so constructed that the file papers in different causes on the docket may be conveniently selected from and returned to their respective pigeon-holes, and which will exhibit at all times the absence of papers and by whom taken.
An improved animal trap, patented by Mr. Russell Elliott, of Somerset, Ky., zonsists in a box divided into three compartments by two partitions, a sliding plate for closing the entrance apertures in the front of the trap, the rock shaft carrying the sliding plate, an oscillating treadle, and chains or cords connecting the treadle and the rock shaft.
An improved wardrobe bedstead has been patented by Mr. Ernest N. Doring, of New York city. This wardrobe bedstead is so constructed that the frames or cases of the bedsteads and the weight boxes can be readily disconnected, when desired, for convenience in moving the bedstead from place to place.
Mr. Fred Terstegen, of Elizabeth, N. J., has patented an eyeglass having the nose-piece or bow-spring jointed in the middle so as to permit the lenses to fold sidewise toward each other, and having the ends of the two sections of the nose-piece or buw-spring extended past the pivot and provided with locking devices for holding them in position for use.
Mr
Mr. Charles Oyston, of Little Falls, N. Y., has patented an improvement in syringes. The invention consists of a nozzle with flaring lip, containing severalfixed crossbars and adjustable basket-like devices and a tapering screw thimble, by whose adjustment relatively to each other and to the crossbars the fineness of the spray issuing from the nozzle is regulated.
Mr. Albert Back, of New York city, has patented an improved box for packing and exhibiting ruchings, laces, embroideries, and analogous articles. The invention consists in a box provided with a reel pivoted to arms of one of the longitudinal sides of the box, which side is hinged to the bottom of the box so that it will swing outward into a horizontal position, the arms carrying the reel being in a vertical position, and thus permitting the reel to turn freely.
Mr. John M. Cookingham, of Hudson, N. Y., has patented a secure and inexpensive fastening that is durable and will not require openings cut in the inner case. This invention is applicable to hunting and open cases and key and stem winders; and it consists in a locking pendant fitted to slide on a stem and formed to lap over the case.
Mr. Joshua W. Trussell, of Rockland, Me., has patented an improved door securer for fasten. ing doors, drawers, cases, or where locks are ordinarily used, in which a central shaft armed with sharp projections from two opposite sides is inclosed in a rectaugular wedge-shaped frame, the shaft being provided with a thumbscrew head in one instance and a lever in the other, for turning it at right angles with the frame.
Mr. Bertram G Seebach, of Peru, Ill., has patented a composition for cleaning and polishing metals, consisting of potash, lime, mineral oil, and the oil of Elais guiniensis.

The American Institute Fair.

The annual exhibition of the American Institute Fair began September 15. As this is the fiftieth exhibition of the Institute special efforts have been made to celebrate its semicentennial becomingly. The applications for space are said to have been larger than ever before, and the exhibition promises to be the finest ever held. But the exhibitors are, as usual, sadly behind in their preparations, and the exhibition opens in the customary state of unreadiness.

COTTON AND ITS FUTURE.-AN OPPORTUNITY FOR INVENTION

The International Exhibition to be opened at Atlanta Georgia, October 5, will not inaugurate a new industrial era for the South, as some have assumed, but will rather serve to convince the world that such an era is already well advanced.
The enterprise began with the cotton interest, and was at first promoted for the especial furtherance of the industries which immediately turn upon the production and manufac ture of the South's chief staple. That the scope of the ex hibition has been widened to take in all the industries and resources of the Cotton States is both natural and encouraging; for while cotton is the leading interest, its prosperity must necessarily give life and energy to all the rest, and at the same time whatever forwards the general development of the natural and industrial capabilities of the South must react bencficially upon the cotton interest.
An immediate effect of the Exhibition is likely to be a great increase of knowledge among capitalists touching the opportunities which the South affords for profitable invest ments. But of still greater value probably will be the les sons learned by Southern cultivators with respect to means and methods of increasing the productiveness of their fields and the money value of their crops. Until recently the agricultural processess and appliances of the Southern planters have not been remarkable for economy and efficiency; and even yet the liberal adoption of modern labor-saving machinery is the exception rather than the rule in the South. It is true that in the aggregate the products of the Cotton States are enormous in quantity and in money value. The world is well aware of that. But not so many are aware that probally not a hundredth part of the productive capacity of the country bas ever been developed.

RECIPROCATING HAND COTTON PICKER

For the past five years the cotton crop has averaged nearly five million bales, and last year it approached six million bales; yet not more than two or three acres in every hundred available for cotton have been under cultivation and on the land cultivated the yield has not been half as much in quantity or anything near as valuable as it might have been. During the census year the cotton acreage was $4,441,993$ acres; the yield was 5,737,257 bales, or an averag , 4 bales (of 475 pounds) to ten acres. Under proper cult of 4 bales (of 475 pounds) to ten acres. Under proper culti vation and handling a bale to the acre is common, and two
bales to the acre not uncommon. In his preliminary report on the cotton crop, Special Census Agent Hilgard remarks that even with the imperfect tillage and incomplete picking of the crop now prevailing in the Yazoo bottom (between the Mississippi River and the Yazoo, in the State of Mississippi), the average product per acre is over three quarters of a bale. Estimating the lands reclaimable by simple excluion of the Mississippi overflows at only $3,000,000$ acres, the annual product could readily be raised to $2,250,000$ bales, without any change in methods of culture, on the Yazoo bottom alone. With improved cultivation, he says, the production could easily be brought up to $5,000,000$ bales, and thus, with a imilar improvement in the culture of the uplands, the State of Mississippi could easily produce the entire crop of the United States. He adds, in a foot note, that, so far from overestimating the possibilities within reach of careful

PNEOMATIC COTTON PICKER,
ing in the act of picking cotton, thus relieving the legs of weight that would otherwise come upon them. This device consists of two wooden staffs having foot rests pivoted at the bottom and provided with adjustable slides near the top, which are connected with a waist belt worn by the picker. The slides are provided with a clamp connected with the waist belt, so that when the staffs are thrown outward by the pressure of the knees the clamps bind the staffs and support the waist belt at that point.
The cotton harvester shown in Fig. 2 consists of a wagon having a straight body open at the top, and provided with a number of transverse stretched wires, over which the stalks of the plants are struck in such a way as to loosen the cotton from the bolls, when it falls into the wagon box. This is the invention of Mr. D. C. Hubbard, of Point Coupee Parish, La.
The cotton harvester shown in Fig. 3 is provided with a large picker cylinder covered with a close surface of bristles, forming a complete bristles brush face extending the entire length of the cylinder. This picker cylinder is revolved by connection with one of the drive wheels as the machine is drawn along over the rows of cotton plants. The bristles seize the ripe cotton from the pod without drawing out the unripe cotton or injuring the cotton or plants.
The machine is provided with a reel in front which bends down the cotton plants toward the face of the brush. There is a cleaning cylinder behind that draws the cotton from the picker cylinder and deposits it in the box at the rear of the machine. All of the rotating parts receive their motion from one of the supporting wheels of the machine. This invention was patented in 1872 , by Mr. O. P. Meyers, of Canton, Ohio.
A machine, in some respects resembling that of Mr . Mevers, is shown in Fig. 4. In this machine there are four
 fertilizers, by cleaner and more efficient methods of collecting and handling the fiber, by more thoroughly utilizing the bitherto waste products, and by the introduction of economical and effective remedies for the destructive cotton worm and similar pests: for example, by the use of pyrethrum solution, as recommended by Prof. Riley in auother column of this paper.
Perhaps the most promising field of effort-at any rate the one in which successful effort would yield the highest results-is in the development of some practicable and economical method of gathering the lint by machinery. A device which shnuld do for cotton picking what Whitney's gin did for the work of freeing cotton lint from the seed would give an incalculable impetus to the extension of cotton culture. The demand for such an invention is urgent, increasingly urgent. It is doubtful whether any phase of ncreasingly urgent. It is doubtful whether any phase of agricultural labor needs the aid of the inventor so bady, or promises so ricb a return for successful effort. Already a crop amounting in value to three or four hundred million dollars is every year made difficult to secure, and subjected to serious hazard and no inconsiderable loss, through lack of efficient harvesting machinery; and any rapid increase in the rop is prevented by the lack of laborers at the critical ceason, laborers whose unattainable services might be dispensed with were it possible to relegate the work of gathering the cotton, in any considerable degree, to machinery.
As an illustration of what has already been accomplished in the direction of mechanical aids to cotton picking, we sow on the front page of this issue of the Scientific American a dozen or more patented devices for use in the cotton field. How far any of them meets the requirements of the case we are not prepared to say. That none of them is entirely satisfactory would appear probable from the single fact that cotton is still picked by unaided human fingers.
The appliance shown in Fig. 1 was patented by Mr. William J. Lynch, of Old Town, Ark., and is designed to assist the cotton picker in supporting his body while stoop-
vertical brushes, arranged in two pairs; one pair on each side of the row of cotton plants. These brushes remove the cotton from the boll and carry it into the receptacles arranged on either side of the machine. The brushes revolve against combs arranged along the vertical edges of the openings in which the brushes revolve. This machine is the invention of Mr. Thomas P. Moores, of Milliken's Bend, La. It was patented in 1880.
The principle of the machine represented in Fig. 5 is quite different from those above described. In this picker, series of barbed flexible rods are pushed down into the cotton plants in alternation, each in its ascent removing the cotton from the other, being assisted by brushes arranged along the edges of the vibrating arms. The cotton is carried from the tops of the arms by endless bands and delivered to a receptacle at the rear of the machine. This picker was patented in 1877, by Mr. Orren R. Smith, of Raleigh, N. C.
The cotton harvester shown in Fig. 6 operates by air pressure, the necessary vacuụm being created by a horizontal fan driven by the supporting wheels of the machine. A series of shells or curved hoops loosen the cotton from the bolls, the hoops being inclosed by a hood, from which the cotton is drawn by the fan, and discharged into the wire cloth receptacle at the rear of the machine, the cotton being retained while the air is allowed free escape through the meshes of the wire cloth. This machine was

patented in 1877, by Mr. F. Van Dorn, of Basking Ridge,

 $\mathrm{N} . \mathrm{J}$.In Fig. 7 we represent an electric cotton picker, patented by Mr. Robert F. Cooke, of Brooklyn, N. Y., in 1870. In this machine two endless rubber belts, arranged vertically on opposite sides of the machine, are excited electrically by friction, the cotton plant being agitated by a reel, or otherwise, when the ripe cotton, being disengaged from the bolls, is attracted by the electrified belt, by which it is carried upward. It is disengaged at the top, and falls into a receptacle placed between the two belts.
Fig. 8 shows a hand cotton picker, patented in 1867, by Mr. Joseph E. Carver, of Bridgewater, Mass. This invention consists in a reciprocating tongue provided with teeth and fitted to an oblong box carrying a sack at its rear end. The box is provided with an elastic plate having spines, and when the tongue is reciprocated by the handle it takes the cotton from the boll, and, by moving it forward by a succession of steps, carries it into the box, from which it finally drops into the sack.
In Figs. 9 and 10 is shown a hand cotton picker, which is remarkable for its simplicity and cheapness. It consists of gloves provided with wire hooks inclining back ward toward the wrist, and a brush worn upon the waistband over the bag or other receptacle intended to receive the cotton.
The ripe cotton is readily removed from the bolls by means of the wire hooks, and it is removed from the hooks by passing them over the brush. Figure 10 is an enlarged view of one of the fingers of the glove. This invention was patented in 1876, by Mr. R. A. Cutliff, of Shreveport, La.
A form of hand cotton picker, employing an endless
chain carrying barbs, is shown in Figures 11 and 12, Figure chain carrying barbs, is shown in Figures 11 and 12, Figure 12 being a detail view of the stripper. In this device the endless toothed chain is driven by a sprocket wheel, and in turn drives a pair of winged wheels or strippers which remove from the çain the cotton picked from the bolls by the teeth, and allow it to fall into the bag attached to the under side of the apparatus. This invention was patented in 1866, by Mr. George A. Howe, of Brooklyn, N. Y
Figure 13 represents a pneumatic picker applied by hand, the hose being connected with a fixed exhaust fan or pump. This is one of several similar inventions patented by Mr. John Griffin, of Louisville, Ky. The patent was issued in 1866.

The hand picker shown in Figures 14, 15, and 16 consists of a rotating spindle, baving a crank by means of which it may be turned. The spindle is moistened continuously, so that when thrust into a cotton boll the cotton will adhere and wind upon the spindle as the latter is revolved. When the spindle is full it is placed over a basket, and a boardcalled by the inventor a " shedding board"-is moved outward along the four guide pins, and pushes off the ball of cotion.
In the engraving Fig. 14 is an end elevation, Fig. 15 a plan view, and Fig. 16 is a face view, showing the shedding board with handles in the ends. This invention was patented in 1879, by Mr. T. W. Ham, of Frosa, Texas.
For those of our readers who may be interested in this problem, and yet unfamiliar with the conditions under which a mechanical cotton picker must be operated, a few words with reference to the growth of cotton and the manner of its cultivation may not be out of place.
As the high bush or "tree" cotton which produces the long staple "sea-islands" cotton furnishes but a small part of the crop, we may assume that the picking machine will be primarily designed for the upland cotton fields. In these the cotton bush grows from two to four feet high, the more common height being under three feet. The branches spread like those of an apple tree in miniature, and the cot ton bolls are distributed about the limbs somewhat as apples are on a sparsely-bearing tree. The green bolls, which are an inch or so in diameter, expand and burst at maturity, exposing the snowy fiber for which the plant is cultivated, the bolls on the lower branches usually maturing first. The bolls are supported by foot stalks from two to four inches long, and for the most part grow near the outer ends of the limbs. A pull of about one ounce suffices to draw the lint from the ripe pods. In gathering the lint it is needful to keep it free from leaves, stems, or fragments of the shell of the pods, all of which goes by the name of "trash," and impairs the value of the fiber.

The plants are set in rows, from two to seven feet apart according to the quality of the soil, and are thinned out in the rows so that the plants are from two to four feet apart. In the extreme south the bolls begin to burst as early as the frst of July; further north, the picking begins a month or two later. The picking continues at intervals or continuously according to the thrift and energy of the farmer until winter sets in or the crop is all gathered.
The more serious obstacles to mechanical picking arise from the irregular height and spacing of the plants; the ir regularity in the maturing of the bolls; the necessity of avoiding injury to the plants in the earlier gatherings; the difficulty of withdrawing the ripe lint without admixture with husks, stems, and broken leaves.
The problem is a complicated one, yet it small aloud for solution and promises a liberal reward to any who shall solve it wholly or in part. If comparatively simple and in-
expensive, the successful machine will bring a speedy forexpensive, the successful machine will bring a speedy for tune to the inventor, prosperity to thousands of small plantfor half the world.

and ships.

 on, only preserved it from corrosion. A year ago Mr. J. J. Atkinson and Mr. C. F. Henwood, of London, taking advantage of this fact, patented a system of sheathing by means of a solder chemically combining atoms of zinc and tin. About three months ago a steam yacht was subjected to the process. The zinc shows were attached to the iron by a dynamo machine, at spots about 9 inches apart, the connection being easily made by the melted solder. The iron below was left quite naked, so that there might be nothing to intercept the galvanic action. After a cruise of about 5,000 miles the vessel is reported as perfecily clean, while the iron below the zinc was absolutely wi'hout a trace of corrosion. The attachments formed by the solder were also so strong that in no place were they affected by an accident which the vessel met with. Experiments have proved that the wear of the zinc amounts to between 2 ounces and 3 ounces per square foot per annum, so that 20 ounces of zinc should last at that rate from six to nine years. The solder is the last to wear away, it being a much less negative metal than the zinc.
preventing ships from sinking.

A recent modification of the application of the air bag method of preventing ships from sinking, or assisting in that when an accident causes a serious leak, is illustrated by he annexed engraving, as designed by R. G. Sayers, of Lon don, England.
If the ship has sprung a leak or been otherwise damaged,
and is expected to go down, each of the flexible bags is

filled with air as quickly as possible, the wing, E. and stay, F, being fixed in the position shown in the engraving; the bar, B , is lowered into the grooves provided for that purpose in the fixed bar, A, and is secured to the ship's sides by two or more bolts, b. The end of the rope, J, having been passed through the hole in the ship's side and over the pulley, K , to one of the ordinary winches or windlasses, or to a winch provided for the purpose, the bag is thrown overboard and hauled down into the water into the position shown. These operations, it is said, may be performed in eighteen minutes from the time of the disaster, therefore no vessel need sink at sea in future. The wing, E , and stay, F , serve to prevent the bag from chafing against the ship's side in case of a rough sea. Each bag with its apparatus being independent of the others, several of them can be filled and hauled employed.

Longevity in Europe.

M. De Solaville analyzes in the Revue Scientifique the results of recent European censuses by ages, and the register of deaths also by ages. If we strike a mean of the census from 1869 to 1872, we find that Europe (exclusive of Russia, Turkey, and some small Southern states) possessed
in 1870 a mean population of $242,940,376$, classed as follows from the point of view of advanced ages: 17,313,715 of more than 60 years, 79,859 of more than 90 , and 3,108 of more than 100 years; i. e., 1 inhabitant in 12 of more than 60,1 in 2,669 of more than 90 , and 1 in 62,503 of more than 100. Women, M. Solaville finds, are more numerous in extreme old age than men, and the difference increases with the age. Thus at 60 years the advantage is with the women in the proportion of 7 per cent, at 90 and above it rises to
45 , and with centenarians to 60 per 100. It is in France that we find the greatest relative number of inhabitants at the age of 60 and upwards; but it is not so for centenarians, of which France has less than all the other states of Europe lation of deaths by ages the result is reached that, to the total deaths, those at the age of 90 and upward bore the following proportions to the countries named, and arranged according to the decreasing order of importance: Great

Britain, 9.73 ; Sweden, 7.39; France, 6.58; Belgium, 6.07; Switzerland, 6.00; Holiand, 4.47; Italy, 3 76; Bavaria, $3 \cdot 42$; Prussia, $3 \cdot 06$; Austria, $2 \cdot 61$. The result is in accordance with that we know of the mean age of the deceased in the same countries.

How Postage Stamps are Made

The number of ordinary postage stamps issued in 1881 was $954,128,440$, and value $\$ 24,040,643$. The method of printing postage stamps is as follows: The printing is done from steel plates, on which two hundred stamps are engraved, and the paper used is of a peculiar texture, somewhat resembling that employed for bank notes. Two men cover the plates with the colored inks and pass them to a man and a girl, who print them with large rolling hand presses. Three of these little squads are employed all the time, although ten presses can be put in operation, if necessary. The colors used in the inks are ultramarine blue, Prussian blue, chrome yellow and Prussian blue (green), vermilion, and carmine. After the sheets of paper on which the two hundred stamps are engraved have been dried, they are sent into another room and gummed. The gum used is made of the powder of dried potatoes and other vegetables mixed with water. Gum arabic is not desirable, because it cracks the paper badly. The sheets are gummed separately, they are placed back upward upon a flat wooden support, the edges being protected by a metalic frame, and the gum is applied with a wide brush. After having been again dried, this time on little racks, which are fanned by steam power for about an hour, they are put in between sheets of pasteboard, and pressed between hydraulic presses, capable of applying a weight of two thousand tons. The sheets are next cut in halves; each sheet, of course, when cut, contains a hundred stamps. This is done by a girl with a large pair of shears, cutting by hand being preferred to that of machinery, which method would destroy too many stamps. They are then passed to the perforating machine. The perforations between the stamps are effected by passing the sheets between two cylinders provided with a series of raised bands which are adjusted to a distance apart equal to that required betweeu the rows of perforations. Each ring on the upper cylinder has a series of cylindrical projections which fit corresponding depressions in the bauds of the lower cylinder; by these the perforations are punched out, and by a simple contrivance the sheet is detached from the cylinders in which it has been conducted by an endless band. The rows running longitudinally of the paper are first made, and then by a similar machine the transverse ones. This perforating machine was invented and patented by a Mr. Arthur, in 1852, and was purchased by the government for $\$ 20,000$. The sheets are next dressed once more, and then packed and labeled and stowed away in another room, preparatory to being put up in mail bags for dispatching to fulfill orders. If a single stamp is torn, or in any way mutilated, the whole sheet of one hundred is burned. Five hundred thousand are burned every week from this cause. The sheets are counted no less than eleven times during the process of manufacturing, and so great is the care taken in counting, that not a single sheet has been lost during the past twenty years.
The postage stamp would seem to be only a humdrum sort of article, which fulfills a very useful, but withal ex tremely prosaic, purpose. Yet we learn from the Chicago Inter-Ocean that it can be made a delicate and subtle medium of delightful firtation or romantic love, when skillfully manipulated by the sender of a letter and intelligently interpreted by the receiver, who by one swift glance at the stamp may instantly learn, from the manner of its affixture, whether to expect bliss or misery from the contents of the inclosed missive. The explanation of the whole matter, as given by the Inter-Ocean, is as follows: "Some ingenious per sons have given a meaning to the location of a postage stamp on a letter. For example, they say that when a stamp is in verted on the right hand upper corner it means the person written to is to write no more. If the stamp be placed on the left hand upper corner and inverted, then the writer declares his affection for the receiver of the letter. When the stamp is in the center at the top, it signifies an affirmative answer to a question, or the question, as the case may be; and when it is at the bottom, or opposite this, it is a negative. Should the stamp be on the right hand corner, at a right angle, it asks the question if the receiver of the letter loves the sender; while in the left hand corner means that the writer hates the other. There is a shade of difference between desiring one's acquaintance and friendship, for example: The stamp at the upper corner on the right expresses the former, and on the lower left hand corner means the latter. The learned in this language request their correspondents to accept their love by placing the stamp on a line with the surname, and the response is made, if the party addressed be engaged, by placing the stamp in the same place but reversing it. The writer may wish to say farewell to his sweetheart. or vice versa, and does so by placing the stamp straight up and down in the left hand corner. And so on to the end of the chapter." There are in the world about six thousand varieties of stamps. The museum at Berlin contains between four and five thousand specimens, half of which are from Europe, and the rest are from Asia, Africa, America, and Australia. Among the many kinds of decoration which have been used on stamps are coat-of-arms, stars, eagles, lions, the efflgies of five emperors, eighteen kings, three queens, one grand duke, several titled rulers of less rank, and many presidents.

STEAM BOILER NOTES

The absurdity of rating steam boilers by the extent of heating surface, meaning the areas that are exposed to the gases that emanate from the combustion of the coal, was made obvious, as it had been before, by some practical experiments made by Mr. J. Graham, an account of which was read before the Philosophical Society of Manchester, England, about the beginning of 1858 . He placed a series of vessels along over the thoroughfare of the gases of a boiler furnace. The first one, being directly over the fire, represented the crown sheet and sides of a fire box boiler, or the fire sheet of an externally fired boiler; the second, third, and fourth vessels of the same size, corresponding in regard to efficiency to successive parts of a boiler toward the chimney. Their respective rates of evaporation were as 100 pounds for the first is to 27,13 , and 8 for the other three together, making 148 in a given time.
If, now, these had been a continuous boiler instead of separate vessels they would have had a common system of separate vessels they would have had a common system of
circulation, which might somewhat modify the results; but circulation, which might somewhat modify the results; but
as it is not practicable to determine what each successive unit of a surface common to the same body of water would actually do, and as it is probable that the results, if they could be obtained, would not greatly differ, we may fairly make a comparison in boiler practice.
Mr. Perkins, some time about 1835, sought to establish the theory, in explanation of boiler explosions, that water thrown into superheated or anhydrous steam at high temperatures would flash into steam of a highly clastic character. But this is shown to be contrary to the deductions from the estab. lished laws of heat. Not only so, but experiments have uni formly failed to produce boiler explosions by this means. The experiments by a committee of the Franklin Institute, which were cited in the Scientific American of August 13, were full and exhaustive, and confirmed the laws of heat; they should be studied by every one who attempts to explain boiler explosions for the purpose of promulgating new theories.
Previous to the date of these valuable experiments the idea prevailed that boilers would not explode violently by a gradual accumulation of pressure, but would burst at the weakest place and harmlessly relieve themselves of strain. The eighth inquiry of the committee related to this subject. They made small iron and copper boilers, which they exploded by placing them in a sealed condition in a furnace prepared for the purpose in a pit. The pressure at which these boilers exploded was ascertained by a registering spring balance, so constructed as to be as safe as possible from injury.
Oue of these boilers exploded with a loud report, and was projected some distance, at a pressure of 172 pounds per square inch, $111 / 2$ atmospheres," "and," says the report, "stones and combustibles were widely scattered. A dense
cloud of smoke and flame, capped by steam, arose from the cloud
A second experiment was with a copper boiler, with similar results, the difference being in the course of the rupture which was along the head seam, it being weaker than the other joints from too close spacing of the rivets. . This second explosion occurred at a pressure of about 255 pounds, 17 atmospheres. The registering apparatus having been broken by the explosion, an accurate statement could not be made.
But Mr. Perkins' favorite thenry, as he put it, wa certainly plausible when applied to cases in which it was by
their conditions admissible. It is still believed by great numbers of enginsers who have not had the opportunity to observe for themselves to be a very common cause of explosion. It may be stated thus: water being allowed to get too low, the plates become overheated and superheat the steam, which, it was claimed, would contain a large quantity of heat. And here is where the fallacy lies, for steam has only a limited capacity for heat in its gaseous state, and, of course, can yield no more than it contains to bodies that come in contact with it in falling to the equilibrium due to the mix ture or to the contact. The theory then supposes that water is mingled with the highly heated steam either by being pumped in upon the hot plates and quickly evaporated, or projected in the form of foam into the hot steam, forming a highly elastic vapor with explosive suddenness; or else the water remaining in the boiler below the heafed plates is suddenly lifted by its contained heat and covers them, on a relief of pressure occurring from sudden escape of steam from the safety valve or by an open throttle valve on start ing the engine.
This theory was first contested by Dulong upon deductions from the known laws of heat, and others have since proved by experiments the soundness of his conclusions. A writer in the journal above quoted declares that steam has been superheated to a temperature corresponding to 900 pounds per square inch of saturated steam, but not being saturated its pressure was less than 120 pounds per square inch. In this state sufficient water was injected to completely saturate it, which, instead of causing an explosion, lowered the press re to 70 pounds.
The writer cited refers to the same experiments that are above referred to above, in reporting which the committee
say: "We see that in no case was an increase of elasticity produced by injecting water into hot and unsaturated steam, but the reverse."
Some time previous to 1849 a gentleman of Brooklyn, N.Y., claimed the Rumford Medal of Harvard University on account of a discovery which seemed to him to fulfill the
specification governing its award. He believed that steam heated out of contact with water became transformed into a new chemical compound, or perhaps a simple permanent gas, as a vehicle of heat for the steam engine. He called this newly discovered body "stamm." His communications, having been published in the Scientific American, fell under the observation of Dr. Haycroft, of Greenwich, England, who made some experiments, first in a small way, which established his faith in "stamm." His first experiment, which appeared in the Scientific American, May 10, 1850, was with a steam engine and a tubular condenser. The
cylinder was fitted with a steam jacket. He worked the cylinder was fitted with a steam jacket. He worked the
engine first with common saturated steam, which was condensed, and the resulting water measured from a given volume of steam, the volume used being determined by counting the strokes of the engine piston. One hundred and seventy strokes yielded sufficient water to fill a given measure; but on admitting steam at a temperature of 440°, or somewhere near 500 pounds pressure per square inch, 1,800 strokes or charges of steam were required to fill the same measure with condensed steam, which seemed to indicate a very great gain. From this the experimenter was induced to believe the "stamm" was at least ten times more economical than steam. He therefore bad a large engine built, and placed its cylinder in the fire, which, of course, was soon destroyed, although for a time it seemed to be successful. Subsequent experiment and calculation showed him that "stamm" returned to steam precisely such as was described by former investigators and engineers, and at atmospheric pressure occupied about 1,700 times the space that was occupied by the water from which it was generated. In consequence of the demand of Mr. Frost, the discoverer of the supposed new body or new property of steam, for the Rumford medal, some experiments were made at Harvard on the effect of superheating steam upon its expansion, which showed that 1,580 units of volume at 212° Fah. became 1,600 when heated o 216° Fah., and 1,630 at 228°, and their decision was against granting the medal to Mr. Frost.
The experiments have been since carried to an exhaustive extent, which prove that out of contact with water anhydrous steam obeys the laws of heat and expansion that govern simple gases, and that steam is a permanently gaseous compound while kept at a high temperature. It seems to follow, therefore, that when steam overcharged with heat falls by expansion in the steam engine to a temperature due to its pressure, it becomes saturated steam again, and at last water when given up its latent, which is less as the tension increases while in contact with the water of generation.
An Indiana correspondent some time ago seemed to mis understand Mr. Zerah Colburn's teachings in boiler explosion, and imputes to him a similar theory to Perkins. But Col burn seemed to have no hobby or universal theory as most writers on the subject have had. Our correspondent prop erly says, " a boiler will not explode merely from suddenly injecting a large quantity of cold water into the steam space; t would merely lower the pressure.'
Perkins' theory was doubted by Colburn, and figures were made to show its fallacy.
A terrific boiler explosion occurred near the west end of Third Street Bridge, in West Bay City, Mich., August 22, killing James Kealy, of Bay City, William J. Abrams, of West Bay City, and severely scalding Edward ,Finneron. The boiler was of the kind used for running thrashing machines, and at the time of the explosion was engaged in running a saw, sawing cedar blocks for the pavement in West Bay City. Abrams was cut in two by the boiler and horribly mangled. Half of his body was thrown over a slab pile 150 feet northwest, and the remainder to the north about half the distance. His head was terribly disfigured. He had been working here for two months as engineer. He was between 35 and 40 years of age, and it is thought came from Casevility. Mr. Kealy was 25 years of age and a native of Bay City, having a wife and child. He bad been engaged by the contractor to saw the blocks, and was superintending
the work when the boiler exploded. He was struck by a piece of iron on the neck, and was almost beheaded. He was blown about 50 feet north, and was alive when found, but died directly afterward.
Finneron was standing by Mr. Kealy's side at the time of the explosion, but was not struck by the flying pieces. He was, however, scalded very severely about the face and shoulders. A 14 year old boy, named Will Craft, who was standing on a raft of logs to the eastward about 50 yards, was struck on the hips by something, supposed to be a belt, and knocked down. Pieces of the boiler and engine, and the wagon on which they rested, were blown in all directions. The accident is the most terrible that has happened here in ment.
The jury of inquest returned a verdict to the effect that the explosion was caused by low water and the incompetency of the men baving the boiler in charge.
The boiler at Henry Moody's sawmill at Campbellsville Ky., exploded August 29. Henry Gaines was killed instantly and John Fletcher and Samuel Cook were fatally injured Benjamin Allen was badly scalded, but will probably recover Two other employes were injured, but neither seriously The explosion is said to have been caused by the use of sulphur water in the boiler.
Mineral waters should not be used in steam boilers; not so being formed, as on account of the large amount of solids
that are precipitated when these waters become concentrated by boiling. Sulphydric acid may arise from sulphur water, and although the gas mingled with certain proportions of oxygen is explosive, that is, it burns rapidiy and completely when ignited, yet it is highly improbable that it ever was the cause of an accident to a steam boiler by taking fire and exploding in the presence of saturated steam.
The boiler ou a hoisting sloop at Haverhill, Mass., exploded August 25, injuring two men, one seriously. The briler was "old and unsafe, and there were 80 pounds of steam on." The boiler of a thrashing machine exploded near Patoka, III., September 3. Six men and a woman were killed, and some of them horribly mangled. Several others were seriously scalded.

AJAX METAL.

About sixteen years ago, Mr. Francis J. Clamer, after considerable research, hit upon a peculiar chemical amalgamaion, having copper for its base and possessing extraordinary hardness and tensile strength. This substance the inventor manufactured for some years under the name of "Ajax metal." The great usefulness of the article in various arts and industries having become widely known, Mr. Elkins, of Philadelphia, at the beginning of the present year, made a business arrangement with the inventor; invested a large amount of capital in buildings and machinery; and, under the name of the Elkins Manufacturing and Gas Co., began the manufacture of the substance on a large scale. At the present time, we are informed that the daily production is about 14,000 pounds, with a demand fully equal to that amount. To mett the requirements of the various industries in which the Ajax metal is applicable, the company furnishes this product in three different grades.
Oue of these, and perhaps the most important, is for use in the manufacture of bearings for steam and horse cars and machinery generally-a purpose for which long experience has proved it superior to any other metal or combinations of metals known. A second grade is designed especially for making steam and acid valves for use in coal-oil refineries, chemical works, and other industries where the application of ordinary metals for such purposes is attended with constant loss through corrosion.
The third grade is especially adapted for making fine oramental castings (such as statuary, chandeliers, etc.) in greensand-a purpose for which it is peculiarly fitted, owing to the fact that the fluidity of the molten metal is such that the finest lines in the pattern are in every case exactly reproduced in the casting.
These various grades of the Ajax metal, which are furnished either in ingots or in castings made from patterns furnished the company, all possess the same characteristics f hardness and closeness of grain, and the same enormous tensile strength of 29,300 pounds to the square inch.
In addition to the foregoing, the company manufacture three grades of the metal in sheets. The first of these resembles 18 -carat gold in color, and can be spun into almost any shape desired without annealing and without any danger of fire-cracking. It can be brazed with the hardest copper smith's solder without burning, and will take a very high polish, fully equaling that which is given to gold. The second grade is of a lighter shade, but has the same toughness as the first; while the third is of the same color as bigh brass, but very much stronger than that metal.
The jeweler's plating composition, made by this same house, and furnished in either bars or sheets, is now so well known to manufacturing jewelers that it scarcely requires description. It need only be said that it possesses the same hardness as that of the gold generally employed for plating, and will roll out even with the gold without causing the latter to crack, thus obviating a trouble and an expense to which manufacturers of jewelry have hitherto been sub. jected. The great usefuluess of the Ajax metal in every ap. plication where toughness, hardness, tensile strength, and consequently great durability are requisite, promises a still wider field for its employment than we have briefly noted above, and its manufacture is probably destined to be ranked among our most prominent American industries.

Grain Storage in and around New York.

The great grain elevators and warehouses of this port proide storage for $22,800,000$ bushels. Their capacities are given as follows: New York Central, 2,300,000 bushels; New York, Lake Erie, and Western Railroad, Jersey City 1,500,000 bushels; Pennsylvania Railroad, Jersey City, 1,500,000 bushels; Dow's Elevators, Brooklyn, 2,500,000 bushels; Hazeltine \& Annan's Elevators, Brooklyn, 2,500, 000 bushels; Grain Warehousing Association, Brooklyn, 6.000,000 bushels; Robinson's Stores, Erie Basin, 2,800,000 bushels; Pinto's Stores, Brooklyn, $1,000,000$ bushels; Woodruff \& McLean's Stores, Brooklyn, 1,500,000 bushels; other eleva tors in New York and Brooklyn, 2,200,000 bushels.
The stock in band August 27 was: Wheat, $3,882,051$; corn, $3,070,716$; oats, $2,817,638$; barley, 7,041; rye, 9,692 ; peas, 9,713 ; malt, 82,273 -total, $9,879,124$.

The Cost of Carelessness.

The report of the New York Board of Fire Commissioners just issued gives a very interesting table, showing the number of fires in the city between June 1, 1868, and January 1, 1881, which were distinctly raced to carelessness, and the loss that has been sustained thereby. The principal items included carelessness of occupants with matches, lights,
cigars, hot ashes, 4,689 ; children playing with matches, 887 ;
defective flues and furnaces, 687; bad arrangement of stoves, 275; escaped gas, 345; fat, varnish, etc., boiling ever, 323; foul chimneys, 1,79 ; fireworks, 482 ; heat from grates or flues, 340; hot coals from grates, 133; incendiary, 347; kerosene lamps falling, 1,287; overheated stoves and pipes, 858; sparks from chimneys and engines, 900 ; spontaneous combustion, 457; vapor of naphtha, gasoline, etc., 88; window curtains catching fire 907 ; malicious mischief 236 . Of the 17,500 fires that occurred in the city during the period named, about 15,000 are accounted for under some of the above heads. With the exception of incendiary or malicious mischief, there is not one of them that might not have been prevented by ordinary care and forethought. It is estimated that at least a hundred million dollars is the money value of the loss sustained.

IMPROVED DOUBLE-ACTING STEAM PUMP.

The accompanying illustration represents a double-acting steam pump which for simple but and effective and reliable working has gained considerable favor in
England. It is the specialty of Hulme \& Lund, Manchester, and is particularly suitable for the drainage of deep mines, some pumps of this class being at work at the present time forcing water 1,200 feet vertically in one lift. Four substantial columns support the steam cylinders and serve at the same time as air vessels for the pumps. The steam valves are of the ordinary kind, worked directly from eccentrics on the shaft below. The water valves are furnished with separate bonnets or doors, and are therefore at all times capable of easy inspec ion. The flywheels are heavy, and are turned true, so that they run with accuracy and will carry a belt for driving purposes. In all parts he most suitable materials are employed. The connecting rods and shafts are made of the best scrap ron, the piston and valve rods of steel, and the glands, bushes, steps, ccentric straps, and water valves are all of the best gun metal. The pistons are furnished with metallic packing, and the joints throughout are planed and faced. All the workng parts and the packings are easy of access and of ready adjustment. Pumps of this class are specially made, capable of pumping against any pressure up to $1,000 \mathrm{lb}$. par inch.

A Hoisting Engine without Drums.

A simple and effective hoisting plant has been put into an underground shaft of the Maria Colliery, near Hoengen, in the Wurm Dis rict. The endless wire rope reach ing down to the lowest part of the shaft, 886.5 feet deep, lies on a sheave placed directly over the saft. The diameter of the sheave is made to correspond to the disance between the centers of the two hoisting compartments. The heave has a very deep groove, so that the rope cannot slip. The ages, for two mine cars of $1,000 \mathrm{lb}$. capacity, are placed side by side, so that there is room for a wrought iron tube, through which the rope passes. The cages are fastened to the rope by strong screws. The wo-cylinder hoisting engine is placed on a level with the center of the sleave and runs it through the medium of gearing, which acts upon cog wheels wedged on to each side of the rim of the sheave. Drums are thus entirely dispensed with. The engine, which is run by compressed air, has 13.4 inch cylinders and 31.5 inch stroke, with a Farcol expansion gear. It is running with 60 lb . pressure, and can easily manage 200 tons per shift of 12 hours. It is noted that the machine occupies little room, because there are no drums, and the sheave need not be placed as high. The wear of the rope is less, because it is only bent once, and the position of the hoisting cages may be readily changed. The Zeitschrift für Berg-, Huetten- und Salinen-Wesen, from which we gather the details given above, calls attention to the fact, however, that in case of breakage, the cages and the rope would be total loss.

Prolific and Long-Lived Families.
The Hartford, Conn., Post says that among recent appli cants for life insurance was one of 53 years, whose fifteen living sisters were from 35 to 63 years old, their ages running as follows: $35,36,38,40,42,43,45,47,49,51,55,57,59$,

61, 63. Another applicant stated that he was 37 years of age, and that he had eleven brothers and ten sisters. His father died at the age of 65 years, but his mother was living at 67 and was in good health. The ages of the children, twenty-two in number, ranged from 16 years to 47. The applicant was a Virginian. A third case wats of a man 32 years of age, who had eleven brothers and five sisters. His father was 68 years of age, and had just married his fifth wife. An applicant from Brooklyn belonged to a long-jived race. His father had died at the age of 80 years, his grand father at 108, and his great-grandfather at 110 years of age, the average age of the three being a trifle less than 100 years.

Distilling Alcohol by Ice

M. Raoul Pictet, of Geneva, so well known for his discoveries of the liquefaction of gases, announces the discovery of a method of distilling alcohol by ice. Two kilogrammes of ice are needed for the production of a liter of alcoho

Mr. Daniel D. Clark, of Mystic, Conn., has patented a new device for removing the motes that fall down from the saws of a cotton gin when the lint is being brushed off of the saws. The invention consists in providing a cotton gin with a mote receiver, consisting of a longitudinally flanged cylinder that straightens the cotton it leaves the saw, knocks he sand and trash out of it, and deposits the motes in a eceptacle beneath it.
A new and improved tie for bales of cotton, hay, wool, ttc. has been patented by Mr. James L. Griffin, of Cusseta, Tex. The invention consists in a metal band provided with a series of longitudinal slots at each end in combination with a plate with a button fitting into these slots on its under side, this button being passed through the slots of the two overlapped ends of the strip or band, then turned a quarter volution when the bale has been compressed sufficiently. An improved saddle girth fastening and harness buckle has been patented by Messrs. Isaac I. Lancaster and Homer A. Sears, of Goldendale, Washing. ton Ter. The invention consists in a novel construction of a plate and a pair of pivoted spring pawls, a novel girth, and certain details of construction by which provision is made for securely and quickly tight. ening or loosening the girth.
Mr. William A. Lorenz, of Brooklyn, N. Y., has patented an upright piano case. The object of this improvement is to utilize the tops of upright piano cases for holding books, sheet music, etc., by making it possible to open a cover or lid for the purpose of increasing the volume of sound without disturbing the top.
Messrs. F. W. Jensen and Carl J. L. Olsen, of New York city, has patented an improved hospital bed. Theimprovement relates to the construction of the bedstead, and to devices combined therewith for the use of the sick person. The inventors use an iron frame bedstead, the bottom of which is formed by longitudinal rods sustained by crossbars and held in place by nuts at their ends. The head and foot boards are bung in slots in the side rails, so that they can be adjusted or swung down out of the way to give free access to the person on the 'ied. Combined with the bed there is a swinging arm carrying a vessel fitted for being raised to carry the vessel tbrough an aperture provided in the bed bottom and mattress. The bed is also fitted with devices for automatically removing and replacing the cover of the vessel as it is moved to and from its place.
An improved apparatus for removing snow and ice from streets has been patented by Mr. Oscar F. Boomer, of Brooklyn, N. Y. The invention consists in laying steam pipes along the street gutters for receiving the exhaust steam from the boilers that are used for heating or mechanical purposes in the buildings bordering on the streets, or for receiving steam from other sources especially arranged for that purpose. A combined desk and folding wardrobe bed has been patented by Mr. Ernest N. Doring, of New York city. The object of this invention is to furnish folding wardrobe beds provided with desks so constructed that they can be opened

DOUBLE-ACTING STERM PUMP

that is, for the distillation of 110 gallons of alcohol a little less than a ton of ice will be required. The cost of produc tion will include only coal for working the steam engin which drives the air pump, and the sulphuric acid, the evapo ration of which produces the ice. M. Pictet declares that this will notably diminish the expense of distillation.

Large Cast Iron Wheels.

Three flywheels have been lately cast at Mr. Lycett's foundry, Wolverhampton, England, each wheel weighing 40 tons in the rim, and cast in one piece. The diameter is 26 feet; depth, 23 inches; and measure across the face, 15 inches. Each rim will have eight arms affixed, which will weigh about 25 tons, making the total weight of each whee 65 tons. Flywheels weighing 60 tons have been cast in this district before, and some of them with a diameter of 30 feet but it is believed that they have all been cast in either two or four segments, one great reason for this being that it would be impossible to convey such a ponderous piece of machiner en masse along a road. Casting them whole reduces the cost The operation of casting occupied seven minutes.
and used with as much facility as though they were only desks, and which at the same time will not interfere with the opening and closing of the wardrobe beds.

Destruction of Fish by Torpedoes.
The alarming destruction of the fish in many of the Indi ana streams by means of dynamite torpedoes, has led to the organization of a State Fish Protection Society, of which Alexander C. Jameson is president. County and local socieies are to be formed throughout the State to assist in enforcng the new fish law. Unless steps are speedily taken to prosecute the vandals who are using these torpedoes so destructively in some of our streams, the tish will to a great extent disappear
The manner in which the dynamite fisherman operates is to sink the torpedoes in the holes or deep water in the streams, and set them off with a fuse. The concussion is so great as to kill or stun all the fish within a radius of fifty tet or more, when they rise to the surface of the water. The larger ones are then scooped up in nets, and the smaller remain to rot and taint the air.

WOODPECKERS.

The peculiar characteristics of the woodpeckers are the construction of the beak, the feet, and tail. The beak is constructed for chipping away the bark and wood, the feet giving them the power to hold fast to the trunk of the tree, and the tail to support them in position, which gives to their strokes the greatest force. Their beaks are long, powerful, straight, and pointed; their feet, formed for grasping, are set far back upon the body; their tails are short and stiff, and act as props when pressed upon the rough bark. Wood peckers were for a long time thought to be injurious to trees, but that prejudice naturalists now agree was wholly an error. Often, in walking through the woods or orchards there will be seen strewn in profusion, at the foot of a tree flakes of bark and chips of wood, sure signs of the wood pecker's industry. It looks as though a work of destruction was being carried on, but these flakes, having become separated from the living bark of the tree, were mere excres cences under which insects and their larvæ found shelter and to obtain them for food the woodpecker removes the dead flakes of bark and wood, so that in reality, instead of being an enemy to the farmer, he is one of his most faith ful servants.
The woodpecker makes its nest in a tunnel which it excilvates in the unsound timbers. Water, when admitted to a ree, causes its center to decay; but if a perforation is made through the trunk, gallon after gallon of dark brown water will rush out, mixed with ragments of decayed wood, howing the extent of the damage done. This often ocurs when a branch has been blown off close to the trunk; the woodpecker is quick to discover it, and begins to cut a tunnel.
Wilson and Audubon both state that many of our woodpeckers will excavate tunnels in apparently sound and unde cayed wood, boring through several inches, till they reach the decayed portions of the center of the tree.
The burrowing powers of the great giant gray-bellied woodpecker are marvelous, its chisel-like beak having been known to chip splinters from a mahogany table, and to cut a hole fifteen inches in width through a lath-andplaster partition. Even the small downy woodpecker is able to bore its way through solid wood of a tree, making an ingenious nest, the burrows sloping for some six or eight inches, then being driven perpendicularly down the tree. The tunnel is barely wide enough to admit of the passage of the body of the bird. But the perpendicular hole is roomy, and is fitted up in a style sufficient to dig. nify it with the name of a chamber. The male and female woodpeckers labor alternately in the burrowing and making of the nest, but they find an implacable enemy in find an implacable enemy in the saucy little wren, who, when the woodpeckers' apart ments are ready for cccupancy, coolly takes possession, and holds them against the builders and proprietors, notwith standing their vehement and noisy expostulations.
Picus principalis is distinguished by a superb red carmine crest and bill of polished ivory. This is indeed no common bird, but is a king among his kind. No fence rails for him to perch upon, but rather the tops of lofty trees, the giant pines of the cypress swamps, where the trumpeting notes and loud strokes awaken and reawaken the echoes. From the base of some of these enormous pine trees cartloads of bark have been removed, and the trees so perforated with holes that it would seem to be impossible that it was th work of birds.

The Sense of Hearing.

Some observations on hearing have been lately recorded, which suggest striking analogies between that sense and vision. Herr Urbanttschitsch, in Pfuger's Archiv, indicates a way of demonstrating "fatigue" of the ear. Two tubes having been adapted to the ears so that a given sound equally affects the latter, a strong tuning fork is vigorously sounded and brought to the mouth of one tube for a few seconds. It is then deadened somewhat, but not wholly, by touch. The ear on that side then fails to catch the weak sound, but if the fork be brought to the other tube the sound is heard distinctly. The fatigue passes off in two to tive seconds. A weaker tone of different pitch from the strong one is heard equally with both ears. Again, the same author has experimented with regard to subjective sensations of sound oc̣curring after a stronğ tone has been heard
for a little. The after sensation may come close upon the other, or be separated from it by a short pause. In the latter case (the only one studied as yet by the author) the pause varies up to fifteen seconds; then the sensation is revived, gen. erally for five to ten seconds, then a pause and a renewal of the sensation, etc. Some persons have only one after sensation, while others have as many as six or eight. The time thus occupied (from cessation of the objective tone) is seldom over two minutes. A correspondent of the Cleveland (Ohio) Leader has described some experiences of his own in hearing which remind one of color blindness. Certain sounds he never hears-e. g., the song of birds. A room might be full of canary birds all singing, but he would never hear a note, though he would hear the fluttering of their wings. Nor does he hear the hissing sound of the human voice. He was taught to make it, and he never makes it without effort. About a quarter of the sounds of the human voice he fails to hear; and he has to be guided a good deal by the motion of the lips and the sense of remarks made. The upper notes of musical instruments he misses, but he hears the lower ones. In the Pennsylvania Medical Society, once more, Dr. Turnbull has recently called attention to the danger to life and property arising from deafness on the part of railway men, a considerable minority of whom have ear affections resulting from the conditions of their work. After iting personal observations and the evidence collected by affections resulting from the conditions of their work. After from ofticial and other sources
citing personal observations and the evidence collected by used to the following three: F
Moon and Hirt, he recommended that all candidates for yart, when practicable; second no immunity. follows:

and, finally, in the brain and lungs. Grawitz, like the
French observers, has also found that the inoculation either French observers, has also found that the inoculation either of large doses of fungi of low "culture," or of smaller deleteries of the organisms which have acquired more future tivated spores, not suited to the animal organism, confers

Grawitz attempts to explain these facts by the following theory. The organs are invaded by colonies of organisms, in the order of the functional activity of their cells, taking as the measure of that activity the consumption of oxygen in a given time. He speculates that the germs in contact with the anatomical elements of the organism attack fir.. those which have the least vital power of resistance, and somewhat fancifully suggests that the tissue elements, if successful in the struggle, acquire an increased power of resistance, which they transmit to their successors.-Lancet.

The Phylloxera in France

Mr. C. H. Perceval, H. M. Consul at Borfeaux, reports as
'The information which I have gathered on this subject.解 yart, when practicable; secondly, by employing insecticides. and, thirdly, where the vine yards have been destroyed, by the plantation of American varieties of vines, whose roots offer more resistance to the attack of the insect. M. Armand Lalande, the President of the Chamber of Commerce of Bordeaux, proprietor of extensive vineyards in the Médoc, a gentleman to whom I am much indebted for the information and assistance which he has been kind enough to afford me in drawing up this report, addressed a meeting of that body held in March last on various topics, and I translate the following from his remarks regarding the phylloxera: - The Chamber of Commerce has not ceased to show the extreme importance which it attaches to all the means ployable in the means employable in combating this
dreadful scourge. Of the $2,200,000$ hectares which composed the vineyardsof France, 500,000 are destroyed, 500,000 others are greatly attacked; it is a loss of more than three milliards to the country. The Gironde is one of the deprt ments which has suffered most; one third of the vineyards are destroyed, another third is badly attacked. We must admit, with sorrow, that the very sources of our commerce and of the well being of our southern population are most seriously com promised Stillwe havegre hopes that, by energetic and railway service should be carefully tested as to hearing by [intelligent efforts, we may be enabled gradually to arrest the company's physician, who should also report to the superintendent each case of deafness discovered in locomotive men, so that they might be transferred to positions where perfect hearing is less important.

Prophylactic Inoculation of Germs.

Prophylactic inoculation, which has been so carefully in vestigated in France, was the subject of communication by Grawitz to the recent Surgical Congress at Berlin, which dwelt also with the question of the transformation of innocent into deleterious organisms. Fungi which grow in bread, milk, etc., develop in an acid medium and at the ordinary temperature. Inoculated in an animal, they rapidly die, being in uncongenial conditions; but by successive systematic cultivation Grawitz has succeeded in acclimatizing the fungi in a medium, such as the blood, of a decided alkaline reaction, and at a temperature of $37^{\circ} \mathrm{C}$. They are found to have then become infectious germs, the degree of their deleterinus action being proportioned to their power of adaptation to their new conditions of existence
Inoculating rabbits with the products of cultures more and more perfect, Grawitz has noted a progressive increase, not only in the intensity of the disorders thus produced, but also in the localization of the local lesions. As soon as the pores are sufficiently adapted to the conditions of the blood, they become established in the kidneys and in the liver, accumulating in foci, and causing swelling of the organ, and fatty degeneration of the cells. With still more highly developed products of culture, colonies of parasites are met with in the muscles, then in the intestines, in the spleen,
nntelligent efforts, we may be enabled gradually to arrest
and repair the evil. For the very important vineyards of and repair the evil. For the very important vineyards of
the Gironde, where submersion is possible, it is a sure reme the Gironde, where submersion is possible, it is a sure reme
dy, which is generally employed, and with invariable suc cess. In the cases of vineyards already destroyed, the remedy seems to be to reconstitute them by planting American vines as stocks for grafting French cuttings on, which plan has been the subject of satisfactory and conclusive experiments for the last few years, especially in Lanruedoc. Where the vines are not too far gone, a judicious use of sulphur of carbon is a certain means of preservation, and, in most cases, practicable, owing to the moderation of the cost.' '

The Mississippi and Tributaries.
A pamphlet on the Mississippi River and its tributaries gives the following statement of the mileage of the navigable portion of each of the following-named rivers above its mouth: Missouri, 3,129; Mississippi, 2,161;Ohio, 1,021; Red 986; Arkansas, 884; White, 779; Tennessee, 789; Cumberland 900; Yellowstone, 474; Ouachita, 384; Wabash, 365; Alle gheny, 325; Osage, 363; Minnesota, 295; Sunflower, 271 Illinois, 270; Yazco, 226; Black (Ark.), 112; Gren, 200; St. Francis, 180 Tallatiatchie, 175; Wisconsin, 160; Deer Creek, 116; Tensas, 112; Monongahela, 110; Kentucky, 105; Bartholomew, 100; Kanawha, 94; Muskingum, 94; Chip pewa, 90; Iowa, 80; Big Hatchie, 75; St. Croix, 65; Rock 65; Black (La.), 61; Macon, 60; Bœuf, 53; Big Horn, 50 Clinton, 50; Little Red, 49; Big Cypress and Lake, 44; Big Black, 35; Dauchitte, 33. Total number of rivers, 33; total number of miles of navigation at present, 15,710.

A Balloon Experiment.

After waiting several days for favorable weather, Prof. King's balloon, " Great Northwest," was started on its way to the East from Minneapolis, Minn., September 12. Prof. King was accompanied by Mr. Upton, of the Signal Service, and five newspaper correspondents. The balloon rose about 3,000 feet, and drifted slowly in a southeasterly course. It dropped near Fort Snelling, and nearly fell into the Mississippi River. A liberal discharge of ballast secured another ascent, but a brief one, and the ballonn came to ground in the woods near St. Paul. When the wind rose it was deemed too violent, and the project was abandoned.

Passenger Birds.

According to a writer in Nature, the small migratory birds hat are unable to perform the flight of 350 miles across the Mediterranean Sea are carried across on the backs of cranes. In the autumn many flocks of cranes may be seen coming from the north, with the first cold blast from that quarter, flying low, and uttering a peculiar cry, as if of alarm, as they circle over the cultivated plains. Little birds of every species may be seen flying up to them, while the twittering songs of those already comfortably settled upon their backs may be distinctly heard. But for this kind provision of naiure, numerous varieties of small birds would be come extinct in northern countries, as the cold winters would kill them.

Natural Gas in Iron Works.

A correspondent of a Pennsylvania paper thus describes the use of natural gas in the Kittanning (Pa.) Iron W orks. The gas is brought from a well some three miles distant, in four inch casing, and at the mill is distributed among eighteen boiling furnaces. The furnaces are the same as those in which coal is used. The gas enters the rear of the furnaces in three small pipes, shaped at the end like a noz zle. There being quite a pressure, the gas enters with considerable force, and by means of dampers to regulate the draught, an intense and uniform heat is obtained. After a heat the furnace is cooled and prepared for the next heat, in the same manner as with coal. When the metal is in place the gas is turned on, and the operation of puddling is the same with the exception that it is somewhat slower.
The puddlers like the gas very much, as it reduces their abor to some extent, and they say they can make better weight than with coal. The furnaces being free from sul phur, a better quality of iron is produced, and it brings a slightly advanced price in the market. These furnaces have been running all the time for some months past, and have used nothing but gas for fuel, which has proved satisfac tory in every respect, is found to be much cheaper than coal, and bas demonstrated the fact that this vast amount of natural gas, now going to waste, might be used in all ou ron manufactories.
Mr. R. L. Brown, having purchased another and larger well, has organized a stock company, and is about negotiat ing for the erection of a steel works, to be run with gas Mr. Brown claims that he has a process by which he can manufacture steel of a superior quality and with less expense han by any process now in use.
Should this latter enterprise prove a success, the same par ties who have control of the old Cowanshannock gas well propose to erect glass works, and will apply the gas to the manufacture of glass.
The gas which I have referred to as supplying the boiling furnaces is brought, as I said, a distance of three miles wes of Kittanning, in East Franklin township, about ten miles from any oil development, the nearest oil well being at Great Leather. The gas well was put down two or three years ago as a test well for oil on the Reed farm; and wes left to burn and go to waste until Major Beale and others bought the well with the idea of making lampblack. But the mill proposed to utilize it for fuel, and it has done so with the most satisfactory results. Only one half of the well's production is in fact consumed by the eighteen fur naces here described.

Notes on Wheel Making.

The first thing that gives way on a buggy is commonly the wheels. I have frequently seen new buggies go out of the hop, and before they had been out a dozen times the spokes would commence to squeak and work in the hub, or one or more of the wheels would dish back. The question then arises, is the woodworker to blame, or is it the carelessnes of the smith in setting the tire, or does the fault lie in the selection of the timber used in making the wheels? Let us try and see where the trouble lies.
In the first place, the manufacturer may make a grand mistake in the selection of his timber. Some have an idea that they must have good spokes any way, but are not so particular about the hub or rim; while others must have the hardest hub they can find, saying: "I have got a fine set of hubs, but mixed or forest growth spokes will do well enough." Now we will sce how such wheels turn out. We find, after they have been run a short time, that around the mortise of the hub the paint is cracked, the dish is out of the wheel, and the owner of the buggy is mad enough to kill the wheelmaker and blacksmith, and swears he never
will pay the balance due on that buggy until he puts on a will pay the balance due on that buggy until he puts on new set of wheels.
Well, the carriage maker goes to work and puts in a new set of hubs that he happens to have in the shop of much
softer timber than the first ones. He thinks these are good enough, but gets the best second-growth spokes he can find. The new wheels are finished, but in a short time they work just the same as the first.
Now the difficulty in the first set was a soft spoke driven in a hub as hard as iron; while, in the second case, a hard spoke was driven into a soft hub. Point first: Caremust be taken to have the hub and spoke of the same hardness. Point second: A tolerably good set of wheels can be made out of softer timber, providing this rule is observed.
Next, wheels should be made with the spoke driven straight, and the tenon on the spoke should have but little taper, as by driving spokes like a wedge into a hub they are more liable to work back and get loose.
In regard to the rims, great care should be taken not to have them too long, for this prevents the tire from supportng the wheel.
A great deal has been said in the $H u b$ about the proper dish of a wheel, some claiming one-half of an inch, while others claim that one-fourth of an inch is sufficient. A wheel with but little dish looks well to the eye, but my experience has been that three-quarters of an inch is not too much to make a durable wheel.

Scott Smallwood.
Chicago, July 23, 1881.
statistics of Cotton.
The report of Census Agent Eugene W. Hilgard, just sub mitted, shows the acreage and production of cotton by State for the year 1879, as follows:

States.	$\begin{gathered} \text { Acres. } \\ 2,093,330 \end{gathered}$		Bales. 955,808
Mississippi.			
Georgia.	2.617,138		814,441
Texas	2,173,732		803,642
Alabama.	2,330,086		699,654
Arkansas.	1,042,976		608,256
South Carolina.	1,364,249		522,544
Luuisiana	864,787		508,569
North Carolina.	893,153		389,598
Tennessee.	722,569		330,644
Florida.	245,595		54,997
Missouri.	32,711		19,733
Indian Territory.	35,000		17,000
Virginia.	24,900		11,000
Kentucky	2,667		1,367
The average product per acre in pounds was:			
States.	Seed	Lint.	Cotton Seed.
Mississippi.	651	217	434
Georgia	. 444	148	296
Texas.	528	176	352
Alabama.		143	286
Arkansas.	831	277	554
South Carolina.	546	182	364
Louisiana	837	279	558
North Carolina	.. 621	207	414
Tennessee.	.. 651	217	434
Florida.	318	106	212
Missouri.		287	574
Indian Territory..		231	462
Virginia....		218	436
Kentucky..	729	243	486

Rain in the United States.

Mr. Henry Gannett, geographer of the tenth census, has issued a report showing the distribution of rain-fall through out the United States and the distribution of population according to rain-fall. It appears that the highest annual ain-fall in the country has been 150 inches, which was reached for one year only in Puget Sound. The average annual fall upon the surface of the United States, exclusive of Alaska, was, in 1880, 29 inches. This average implies a large area unfit for the purposes of vegetation, which with the rapid evaporation that occurs on this continent, requires a much higher ratio of moisture. Hence, population is found to center principally on such parts of our surface as have rom 35 to 50 inches of rain. The following table from Mr Gannett's compilations will show the relation between rain all and number and density of population in the United States in 1880:

Inches of Rain-fall.	Population.	Pop. per Sqr. Mile.	Percentag of total Population
60 and above.	855,680	$12 \cdot 4$	1.70
55-60	2,813,866	19.7	$5 \cdot 61$
50-55	4,311,502	$22 \cdot 1$	8.60
45-50	12,754,479	577	2543
40-45	11,357,292	$40 \cdot 1$	$22 \cdot 65$
35-40	10,057,170	$38 \cdot 6$	20.05
. 30-35	4,993,336	23.0	$9 \cdot 96$
25-30	1,179,136	8.7	$2 \cdot 35$
20-25	829,340	$3 \cdot 8$	$1 \cdot 65$
15-20	537,323	13	1.07
10-15	309,438	$0 \cdot 6$	$1 \cdot 62$
Below	154,304	$0 \cdot 6$	$0 \cdot 8$

The heaviest population is in the classes between 35 to 50 aches, which comprise $71 \frac{89}{100}$ per cent of the total populaion of the country, while the classes between 30 and 60 inches comprise $92 \frac{2}{10}$ per cent of the population. The densest settlement is in the class 45 to 50 , which also contains the greatest absolute jopulation. In this class also is the 50 appears to best suit the purposes of wealth-making for a larger number of our people have settled within an area having that fall than in any other. From the data above iven, we reckon that the total rain-fall in the United States, xclusive of Alaska, in 1880, was 414.999,040,307,660,000 cubic inches, or $1,796,532,642,000,000$ gallons, which is about double the water contents of Lake Erie and Lake Ontario combined, these lakes containing 893,158,008,000,000 gallons. This will afford some idea of the extent of the vaporation effected on our $3,026,494$ square miles of surface within twelve months.

MECHANICAL INVENTIONS

An improvement in pistons has been patented by Mr. Henry Waterman, of Brooklyn, N. Y. This improvement relates to pistons having their main portions formed by expansible rings carried by a central hub and face plates. The invention consists in the combination, with these essenial portions, of devices that give solid and adjustable backing to the rings; also, in a metallic packing disk for the joint between the face plate and rings.
Mr. William P. Brosius, of Rickmond, Va., has patented seam gauge for determining the amount of lap in sewing ogether two pieces of leather in the manufacture of boots and shoes, or in connecting parts of any other material, so that a uniform amount of lap is preserved and the line of stitching kept at the proper distance from and in parallel position with the edge. It is an improvement in that form of gauge in which a guide face is arranged to rest in the plane of one of the sections of work and bear against its edge, and a second guide face is arranged in the plane of the other sections of the work and is arranged to bear against the other edge, and the distance between which two faces may be varied to regulate the width of the lap.
An improved nut lock has been patented by Mr. John B. Abernathy, of Covington, Ky. The invention consists in a nut provided with a threaded central recess or cavity in its upper surface to receive a central threaded projection of a second nut, which is screwed on the bolt after the first nut, the threads of the projection taking in those of the cavity, thus uniting the two nuts.
Mr. Samuel W. Evans, of New Orleans, La., has patented an improved apparatus for holding a hose nozzle in any position, thereby enabling a person to direct a stream of waterin any desired direction. The invention consists in a ring or sleeve for receiving the nozzle, and provided with trunuions journaled in uprights of a plate swiveled on an upright pivoted to a folding base frame, provided on the under side with spikes to prevent it from slipping.

Gelatine Emulsion.

Mr. A. L. Henderson, of London, lately gave a demonstration of the method of preparing a gelatino-bromide emulsion he has for some time past been working with great success. The following is his formula and method of working:
Make a solution of 200 grains of sil ver nitrate in 4 ounces of water, then add sufficient ammonia to redissolve the precipitate thus formed (about $21 / 2$ drachms of ammonia are requisite for this purpose). This solution of ammonia nitrate of silver is now heated to about $100^{\circ} \mathrm{Fab}$., and the following solution, also heated to about the same tempera. ture, is poured slowly into it (the mixture being stirred with a glass rod meanwhile): Gelatine, $1 / 2$ ounce; ammonia-bromide, 150 grains; ammonia, 2 drops; water, 4 ounces.
The emulsion is now cooled as rapidly as possible, and then forced through a fine gauze disk, and washed by means of a stream of water. The emulsion thus obtained is of a grayish-blue tint, of a very fine grain, and extremely sensitive. The rapidity is increased in the same proportion as the silver nitrate is converted into ammonia nitrate, thus (for example), if 20 per cent only is converted into ammonia nitrate, the plate will not be nearly as rapid as if the whole, or nearly the whole, of the silver is converted.
Another important point in this process is that the bromide of silver is formed in an excess of silver, thereby giving greater rapidity and density.
This emulsion is so rapid that even an Edwards lamp with a ruby chimney (that will stand the spectroscopic test) and two thicknesses of ruby paper is not too safe a light.
The emulsion may be converted into pellicle by pouring it lowly (after washing) into three times its bulk of alcohol, stirring meantime. The precipitated emulsion will cling round the rod in a spongy form, but by a little working with the hand the whole will be reduced to the size of a walnut, It must then be torn into small pieces and dried in a current of air. The weight of this quantity, when thoroughly dried, of air. The weight of thi
This pellicle will keep an indefinite time, and when wanted for use has only to be redissolved in 10 to 12 ounces of water, and strained, when it is ready for coating.

Photo Substitute for Glass.

Professor Stebbing, of Paris, has made a new film substitute for glass plates, which has been laid before the French Photographic Society. The basis of the support is gelatine, rendered insoluble, and the tissue is of such thickness as to be easily handled even when wet, without the slightest danger of injury. It is pliable and "leathery" in its character, thus obviating any tendency to fracture from accidental bending as would be the case possibly if the gelatine were more brittle. The development of these film negatives is extremely simple. It is first of all necessary to take means to prevent the developing solution from passing between the sensitive film and the support. This is effected by drawing the edges of the undeveloped tissue between the thumb and forefinger, which have been previously slightly greased with tallow. The film is then laid in a disb and developed in the ordinary way. When:the action of the developer is complete the solution is poured off and the negative wasked while still in the dish; in fact, the whole of the operations are performed in the one dish, so that the film is submitted to as little handling as possible. After a short immersion in chrome alum the negative is finally washed and spread pon a sheet of glass to dry. Here the great difficulty pre viously experienced in getting the films to dry flat has bee
overcome by Mr. Stebbing in a very simple way. When the film negative has been laid smoothly upon the glass a nar row strip of gummed paper is laid along each edge, attaching t firmly to the glass, so that when dry it is stretched perfectly tight; the paper can then be cut and the negativ detached.

Fire Risk from Spontaneous Combustion.-An Inven

 tion Wanted.The President of the Boston Manufacturers' Mutual Fire Insurauce Company, Mr. Edward Atkinson, states in a recent circular to millowners that since the beginning of 1878 the everal mutual companies have lost over $\$ 300,000$ from fires in dry houses or finishing departments of print works, all caused by the spontaneous combustion of dyed cotton goods o yarn. The loss to the millowners must have been muc greater, since, as in the recent fire in the finishing and pack ing department of the Slater Mills, a comparatively smal fire may seriously interrupt the business of a large establish ment. Within the period mentioned there were nine othe fires from spontaneous combustion of dyed goods, which vere extinguished with little or no loss. All the fires of this class occurred in the night or in the early morning before bell-time. In several cases the watchman passed the points where the fires originated a little before the outbreak, and perceived no smell or other sign of fire. In one case a watchman entered a room in which there was a pile of dyed yarn upon the floor. There was no smoke or other sign of fire; but as the watchman approached the yarn it burst int flames. The movement of the air, or the influx of fresh air when the door was opened,
needed for rapid combustion
According to a report of the Massachusetes State Assayer Mr. S. Dana Hayes, to whom the question of the origin of uch fires was submitted, there are several colors produced in calico print-works and in dye-houses which are sources of danger from combustion, and which should be most care fully made and controlled. They are the colors developed, after the materials have been applied to the cloth or yarn, by chemical reactions in the tissues, with the production of heat, and also by the aid of heat applied to the fabrics in the aging boxes and chambers.
The development of these colors is believed to be obtained by oxidation-by the union of oxygen, derived from the atmosphere or from oxidizing ingredients of the color-mix ture, with the coloring matter itself, on the cloth-in much the same way that the oxygen of the air unites with linseed oil, when exposed upon rags or other porous materials, pro ducing heat and "spontaneous" combustion. That dangerous chemical action goes on is proved by the increase of temperature, and, in the case of developing colors, by th disengagement of acetic acid and other vapors.
The color dyes in the aging of which heat is developed to a degree making combustion liable are: black made from aniline or its salts, and even in logwood and iron blacks browns made from catechu, cutch, gambier, or terra japonica; iron buffs; indigo blue; and in preparing cloth with oil for Turkey red.
These colors are produced by oxidation, and are therefore dangerous.
They may cause fires, and they often weaken fabrics unless the aging process is carefully watched.
The most effective means of preventing loss from fires pontaneously generated have proved to be automatic sprinklers and plastering overhead on wire lathing with the covering of exposed woodwork with tin. To prevent the loss incident to the injury of goods by over-heating is not so easy. The insurance company named above are convinced that the problems involved must be reinvestigated in complete and systematic manner before any hope can be reasonably entertained of economically preventing the risk and difficulties now encountered.
To further such investigations they have engaged a gradu ate of the Massachusetts Institute of Technology, who under the supervision of Prof. John M. Ordway, will make a special study of the processes now in use to see if some general principles or methods cannot be determined of wider application than any now controlling the common practice.
The main fault in the usual methods of drying yarns, Mr. Atkinson believes to be that "no consideration has been given to the fact that $a i r$ is merely an instrument which may be used to take up moisture from the goods and carry it somewhere else; or that its power is greater or less, as such an instrument, not only in proportion to the heat imparted to it, but in some measure in proportion to the removal of th moisture already in it, before it is used."
It seems scarcely credible that this obvious truth has been so largely overlooked as Mr. Atkinson asserts; in other words, that practical men would expect to dry yarn in air already saturated, however hot.
But facts are stubborn things, and facts like the following are significant. Mr. Atkinson says:
' In one case the air intended to be used for drying purposes has been taken from a wet scouring-room, where it had already become saturated with moisture, and could only become a suitable instrument to take up more by being heated to excess. In another case, the same air has been kept in circulation at a very high degree of heat, with no ventilation, and no chance for fresh air to come into the room except through cracks. In this case, the only deposi-
tion of moisture of any great moment must have been at night, when the room became cooler."
Mr . Atkinson states as a well ascertained fact that if drying
can be compassed at a degree of heat lessthan $120^{\circ} \mathrm{Fah}$. no
injury will be done either to the stock of cotton or wool; but if a degree of heat greater than 120° is used, the tibers are more or less baked and the yarn made harsh and brittle. Most of the drying of dyed cotton and dyed yarn is now done at a higher temperature than 120°, and it is commonly held that a less heat would not dry with sufficient rapidity. There is obviously an opportunity here for a profitable nvention by means of which yarn can be dried at a low temperature, and the heat developed in the oxidation of dyes in yarns and fabrics carried off so rapidly as to obviate the risk both of spontaneous combustion and the injury fabrics by internal heating. Our inventive readers will do well to think of it. Meantime it is to be hoped that managers of print-works will further wherever possible the investigation which the insurance company's expert is making. Prof. Ordway's report of results cannot fail to be valuable.

Spontaneous Forests.

A writer in a West Virginia paper combats the opinion held by many arboriculturists, that an open country is never converted into a forest through the operation of natural causes, and, as establishing the fact that such change does sometimes occur, brings forward the case of the Shenandoah Valley. When first settled, about 160 years ago, it was an open prairie-like region covered with tall grass, on which fed herds of deer, buffalo, elk, etc., and having no timber, except on ridgy portions of it; but in consequence of its settlement, the annual fires were pre vented, and trees sprang up almost as thickly and regularly as if seed had been planted. These forests, having been preserved by the farmers, cover now a large part of the surface with hard wood trees of superior excellence. These facts would also seem to substantiate the theory that the treeless character of the prairies of the West is due to the annual burning of the grass by the Indians.

Boil Doubtful Milk.

It is with the following words that Dr. Pichon closes his account of the epizootic of 1879-80: "Most authors are silent as to the quality of the milk yielded by cattle during the prevalence of epizootics. It is possible that experienc has not as yet supplied sufficient ground for its condemnaion, and it is true that while a diminution of milk secretion is usually an early symptom in almost all diseases of the cow, complete suppression of that secretion accompanies any aggravation or prolongation of disease. The source of dan ger is thus removed by the operation of natural causes, and the discussion is narrowed to the question whether milk secreted at the very onset may not have acquired hurtfu properties. In this state of uncertainty, which has not been cleared up by any authority on hygiene, the precaution of boiling the milk should be adopted. Boiling destroys an infective germs that it may contain.'

How Our Fresh Meat is Handled.

A prominent dealer in live stock gives the Tribune the fol lowing facts and figures relative to the trade in cattle, sheep and bogs in and around this city
The cattle come to Jersey City mostly by the Pennsylva ia Railroad, which brings the cattle shipped by the Baltimore and Ohio from Southern points. Many also come by the Erie Road. The majority are shipped from Chicago, St. Louis, and Cincinnati, by dealers in those places who re either interested with the sellers in New York or hav their stock sold on commission, the charge for which is gen erally $\$ 1.50$ per head. The best bullocks for beef come a this time of year from Ohio and Kentucky, and in the winter rom Illinois and Missouri.
The breeds are usually natives or grade Shorthorns and Durhams. Illinois, Iowa, Missouri, and Kansas are the States where the most corn is fed to bullocks, and the stock from those States, therefore, makes superior beef. A great many beeves are coming from the plains of Colorado, and re very fair stock. About 40 per cent. of the arrivals at his time of the year are Texans and Colorado half-breeds. They are composed in a great measure of bone and horn,
and usually bring very low prices. As the country is more and usually bring very low prices. As the country is mor andie, but they are still the subject of a few stray "cuss words" from drovers and butchers.
The Cherokee cattle raised by the Indians are much like the Texans, only smaller and neater. Some dealers buy the Texas cattle and fatten them on corn in Illinois, Kansas, and Missouri, and so make fair beef of them. Others, in Cincinnati, Chicago, Sterling, and Peoria, Ill., and Cyntbi ana, Ky., fat many Texas steers on distillery refuse or 'slops",-the grain after it has been distilled. This feed makes healthy meat of fair quality. Some say, however that the meat of this kind is softer and more flabby, and that a distillery-fed animal will die in very warm weather when a corn-fed one will be in good condition
The cattle-growing part of the country has moved West rapidly in the last few years, as the new States have been pened up, until now the most of the stock coming to this market is raised west of the Mississippi. Kansas, Nebraska Colorado, Iowa, and Missouri have taken the business from Ohio, Indiana, and Illinois, and many farmers in the latter States are turning their attention to raising sheep and hogs as more profitable. Chicago is the great cattle depot of the country, and handles about 30,000 head a week, while New York's average was, last year, 13,018. But Chicago is a
distributing point, while New York is a market. New York eats most of the live stock she receives, while Chicago has much more than she can masticate, and so sends it away. Live stock usually stops over several hours in Chicago, and is again unloaded, watered, and fed at Pittsburg, or some other point on the way to New York. The trains arrive at Jersey City at all hours of the night. The cars are open or "slatted," and the animals are found to ride best put in loose with no stalls. Extra floors are put in for sheep and hogs. The cars hold fifteen to nineteen native bullocks or twenty to twenty-five Texans. The arrivals are nearly a hundred and fifty cars daily.
At daylight the sales begin and last till about 12 o'clock. The buyers are wholesale slaughterers and shippers. These glance through the yard, look at the bulletin of animals, and then begin to bargain for some lot of cattle which has struck their fancy. If the supply is small, however, they will not bargain long, for fear a rival may step in and "leave them in the cold." There are three market days at the cattle yards-Monday, Wednesday, and Friday-Monday being the principal one. At one time Sunday was the principal day for selling cattle. When a slaughterer has selected bis cattle they are driven up to the scales, on which about forty can be weighed at once.
A well-fatted native steer will weigh from 1,200 to 1,500 pounds; occasionally they go as high as 2,500 pounds. The dealers in New York have a curiousway of selling bullocks, which is different from any other market, and as unique in its way as the tenaciousness with which the New York potato dealers cling to the "York shilling" in their business. A bullock is sold at its dress weight before it is dressedthat is, a lean animal would be estimated to dress fifty-three to fifty five pounds a bundred, a good one fifty-six to fiftynine, and fancy ones sixty to sixty-two pounds. Thus, for every hundred pounds of live weight the price per pound of dressed beef is charged on the number of pounds the animal is estimated to dress a hundred.
The Jersey City Stock Yards are owned by the Central Stock and Transit Company, and they are a heavy-paying investment. The charge for every head of cattle coming to the yard is 45 cents, called "yardage," and this pays for very little more accommodations than a railroad company usually furnishes for nothing in the shape of depots The company also charges $\$ 2.50$ per hundred for hay, an outrageous price, but one which the cattle men are compelled to pay. The charges are about as heavy at the other principal market of this city, the Sixtieth-street yards, the two being virtually under the same management. The Six-tieth-street yards accommodate particularly the stock coming over the New York Central and Erie railroads, and nearly as many cattle arrive there as at the Jersey City yards. The method of handling and selling is the same.
The hog yards for the New York Central Railroad are situated at Fortieth street and Eleventh avenue, where about 10,000 hogs are now arriving and being slaughtered every week. New pens for the brutes are building, which will lessen the inevitable smell from the swine. They are shipped mainly from Chicago, which now far eclipses Cincinnati in its hog traffic, and which handles from 100,000 a week in summer to 50,000 and 60,000 a day in winter.
The supply of sheep is divided about equally between Jersey City and Sixtieth street. They are shipped largely from Ohio, Indiana, and New York. Lambs now are arriving mainly from Kentucky and Virginia, and they later will come from New York State and Canada. The stock yards around New York bave changed a great deal in the past few years, the old ones at Communipaw, Weehawken, and other points being discontinued, until they have narrowed down to three large yards, one of which-Fortieth streetis solely for swine.

To Remove Ink Stains

The Journal de Pharmacie d'Anvers recommends pyro phosphate of soda for the removal of ink stains. This salt does not injure vegetable fiber and yields colorless compounds with the ferric oxide of the ink. It is best to first apply tallow to the ink spot, then wash in a solution of pyrophos phate until both tallow and ink have disappeared.
Stains of red aniline ink may be removed by moistening he spot with strong alcohol acidulated with nitric acid Unless the stain is produced by eosine, it disappears without difficulty. Paper is bardly affected by the process; still it is always advisable to make a blank experiment first.

Pearl Hunting in Tennessee.

The search for pearls in the mussels of Ohio has been a considerable industry for years. The Nashville American eports an outbreak of pearl hunting in Stones River, Ruther ford County, Tennessee. Not less than 500 people were engaged daily in raking the bottom of that stream, delving down in the mud for mussels, which are piled along the banks, opened, and critically examined for the treasures contained in many of them. One pearl is reported for which 80 was paid in New York. The general range of value, $\$$ however, is said to be from 50 cents to $\$ 25$.

A Shoe Black Plant.

The "shoe-black plant" is the popular name of the Hibiscus rosa sinensis in New South Wales. Its showy scaret flowers contain a mucilaginous juice which gives a glossy finish to leather. The plant grows freely in almost any kind of soil, and the flowers are much used when dry as a substitute for shoe-blacking. They may be used with or without a brush.

Mr. H. P. Feister, the well known mechanical engi-
neer, has resigned the superintendence of the machine neer, has resigned the superintendence of the machine
works of Messrs. Rex \& Bockius, of Philadelphia, and works of Messrs. Rex \& Bockius, of Philadelphia, and
assumed the superintendence and general management
of the Franklin Machine Works. tor, 517 to 521 Minor street. Philadelphia. Mr. Feister still continues designing and
chinery for various purposes.

rhe Charge for Insertion under this head is One Dollar a linefor each insertion; about eight worras to a line. Advertisements must be received at publication office
as early as Thursday morning to appear in next issue.

Draughtsman's Sensitive Paper.T.H.McCollin,Phila.,P'a Electric Lights-Thomson Houston System of the Arc
 Foot Lathes, Fret Saws,6c. 90 pp. E.Brown,Lowell,Mass. Wanted-Two First-class Machinists. Address W.
Common Sense Dry Kiln. Adapted to drying all kinds
of material where kiln, etc., drying houses are used. See of mate
p. 205.
Small Machine Shop for Sale. Established 1873. List For Sale.-Fust 42 foot Propeller Yacht and 50 For Sale.-Fast 42 foot Propeller Yacht and
Side-wheeler. \&. E. Harthan, Worcester, Mass.
The advertiser, an electrician, experienced in the
practical construction of electrical instruments, wishes a situation. Moderate salary expe
trical Worker, Box 773, New York.
"How to Keep Boilers Clean," and other valuable in formation for steam users and engineers. Book of
sixty-four pages. published by Jas. F. Hotchkiss, 84 sixty-four pakes, published by Jas. Y. Hotce
Jobn St.. New York, mailed free to any address. Alden Crushers. Westinghouse Mach. Co., Pittsb'g, Pa. Supplement Catalogue.-Persons in pursuit of infor-
nation on any special engineering, mechanical, or scientific subject. can have catalogue of contents of the Scientific american supplement sent to them iree.
The supplemèt contains lengthy articles embracing The SU PPI,EME T contains lengthy articles embracing
the whole range of engineering, mechunics and physi-
cal science. Address Munn \& Co... Publishers, New York. Combination Roll and Rubber Co., 2 B Barclay St.,
N. Y. Wringer Rolls and Moulded Goods Speclalties.
 Improved Skinner Portable Engines. Erie, Pa. The Eureka Mower cuts a six foot swath easier than standing light and loose, curing in half the time. Send
for circular. Eureka Mower Company, Towanda, Pa. For Machinists' Tools, see Whitcomb's adv., p. 173 Pure Oak Leather Belting. C. W. Arny \& Son, Ma-
nufacturers, Philadelphia. Correspondence solicited. Presses \& Dies. Ferracute Mach. ('o., Bridgeton, N. Split Pulleys at low prices, and of same strength and appearance as Whole Pulleys. Yocom \& Son's Shaftia
Works, Drinker St., !'hiladelphia, Pa.
Peck's Patent Drop Press. See adv., page 204. Wood-Working Machinery of Improved Design and
Workmanship. Cordesman, Egan \& Co., Cincinnati, \mathbf{O}. Diamond Planers. J. Dickinson, 64 Nassau St., N. Y. Experts in Patent Causes and Mechanical Couns
Park Benjamin \& Bro, 50 A stor House. New York. 4 to 40 H. P. Steam Engines. See adv. p. 189. Malleable and Gray Iron Castings, all descriptions, by Erie Malleable Iron Company, limited. Erie, I
National Steel Tube Cleaner for boiler tube
National Steel Tube cleaner for boiler tubes. Adjust-
able,durable. Chalmers--spence Co.,10 CortlandtSt..N.Y. Cope \& Maxwell M'f'g Co.'s Pump adv., page 189. Corrugated Wrought Iron for Tires on Traction EnBest Oak Tanned Leather Belting. Wm. F. ForeThe I. B. Davis Patent Feed Pump. See adv., p. 205. Nickel Plating. - -ole manufacturers cast nickel anodes. pure nickel salts. importers Vienna lime, crocus,
etc. Hanson \& Van Winkle, Newark, N. J., and 92 and 94 etc. Hanson \& Van Wi
Liberty St., New York.
Presses, Dies, Tools for working Sheet Metals, etc.
Fruit and other Can Tools. E. W. Bliss. Brooklyn. N. Y. Rollstone Mac. Co.'s Wood Working Macl'y ad. p. 157. The Sweetland Chuck. See illus. adv., p. 172. Machine Knives for Wood-working Machinery, Book Binders, and Paper Mills. Also manufacturers or Solo-
man's Parallel Vise, Taylor. Stiles \& (o...Riegelsville.N.J. Skinner'sChuck. Universal, and Eccentric. See p. 173. For best Portable Forges and Blacksmiths' Ha
Blowers, address Buffalo Forge Co., Buffalo, N. Y. The Brown Automatic Cut-off Engine; unexcelled workmanship, economy, and durability. Write for it
formation. C. H. Brown \& Co., Fitchburg, Mass. Ball's Variable Cut-off Engine. See adv., page 204. For the manufacture of metallic shells. cups, ferrules,
blanks, and any and all kinds of small press and stamped work in copper. brass, zinc, iron. or tin, address C.J. Godwares, notions. and novelties in the above line, a specialty. Seeadvertisement on page 204
Leather Belting, Rubber Belting, Packıng and Hose Brass \& Copper in sheets, wire \& blanks. See ad. p.204. The Chester Steel Castings Co., office 407 Library St.,
Philadelphia, Pa.., can prove by 15,000 Crank Shafts, and Phiadelphia, Pa... can prove by 15,000 Crank Shafts, and
10.000 Gear Wheels, now in use, the superiority of their

Clark \& Heald Machine Co. See adv., p. 206.

Blake's Belt studs. The best fastening forleather and
For Mill Macb'y \& Mill Furnishing. see illus. adv. p.204.
Wm. Sellers \& Co., Phila., have introduced a new
Don't buy a Steam Pump until you have writ
Don't buy a Steam Pump until you
ley Machine Co.. Easthampton, Mass.
Wren's Patent Grate-Bar. See adv. page 205.

Use the Vacnumo Oils. The best
gIne, and cylinder oils made
gine, and cylinder oils made. Address numbricuting, Supplee Steam Engine. See adv. p. 204
The Improved Hydraulic Jacks, Punches, and Tube Expanders. R. Dudgeon, 24 Columbia St., New York.
Eagle Anvils, 10 cents per pound. Fully warranted Eagle Anvils, 10 cents per pound. Fully warranted.
Geiser's Patent Grain Thrasher, Peerless, Portable, Tight and Slack Barrel machinery a specialty. John Tight and Slack Barrel machinery a specialty. John
Greenwood \& Co., Rochester, N. Y. See illus. adv. p. 215. New Economizer Portable Engine. See illus. adv. p. 205. Renshaw's Ratchet for Square and Taper
The Pratt \& Whitney Co., Hartford, Conn.
C. B. Rogers \& Co., Norwich, Conn., Wo
nacainery of every kind. See adv., page 206.
For Shafts, Pulleys, or Hangers, call and
kept at 79 Liberty st., N. Y. W . Sellers \& Co
Saw Mill Machinery. Stearns Mfg. Co. See p. 205. For the best Diamond Drill Machine
Bullock, 80 to 88 Market St., Chicago, 1 ll .
Fire Brick, Tile, and Clay Retorts, all shapes. Borgner
\& O'Brien, M'f'rs, 23d St., above Race, Phila., Pa. Barrel, Key, Hogshead, Stave Mach'y. See adv. p. 222.

摂

HINTS 'TO CORRESPONDENTS
No attention will be paid to communications unless accomp
Names and addresses of correspondents will not be given to inquirers.
We renew our request that correspondents, in referring to former answers or articles, will be kind enough to
name tive date of the paper and the page, or the number of the question.
Correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then published, they may conclude that, for good reasons, the Editor declines them.
Persons desiring
Persons desiring special information which is purely of a personal character, and not of general interest.
should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannot be expected to spend time and labor to obtain such information without remuneration.
Any numbers of the Scientific American SuppleMENT referred to in these columns may be had at this
oftice. Price 10 cents each.
(1) M. Z. asks: Can you please tell me through your valuable paper the greatest number of tons that ever an ocean steamship carried, and what is greatest tonnage capacity, but we do not know the
(2) A. R. M. asks for a simple method of testing and assaying silver ores. A. Charge into a
six-ounce crucible (a Battersea F answers very well) one six-ounce crucible (a Battersea Fanswers very well) one
ounce each of the ore and dry bicarbonate of soda, two ounce each of the ore and dry bicarbonate of sooda,
ounces of litharge (free from silver), half an ounce of argal, and cover with a quarter of an inch of dry salt.
Heat the crucible until the contents are in a quiet state of fusion; remove from the fire, cool, break, and clean the lead button by pounding on an anvil. If the button weighs more than, say, half an ounce, scorify it down
in a scorifying dish in an open muffle. Heat $11 / 4$ inch bone ash cupel in the muffle, drop into it the button, and keep up the temperature of the muffle to a
bright red heat until all the lead has been scorified off and absorbed by the cupel, and the small bead of gold and clear. The ore must be finely powdered, and the whole of it passed through an eighty-mesh sieve.
(3) A. G. wants to know how to recover silver from old solutions. A. Precipitate the warm solution by addition to it of cornmon salt; allow it to
secant the clear liquid, and throw the precipitate together with several scraps of zinc, into warm dilute sulphuric acid. When the chloride is all reduced, pick out the remainder of the zinc, decant and press out the
liquid from the precipitate, dry, mix it with a little borax, glass, and powdered resin in a small clay crucible, and heat to complete fusion. Cool and break the crucible; the silver will be found as a button in the bot-
tom. With a small crucible, a good fire in an ordinary stove will answer for the fusion.
(4) E. J. S. asks how to silver plate iron and steel. A. Dissolve 12 oz . cyanide of potassium and 1 oz. (troy) of chloride of silver in 1 gallon soft water;
filter, and suspend in this bath the chemically clean work and a plate of pure silver, exposing a surface work with the negative or zinc pole of a small Daniell or Smee battery of two or three cells by means of a
stout copper wire, and join the silver plate in a similar stout copper wire. and join the silver plate in a similar
manner with the positive pole of the battery. The work manner with the positive pole of the battery. The work
may be prepared for the bath by boiling it in a strong aqueous solution of caustic potassa or soda to remnve traces of oill, rinsing in running water and scouring with
a brush and pumice powder moistened with strong cyanide of potassium solution: then quickly rinsing again, and without fingering, placing in the bath, and in circuit. A somewhat weaker (in silver) bath, called the "whitening" bath, and a stronger battery, is generally used to whiten or throw on the first film of silver The proportions for this are: Cyanide of potassium,
lb.; chloride of silver, a quarter of an ounce (troy), If lb.; chloride of silver, a quarter of an ounce (troy). If
the silver runs on dark, use a weaker battery, or break the current so as to give alternate intervals of rest. Thirty minntes ordinarily suffices when a battery of
three or four Smee cells,plates 1×4 inches, are used. In three or four Smee cells. plates 1×4 inches, are used. In
the whitening process an additional cell or more is emthe whitening process an additional cell or more is em
ployed. Iron takes silver better after having received a light deposit of copper. The metal must be freed from oxide by pickling in dilute acid and scouring with
sand. For coppering a slightly acid bath of the sul-
(5) N. W. writes: In building a dry room to dry lumber, is it best to admit the dry air in at the
top, and take the moist air out at the bottom of the top, and take the moist air out at the bottom of the
room, or vice versag is not the moist air the heaviest. room, or vice versa? 18 not the moist air the heaviest,
and will it not consequently fall? A. Admit the dry and will it not consequently fall 9 A. Admit the dry
air at the bottom. The levity of the moist air will be air at the bottom. The levity of the moist air will be
sufficient to carry it off with a proper flue or chimney
(6) J. H. asks: What is the best apparatus in ase for heating 20 or 30 gallons of water quickly, by gas or oil A. We think a coil of iron pipe in a fur-
nace alongside your tank, with the water circulating through the coil into the tank.
(7) C. E. B. asks for a cheap preparation hat could be applied to strawboard in form of a bath boxes made of it. A. A dilute solution of shellac in alcohol is the best coating we think of. See article on waterproofing in No. 6, current volume.
(8) A. S. P. asks: What space would a cubic foot of gas (atmospheric pressure) occupy at six atmo
spheres, and formala for finding above? A Approvi mately, the space occupied is inversely as the pressure; or one cubic foot at one atmosphere would occupy one-
(9) E. M. J. asks how to make tracing cloth. A. Wagner's tracing cloth is said to be prepared as follows: Boiled bleached unseed oil, 20 lb .;
dead shavings, $1 \mathrm{lb} . ;$ zinc oxide, 5 lb ; Venetian turpend ead shavings, 1 lb ;; zinc oxide, 5 lb .; Venetian turpen-
tine, half a lb.; boil for several hours, then strain, and tine, half a lb.; boil for several hours, then strain, and
dissolve in the strained composition 5 lb . white gum copal. Remove from the fire, and when partly coole add parifled oil or tarpentine sumcient to bring to the
(10) A. L. asks: 1. Is asbestos packing for tuffing boxes in general use in the United States? A. our advertising columns. 3. I am told the raw material comes from Canada. Could you give me the name of the place? A. It comes from mines or quarries on the rth side of the Ottawa River.
(11) W. H. F. asks what kind of wood is used in a piano into which the screws for receiving the
wires are inserted? Is it one piece, or several layers glued together? Must the screws have a deep cut or a fine one? Which is the best wood for this purpose? A. Use maple wood. with a veneering of the same about, three-
eighths of an inch thick, glued to the front face, and having the grain at right angle with the back. Your cheapest plan for the screws is to buy them at any piano hardware store ready made.
(12) H. asks: 1 . In making the secondary of an intensity coil out of 7 oz. of No. $3 \mathcal{A}$ ($B \& S$) gauge silk
insulated copper wire, insulated from and wound over a primary, 7 inches long, of No. 14 wire, about what length of spark could I get, using a battery power of six carbon cells? A. Your primary wire is rather coarse.
You should use three layers of No. 16 . If the coil is You should use three layers of No. 16. If the coil is
properly made and provided with a condenser, you should get a spark one inch long. 2. Could Γ continue to wind one pound of the fine wire, without changing any of the other conditions of the coil, and get a larger spark?
Or what changes would I be obliged to make in the other parts of the coil to meet the added half-pound of induction wire? A. You might. increase the quantity of secondary wire with advaniage. 3. In making an intensity coil for a large spark, would I have to employ coarser wires and very much increased battery
power? A. Yes.
(13) G. E. M. asks how much difference the expansion and contraction of a steel railroad rail makes in its length when in use during an average year in this latitude. A. For difference of extremes in tem-
perature of 130° Fah., will be about one-eighth of an perature of 130° Fah., will be about one-eighth of an
inch in 12 feet, or on a 36 foot bar say three-eighths of an inch.
(14) J. M. K. writes: 1. It is claimed by some that lightning strikes wire fences very easily; if
it is so, would not putting in ground wire (connected it is so, would not putting in ground wire (connected with all wires and running down into the ground) make a sure remedy? A. A ground wire connected with all
of the wires, with its lower end buried in earth that is continually moist, and surrounded by coke or tin scraps continually moist, and surrounded by coke or tin scraps
to increase its underground conducting surface, would carry off the current. 2. How far should the ground wires be apart? A. A bout 500 feet. 3. Is copper better for the conducting rods in lightning rods than iron? A. Yes, but iron is cheaper, and if a larger conductor of iron be used, it is just as efficient. 4. Some parts of ny portable boiler and engine are run over with waste
oil (lard oil) which is burned hard, and I would like to have it removed, as the paint underneath is not spoiled Can you tell me how to remove it? A. We know of no way of removing the oil without removing the paint un-
derneath it. Better take it all off, and repaint. Make derseath it. Better take it all off, and repaint. Make
a strong lye, and apply it freely with a swab. It will soften the oil, so that it may be readily removed. 5 Do you think acoustic telephones are good for one one and a ha
stances, yes.
(15) W. E. T. asks: 1. What kind of iron is suitable'for making the cores of magnets? My manual If not, where. can I procure the right kind? A. Com mon reflned iron answers very well if thoroughly anmon reflned iron answers very well if thoroughly an-
nealed. Heat it red hot and bury it in ashes, allowing it to remain until cool. 2. How many feet of wire do I want to make a common magnet, and about what
number? A. It depends upon the size of the magnet and the purpose for which it is the be used. For a small magnet for experimental purposes, a core wound with No. 22 wire answers very well. 3. Would silk-
covered wire be better than uncovered ? A. Yes, it should be silk or cotton covered. 4. How many thickthickness of the wire coil may generally be equal to
the diameter of the iron core.
(16) J. H. J. asks (1) for directions for
making a Leclanche battery. A. Place in a porous cell
making a Leclanche battery. A. Place in a porous cell
a rod or plate of caroon, and fill the cell with coarsely
powdered black oxide of maganese and clean coke o retort carbon. Seal the cell, leaving two ioles for the
air to escape when the battery is set up: air to escape when the battery is set up; place the
porous cell in a jar containing a saturated solution of sal ammoniac, and place in the sal amm -niac solutice sal ammoniac, and place in the sal amm niac solutic:
a rod of amalgamated zinc. 2 . Wer'. fuller's mercury bichromate battery do for gold or silver plating?
A. No: it is not intended for continuous work. See A. No: it is not intended for continuous work.
Batteries, in Supplement, Nos. 157 ; 158 , and 159 .
(17) F. K. asks for the compositions of red brass. A. Red brass-89 parts of copper, 11 parts of
zinc. Red bronze-86 parts of col per, 11 parts of zinc, 3 parts of tin.
(18) N. O. M. asks: Is there any resistance to overcome in a dynamo electric machine except that
caused by friction? A. Friction is an inconsiderable element in the resistance of a dynamo electric machine The resistance due to the attractive power of the field magnet exerted on the armature is enormous, and it
takes a great deal of power to revolve the armature takes a great deal of power to revolve t
when the circuit of the machine is closed.
(19) J. D. asks: 1. What is the best polish to use in polishing the inside of gun barrels with? A.
Emery flour, with a very little oil, is about as good as Emery flour, with a very litle oillis about as good as anything. 2. What is the best oil to use to prevent gun
barrels from rusting? A. Pure sperm, or sperm mixed (by aid of heat) with about three per cent of paraffine wax. 3. What is the best polish for a walnut gun stock? A. Good clear she
a rag very slightly oiled.
(20) D. N. M. asks: 1. Will the stain re commended for fishing rods, iu answer to J. B. A. (4) No. 8, anwer for worn gun stocks? Is the preparation
solid or liquid 9 The stocks are white wood; I want solid or liquid 9 The stocks are white wood; I want them brown. A. The preparation is liquid, and can be
advantageously used for che purpose mentioned. 2. I advantageously used for the purpose mentioned. 2. I
have found a sort of jelly fish, or radiata. in the Ohio, with fern to a water-soaked log. The outside long. Are these of any value? A. The animal described
(21) In answer to the query of S. S., p. 172 (11), current volume about treating over-salted hams, etc., D. N. M. says: "Immerse the hams for about
fifteen hours in cold sweetmilk, rinse with water, and sweeten with sugar or sugar curing. Ham or bacon sweeten with sugar or sugar curing. Ham or bacon
left in milk over night is much improved in taste."
C. E. B says: "Soak the meat twenty-four hours in C. E. B. says: "Soak the meat twenty-four hours in
cold water, then put the pieces down in a barrel, with a cold water, then put the pieces down in a barrei, with a
weight on top to keep them down,and pour over them a weight on top to keep them down,and pour over them a
pickle prepared from: Water, 6 gallons; brown sugar, 2 pickle prepared from: Water, 6 gallons; brown sugar, 2
lb.; saltpeter, 4 oz.- boiled together and cooled. Pickle
(22) F. F. J. asks: Can you inform me what substance I can apply to a wooden surface proba-
bly best in the form of paint, which, when dry, shall bly best in the form of paint, which, when dry, shall
afford a light-colored surface which will allow a pencil mark to be made upon it, and then easily erased by moisture? A. We know of no colorless substance or compowition that will satisfactorily answer the requirements. A white tablet surface varnish is prepared by mixing very finely ground clear quartz or glass, with a applied as a paint, and dries quickly. A sirupy solution of water glass can be made to take the place of the
(23) J. V. asks: 1. For a covering for steam pipes. A. Hair felt, wool felt, or wool carpets, new or
old, make good covering. There are many fancy and patent coverings, but you could not probably get them reacily. 2. Also, for scale preventive for boilers. A.
We cannot say what you should use without knowing character of the scale or the water
(24) N. H. writes: 1. I am thinking of building a steam buggy, and wish to have your opinion on it. I propose to bave two horizontal iron tubes about 7 inches diameter for the foundation or reach, the boiler to be between them, with furnace underneath; the engine (2x3) to be fastened on top of boiler, and all suspended on springs from hind axle, which will be above, and driven by belt or flexible shaft from engine. The buggy will be longer and have lower front wheels han ordinary. 1. Will crude petroleum do for fuel9 A.
Yes, it can be used successfully. 2. Will it have to be Yes, it can be used successfully. 2. Will it have to be termined by experiment. 3. Can a furnace be made to 4. Has any person made a practical steam buggy; if not is there any reason why one could not be made as suggested. A. Not that we are aware of. We do not know
of a successful attempt. The weight of the complete ehicle is a great objection.
(25) J. W. G. writes: I have a three story fouring mill that I wish to warm with the exhaust steam from my engine. Can I o it by running a continuous eight inch galvanized iron pipe through the mill, and would it do for the condensed water to flow back to the
heater on the bottom of this pipe? The building is $40 x 50$ feet, 11 foot stones. How many square feet of heating surface would I need? The engine is 16×24 75 revolutions, slide valve. A. Yes; you can heat the mill in that way. You should apply to some party who is engaged in putting up steam heating apparatus for best arrangement of pipes. To do this properly re-
quires a personal examination of the building and its quires a personal
surroundings.
(26) L. H. asks for a mixture that will, by plunging in, temper a heavy piece of steel of irregular orm to the temper of a cold chisel. Said piece will
crack when plunged in hot water. A. Try an oil or tal w bath as a first dip, then water.
(27) E. R. asks: 1. In the Holtz machines illustrated in SUPplement, Nos. 278, 279, are there four paper inductors cut, two being pasted at each aper-
ture in stationary plate on opposite sides of glass? ture in stationary plate on opposite sides of glass?
A. There are four inductors, two at each aperture, on A. There are four inductors, two at each aperture, on opposite sides of the glass. Is ane or on the glass \& A. It is pasted on the paper
on them

Оctober i, 1881.]

NEW BOOKS AND PUBLICATIONS.

Annual Report of the Department of Mines, New South Wales, For 1880.
Sydney: Thomas Richards, GovernSydney: Thomas
ment Printer. 7 s .6 d
Gives with great fullness of detail the mining opera tions and discoveries of the year. A valuable geolog cal sketch map accompanies the report. A summar of the mineral products will be shown in anothe ver, coal, shale, tin, copper, iron, antimony, lead, and other less important minerals raised in New South Wales down to the beginning of 1881 was something like $\$ 250,000,000$. Gold, coal, tin, and copper are the chief minerals.
Apons' Encyclopedia of the Industrial Arts, Manufactures, and Commer cIal Froducts. Edited by G. G. Andre.
London and New York: E. \& F. N. London and New York: E. \& F
Spon. In 30 parts. 75 cents each. Parts 18 to 25 of this encyclopædia cover the subjects ink, ivory, jute, knitted fabrics, lace, leather, linen manufactures, manures, matches, mordants, narcotics, nuts, oils and fatty substances, paper, perfumes, pho-
tography, photometry, paints and pigments, pottery, tograp
etc.
Circulars of Information of the Buread of Education. 1881. Washington. by William F. Poole. No. 2 " The Relations of Edn cation to Industry," and " Technical Training in Ameri can schools," by E. E. White. No. 6. A report on the
Teaching of Chemistry and Physics in the United States, by F. W. Clarke. No. 7. Spelling Reform.

official.

INDEX OF INVENTIONS
Letters Patent of the United States were Granted in the Week Ending August 30, 1881 ,
AND EACH BEARING THAT DA'IE. [Those marked (r) are reissued patents. 7
A printed copy of the specifcation and drawing of any patent in the annexed list, also of any patent issued In ordering please state the number and date of the patent desired and remit to Munn \& Co., 37 Park Row New York city. We also furnish coples of patents
granted prior to 1866; but at increased cost, as the specifications not being printed, must be copied by hand.
Acid, apparatus for concentrating sulphuric,
Kolbe $\&$ Lindfors Air and pas, reducing v
Album clasp. T. Kelly..
Alkall balls,
Alkali balls, apparatus for the manufacture of Amalgamator, R. M. McDermott.
 Ax, P. R. Smith.....
Bar.
See Grate bar.
Bed bottom, spring, J. C. Hubinger.............
 Bedstead, bureau, A. S.
Bell, gonk, P. McMahon.
Belt fastener, H. D. Hic
Belt, therapeutical galvanic, I. Gray.
Belting G
Belting, G. Andrews......
Bit brace, F. w. Ireland..
Block. See Pulley block. Sketching block.
Block. See Pulley block. Sket
Bloting pad, J. H. Chataigne...
Board. See Electric switch boa
Board. See Electric switch
Boat. See Torpedo boat.
Boat. See Torpedo boat.
Bobbin binder for mules, \mathbf{T}. H. Greenwood.
Boot crimping machine. J. W. D. Fifield.
Boot tree, J. W. D. Fiteld
Bottle, dropping. F. M. D
Bottle, dropping. F. M. Di
Bottle stopper, C. Sneider
Brace. See Bit brace.
Broom, G. Hall.......
Broom hanger, w. M. Mills...
Broom holder, J. P. Magi
Broom holaer, $\begin{aligned} & \text { Button, B. Barte.... } \\ & \text { Button, w. MoCleery }\end{aligned}$.
Can. See Sheet metal can
Car coupling, E. J. Clark.
Car coupling, J. M. Davis
Car coupling, J. M. Davis
Car coupling, S. J. Ford...
Car coupling, E. s. Perry.
Car coupling, , E. s. Perry.
Car coupling, H. . Rober
Car coupling, H. Smith.....
Car door, grain, B. R. Lew
Car door, grain, B. R.
Card setting machines, tension device for, J. J. J
Carpet lining machine, B.
Carriage clips, machine for making, Rauschen-
berger \& Dean
Carriage, side bar,
Carriage, side bar, J. Howell

case.
Caster, S . T. Lamp..
Casting chains, F. H. Schweiger
Center board for vessels. A. F. Parker
Chair. See Folding chair. Reclining chair
Chair seat, J. C. \& P. M. Guerra
Churn. C. W. Emer
Churn, J. U. Jones.
Chigars motor. J. N. Crotcher
Demuth
Clasp. See Album clasp.
Clip. See Single and double tree clip. Single
Clock pinions, machine for polishing, E. Horton.. 246
Closet. See Insect-proof closet.
Coal drilling machine. 'T. Aitken..
Cock, compound cut-off, J. Mullane
Cock, stop, C. Callahan...

Crushing mill ore feeder, F. A.
Crushing roll mill, A. F. Wendt
Cultivator, M. s. . Pittman ...
Cup. See Drip cup.
cultivator, M. S. E. Pitt
Currycoembrip c. A. Manker
Cut-off valve gear, A. A.
Cutter. See Plow cutter.
Cutter head, D. Griffn.
Desk, writing, A. Frank.
Digger. See Potato digger
Dish, butter, J. A. Eades..
Door hanger, C. Brinton ...
Door spring, I. B. Lockwoo
Door spring. F. S. Thaggar
Drwing table, H. Probst
Dredging machine, H. B. Angell.
Dress protector, E. R. Turner
Drill. Seee Grain drill. Ratchet drill. Rock drill. Drip cup, H. Fellows.
Drive gate, w. McAdams, J
Electric light, N. S. Keith
Electric lock, Manierre \& Porter. Electric signaling apparatus, J.
Electric switch board, J. S. Ros Electrical conductors, manufacture of, T. J. M. M Tighe
lectro-me
Electro-mechanical signal apparatus, I. Fisher. Engine. See Rotary engine. Wind engine. Envelope or wrapper, open, W. L. Eckman.....
Fabrics, composition for preserving, G. S. Pape Fabrics, composition for
Farm gate, A. L. Pierce.
Farm gate, A. L. Pierce
Farm gate, J. A. Wolfram...
Feather renoter
Feather renovator, S. Gibson
Feed water heater, H. Coker
Fence, Colbert \& Moni
Fence, J. L. Neville...
Fibrous ware, making, Stevens \& Chisholm
File. bill, \mathbf{s}, Thompl.............. File. bill, s. Thompson........
Fiter, water, T. C. Candlish.
Firearm, breech-loading, Bonehill \& Matthews. Fire escape, J. R. Day
Mower pots and other pottery, machine for
moulding, F. Herrmann (r)...................
moulaing, F. Herrmann (r).....................
Flue lining and die for forming the same from
clay, C.A. Freeman (r) clay, C.A. Freeman (r)..
Folding chair, J. E. Cotton.
Foot, protecting covering for the human, E. C.
Fruit press and chopper, combined. G. H. Back-
Furnace. See Hydrocarbon furnace. Portable furnace.
Furnace, J. B. Boulicault Gate. See Drive gate. Farm gate. Sliding gate.
Generator. See Steam generator. Generator. See steam generator.
Glass manufacture, J. Dobinson.
Glassware, manufacture of hollow, M. Herrmann. Goods for dress linings having pattern printed
thereon, H. Moschcowitz thereon, H. Moschcowitz
Governor, R. S. Werotte
Governor, steam engine, M. Waters Governor, steam engin
Grain drill, D. R. Dean.
Grain drill conductor tu
Grain drill conductor tube, A. E. Armstrong
Grate, J. S. Van Buren
Grate, J. S. Van Buren.
Grate bar, w. J. Ward
Grinding mill, F. Wilson.....
Guard. See Luggage guard.
Hanger. See Broom hanger. Door hanger
Harness attachment. D. P. Aplowhit Harness attachment. D. P. Applewh
Harrow, c. o . Nason...
Harrow and sod cutter
Harrow, sulky, G. W. Miller
Harrow teeth, making, E. D. \& O. B. Reynolds. Harrow teeth, making, E.
Harvester, Miles \& Eddy... Harvester, G. Sweet.
Harvester binder, S. D. Locke Harvester rake, L. Erpelding Hat ironing machine, A. De Laski
Hay rake and loader, combined. W. T. Vallan dingham
Heater. See Feed water heater. Heater. See Feed water heater.
eddle, doup, Cocker \& Greenwood Hinge, B. S. Atwood.......................... 2
Holder. See Brom bolder. Driling machine work holder. Lead and crayon holder. Map
holder. Music holder. Rein holder. Sewing
 Horseshoe, J. K. O'Nell.
Hydrant. tre, A. J. Fuller
Hydraulic gravel elevator, Cranston \& Wi.......................
Hydrocarbon furnace, Litchfleld \& Renshaw Hydrocarbon furnace, Litchfeld \& Renshaw...
lee and for other cooling purposes, apparatus the manufacture of, F. M. McMillan.. Insect-proor closet and safe. C. H. Larrabee.....
Iron, dephosphorizing crude cast. L. G. Laureau Iron, dephosphorizing c
Joint. See Pipe joint.
Knitting machine. C. Calla anan.......................
Knitting machine needles, making, L. T. Whitte Kamp, A.H. Hones..
Lamp, electric. W. s.
Lamp, electric. w. s. Hill..................
Leatc., locking,
Lead and crabon holder, F. B. Powers.....
Leather pebbling machine, E. C. Allison. Leather pebbling machine, E. C. Allison...
Light. See Electric light. Liquors, process of and apparatus for
and maturing, Cushing \& Osgood.. Lock. See Electric lock
Loom for weaving saddle girths, etc............... T. Down ward
Loom shuttle box mechanism, L. J. Knowles....
Lubricating compound for car axles, etc.. G. Merrill. Mandrel. tube drawing, C. H. Scheermesser Measuring heat conveyed through pipes, appa
ratus for, L. Sherman Milk cooler, J. B. Moore......
Milk receptacle, M. P. Allen. Mill. See Grinding mill. Saw mill. Mill burr, G. Derby..
Millstone dressing
Millstone dressing machine, A. L. T. Te
Millstone mounting B. Millstone mounting, B. D. Sanders.................
Mouldings and picture frames and the manufacture of light hollow ware, toys, etc., composition of matter to be used in the ornamenta-
tion of, J. . . Howell
Motor. See Water motor.
Music holder, Phelps \& Partridge

	Musical instruments, uransposing action for key board. J. A. Lutz.
	Nut lock, Imperatori \& Bulowius
	Nut locking tool, J. De Pew
	cran case, reed
	Organ stop action, reed, L. K. Oven, steaming, E. Jordan...
	Oven, steaming, E. Jord
	Pad. See Blotting pad.
	nts, spring bottom for, s.
	Paper pulp, machine for grinding wood for, \mathbf{N}. Kaiser \qquad
	Pens, etc., building perforated iridium tips for stylographic, W. W. Stewart

Plaiting, guide for making scalloped, J. A maden.

Planter, corn, F. C. Frost
Plow. W. Richara
Plow beam, A Bal

Plow, sulky, I. R. Gilbert...
Powe, animal, I. F. \& R. G. Ward......
Pool ball rack and tray. W. F. Whitney
Portable furnace
Portable furnace, sassinot \& Huet... Potato digger, A. Ansley
Pottery ware, former for
Pottery ware. former for hollow, M. Walz...........................
Press. See Fruit press.
Presur
Pressure regulating valve, fluid, w. M. Sloane
Pressure regulator, steam, H. A. Cummins....
Pressure regulator, steam, H. A
Printer's galley rest. G. Scales

Propelier, screw, H. Hirsch.
Protector. See Dress protector.
Pruningimplement.J. H. Layma
Pulley block, J. W. Norcross..........................
Pulleys or drums, construction of, James \& Jacì
son.....
Pon
effects of, C. Rutulini........ neutralizing the

switches of, F. C. Weir..........
Railway signal apparatus, I. Fisher.
Railway signaling apparatus, electrici, o............
Railway
Railway, wire rope, J. B. Low.......................
Railways, device for turning curves in endless
Railways, device for turni.
cable. A. . A. Anderson..

Rake. See Harvester rake. Hay rake. Reclining chair, T. Hofstatter, J
Reclining chair.J. Reich
Reel. See Torpedo reel.
Refrigerator car, A. W. Zimmerman.
Rock drill, hand power, L. W. Tracy.
cker or device for the healthful amusement of
children, G. T. Chandler
Roofng composition, W. B. Allman
Saccharine juices or other iliquiums, and appara.......
employed therein, preparing, evaporating, and
concentrating, F. A. Bonneffn.
Safe, provision, G. Pothin
Sash pivot, automatic, T. J. Morgan...
Saw fling machine. gin, A. A. Wood ...
Saw fling machine, gin, A. A. Wood
Saw gummer, J. J. Lowe.
Saw gummer, J. J. Lowe.
Saw jointer and gauge, R. E. Poindexter
Saw mill band, C. Meiners.
Saw mill, steam, A. J. Emlaw .
Saw mills, air buffer for, J. Waters
Sawing machine J. Augpurger
Sawing machine, J. Augspurger.
Sawing machine, L. D. Noblitt..

Scale, platform, Kleinsteuber \& Huebne
Screw, wood, J. W. Campbell.
Seat. See Chair seat.
Seeder and roller, com
Seeder and roller, combined, w. J. Morgan.
Selecting device, J. E. Munson
Sewing machine, Altmann \& Pommer
Sewing machine, G. A. Hayden.
Sewing machine, A. L. Parcelle.
Sewing machine, A. L. Parcell....
Sewing machine. C. A. Sjoberg.

Sewing machine corder, W. McCabe.
Sheet delivery apparatus, G. L. Jaege
Sheet delivery apparatus, G. L.
Sheet metal can, A. H. Fancher
Shingle, metallic r
Shoe, F. Euphrat
Shovel and ash sieve. combine........................... Starin.
Single and double tree clip, H.
Single tree clip, H. McCoy..
Sketching block, C. K. Lamb
Sliding gate, B. L. Rex
Sliding gate, B. L. Re.
Snow plow, J. Wood..

Sole cutting machine, tap, J. W. D. Fifeld
Sound transmitter, H. B. Porter Sound transmitter, H. B. Porte
Spectacle case, J. \& H. G. Chase
Spectacle case, J. d R. G. Ciase
Speed regulating deviee, H Borchardt........
Spinning maching, R. B. Daly 246,469,
Spinning machine, H. B. Este
Spring. See Carriage spring. Door spring. Vehi-
cle spring,
Steam boiler,
Steam boiler, upright, E. B. Bu
Steam generator, W. E. Kelly.
Stool for barbers' use, F. Kamn
Stool for barbers' use.
Stove, N. Compton...
Stove, N. Compton....
Stove, gas, J. R. Hare.
Stove grate, E. Hayne
Stove pipe thimble, J. M. Lauby
Stove, vapor burning, J. P. Hayes...
Stoves, extension top for oil and gas, o. N. Kyle..
Stradning or filtering fluids, machine for, Gale

Suspenders, w. \& H. Turner.
Switch. See Railway switch.
Table. See Drawing table.
Tacking machine, E. Woodward.
Target. flying. G. Ligowsky......
Telegraphic sounder, G. s. Mott
Telephone exchange system and apparatus, Eld-
red \& Durant................... red \& Duran
Telephone lines,

Telephane signal apparatus, J. S. Rose
Telephone transmitter, H. Hun
Tenoning machin
hill coupling. F. Hoffman
Tobacco casing machine, A. Pearl....
Toe weight, E. G. Miles.
Toilet case, S. Haslet
Toilet case,S. Haslett..................
ool, combination, O. G. Rombot
orpedo boat, G. H. Reynolds....
Torpedo boat, G. H. Reynolds.
orpedo reel, E. G. McClur
Trap. See Animal trap.
Trap, L. Brandeis...................
Tree. See Boot tree. Whiffetree.
Tree. See Boot tree. Whiffetre
Truck. foundry, G. F. Baugher...
Trunk, G. Birkmann......................
Tube. See Grain drill conductor tube.
Turn buckles, making, Moore \& Smith.
Valve. See Pressure regulating valve.
Valve. See Pressure regulating valve.
Valve motion, steam engine, M. A. Dees
Vehicle running gear, E. Hard.r.
Vehicle spring, w. H. Stickle.....
ehicle spring, W. H. Stickle.
Veterinary remedy, E. J. Smith
Veterinary remedy, E. J. Sm
Wagon stake, W. A. Hanna
wagon wheel, G. M. Chase,
Wagon stake, W. A. Hanna
wagon wheel, G. M. Chase, Jr....
Wagon wheel and axle, C. Norton.
Wall paper from the hanging-up machine method
of and apparatus for removing, T. Henry....
Washer. See Clothes washer.
Watchmaker's tool, A. G. Linnbaum
Water motor. S. W. Hudson........................... 246,522
Gowan... 246,405
Well boring and rock drilling machine, J. At

DESIGNS

urial caskets, name plate frame for, A. II. Nird

linger.................
carpet, H. Christie.
Carpet, Hhristie \& Neil
Carpet, J. Fisher.......
Carpet, A. I. Halliday
Carpet, A. I. Halliday
Carpet, C. Magee ...
Carpet, w. McCallum

Carpet, Neil \& Christie.12,411,
Electric transfusing battery, C. H. Simpson....................44
Pencil case, L. W. Fairchild........ 12,436
Type, font of printing, C. E. Heger.......... ... 12,438
TRADE MARKS.
Agricultural implements, certain, J. H. Barley..... 8,60
Cigars, Engelbrecht, Fox \& Co. 8,6
Cigars, H. R. Kelly,......
Clothes wringer. Arnett \& Mccilymonds 8,61
8,
 Corsets, M. Cohn..
Flour, J. Mack....
Gloves and mittens, I. Parker \& Co...
Guns, shot, W. W. Greener.
Hosiery and knit goods, J. E. Hanifen \& Co..
Insect puwder, T. B. Merrick \& Co................... 8,60
Knives. scissors, razors, and other small cuter
for table and domestic uses, Lloyd, Supplee \&
Walton..............$~$
Range, bath, and other boilers, J. G. Hibbs, Jr..............................
Restoratives, S. B. Sigesmond.........................
Sapp, bar and cake. Schulty \& Co..............
Spirituous liquors distilled from fruits and grain,
Time detecters, watch man's. 8.6. 8,6
and snuff. Marburg brothers...................... 8,618
8,601.
English Patents Issued to Americans.
From August 26 to August 30, 1881, inclusive.
Aerial navigation, A. L. Blackman, Nashville, Tenn.
Cooling air, J. P. Burnham et al., Chicago, Ill.
Berth, A. M. Crosby. U. S.
Drilling machine. I. W. Tracy, Philadelphia, Pa.
Drying apparatus. C. H. Hersey et al., Boston, Mas
Electric light, T. A. Connoly, Washington, D. C.
Electric light, T. A. Connoly. Washington, D. C.
Electric light regulators, s. J. Burrell, Brooklyn, N. Y
Locomotive engine, F. M. Stevens et al., Concord, N. H. Piston rod packing, G. H. Richards, Boston, Mass. Pocketbook, J. W. Meaker, Auburn, N. Y.
Refrigerating apparatus, H. D. Cogswell. San Fran.,
R Refrigerating apparaine,
Ring. spinning machine, A. Jenks. Central Falls, R. 1 Steam generator, S. C. Salisbury, New York city.
Water closet, Hartford Sanitary Plumbing Company
Hartford, Conn.
Water meter, w. L. Hunt, New York city

PATENTS.

MESSRS. MUNN \& CO., in connection with the pub-
lication of the scientiric AMERICAN, continue to ex-
amine Improvements, and to act as Solicitors of Patents amine Improv
for Inventors.
In this line of business they have had thirty:flve yearg' experience, and now have unequaled facilities fo
the preparation of Patent Drawings, Specifcations, and the preparation of Patent Drawings, Specifications, and
the prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats, Copyrights for Books. Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business intrusted to them is done with
ness, on very reasonable terms.
ness, on very reasonable terms.
A pamphlet sent free of charge, on application, concure them; directions concerning Labels, Copyrights Designs, Patents, Appeals, Reissues, Infringements, Assignments, Rejected Cases, Hints on the Sale of Pa-
tents, etc.
We also send, free of charye, a Synopsis of Foreign
Patent Laws, showing the cost and method of securing Patent Laws, showing the cost and method of securing
MUNN \& CO., Solicitors of Patents,
BRANCH OFIICE.-Cornen of F and 7th stree
Washington, D. C.

Try Us Once and You Will Always Buy Goods of Us. We are Positively Headquarters. We are Bona Fide Manufacturers and the Largest Manufacturers of Novelty Goods in the United States.

sis.000 Worth of Elegant and Usel G Gifts to be Positively Given Away Absolutely Free

HOW THESE ELEGANT GIFTS ARE DISTRIBUTED.

HOW CAN WE AFFORD TO DO THIS?

THE CAN-CAN WATCH CHARM, CIGAR CLIPPER, AND NAIL CLEANER COMBINED.

 \qquad Iade of handsome black Rubber, gold embossed. Whet

READ!

READ!
READ!
READ!

AMERICAN MANUFACTURING CO., 10 and 12 Federal and 76 Milk Street, Boston, Mass.

 Horizontal Steam Engines,

For best Auto atic cat-off 0 Plain Slide Valve of Sa_{-} perior Design,
mplete in Every Respect,

LLAMBERTVILLE IRON WORKS,

ATREANEAE ANDD TOUISIAINA. CHEAP HOMES FOR ALL!
50,000 Laborers can get Immediate Employment, at Good Wages,
THE SOUTHE-WESTERRN TMMMIGRATION CO.

Edwards's New and Saperb Book on American TUST FIMDT. Modern American Marine Engines, Boilers, and Screw Propellers:

NEW YORK BELTING AND PACKING COMP'Y.

 EMERYWHEELS. All other kinds Imitations and Inferior. Our name is stamped in full upon all our
standard BELTING, PACKING, and HOSSE.

Dr. Peck's Artificial Ear Drums
PERFECTLF RESTORE THE HEARING
and pertorm the work of the Natural Drum
 Alnctly. We refer to the even whisispers heard dis.
tinem. Send for
descriptive circular with testimonials. Address,
Her ORES BOOKWALTER ENGINE.

For STEEP and FLAT ROOFS of all kinds;
We appled by ord nary
workmen at ONE

HAND BOOK FOR STEAM ENGINEERS.
 Ridflell's Carpenter and Joiner Modernized.

RUPTURE
cured with out an operation or the injury trusses inflict
bV Dr. J. A. SHERMAN1S method. Omfee 251 Broadway bSD. J. A.SHERMAN'S method. Offree 251 Broadway
New Hork His book with Photograpic likenesses
of bad cases, before and after cure, mailed for 10c. CLAKK.S RUBBER WHEELS.
This Wheel is unrivaled for durability,
 P. Engine, with modern About a 100 H. P. Fngine, with modera improvements
to run a Flour Milt Required to have reaular motion

WITHERBY, RUGG \& RICHARDSON. Manuffacturer

*\$38.50 IN GOLD EACH MONTH!

 circumstances. be permitea to compet. 10 cents (cash
All whoty for the prize must send
or stamps) each month with list of words, plainly written, that they may recelive the number in which
will he respectively published the nddesses of the
winners of the prizes and the lists of the words that win
 that has any letter duplicated.

 THE WAILACE DIAMOND CARBONS,

ROOT'S NEW LRON BLOWER.
 IRON REVOLVERS, PERFECTLY BALANCED, H. \& F. M. ROOTS, Manufacturers,

 =END FOR PRICED CATALOGU
 PUBLIC SALE OF LETTERS PATENT Graif and Feritizining drilis.

 No. 90,556 , issued May 25.1869 , relates to fertlizers and
wheat sowers, with gauges opening each way from the

ORunOWMiting

 KEUPFEL \& ESSER, 127 Pulton St, New York.

THE BAKER BLOWFRR.

Shlurtismonts.

Engravings may head advertisements at the same rate per line, by measurement, as the letter press. Advertisements must be received at publication offce as Thursday morning to appear in next issue.

WOOD WORKINGWACHINERTY?

STITGVFIMTP Paten LIME-EXTRACTING
HEATERAnIILTER

 Prevent Scale Steam Roilers, $\underset{\text { Rililiplinties }}{\text { Ren }}$

Thorougbly Teeted, $\mathbf{3 , 0 0 0}$

 4 had been running two
weeks
Tllustrated Catalooues. well \& Bierc
M'f'g Co.g DAYTON,OHIO
LIVE FOXES WANTED,

H.W.JOHIS aseserfos

LIQUID PAINTS,

ABEETOAGEATHNGS,
H. W. JOHNS M'F'C CO., 87 Maiden Lane, New York.

Bolids enmer mixy

Pond's Tools, DAVID W. POND, Worcester, Mass.

BOILER COVERINGS,

THE PATEETT AIRED, SPACE COVERINGS
THE CHALMERS-SPENCE CO., Sole Proprietors, THE CHALM ERS-SPENCE CO., Sole Proprietors,
Foot of East 9 th St., New York
10 Cortand St.

THE SCOVILL

"Pop" Safety Valve, $\underset{\text { For Locomotive, Stationary, Marine, and Portable }}{\text { SIMPLE, RES }}$

$$
\begin{aligned}
& \text { Send for descriptive circulars and price lists to } \\
& \text { THE HANCOCK INSPIRATOR CO. }
\end{aligned}
$$ THE HANCOCK INSPIRATOR CO.,

PATENT QUICK
SHANustable Stroke can be changed while in Motion. E. GOULD \& EBERHARDT,

CONSTANT CURRENT CURE CO. 207 Main St., Buffalo, N. Y.

ROCK DRILLS,
COMPRESSORS,
FLSE,
BATTERIE
POWDER.
 gradual redvoction of grain.
 Jenkins' Patent Packing and Valves.

 ENSILAGE POWER! Onr2-Horsse Erieka

SHAFTS PILEVSTANGERS

 THE J. L. MOTT IRON WORKS,

MACHINISTS' TOOLS
 Lathes, Planers, Drills, \&o.

ERICSSON'S
Ner Canici Panuing Engile

DELAMATER IRON WORKS C. H. DELAMATER \& CO., Proprietors,
No. 10 Cortlandt Street, New York, N. Y

WIRE ROPE

THE CONSTANT ELECTRIC CURRENT, FROM OUR ELECTRIC GENERATOR,

The Constant Current Electric Generator

Simple, Reliable, and Effective
40,000 IN ACTUAL USE. NATHAN \& DREYFUS, Sole Manufacturers, NEW YORK. Send for Descriptive Catalogu
WATER LLEVATOR, OR STEAM JET PUMP

 elevates 8,000 pal. 28 ft. per hour. All pumps guaranteed
Send for catalogue of Eng rs' and Mach'ts specialties.

Geo. W. Read \& Co, MAHOGANY,

Cabinet VVoods. sole mandeacturers
CUT AND PRESS DRIED
THIN LUMBER, CIGAR BOXES, Panel stock, mic., Fto.

186 to 200 Lewis St., New York.

THE PORTER-ATLEN
High Speed Steam Engine.

Pafne's automatic eneines.

Reliabie durable and economical, will furur tah

 HARTFORD STEAM BOILER Inspection \& Insurance COMPANY.W. b. FRanklin.v. Pres't. J. M. ALLEN. Pres't. J. B. PIERCE. Sec'y.

[880 cutiter

WM. A. HAREIS. PROVIDENCE.A. HARRIS, HA ORMN-CORLINS EN GUNE

ROOFING.

TO INVENTORS
Howard Maminatring co. ,
364 \& 366 Broadway, New York.

PATENTED NOVELTIES yankee notions,

EVERY DESCRIPTION.

AMPLE CAPITAL.
Latest Im@roved Machinery. CONNECTIONS WITH ALL WHOLESALE MERCHANTS in the united states and canada.

Agents in Foreign Countries.
Correspondence witbout charge, with all w
desire their inventions in our line developed.
Establ' EACLE ANVILS. 1843.
Double Screw, Parallel, Leg Vises
 Jarvis Furnace Co.

雲雨

 THE NEW OTTO SLLENT' GAS ENGINE.
 DRUNKENNESS OPIUM XGABII geon, C.\& A. R. B. D. Deshit, Il. KEEELEY, M.D., Bols Free.

PCE ATG1.OO PER TTON.

PRINTINTG INKS:

