a Weekiy jotirnal of prartical information. art. Science. merhanics. l'HEMISTRY anid mancfaltures.

 The engravings on this page present so clearly the niticent avenue of the Champs Elysees, in a triangular park the top are plans of the ground floor, showing the allotment plan and surroundings of the International Exhibition of between the avenue and the Seine. Views of the Champs, of space to the several countries exhibiting, and of the galElectricity at Paris that any verbal description would be Elysées front and the side toward the river are shown in leries divided into apartments for special classes of exhibits, superfluous. The exhibition, which opened August 11, 1881, the engravings. The naked interior of the great hall, and salons, lecture room, and the like.
is held in the great Palace of Industry originally erected for the same room when decorated with flags and flled with:
[C'ontinued on page 180.]

GROUND PLAN.

INTERIOR BETORE EXHIBITION.

IITERIOR WITH EXHIBITS PLACED.

THE PALACR OF ITDUSTRY.-RIVER BEINE FACADE.
THE IATERNATIONAL BLECTRICAL EXHIBITION OF 1881 AT PARIS.-THE EXHIBITION BUILDINGS.

Sriintifiit gmmrita.
 ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors,
published werkly at
NO. BY PARK ROW, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. Onc cony. one year nostage Included....
One copy, six montiin, postage Included
 gratis for every out of five snbscribers at 3.20 each : addutional coples at Remit oy postal order Postane prepald.
Ren

The sctentife Ammerican supplement

 * 500 a year, postage pald, to subseribers. single coples, 10 cents. Sold by all news dealers throughout the country
 will be sent for one year postage free. on receipt of seven dollars. Both
pappra to one address or different addresses as desired.

MUNS \& CO . ${ }^{31}$ Park Row. N Y
Scientife American Export Edition.
The scientific Ammrican Export Edition is a large and splendid pertodical, Issued once a month. Each number contains about one hundred
large quarto pages, nrofusely illustrated. embracing: (1.) Most of the
 AMciricaN, with its splen ild engraving and valuable thformation: (2.
Commerctal, trade, and manufacturing announcements of leading houses. Terms for Export Edition, 85.00 a year, sent prepald to any nart of the world. Single coples 50 cents. Manufucturers and others who desire to secure foreign trade may have larke. and handsomely displayed an nouncements published in thls edition at a very moderate cost. lation in all commercial places throughout the world. Addrese MUNN CO. si l'ark Bow. New York.

NEW YORK, SATURDAY, SEPTEMBER 17, 1881.

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT, INO. 2P8,

For the Week ending September 17, 1881.

engingering and mecr a nics.-The Wire Rope Street Raalways of San Francisco, Callfornla. By A. s. Hallide.- 13 Illuatra-tions.-l'assenger car and dummy. with gripping uttachment and Ide section of tube, Clay Streat UIII Railroad.- Perspective Flew
of cars and track of Geary Street Wire Rope Railroad -Section of cars and track of Geary Street Wire Rope Rallrosd - Section through dummy and road bed, showing cable and grippling attach-
ment.- Perspective view oi grip.- Skeleton view of grip -Crose section of tube, pulleys, etc.- Isometrical view of roadbed, with
grip and part of shank.-Sutter Street wire grip and part of shank.-Sutter Street Wire Rope Railroad, changed
from horse road.-California Street Wire Rope Railiroad.-AscendInk an Incline on Clay Street Hill Road.-Curve made by track and siot.- Presidio Ralliroad. - Profles of street grades.
 Ry Pror. H. K. Invertingrov.- Recent develspments of the catalan furnace. - Mode of conducilng the process.

MEDICINE. MYGiene, ETC.-The International Medical and
Sanitary Exhibition, London.-Notes, etc - 5 fikures.- Extempore Sanitary Exhibition, London.-Notes, etc.- 5 flaures.-Extempore dressing on the brotteneid.- Ward tent and apparatus Yor steam-
log throat and bronchal cases, Guy's Hospltal -Ditto, St. Mary's Hospltal.-A bad accldent case, London Hospital.-Bath Mift, Middiesex Hospital.
Typhus Fever, etc., in New York.-Spontaneous origin.-Spread
of the discese.-DIplitheris-DDscuasion of Dr. Juneway's paper
by members of the New of the discase.-Diphtheris-Dliscuasion of Dr. Jun
by members of the New York Academy of Medicine.
Ii. NATURIL HISTORY, GEOGRAPHY, ETC. - The Treelesa Prairies of the West. By Tros. MLRAN..
The Eucalyptus Giobulus. Report by
The Eucalyptus Giobulus. Report by Consul John wili....... Flowers and Insects.

IV. AGRiculture. ETC.-Corn Cuiture in Mas

Poultry 'holera. Salmon's report on chicken cholera.-............ rention and cure.- Valuable sanitary rules .. Mares in Foal...
War upon Insect l'e
V. Archizology. etc:--The Mound Bulldera. By Presdent

A STUDY OF CHILDREN'S TEETH.

For two or three years Dr. Samuel Sexton has been engaged in an investigation of the teeth of school children with special reference to the influence of decayed teeth upon the sight and hearing of children so afflicted. The investigation was suggested by the almost constant occurrence of defective teeth in cases of inflammatory diseases of the eye and ear.
In the course of his work, the Times states, Dr. Sexton has taken some bundreds of accurate casts in plaster of the interior of the mouth in cases that have come under his notice, and has collected a cabinet that is invaluable as a contribution to science. His method has been, first, to take a complete cast of the internal cavity, and then from it to mould each jaw separately, and unite the two posteriorly with a neat brass hinge, so that the state of the teeth, their arrangement, and all their peculiarities can be observed at a glance. He bas found a pretty constant association between myopia, impaired hearing, and defective teeth, the cause of which he believes to lie in the distribution of the fifth pair of nerves, which is at once Ω sensory, motor, and trophic pair, supplying the teeth, the tissues of the nose, those of the eye and ear, the integuments of the frontal and temporal region, and so on. Irritation of the whole region is consequently produced by a defective tooth, and, in point of fact, some of the severest cases of neuralgia, temporal, facial, and ophthalmic, arise from impaired teeth; often in cases where the teeth themselves give no trouble whatever, and none save the acutest medical intelligence can trace any relation between the fierce attacks in the eyc, ear, or temple, perhaps, and the caried tooth that gives no local trouble whatever. In a few cases progressive dementia has been arrested by immediate repair of a tooth that produced no apparent disturbance, but was responsible for deep-seated cerebral trouble; but these cases have been too few to lay stress upon them as factors in the investigation. On the other hand. troubles with the eye and ear are often traceable to defective teeth, and Dr. Sexton regards irritation of the maxillary limbs of the fifth pair as among the principal causes of the progressive nearsightedness of school children, as observed
by Drs. Agnew, Loring, Parke Lewis, Kohn, and other ephthalmologists.

THE WORLD'S FAIR PROJECT.

The talk of a world's fair in Boston seems to have come to nothing more speedily than the same project did in this city. Curiously the matter is again proposed here, and it is said that the originators of the new movement are men whose business standing is such as to justify a considerable degree of bopefulness touching the final execution of their plans. If they have no old building to sell, itself and the advantages which a properly conducted international exbibition would bring to the commercial and industrial interests of the metropolis, it is possible for them to trial interests of the metropolis, it is possible for them 10
make a success of it. As the greatest manufacturing center in the world, the chief cominercial port of a hemisphere, and soon to be the financial center of the world's trade and enterprise, New York presents a site for an international exhibition of progress in the arts and sciences unequaled in capacity and attractiveness. But it will require men of to do full justice to the city and the occasion. No other can awaken the public interest or command the respect requisite for success.

A NEW DICHROIC THERMOMETER

A thermometer of a novel and somewhat sensational
nature is being introduced in England by Mr. Sharland, the nature is being introduced in England by Mr. Sharland, the cury or alcohol, colored red as usual, this is filled with alco hol containing some dichroic compound of a pale yellow color, when looked through, but green when looked upon The result is that, by aid of a slip of black paper pasted along the back of the tube, the otherwise clear alcoholic column assumes the appearance of a bright opaque green emulsion on a black ground, and which, unlike a similar column of mercury, catches the cye with great readiness.

the mandfacture of salt in the united gtates.

The preliminary report of Special Census Agent W. L. Rowland on the salt industry of the United States shows that the salt product has increased from $12,717,19\}$ bushels in 1860 to $29,800,298$ bushels in 1880 . Of this yield of salt, 888.968 bushels came from sea or bay water by solar evaporation, and $94 t, 158$ busbels from inland lakes or natural deposit by the same process. The amounts produced by artificial
heat from subterranean brines were $8,853,821$ busbels by heat from subterranean brines were $8,853,821$ bushels by
kettle or pan process, and $16,115,351$ bushels by steam evapo ration process.
Fifteen States and Territories have salt works: namely, California. Florida, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Nevada, New York, Obio, Pennsylvania, Texas, Utah, Virginia, and West Virginia. Michigan leads bushels; West Virginia, 2,079,438; Ohio, 2.650,301; Cali fornia, 854,443; Pennsylvania, 851,4:50; Utah, 4 $\times 3,800$; Virginia. 425,895; Louisiana, 312,000; Nevada, 182,408. The other States named produced only small amounts. The total value of the salt product of the entire country during 1756 total value of the salt product of the entire country during
7756 . the census year was $\$ 4,817,636$. In California, Florida, and

Massachusetts salt is made from sea water; in Louisiana roch salt is mined and ground.
The salt industry employed capital to the amount of $\$ 8, \because 25,740$, and over 5,000 hands, whose wages amounted to $\$ 1,256,113$. The wells number 539. The deepest wells are in West Virginia, where they average 1,043 feet. The Ohio wells average 902 feet; Pennsylvania 884 feet; Michigan, 881 feet; Kentucky, 560 feet; New York, 324 feet; Virginia. 262 feet. The rest are shallow.

the anthracite indubtry.

The preliminary report of Spacial Census Agent Raphacl Pumpelly on the production of anthracite coal gives the folowing facts and figures:
The anthracite mines are confined to eight counties in Pennsylvania, in which there are 273 collieries, having an avcrage yearly capacity of 149,348 tons of 2,000 pounds. The average product for the census year was 100,488 tons. The maximum yearly capacity of all the collieries reported is $40,772,000$ tons. The actual output was about $28,000,000$ tons. The total number of employes was $\mathbf{6 8}, 239$, of whom 19.585 were miners, 47,410 were laborers, and 1,244 were of the administrative force-foremen, engineers, superintendents, etc. The number of men employed above ground was 15,564 ; boys, 11,921 . The number of men and boys employed below ground was 39,952 men and 3,802 boys. The total wages paid, $\$ 21,680,120$. Nearly $10,000,000$ of "culm," or impure coal and dust, were raised during the year.
The consumption of material included 30,40i,658 linear feet of unsawed lumber, worth $\$ 830,743 ; 39.605,517$ feet of sawed lumber (board measure), worth $\$ 644,109$; explosi.es to the value of $\$ 1,550,680$. The number of acres of coal lands reported was 164,852 , valued at $\$ 102,614,844$. There were employed in anthracite mining 409 horses, 7.718 mules, and 1,604 steam engines, worth respectively $\$ 48,863$, $\$ 848,665$, and $\$ 3,708,366$. Other stalistics run as follows: Horse power of engines, 102,522; number of boilers, 4,007 ; value of boilers, $\$ 2,332,640$; horse power of boilers, 86,408 ; mine locomotives, 80 -value $\$ 243,258$; number of pit cars, 30,384 -value, $\$ 163,560$; miles of railroad track underground, 1,085 ; miles of track outside, 258 . Total value of machinery, including engines and boilers, $\$ 18,295,415$; value of plant (machinery, tracks, cars, animals, shafts, etc). $\$ 39.814,399$; value of working capital, $\$ 7,731,9.33$; value of real estate, $\$ 150,161,196$. More than $4,000,000,000$ tons of anthracite remain to be mined, or enough to last 146 years at the present rate of mining.

THE ATTERUATION OF VIROS.

So long as vaccination stood alone, the alleged prevention of a malignant disease by the voluntary production of a mild disease of a similar type being a fact unique and unexplained, the anti-vaccinationists had a shadowy ground to stand on. How is it possible, they asked, to protect life and health by inviting disease? And when they boldly disputed statistics and pronounced the theory of vaccination a delusion. not a few intelligent people were confounded and prejudiced against a practice which has reduced to comparative feebleness one of the worst of the plagues of former days.
The discoveries made last year by Professor Pasteur in connection with chicken cholera, and fully described in this paper at the time, made vaccination a fact no Innger unique, and gave a most promising clew to the rationale of its operation in making the system less vulnerable to smallpox. As our readers will recall, that distinguished investigator of microscopic life demonstrated the living virus of chicken cholera, and proved that by suitable cultivation it could be so attenuated or shorn of its malignant quality that it would produce only a feeble disturbance of the animal organization. which yet sufficed to protect the animal as thoroughly from the more virulent disease as the latter could in case it was not fatal. More recently Professor Pasteur has investigated in a similar way the virus of the splenic fever of cattle. more widely known as anthrax and the Siberian plague; and at the late medical congress in London he gave an account of a series of discoveries in this new field, which not only add immensely to the scientific assurance of the efflciency of vaccination among men, but put into the bands of cattle owners the means of arresting a disease as destructive to domestic animals as smallpox ever was to humanity. He also demonstrates a general method of preparing virus vaccine, based on the attenuating action of oxygen and the air which makes it probable that a virus can be prepared which. while it thoroughly protects against smallpox, will be iess open to objection than humanized or even bovine virus, since the possibility of conveying at the same time any syphilitic or septic taint will be entirely obviated.
Already these investigations have resulted in the attenuation of four kinds of virus, bringing under control as many types of malignant discase.
As a proof of the protective efficiency of the attenuated irus, Professor Pasteur described the following experiment. He took fifty sheep and vaccinated twenty five of them. A fortnight after all of the fifty were inoculated with the most virulent anthracoid microbe. The twenty five vac cinated sheep resisted the infection; the unvaccinated wenty-five died of splenic fever within fifty hours. Within fifteen days after these results were made known more than 20,000 sheep and a large number of cattle and horses were vaccinated in and around Paris.
barly ambeican contributions to textine Finishing Machurery.
The records of the Patent Offlce for its first quarter century show that during the carlier years of American independence the attention of our inventors was very largely directed to the origination and improvement of textile machinery. This was natural, since the rude domestic appliances for clotb making which had been handed down from almost prebistoric times required for their use an abuudance of domestic help not found in the new country.

England's commercial development had made a fair beginning, and the demand for woven goods by her adventurous shipmasters in foreign trade had called into existence the beginnings of the great factories which subsequently won for England a large part of her industrial supremacy. Steam machinery was becoming an important industrial factor in such establishments, and their owners were competing for labor-saving processes and appliances. The origin of many of these has bitherto remained untraced, the presumption being that they were of English invention. Doubtless most of them were; yet when a more critical study of the history of a single branch of textile operations is made it is surprising to see bow largely the mother country was indebted to American inventors for the means of her industrial success.
It is hardly possible that the branch of manufacture referred to was entirely exceptional in its history.
During the past fifteen or sixteen years Dr. Hermann Grothe, of Berlin, the highest European authority on textile technology, has been making an elaborate and minute study of the history of machinery for finishing cloth and other woven fabrics; and, in a communication to the National Association of Wool Manufacturers (Bulletin, Nos. I. and II., 1881). he sets forth a large number of interesting discoveri's touching the contribution of early Americen inventors to this branch of the art. The idea has generally pre vailed that all the inventions of textile machinery until the berinning of this century were made in England; but on examining the letters patent and specifications of England since 1616 be finds that many of the inventions were only imitations and improvements. To trace their origin he bas examined the literature of technology and many old pamphlets and journals, finding "repeated proofs that American finishing machinery had been exported to England and France, and essentially contributed to establishing in those countries the indu try of the construction of this class of machinery. This," Dr. Grothe adds, "is prominently the case with machinery for fulling, gigging, and shearing cloth." We bave gone over the evidence cited by Dr. Grothe with considerable care, and have been able to verify most of his references, except for dates carlier than 1793, the beginning of the United States patent record. It would be an interesting task to examine the lists of British patents before the American Revolution to disenver what contributions were made from the colonics. The invention of Walter Bust (17i4) must have been of that number, and possibly also that of John Dyer, whose name does not appear in the records of the Cnited States Patent Office. The date of his patent as given (1833) must be wrong; perhaps 1733 was the date intended. Another obvious slip in that part of Dr. Grothe's communication printed below is corrected, and a number of details elsewhere added in brackets. The name "Ellis Jonathan" does not appear in the American record. Mr. Jonathan Ellis, who took out a patent in 1807, is probably the person meant. Dr. Grothe says:
"The fulling mill with rollers is completely an American invention, namely, that of John Dyer (patented 1833), and was introduced by Iall, Puwell, and Scott from Boston to Rouen, France, as the brevets and bulletins of France fully establish. The invention of the double crank-shaft fulling mill was made by Levi Oshorn in America [Fairfield, Conn.] in 1804, commencing a great series of constructions on the same principle. The first idea of a gigging mill is contained in James Delabarde's patent, No. 237, in England, and several inventions were made by others; but all these constructions have only imitated the operation of gigging by hand. In 1774 Walter Burt had obtained in America a patent for a gigging mill, and after his time the gigging mills with a rotating barrel became common in England with improvements of Lewis, Price, and others. All these English machines were patented after the gigging mills in America of Jereys, Christie [Joseph A., Elizabeth, N. J., 1816], of Jer evs, Christie [Joseph A., Elizabeth, N. J., 1816],
Olney [Joseph, Westmoreland, N. Y., 1813-1817], Barrows, Olney [Joseph, Westmoreland, N. Y.,
Beck, Wells, and others had appeared.
"Very important, I fud, is the portion of merit which must concede to American inventors. The merit of the invention of the cylinder shearing machine belongs to Samuel Griswold Dorr [Albany. N. Y.], (pitented October 20, 1792). He named his machine the 'wheel of knives,' which are arranged radially and parallel to the axis of the cylinder, and around it; but the construction of 1793 contains the knives radiully and spirally arranged around the cylinder. The constructors, Price, Lewis, and Davis, of England, have imitated this construction, and with much merit improved it, aftrr 1815. It will be observed that the English inventors from 1792 to 1815 had taken out many patents for shearing machines; but all of them followed the construction of the old band-shears, or the old shearing machine of Harmer, containing a series of hand shears. In 1806 and 1810 Beriah
Swift, of Wachington, had obtained patents for a shearing Swift, of Wavhington, had obtained patents for a shearing
machine with an oscillating cylinder. This invention apmachine with an oscilating cylinder. This invention ap-
peared in England as that of one Miles, and was patented in the name of the latter; but Miles was only the agent of Swift. A document relating to ' the importation of Ameri-
can shearing machines with spiral knives,' contained in the and the dyed goonls are boiled therein liy steam for about testimony of a Mr. Kathgate in Galashiels in 1823, shows eight hours. After rinsing, the pieces are lroiled in the secthat such shearing machines were built in England at that time as had been imported from America ten years before. Mr. Alcan has also shown that a Mr. Ellis Jonathan, in 1812 , had received a patent in France for a cylinder shearing machine which George Bass had exported to France from Boston. This was a longitudinal shearing machine with a piral cylinder. That much attention was given in America o the improvement of shearing machines is demonstrated by the list of patents from 1792 to 1817 . At this latier date all he improvements then known in these machines had been completed in America, and after that time commenced the construction of the improved machines in Europe. The fact is interesting that Edmund Durrin, of Weathersfield, N. Y. [Vermont] in 1814, invented a shearing machine with wo saw blades, one of which was fast, and the other moved with great celerity over the fast blade. This machine was patented in Europe in 18:3, under the name of John Bain bridge.

The invention of the pressing machine with steam belongs to Seth Hart [Hempstead, N. Y.], who received a patent in America in 1812. This invention appers in $18: 4$ in Europe, John Jones taking out a patent for the same in England. It appears that John Beverley, an owner of woolen and cotton factories in America, made the first.use of the hydraulic press in 1803 [patented Deceniber 26, 1803]. He named his construction a 'hydro-mechanical press. Bowker \& Hall, of Boston, constructed, in 1814, a rotating
cylinder press, heated by stcam. This press is believed to cylinder press, heated by stcam. This press is helieved to press, now so much in use."
The volume which Dr. Grothe is at work upon will no doubt clear up many doubtful pnints in the history of cloth finishing machinery, and Americans will rejoice with him in his ability "to award the merit of priority in invention claimed for England to America, the country which has cre ated inventors through her system of home industry and personal liberty "-aided, Dr. Grothe should have added, by an offlicial disposition to deal justly with inventors.

TURKEY RED ON COTTON.

The following will serve as an answer to those who have aquired how to dye fast or Turkey red on cotton:
There are several processes by which this desirable color is produced; of these the following is considered one of the best:
The goods are first steeped in soft water for about fortyight hours to remove the sizing. A small quantity of malt iquor is usually added to this water to render the starc soluble-by transforming it into dextrine and glucose.
The material is next boiled for half an hour or more in an queous solution of carbonate of soda, specific gravity 1.01 , wrung out, and oiled, by padding, in a misture of rancid oi and a very weak lye. For one hundred pounds of goods:

When well oiled the cloth is hung up in the air until feels dry, then bung up in a stove room heated to about 140° where it is allowed to remain for about twelve hours. These oiling or padding and drying operations are usually repeated wo or three times, according to the intensity of cold equired.
In the next operation the cluth is steeped for twenty-four hours in a cold emulsion composed of oil, carbonate of soda and water:

This having been pressed out, the pieces are carefully rinsed in water, and passed slowly and repeatedly through the following solution, which is kept at a temperature of 150° Fah.

Wround gall nuts (or samac).......................... 30 gallons. Ground
They are then hung up for forty eight hours in the stove room, kept at a temperature of 140° Fab.
Next follows the chalk bath-composed of about ten munds of floured chalk in fifty gallons of water beated to about 180° Fah. Through this the pieces are passed, and fter rinsing out, are ready for the dye beck.
The dyestuffs allowed for each piece in the beck are,

	20 pounds,
Garancln	3 to 5

dissolved in about $\mathbf{3 0 0}$ gallons of water. Alizarine is now extensively used as a substitute for the above dyes.
When the goods are put into the beck steam is let in and the temperature gradually elevated during one and one half hours to 180° Fah.; then rapidly to near the boiling point where it is maintained for about an hour. At the expiration of this time the pieces are wrung out, passed through a washing machine, then througb the chalk bath, rinsed, returned for a short time to the dye beck, and finally washed out.
The red color thus obtained is dull and dark, and to brighten it properly requires three cleaning operations. These (or the first two) are performed in clase boilers about wo thirds flled with water. In the first of these soup and carbonate of potassium are dissolved

ond boiler, containing, dissolved in the water,

Soap.

6 pounde.
7 ounces.

ride of tin.

7 ounces.
After rinsing this boiling is usually repeated. Finally, the pieces are exposed for several hours to the atmosphere,
then passed through a hot bran bath, and dried. The result then passed through a hot bran bath, and dried. The r
is the peculiar derp, rich, and fast red so much prized.
It is well to remark here, for the benefit of those not skilled in the dyer's art, that success in the production of this color on cotton goods depends much upon the attention paid to matters of detail in carrying out the numerous operations, and it is common experience that at first good results are ubtained only after repeated trials.

THE GOURAYI.

A live gourami was recently received by Mr. E. G. Black ford from M. Carbonnier, of Paris. Two specimens were sent, but unfortunately the female died shortly before the hip arrived at this port. The other, the male, arrived safely, the first live gourami brought into the country. The readers of the Scientific American will recall the hand some illustration of this fish which appeared in this paper last winter (December 4), with the suggestion that it would be a good subject for introduction into our Southern rivers. It is said that Colonel Pike, formerly American Consul at Mauritius, was the first to draw the attention of the ichthy ologists in the Smithsonian Institution to the gourami, hav ing forwarded several preserved specimens. The original geographical range of this fish, the Osphromenus goramy, is geographical range of this fish, the Osphromenus goramy, is
in the waters of Cochin China. It is also found in Java, in the waters of Cochin China. It is also found in Java,
Sumatra, and in Penang. It was introduced futo the waters Sumatra, and in Penang. It was introduced futo the waters
of the Mauritius and Reunion with success, but attempts to rear the fish in Martinique and Cayenne bave not given satis factory results. M. Carbonnier writes that the temperature necessary for the tish is from 20° to 25° centigrade. Other authorities place it higher, from 24° to 26° centigrade, which is about from 75° to 78° Fabrenheit. It would be, therefore, impossible to raise the gourami in waters adjacent to New York City, though there might be no great difficulty in placing them in the streams of Florida and Louisiana There has probably been some exaggerations as to the size There has probably been some exaggerations as to the size
of the gourami, which is reported to have been found of the gourami, which is reported to have been found
weighing 110 pounds. In the Island of Bourbon they bave been caught weighing from 22 to 35 pounds, but this large size seems exceptional. The flesh is considered excellent and is of a yellow straw color. Its growth is fairly rapid under advantageous circumstances, and in the third year it attains the size of a foot. It is omnivorous, taking flesh and vegetables, and on this account bas been called by the French colonists the porc des rivieres, or water nig. On peculiarity of the gourami is that it builds a nest of weeds, in which it deposits its eggs, from 800 to 1,000 , and it cares for the young $f \mathrm{~h}$. This fact of philoprogenitiveness would for the young in h. This fact of philoprogenitiveness would
probably aid very much in rearing the gourami in our probably aid very much
warmer Southern waters.
The specimen received has been turned over to the Smith onian Institution; and it is expected that others will be sen over by M. Carbonnier, whose efforts to introduce the fish into French waters have become historic.

The Ferrien of New York Harbor.

The statistics of the ferries which ply between New York and the towns and cities adjacent carry in the course of a year upward of $100,000,000$ passengers. The proportion carried daily on the different lines is given as below:

ries.	Passengers.	es.	Paceeng
Falton.	72.000	10th Street 2.500
Hamilton Avenue	88.000	23d street	8,00
South	19,000	34th Stree	
Catharine	.2,000	Liberty Sure	21,00
Wall Street.	20,00c	Cortiandt Street	8.00
Jamen slip	8,000	Barclay 8treet.	5.00
Division Avenue.	4,000	Deabrowees Street.	7.00
Grand Street	6,000	Christopher 8treet	
Staten Island-		${ }^{23} \mathrm{~d}$ Street.	4.00
North	. 10,000	W	1.50

Fulton Ferry employs five boats, which run every six min utes during the day and evening, and every fifteen minutes after one A.M. until five in the morning, only two lmats. however, being employed in the latter trips. Each of these boats frequently carries during the crow ded hours 2,000 pas engers.
Hamilton Ferry employs three boats, which run every ten minutes during the day, and half hourly after ten o'clock at night. South Ferry employs two boals, whose time of run ning is the same as on the Ilamilton Ferry. Wall Street Ferry has two boat - which run at ten minutes' interval from six A.M. until twenty minutes past eight, after which ther is a boat every twenty minutes until eleven P.M., and there after no boat until morning.
The other East River ferries employ from two to three boats each, running at frequent intervals, except Astoria Ferry, which is balf hourly during the day.
On the North Kiver, first in order are the Staten Island ferries, the boats being little less than large steamboats, and at one hour and half hour intervals
The ferry at the foot of Liberty street employs tive boats night and day; the Cortlandt Street Ferry has three boats, and that at Barclay strect four. Pavonia Ferry has 1 wo boats: De-brosses Street Ferry, three; Twenty third street Ferry, two; Christopher Street, two; Weehawken Ferry, two

IMPROVEMENT IN 8CHOOL DESKR.

No article of furniture is subjected to barder usage than the school desk; and the inevitable wear and rack and strain that tend to destroy it can be resisted only by improved construction and increased strength.
The manufacture of this class of furniture little skill and inventive genius, the conditions of use being such as to require the utmost care in workmanship as well as in design and in the selection of materials.
The desk shown in perspective and in detail in our engravings embodies several important improvements, which strengthen it and render it stable and durable. In design it is as shapely as anything adapted to the purpose can be. The joints of the woodwork are of a new form, being double tongued and glued, makiug a very handsome and strong joint
The fastenings of the iron in the wood are a novelty, and insure strong and perfect work without the use of screws.
Fig. 1 represents the improved method of uniting the slats of the backs and seats by double tongue and groove glue joints. Both joints act to bold the slats from warping, springing, or t wisting out of shape, producing open joints and uneven rough surfaces; in fact, the backs and seats are stronger and better than if made of a single picce, and bave the requisite curves and single picce, and have the requisite curves and
beautiful appearance produced by the alternate beautiful appearance produced by the alteraate
slats of different colored woods. Fig. 2 shows slats of different colored woods. Fig. 2 shows
the dovetail groove across the back and bottom the dovetail groove across the back and bottom
of the desk, with a portion of a standard shown of the desk, with a portion of a standard shown
wedged into the back. These backs and bottoms are finished as a single piece, by machinery, on both sides, with the edges, ends, and corners nicely rounded, making a smooth, solid, substantial flnish. The expanding dovetail desk can be set up in one-third the time required to put up the ordinary loose slat desk, and is much more smooth, solid and durable.
The iron wedge expanding dovet il fastening of the desk is shown in Figs. 3 and 4. The wedge at the right is shown slipped into the inclined key way, ready to be driven forward with hammer and punch. The wedge at the left is shown driven bome under a lip on the casting, with the flange on the wedge overlapping the edge of the groo thus locking all securely to gether. The wedges are provided with barbs that sink into the wood, and prevent their withdrawal without the use of hammer and punch.
Fig. 4 is an end view showing the dovetail fastening expanded, completely filling the groove, and Fig. 5 is a view of the seat hitge with the seat folded up.
The so-called "Paragon" school desk is manufactured by the Buf faln Hardware Company, Buf falo, N. Y.

Tortolse-shell Glass.

An invention for producing in glass an imitation of tortoise shell has lately been perfected by Herr Francis Pohl, a German chemist, in conjunction with S A. Wittmann, a London glass merchant
In carrying out the said inven tion, a bulb is blown of a dark brown glass, and another of a light brown glass, and the said bulbs are broken intu fragments of various sizes, or several bulbs of different shades of brown are blown and broken into frar. ments. A bulb of plain glass is hen blown, and the upper part cut off from the lower part is cut off from the lower part which adheres to the blowpipe While the plain glass bulb is being blown, a second blower hlows another bulb of plain glass, and dips it in and rolls it among the fragments of brown glass aforesaid, which are there hy made to adhere to the said bulb. The bulb with the frag ments adhering thereto is the inserted in the cut-off portion of the first named plain glass bulb. and the two are then blown to gether. The whole is next re warmed, and swung and drawn out as one bulb, and treated in the manner ordinarily practiced in preparing glass for the manufacture therefrom of vessels and other articles
When the fashioning of the vessels or articles is completed they are coated or painted with a solution of chloride
of silver and yellow ocher, or with other suitable
for producing a yellow stain, and afterwards fired.

Blasilng without Drilling.

Experiments have been recently carried out by Major

IMPROVED SCHOOL DESK.
large and troublesome to remove. The Laver system is calculated to effect a saving of fully 40 per cent as compared with the old system.

NEW INVENTIONS.

An improved flood fence has been patented by Mr. Tho mas C. Nichols, of Princeton, Ind. This inmas C. Nichols, of Princeton, Ind. This in-
vention consists of a fence pivoted at its lower end to stationary posts, and adapted to be revolved so as to rest on the ground or to be revolved into a vertical position, and provided with an upper wire serving as a latch for a catch or catches on the stationary posts.
Mr. William M. Turner, of Albia, Iowa, has patented an improved milk cooler designed to raise cream on the milk on the cream-gathering plan, so as to allow the farmers to set their own milk to be skimmed by the manufacturers of butter. It consists in a can having an upper and lower flanged coverand three vertical tubes, one of which leads from the tray formed by the flange on the top side of the cover, and conveys the cold water to the middle tube, which is larger, and which rises in the center of the can to nearly the top of the same, and from the top of which the water passes into another tube on the opposite side from the first, to the bottom of the can, at which point the water emerges and surrounds the whole body of the can to beight of milk, and passes off through an overflow orifice in a surrounding tank, in which the can is partially submerged, by which means a positive circulation and thorough cooling effect are produced.

An improved dental articulator has been patented by Mr. Henry L. Cruttenden, of NorthGeld, Minn. The object of this invention is to facilitate ascertaining the exact articulation of the jaws, for enabling exact and accurate set-
to show the value of his new method of blasting rocks nnder \mid ting and fitting of sets of artificial teeth. water. The chief feature of Lauer's system is to employ a hollow cylinder, like a gas pipe, and to place the dynamite cartridge, not as hitherto in a hole bored into the rock to be blasted, but in the cylinder in question. The cartridge only ouches the surface of the rock which it is desired to statter. The explosion of the dynamite is effected by means of elec tricity, and the effect is said to be greater than with the

Fig. 1.

Fig. ${ }^{2}$.

DETAIIS OF IMPROVED SCHOOL DESK

An improved rotary shelf for ovens has been patented by Messrs. Addison M. Youngs and Josiah Smith, of Sag Har bor, N. Y. The object of this invention is to facilitate the insertion into stove and range ovens, and the removal there from, of articles to be baked, and also the convenient adjustnent of the articles while in the oven
An improved animal power has been patented by Mr Nicholas Potter, of Troy, Pa The ohject of this invention is to improve the construction of the animal powers for which Letters Patent No. 112, 179 were issued to the same inventor Feb ruary $28,1871$.
Mr. Jeremiah C. Jones, of Whitt. Texas, has patented an improved stock car for transporting cattle and horses on rail ways; the object of the inven tion is to provide means for allowing the animals occasional opportunities to lie down and rest and be fed and watered.
In the usual process of manu facturing glue the stock is first soaked by placing in vats con soaked by placing in vats containing lime water, then carried to the wash mill. where it is washed, and then carried to the boilers and boiled until the valuable portions are extracted, when the water is drawn off for subse quent evaporation and drying of the glue and the refuse removed from the mill. Large quantities of stock are worked at once, and the labor of handling the stock is severe and prolonged, on ac is severe and prolonged, on ac count of the weight of the materials and the frequent changes that are required more or less frequently, according to the condition of the stock under treat ment. Messrs. Henry H. Bueder, of Cincinnati, O., and William A. Baeder, of Brooklyn, N. Y., have patented an improved apparatus which facilitates these operations and reduces the labor required in bandling the glue quired in bandling the glue in a wheeled tank or case consists in a wheed tank or case for use in the soaking vat and for trans. fer of the stock to the mill, and
io a combined washing and boiling vat.
An improved jointed pitch board for squares has been patented by Frederick N. Marvick, usual cartridge in a hole bored in the rock. The rock is of Palatka, Fla. The invention consists in a carpenter's shattered into fragments so small that a fair stream is able square provided with a middle jointed rule slotted in both to wash them away without help, whereas in the case of sections, and connected by a clamp bolt and nut with the slotgunpowiler the rock is only split up into blocks more or less $\left\lvert\, \begin{aligned} & \text { ted arms of the square. }\end{aligned}\right.$

the fenian inferinal machines.

In a recent number of the London Graphic we find the following engraving of one of the infernal machines lately captured at Liverpool, England, by the customs authorities there, on board of a vessel from Boston. It appears from this that these machines were manufactured in this country and sent over to England for nefarious purposes.
The machine consists of two cases, with a space between in which the explosive is to be placed, the outer case of zinc, the inner of brass, which contains an ordinary cheap clockwork, made by the Ansonia Clock Company. A is a brass disk driven by a mainspring; B, a lever bearing on the edge of A. Lever B communicates with a trigger, C, which, when the notch in disk, A, has, by the rotation of the disk, allowed in dis, A, B , fill liberates a powerful allowed the lever, B, to fall, mer, D, which falls upon a cap on a nipple, E, and fires a fuse which leads to the explosive that is arranged between the cases, and explodes the same. The box is six inches square at the ends and twelve incues long. It forms a very deadly implement by which the lives of hundreds of innocent people might be sacrificed in an instant, without chance for detection of the cowardly author.
That must be a wretched cause, indeed, which can inspire its agents with no higher or nobler ingenuity than to make and skulk about with such devilish contrivances.
The following extract from recent proceedings in Parliament will perhaps give a better idea of the construction and object of these machines, and of the feelings produced by their discovery in England:
Lord Sandon.-I wish to ask the right hon. gentleman the Secretary of State for the Home Department, whethe he can give to the House any information as to the reports contained in the morning papers of Monday, with reference to the discovery in Liverpool of a number of explosive machines on board two vessels which have arrived from America; and further, whether he has any information America; and further, whether he has any
that such machines were sent by any persons connected with Fenian conspiracies.
Sir W. Harcourt. - The accounts which have appeared in the morning papers relating to the explosive machines seized at Liverpool are substantially correct. The Government have not hitherto been desirous of giving pubicity to the matter-first, because the know ledge of the facts might have proved an obstacle to the detection of the offenders; and, secondly, from a natural desire not to create alarm. But secrecy in these days bas ceased o exist and now that the circumstance is enerally known it is right that the fuct hould be authoritatively stated More than bree weeks ugo the Govy formation of the consignment to Liverpool, and then on their way from America, of a number of infernal machines concealed in barrels of cement. I accordingly communicated at once with the Commissioners of Customs, and a confidential agent of the cusoms and a metropolitan police officer we from London to Liverpool to await the arrival of vesee which had been designated. These offlcers reached Liverpool only a few hours before the arrival of the first of the vessels. The cargoes were accordingly searched in concert with the police and the customs authorities at Liverpool and in the first vessel six of these machines were dis covered in a barrel said to cuntain cement; and four more were found in the second vessel, concealed in the same manner. The machines consist of a metal box divided into wo compartments, the upper portion con aining a six-hour clock work movement so arranged as tc ignite a detonator to be herefter inserted, which was to communicate with the lower compartment containing eleven cart ridges, each charged with three ounces of a nitrolignine compound which resem bled, but which has proved not to be, dyna mite. It is, however, of a higbly dangerou character-of the character of gun cotton. I have had the material carefully examined and experimented upon at Woolwich. Each of the ten boxes contained a charge of over two pounds of explosive, and one of the barrels contained in all nearly a stone weight of this nitro-lignine compound. It is impossible to cstimate the fatal effects of even an accidental concussion on such a material. I ueed not ay that Her Majesty's Government have employed and are employing every resource their disposal to detect the consignees in England and the consignors in America of these machines. The actual bistory of the dispatch of these machines is under investigation in America and remains to be ascertained. But on the face of them they appear to be the precise and literal fulfillment of projects openly avowed and declared in the Irish Feuian press of America. Week by week, for the last nine months, open threats and public invitations to general outrage and

Fig. 2.

DETAILS OF SELP-REGISTERING STAMP.
states. (Cheers.) In my opinion, it is the duty of every civilized govgrnment to cooperate in putting down with a strong hand these nefarious enterprises. I have seen with regret the attempt on the part of persons in this country who ougbt to know better (Hear, hear) to weaken the hands of the Government in the representations they have thought it their duty to make to the Goverument of the United States on these matters. It is my frm belief that the Government of the United States is as ready as our own to repress and to punish the authors of such crimes. (Cheers.) It is their interest no less than ours, (or the danger is as great to every Americall citizen as to every British subject who crosses the Atlantic. But in any event I can assure the House that Her Majesty's Government are and have long been fully alive to their responsibility in this matter-a responsi bility which the House will believe is sometimes heavy enough to bear. And the Government confidently count on the support of Parliament and the country while they employ every power of the Executive and every engine of the law to detect and to destroy these associations of assassins. (Cbeers.)

ferguson a keicpe's attoilatic begistering

STAYP.
The registration of the number of letters or circulars which are sent nut from an ottice or house of business s often required; bitherto no means other thau that of ctually counting has been devised for the purpose Messrs. H. Ferguson and H. R. Kempe have recently invented and patented a simple apparatus for nutomatically effecting the registration either electrically or mechanically.
When letters pass through an office they are impressed with stamps for obliterating, dating. and other purposes by means either of a hand or a lever stamp. Messis. Ferguso and Kempe take advantage of this fact, and mount either the pad for inking the stamp, or the pad on which the letter paced to receive the stamp on spring supports and provid placed to receive the stamp, on spring supports, and provid pectrical contacts, $s 0$ arranged that when the pad recive the pressure of the stamp, a current of elec tricity is transmitted to an electrical counter which is thereby moved one division. When he stamp is worked by a lever the contact are arranged to be operated by the movement of the lever, the pads in that case not requir ing the elastic supports above referred to. In cases where it is inconveuient to employ elecricity for conveying the counting movement, we counter is constructed in combination with the hand stamp itself, and is worked mechanically in the following manner: The stamp is fitted so that it can slide a little longi tudinally in its handle, pressing it forward by spring. Within the upper end of the han le is placed a small mechanical counter, the pawl which works its ratchet being connected to the sliding stamp, so that every time the tamp makes an impression the counter atchet is moved one tooth. As for each act of stamping it is usual to subject the stamp to wo pressures, one on the inking pad and one overnment have not regarded them as things to be laughed on the letter, the ratchet wheel of the counter is made with or neglected. They knew well the gravity of the case, and have uot been the dupes of the mischievous fallacies of impulses move the counter only over one division
their apologists. The principal origin of these attempts is Fig. 1 represents an arrangement of inking pad working to be found in the assassination press. (Cheers.) This in electrical connection with a counter. The pad is mounted poisonous seed, sown broadcast, finds a congenial soil on a hinged board, which is pressed upward by a spring in evil minds, and bears a fatal fruit. (Hear, hear.) We against a stop. When the pad is pressed down by the act of have shown in the prosecution of the Freiheit that the law inking a stamp, the upper spring is brought in contact with of England is capable and ready to deal with such criminals' a lower spring. These two springs (seen in the small tigure), ont less in the interests of our own people than of foreign which are fixed on a base of wood, are connected by con ducting wires through a battery with an elec rical counter. Every time the pad is de pressed by the act of inking a stamp, a cur rent of clectricity is transmitted, which actu es the counter. When the stamping ected by a lever the electrical contacts are connected to the lever
Fig. 2 is a vertical section of a self-register ing hand stamp. The stamp is flxed on a stem which is fitted to slide in the handle, B, ud is pressed down by a spring, its down stroke being limited by stop pins working in slot of the handle. On the bandle is screwed hollow cap, D, containing within it the counter, C, which can be inspected by un screwing the cap. The first wheel of the counter is worked by a pawl lever from the liding stem, a of the stamp, and this whee has twenty teeth, the unit barrel on which it tixed having, however, only ten divisions The barrels for the higher denominations ar worked by gearing from the first in the usual way. Thus every time the stamp is subjected to pressure the first wheel is turned one tooth and the unit barrel is therefore turued half a division. For each stamping operation the stamp is twice subjected to pressure, once on be pad for inking it, and once for delivering the ink on the letter or object to be marked or obliterated. The counter therefore record the number of double strokes of the stamp,
and therefore the number of single applications for marking or obliteration. The cap, D, is smooth and rounded externally so as to receive the pressure of the hand for inking and stamping, and it is made of the laterally bulged form shown, so that it presents considerable breadth to receive the press. ure, and that it can be held firmly in the band.
We may remark that the apparatus shown by the figures is manufactured by Messrs. Elliott Bros., of Charing Cross. -T'elegraph Journal.

THE ELECTRICAL EXHIBITION AT PARIS.

[Continued from first page.]

On entering the palace from the Champs Elysées the splendid array of novel exhibits and brilliant decorations dazzles and confuses the visitor. The numerous pavilions, draped and ornamented with the flags of all nations, the strange machincry, the multitudinous wires, together with the vast proportions of the hall, overpower the sight, and it is not until after the lapse of several minutes that the order and plan of the exhibition are apparent.
In the center of the nave, resting in a great basin of water surrounded by plants, stands a veritable lighthouse. At its base floats the electric boat of Trouvé.
At each side of the entrance to the nave are buge lions, and above is a grand luster of iron work bearing Siemens lamps. The half of the hall to the right is allotted entirely to France, which has twice as many exhibitors as all the rest of the world. The other half of the hall has been allotted to foreign nations, the principal divisions being assigned to England, Germany, and America. The ten assigned to England, Germany, Austria, Belgium, Italy, smaller divisions are occupied by Austria, Belgium, Italy,
Russia, Sweden, Norway, Spain, Hungary, Switzerland, and Russia, Sweden, Norway, Spain, Hungary, Switzerland, and
the Netherlands. A striking feature of the British section the Netherlands. A striking feature of the British section
is a handsome pavilion, with a red and white striped canopy, containing the electrical apparatus used by the post-office departments of London. Outside are several large tables on which are arranged the electric inventions and apparatus of the British exhibitors. One of the most conspicuous and popularly attractive exhibits in this section is a full-sized buoy carrying two Siemens lamps. Here also may be seen the great induction coil made by Mr. Appo at the suggestion of Mr. Spottiswood, the eminent electrician. This coil produces a spark forty-two inches long.
The German exhibits are presided over by a bust of Germania, whose domain embraces three large departments. The electric railway of Siemens is outside the building.
The American division is made conspicuous by the triple cluster of flags grouped round the pavilion. In this compartment are established the Uuited States Signal Service exhibits, the Gray electro-acoustic telegraph, including the multiple or harmonic system, the Bell telephone, the interesting telephone of Dolbear, and many others. Considering the distance which everything bad to be brought, the American exhibition is a remarkable one, and the Edison department promises to be as interesting as it is extensive.
The Belgic department has a very interesting display of lamps and telephones.
Italy is represented by a beautiful pavilion, which has Italia on the one side and Roma on the other, in large letters, and which contain, among other things, the historical apparatus of Volta and Galvani.
The Russian department exhibits, among other things, the apparatus of MM. Latchinoff aud Tchikoleff.
The Dutch department has a fine exposition, the principal feature of which is the great electrical machine of Van Marum and his immense Leyden battery.
The Swedish and Norwegian departments promise to be interesting, as does also the Russian, but as yet very little of the machinery is in operation.
Underneath the galleries the great machines and dynamoelectric generators are established. The electric railroad is represented in this part of the building also.
The French pavilions dedicated to the several departments of electricity are very interesting. In one is the "Adminis. tration of Telegraph Lines," which shows all the apparatus employed. One pavilion, dedicated to the "City of Paris," shows all the electrical applications which have been put into use there, including the time service. Many of the rail road companies are represented by systems for indicating the movements of trains, etc., etc., Here also are wagons having electric brakes, and many other marvelous and interesting inventions.
The beautiful galvanoplastic objects of the well-known firm of Christofle attract much r.ttention. The monumental stairway conducting to the galleries is at the lower end of the ball. A number of lights of different systems surround ing the nave make a brilliant display.
The hall of the balloon will be lighted by the Jablochkoff system; the great saloon of honor by the Maxim; the hall of the comparison of telephones by the Faure accumulator; as also the bath room and kitchen. The experiments of electric photography will be made by the Wilde light, and Edison lamps will illuminate the ball of conference and the adjoin ing hall
The balloon of M. Tissandier glides above the heads of the spectators on the ground floor along a wire from one side of the galleries to the other
The lower galleries to the left are devoted to the motors and magneto-electric machines. The other galleries to the left are dedicated to the accumulators of Planté, to the exhi bition of the ministers of marine and of war, and the exhibition of the well known firm of Breguet.

Under-water Gold wining in Georgia.

The cheapness with which large amounts of earth in rive beds can be washed for gold by the new process of under water hydraulic mining is awakening great expectations from the owners of river rights in Northern Georgia. Hitherto the cost of mining in the ordinary way has made the working of these streams comparatively unprofitable. By the new process it is claimed that the beds of the Chestattee and Chattahonchee Rivers cannot fail to yield abundantly. The Georgia State Geologist reports that two companies have been formed for prosecuting this work, using boats of the International Vacuum Dredging Boat Company. The first boat, now under construction at Dablonega, is expected to begin work the middle of September. These boats cost from $\$ 6,000$ to $\$ 10,000$ each. Many miles of the rivers named have been leased for working, the price named being ten per cent of the yield.

Testing Seeds.

The following is a brief abstract of a paper, by Professor W. S. Beal, presented at a meeting of the Association for the Promotion of Agricultural Science, held August 16, in Cincinnati, Ohio.
Good fresh seeds varied much less in the per cent which germinated than did those which possessed little or low vitality. With the exception of two kernels in two different lots of fresh band-picked wheat, 100 per cent germinated in all the tests made, excepting those in open ground, where $94 \cdot 9$ per cent out of 1,000 kernels germinated.
Some poorer old wheat, the history of which was not known, when tested in the same manner as the new wheat and at the same time, varied from 39 to 86.8 per cent in germination. Red wheat germinated more slowly than white wheat.
Wheat was once germinated and well dried in the sun. Quite a large per cent germinated a second time, depending on how far the process had gone before it was checked by drying. Of this well dried grain a considerable portion germinated the third time.
Seeds of pumpkins and the larger squashes tested at 80° Fah., or lower, showed variable and unsatisfactory results, while tested at 100° to 136° the per cent in germination was much higher and more uniform.
In all the above cases seeds were tested in lots of 50 or 100 seeds. They were tested in porous saucers kept damp, in damp sand, in soil in the garden, and in folds of damp paper.
Transmission of Power by Electricity in Mining. The first instance on record of the application of electricity for the transmission of power is reported from France. M. Mathet has submitted the details to the Société de l'Industrie Minérale. The St. Claude shaft at Blanzy was sunk to the
depth of 500 meters (1,640 feet), for the purpose of searching depth of 500 meters (1,640 feet), for the purpose of searching for a faulted portion of the coal seams, and a heading was run from it across the strata. When this heading had reached a length of 400 meters (1,312 feet) the ventilation became so poor that the temperature at the face rose to $95^{\circ} \mathrm{Fah}$., and the miners could work only for a few hours. After some incffectual attempts to improve the ventilation by simple means, it was decided to put in a fan 2.63 feet in diameter, and run it by power transmitted by electricity. An 8 to 10 horse power portable engine was put up above ground, and with it a Gramme dynamo electric machine was run at a speed of 1,200 revolutions per minute. The electric current thus generated was conducted by a cable, consisting of seven
0.044 inch copper wires, to a second Gramme machine coupled directly with the fan, and placed in the heading near the shaft. Running at 700 to 800 , it required $21 / 2$ horse power, the useful effect being at least 60 per cent. The tem perature at the face was only lowered 5°, but the men could work in eight hour shifts. The return current was conducted from the underground machine by an iron wire cable. The cost of the whole plant is stated to have been only one-third of what a machine for delivering compressed air to the heading would have required.

miscellaneous inventions.

An improved axle lubricator has been patented by Mr. James V. Randall, of Newtown, Pa. This invention relates to self-lubricating axles which are provided with oil-cups at their outer ends and nuts for closing them. The object is to provide a simple and inexpensive lubricating device which shall be adapted for use in combination with the ordiany axle and axle box.
An improved paper-drying machine has been patented by Mr. James S. Piper, of Rockford, III. This improvement relates to machines for drying the wet sheet from an ordinary cylinder, Fourdrinier or other paper machine. the special object of the invention being to give a lap or belly to the sheet during the drying operation. The sheets so formed are used in making paper barrels.
An improved switch for dynamo electric machines has been patented by Mr. Hans J. Müller, of New York city, The object of the invention is to facilitate connecting the internal and external circuits of a dynamo-electric machine in such a manner that any one current can be used to excite the magnets only, or to excite the magnets and perform work in the external circuit, while the other currents perform work in the external circuits only.
Mr. Armand Maller Jacobs, of Moscow, Russia, has patented a process of manufacturing sebacic or fatty acids from glycerides, consisting, first, in forming sulpho-sebacic
acids by treating the oils with sulphuric acid and boiling this mixture with double its quantity of water; and secondly, in decomposing this sulpho-sebacic acid into sebacic acid and oxy-oleic acid by boiling it with water.
Mr. Joseph Klar, of Anna, Ill., has patented an improved mole trap which can be conveniently set and which will be reliable in operation. It consists of a platform with springs attached, a loop connected with the springs, one or two loops hinged to the main loop, a pivoted trigger having a catch point, a . hinged catch rod to engage with the catch point of the trigger in setting the trap. and a stationary loop and flaring rows of rods to guide the animal to the trigger. An improved button has been patented by Mr. Oscar Ericsson, of Sioux Falls, Dakota Ter. The object of this invention is to facilitate the attachment of buttons to garments or other articles, and to increase the strength and duration of the said attachment.
An improved earth auger has been patented by Mr. Edward A. Smith, of Grecley, Col. This invention is an improvement on the patent granted to the same inventor August 3, 1880, and the improvement consists in providing the semicircular bottom of the cylindrical casing with the cutting blade, and the shaft with a semicircular cut-off plate, the edge of which is guarded by a projection on the bottom of the blade.
Linus W. Brown, of Algiers, La., has patented improvements in steering vessels by power gear, in which the power gear is entirely independent of the hand gear, aud is applied direct to the rudder.
Mr. Edward J. Rawson, of Brooklyn, N. Y., has patented an improved folding table, which can be raised to form an inclined book rest, and can be placed upon a bed or sofa in such a manner that a person lying on his back can reach the articles on the table very conveniently.
Mr. Joseph Thorpe, of Jersey City, N. J., has patented an improved photographic plate holder, in which two sensitive plates may be carried and successively exposed. This plate holder is provided with a central sliding carrier which contains a partition, on each side of which a sensitive plate is carried.
An improved shot case and distributer has been patented by Mr. Sinclair Booton, of New York city. The object of this invention is to improve the construction of the shot cases and distributers for which Letters Patent No. 110,625 were issued to the same inventor January 3, 1871.
An improved water closet and bidet bowl has been patented by Mr. John Flanagan, of Newburg, N. Y. The invention consists in making a water closet and bidet bowl with recesses in its rim to allow the hand to be introduced for bidet purposes; also, in constructing the trunk or pot with embossments upon the opposite sides of the lower and upper parts to receive inlet and outlet air pipes for ventilating the trunk.
A regulator for nursing bottles, patented by Mr. Willard C. Carpenter, of North Stratford, N. H., is desigued to allow regulation of the amount of milk drawn out, according to the age and requirements of the child. It consists in a regulating plug or faucet combined with the rubber feeding tube.
An improved machine for washing and beating yarn bas been patented by Mr. Polydore Dorgeval, of Paterson, N. J. These improvements relate to machines for washing yarn in hanks, and have for their object to facilitate the introduction and removal of the hanks and to render the washing operation perfect.

A PIPE LINE YOR NATURAL BRINE.

In a report on the saline interests of Michigan. Dr. S. S. Garrigues, State Salt Inspector, mentions the construction of a pipe line for conveying brine from East Tawas to Oscoda, to be finished this fall. The pipe is of nine inch bore, of the Wyckoff patent, manufactured by the Michigan Pipe Company, and is expected to deliver brine enough to make at least 1,000 barrels of salt a day. The pipe will be laid three feet underground, and will be twelve and a half miles long. The difference of level between the two points is not given. The pumping works, cousiating of two tubular boilers, 6x16, and two powerful engines, with necessary machinery, will be at East Tawas. The salt rock at that place is 196 feet thick, and its brine produces salt second to none in the State. The wells there yield on an average 200 barrels a day, while at Oscoda the yield is but about 30 barrels, and the wells do not furnish a supply equal to the capacity of the works.

Machines to Destroy.
 To the Editor of the Scientific American:

You have in your issue of September 3 an article on "Fast Lumber Cutting in the Puget Sound." Yes, it is wonderful how we have progressed in wood cutting and wood working machinery, and we thereby cut up in ten years as much lumber as formerly would have taken one hundred years. We shall soon be in the same fix with all our timber scarcity as you described in an article lately on the black walnut. In fifty years from now, it seems, we can break up all our saw mills and wood working machinery. as there will be no timber to cut unless some one can come to our help and invent a timber growing machine. Are we not a great nation to invent machinery to destroy, so as to turn everything into cash, as illustrated by the new invention to catch salmon described in yours of September 3?

St. Louis, Mo., September, 1881,

Progreas in Canoo Building and Bitgeing.
The second annual meeting of the American Canoe Association was held at Lake George in the fore part of August. Between sixty and seventy canoes and a large number of canoeists were assembled. Nearly all of the canoes were
wooden canoes of the "Shadow" model, and Rob Roys of wooden canoes of the "Shadow" model, and Rob Roys of
the American traveling canoe model. There were a few canvas canoes owned by those to whom cheapuess was a prime object. A very intelligent review of the results of the meeting, from the standpoint of the practical canoeist, is given in the Times. The writer says:
" While nearly all of the American canoes are decked over and are propelled by the double-bladed paddle, most of the Canadian canoes are without decks, and the Canadian canueists cling to the single-bladed paddle. It will readily be conceded that for hunting and fishing the open canoe has certain
advantages over the decked canoc, but the superiority of the latter for cruising was clearly shown at the Lake George meeting. During a four mile paddle against a strong headwind from Canoe Islands to the race course, the open canoes were compelled to resort to bailing, while the decked canoes were perfectly dry. Half a dozen races also established the fact that the double-bladed paddle could drive a Rob Roy canoe faster than the single-bladed paddle could drive the lighter Canadian craft. While the peculiar method of build ing employed by the builders of the Canadian 'Peterboro' cannes excited general admiration, and while the lightness and beauty of the canoes themselves were undeniable, the
superiority of decked canoes and of the double-bladed padsuperiority of decked canoes and of the double-bladed pad-
dle was too manifest to admit of doubt, and the estallishdle was too manifest to admit of doubt, and the establish-
ment of this fact was among the most important results of the Lake George meeting.

Another fact definitely ascertained at Lake George wa the great superiority of one particular rig over all others. To properly rig a canoe, the sails of which must be manage by the canoeist without leaving his seat, is a difficult prob lem. The different kinds of rigs which have been tried by English and American canoeists are legion, but each one bad its manifest faults. The leg of mutton, the sharpie, the standing lug, the balance lug, and the boom and gaff sail standing lug, the balance lug, and the boom and gaff sail
have all had their advocates, and were all fairly tried at Lake George in competition with a new modiffed lateen rig, used by the canoeists of the Cincinnati Canoe Club, and the superiority of the latter was conceded without a dissenting voice. In simplicity. efficiency, and beauty it was found to be nearly perfect, and its universal adoption as the only rig which is perfectly adapted to a canoe is among the certainties of the near future."

The Buffalo and Rock City Pipe Line Company began to deliver oil at Buffalo August 23. The line of pipe is between 63 and 64 miles in length and 4 inches in diameter. Rock City, at its southerly terminus, is an oil village near the Pennsylvania State line, and occupying an elevation 1,000 feet above Buffalo. At this point are situated large iron tanks, with a capacity of 25,000 barrels each, for receiving
the oil. There is a pump station supplied with the oil. There is a pump station supplied with improved
triplex pumps for pumping the oil, and smaller pumps for triplex pumps for pumping the oil, and smaller pumps for
supplyiug to the boilers. Gas from the surrounding wells is used for fuel. Were it not for the intervening hills and valleys between Rock City and Buffalo oil could be pumped through the entire line with ordinary pressure in consequence of the numerous high places that the line pusses over. A termini of the line. From this relay station the oil is taken up as it comes from Rock City and is forced to Buffalo. Before starting the oil the line was tested with water bydraulic gauges were put on the line at various points where pressure would be the heaviest, and also at the pumps. By the use of these gauges the speed of the pumps and the gauge of the tanks were taken at stated times, and a record
of the pressure and the duty of the pumps was obtained. A report for one hour showed that the pressure was 325 pounds at Rock City and 625 at Allegany, a poiut 950 feet below. The duty of the pumps was 150 barrels an hour. The nipe ure st Roc 1,200 pouns. On send 40 at Allerany, with the same result on the duty of the pumps, showing that nearly double the amount of oil can be pumped through the line on the same pressure required for water. This is the first independent line organized under the act of 1878 . Th tanks at Buffulo have a capacity of 148,009 barrels.

High Ruildings and Elevators in New York.

 An increasingly characteristic feature of the business por-ion of New York is its lofty buildings for offlces. Of the tion of New York is its lofty buildings for offices. Of the there is only one-the Stock Exchange-which is less than twelve stories high. The Stock Exchange is only four stories high, it is said, for the reason that if it had been carried higher and the upper floors rented to brokers the competition would have been so great for these offices that ill-feeling would have been engendered.
Recently a journalist had occasion to make a dozen busi ness calls in this part of the city, and out of curiosity kept record of the height he traveled in elevators. He says
"For eleven of the twelve calls I had to enter an elevator and twice I retraced my steps, finding iny man out the first time. Adding up the number of stories I was lifted, I find that I went up sixty-two stories, or a total height of 806 feet, allowing an average of 13 feet to each story-a very small average. This is nearly twice the height of the Great Pyra-
mid of Egypt, and any traveler who goes to the top of the Great Pyramid in less than half an hour on a hot day will be able to estimate the saving in strength effected by our New York elevators. If all our elevators were
once business would come to a standstill.

cechanical inventions

Mr. Francis A. De Bremon, of Clifton, N. J., has patented new and improved device for furnishing a continual sup ply of lubricating substance to the shaft or axle of a whecl. The invention consists in a box contaiuing the lubricant, and provided with a follower and a spring for pressing this lubricant to the inner end of the box, from where it flows to the ale through a tube and along a wire contained in this tube and pressed against the axle by a spiral spring, whoreby the xle is furnished with a constant supply of the lubricant. An improved boiler-flue scraper has been patented by Mr John L. Kelley, of Erie, Pa. The object of this invention is to construct a simple, durable, and effective device for craping and removing soot, etc., from boiler flues.
Mr. James Curran, of New York city, has patented a mproved heat alarm for sigualing changes of temperature with an expansion rod t o be inserted in the heated tank or chamber, a compound lever for multiplying the changes in length of the expansion rod, a connecting rod, and a steam hanges in listle connected with the heating pipe, whesteam valve and cause the whistle to give a signal.
Mr. Oscar Bihet, of Liege, Belgium, has patented an improved machine for coiling a band or rod of metal into the shape of a helix or volute spring. The inveution con sists in a machine provided with a helical mandrel mounted on a suitable shaft, and provided with a detachable bouk for eizing the bar or rod of which the spring is made, imme diately after the same leaves the furnace, which bar or rod passes over and between suitable guards, and is pressed upon he mandrel by a flanged roller loosely mounted on a shaft ournaled in the ends of a fork attached to a vertical shaft, hat is forced downward by a spring surrounding it, and is provided with a screw passing through a hand wheel, by the rotation of which the flanged roller may be raised.
An improved endless belt filing machine has been patented y Mr. Deloss H. Stephens, of Riverton, Conn. This ma hine is intended for the purpose of smoothing articles fed to the files by a carriage actuated by a foot lever and a con ecting rod. It consists in a novel arrangement of an end band file carrier, grooved pulleys, and grooved guides

Sulphurous Acld as a Bleach.

For bleaching wool, silk, and straw, sulphurous acid, or sulphurous anhyiride, as it is frequently called, has long been employed, aud the old method of generating it for the purcose by burning sulphur is still the most common. But he operation is attended with more or less uncertainty, and f ann of uniformity in the results is frequently a source this uncertainty is mainly due to the varying conditions of the atmosphere of the bleach chamber. Tbe temperature to which the textiles are subjected there is far from being uni orm. The proportion of sulphurous acid in one portion differs widely from that in another, and the acid is far from pure.
The impurities in the gas come from the impure form of ommercial sulphur, which must of necessity be used. Th rate and direction of the circulation of the gas must depend upon the rate of combustion; which, at first sluggish, becomes active as the sulphur melts, until the liquid reaches o high a temperature that a portion of it is volatilized nconsumed and rises in the form of vapor, mingled with the sulphurous acid. The latter, familiarly known as a fire xtinguisher, prevents the combustion of the volatilized sul phur until perchance it reaches the fabric to be bleached where, meeting with conditions favorable to combustion, it is consumed, producing a slight stain. This is especially noticeable on silk but moderately dampened.
Bleaching by means of burning sulphur must indeed be regarded as a rude process, nor can it be called economical, for in order to guard against the effects of its uncertainty, a large quantity of sulphur is employed, the length of time during which the goods are suspended in the bleach chamber is prolonged, and the number of times they are so sus pended is multiplied. Twenty-four pounds of sulphur are oughly estimated as necessary to bleach two thousand yard of woolen fabric during an exposure lasting twelve hours, and in practice it is washing with soda lye and fair water intervening, subjected to two and sometimes to three such
exposures before the bleaching is regarded as finiched. Sulexposures before the bleaching is regarded as finished. Sul phurous acid is very soluble in water, and vats containing
olutions of it have been substituted for the chamber; but bese solutions soon undergo a change, a portion of the sulphurous acid being converted into sulphuric, which impairs the softness of the fiber, if not its strength.
The cheapness with which the soluble salts of sulphurous cid cau be made has led to attempts at their introduction and the facility with which they may be decomposed, elimi ating pure sulphurous acid, is also in their favor. Further and careful experiments on their employment would seem o be demanded by the wants of the bleacher.
Sulphurous acid is readily condensed into a liquid, being at ordinary temperatures liquefied by a pressure of two atmospheres; and its preparation in the manufacturing laboratory, and its sale in suitable condensers, were pro-
sanction of practical men. Since then our means of con densing gases have been greatly improved. and Prof. Raoul Pictet, of the University of Geneva, Switzerland, than whom no better authority can be desired, strongly recom mends the condensed gas for bleaching purposes. Recently e condensed into a strong vessel of the capacity of 1 liter 325 liters of the gas, whicb, probably from its purity, had, when allowed to escape into the atmosphere of the chamber, reat penetrative power, passing rapidly through fabrics almost impermeable by air.
Bleached in this manner, the most delicate silk fiber loses none of its elasticity or strength. A number of swiss silk manufacturers have already adopted the ure of the condensed gas, which promises sorn to become a commercial article in all civilized silk producing countries, and ere long o render the practice of bleaching wool and woolens by gas volved from burning sulphur in the bleachery a thing c the past.-Textile Record.

The Prevention or Diseane.

"Prevention is better than cure and far cheaper," said John Locke, two hundred years ago; and the history of medical science has since made it more and more probable hat, in a stricter sense of the word, prevention is the only ossible cure. By observing the health laws of nature, a ound constitution can be very easily preserved, but if a violation of those laws has brought on a disease, all we can do by way of "curing" that disease ie to remove the cause; in other words, to prerent the continued operation of the predisposing circumstances.
Suppressing the symptoms in any other way means only change the form of the disease, or to postpone its crisis. Thus, mercurial salves will cleanse the skin by driving the alcers from the surface to the interior of the body; opiates top a flux only by paralyzing the bowels-i. e., turning heir morbid activity into a morbid inactivity; the symp oms of pneumonia can be suppressed by bleeding the patient till the exhausted system hats to postpone the crisis of the disease. This process, the "breaking up of a sick ness," in the language of the old school allopathists, is, herefore, in reality, only an interrupting of it, a temporary interruption of the symptoms. We might as well try to cure the sleepiness of a weary child by pinching its eyelids, cure the sleepiness of a weary child by pinching its eyelids,
or the hunger of a whining dog by compressing his throat.
Drugs are not wholly useless. If my life depended upon a job of work that had to be finished before morning, and the inclination to fall asleep was getting irresistible, I should not hesitate to defy nature, and keep myself awake with cup after cupful of strong black coffee. If I were afficted with a sore, spreading rapidly from my temple toward my nose, I should suppress it by the shortest process, even by deliberately producing a larger sore clsewhere, rather than let the smaller one destroy my eyesigbt. There re also two or three forms of disease which have (thus far) resisted all unmedicinal cures, and can hardly be trusted to the healing powers of nature-the lues venerea, scabies, and prurigo-because, as Claude Beruard suggests, their symp oms are probably due to the agency of microscopic paraites, which oppose to the action of the vital forces a life energy of their own, or, as Dr. Jennings puts it, "because art has here to interfere-not for the purpose of breaking up diseased action, but for the removal of the cause of that action, the destruction of an active virus that possesses the power of self-perpetuation beyond the dislodging ability of nature."
But with those rare exceptions it is better to direct our efforts against the cause rather than the symptoms-i. e., in about ninety-nine cases out of a hundred it is not only the safer but also the shorter way to avoid drugs, reform our habits, and, for the rest, let nature have her course; for, properly speaning, disease itself is a reconstructive process an expulsive effort, whose interruption compels nature to , double work; to resume ber operations against the uil ment after expelling a worse enemy-the drugs. If a drugged patient recovers, the true explanation is that his constitution was strong enough to overcome both the disease and the druggist.—Dr. Felix L. Ostaald, in Popular Science Monthly.

Trial or Steam Launches in England.

An exhaustive series of comparative trials, extending over three days, has just been made by the steam departments at Portsmouth Dockyard with a Herreshoff and a White's 48 foot pinnace. The Herreshoff is worked on the inventor's coil boiler principle, and has both the engine room and the stokehole inclosed, forced air being used at a pressure of 2 inches as measured by the water gauge. White's, on the other hand, is an ordinary service pinnace, having only the stokehole inclosed, and is propelled by twin screws. As the result of six runs on the measured mile in Stoke's Bay, the Herreshoff realized a mean speed of $15 \cdot 124$ knots, and White' a speed of $12 \cdot 604$ knots an hour. No diagrams were taken, as Mr. Herreshoff objected to their being taken with a closed eugine room, so that the borse power developed was not ascertained. The vessels were also tested with respect to the economical consumption of fuel. Each pinnace took on board 10 cwt . of coal, and, having proceeded to the western most measured mile buoy, was kept running at full powe until the engines stopped for want of steam on the consumption of the coal. The Ilerresboff went twenty eight times round the buoys before its fuel was exhausted, while Mr. White's boat, after going twenty nine times round the buoys proceeded into harbor, having, according to the London Times, 258 pounds of coal unconsumed at the end of the trial.

NEW PORTABLE BATTERY.

We give an engraving of a very compact and powerful battery recently patented by Mr. Marcus A. Hardy, of Newport, R. I. It is designed for medical aud experimental purposes, and is very convenient and portable. The battery comprises twenty elements, and the cells are made in one entire piece of hard rubber, which is known to be indestructible with proper use. The construction of the battery is such that all of the cells can be filled in twenty seconds from the reservoir forming the base, and the exciting fluid remains in contact with the zincs and carbons only during use. Any number of cells. from one to twenty, may be brought into use as may be required. The bat tery cell forms the top to a hollow base or reser voir, and from each cell a small tube projects into the bollow base nearly to the bottom. To the base at one end is attached a stopcock, to which is connected a rubber tube terminating in a mouthpiece. At the opposite end of the reser voir there is a screw-capped opening for intro ducing the exciting liquid. The zinc and car bon plates are attached to brass connecting pieces secured to a common support of hard rubber. The connections are arranged so that the zinc of one cell is in electrical communication with the carbon of the next, and so on through out the series. The opposing ends of the serie are connected with binding posts at the end of the battery
The brass connectors between the elements are drilled so that plug connections may be in serted to cut out any number of cells.

This battery finds an extensive application in torpedo service, and it appears to be extremely well adapted to laboratory use.

IMPROVED PERMUTATION LOCK.

The engraving shows a permutation lock of improved and simplitied ":onstruction recently patented by Mr. Fred. E. Aroold, of 189 West Harrison street, Chicago, III. The bolt is arranged to slide in a seat in the lock casing, and the rear end of the bolt is divided longitudinally into two hranches, for engagement with a tongue, C, which extends from the end of the lock and which also engages with the teeth on the peripberies of the wheels, A.
A shaft, B, extends through slots in the lock casing and through round holes in the bolt and in the centers of the wheels, A, and is provided with knobs or milled heads at the ends for operating it. It is also provided with a pin, a, for engaging with notches in the centers of the wheels, A by which the wheels are turned. The wheels, A, are each

arnold's permitation loce.

provided with a radial notch, b, for engagement with the tongue, C , when the bolt is moved back.
A spring pawl provided with a tapering nose engages with the teeth of the wheel, A, the fixed end of the spring being attached to the bolt. In this invention the wheels, A, move with the bolt. The bolt being locked, in order to unlock it the shaft or key, B, is adjusted so that the pin, a, will engage with the notches of one of the wheels, Λ, and is turned until the arm shown in dotted lines abuts against the tongue, e. The wheel is then turned in the reverse direction until the radial notch, b, is exactly in line with the tongue, C. The shaft is then shifted lengthwise, and the same motions applied to the other wheel or wheels, so as to bring all the nutches, b, in line with the tongue, C, and allow the wheels and bolt to be moved back. Where there are three of the wheels, A, employed, a ring and a wheel or
plate is attached to the shaft, B, to enable the operator t adjust it to the center wheel by moving the shaft outward until the outer surface of the wheel or plate is flush with the outer edge of the ring. After adjusting the center wheel the sbast is pulled further out, so as to bring the wheel or plate clear of the edge of the ring, and the shaft is then free to move in the slots of the casing in order to move back the wheels and bolt.

Work and Wages in China.

The United States Consul-General at Shanghai has made special investigation and report on the wages and modes
one another of the burning lont grains of quartz, which are simply laid one over the other and are adways in motion."Revue Scientifique.

Quill Pens.

An advertisement in a morning paper for an experienced quill pen cutter called out an interview with the only quil pen importer and manufacturer in this city. He said that twenty years ago there were several quill pen makers here and in other cities. Now one in Philadelphia and himself are all that he knows. Quill pens are used mainly by old are all that he knows. Quill pens are used mainly by old they are easy to write with. Most of the quills they are easy to write with. Most of the quills
come from Russia. The Russian goose has a come from Russia. The Russian goose has a
hardier quill than our geese. An unclarified pen hardier quill than our geese. An unclarified pen
from the wing of a Russian gorse is the most durable. The German quills have the best plu mage. A two-dozen box of good quills will last two or three montbs easily for a man who knows how to mend his own pens.
The instrument used in pen making is the ordinary blade of the penknife, inserted firmly into a wooden bandle of peculiar shape, tapering to a point. A pen is made with two cuts or three. The blunt end of the quill is first cut off, because it is not tough. Then the point of the handle is inserted, and the quill is carefully split for a certain distance. Two slashing cuts then form the nib, and the pen is done. The plumage is neatly trimmed.
Swan quills are sometimes used for pens, but are very much more expensive than the common goose quill. Quill pens are sold at retail for
of living of the working people of China. Skilled laborers -artisans, workers at trades, etc.-live mostly in the cities, where all prices are higher than outside. Art and taste, although appreciated, are not paid accordingly. A painter may win renown, and his name or his se:! may live after him; but during life he will be no better off than his neighbor who makes coffins. Painters of porcelain, designers and weavers of the most exquisite patterns of silks, and the artisan who makes wonderful pieces of enamel or "china," are satisfied if they put by enough for burial expenses; the butcher does as well as any of them. Gold and silver smiths, and others whose work is peculiarly responsible, do a little better; the weaver or spinner of silk is probably the best paid day laborer, getting $\$ 1$ to $\$ 2 \mathrm{a}$ day. The average pay of skilled labor is probably $\$ 3$ a week for a master, $\$ 1.50$ for workman, and 50 cents for " youngsters or femules."
The master lives generally at his workshop, having $\$ 20$ to $\$ 30$ worth of housebold goods; he pays $\$ i 2$ a year for food, $\$ 36$ for rent and sundries, $\$ 12$ for clothing, and is rich with $\$ 36$ left. The ordinary workman, if unmarried, lives with his parents or with some friend. His effects may be worth $\$ 15$, and he pays $\$ 45, \$ 12$, and $\$ 8$ for the three items above mentioned. Females and youngters are assumed to cost all they can earn. On the farm everybody must work, the children beginning at six years. Two and a half acres of children beginning at six years. Two and a half acres of
arable land, with a house built of mud and reeds and thatched arable land, with a house built of mud with straw, and a cow, a few fowls and pigs, and some very primitive tools, may constitute a well-to-do farmer's property. The soil will usually support the family, and 20 cents a day will pay for their food. Rice, or bread, with vegetables and common tea, varied by a little poultry or pork on festive occasions, makes their diet. Their bit of land may be worth $\$ 400$, their annual working expenses may be $\$ 42$, and they will produce about $\$ 160$, leaving about $\$ 50$ clear In cotton the land will average 1,600 pounds at 4 cents; cost f cultivation and tax 31 ; net jield 33 , if the soil suith of cultivilan 6 to 9 yards, 39 to 46 inches wide; she spins one-third of a 6 to 9 yards, 39 to 46 inches wide; she spins one-third of a
pound of yarn, at 6 cents for labor; 6 working days convert pound of yarn, at 6 cents for labor; 6 working days c
the raw fiber into $1 \frac{1}{5}$ pounds of cloth, worth 60 cents.
The farm laborer gets 10 to 15 cents a day, or 70 cents to $\$ 1.05$ a week, in harvest time, besides his food, estimated at 10 cents a day; by the month, $\$ 1.50$ to $\$ 2$ and board; by the year, $\$ 12$ " and found." About $\$ 2$ a year will clothe him, and he does well if he saves twice that in a year. For cooly labor, comprising boatmen, carriers, wheelbarrow-men, etc., from 5 to $\mathbf{3 0}$ cents a day are paid; the carriers in West China, who carry for 20 consecutive days 300 to 400 pounds of tea on their backs over a mountainous country, are considered well paid at 25 cents a day. The ordinary cooly earns $\$ 4.50$ a month, and spends $\$ 4$. Coal is mined entirely by hand, and sells at the pit's mouth for $\$ 1$ a ton. Gold diggers on the Han River, in 1870, were earning 5 to 15 cents a day; 7 men were estimated to wash 20 tons of gravel a day, yielding 3 or 4 cents to the ton. The Chinese soldier costs $\$ 67$ a year.

Resonant Sand.

M. Lenz, in a recent communication to the Geographical Society of France in regard to his voyage to Timbuctoo, speaks of a curious phenomenon that he witnessed, and hich sall "d " sand."
"In the Inguidi," says he, "a region of sand dunes very difflcult to cross, I observed a phenomenon which was as rare as it was interesting-resonant or musical sand. All at once one hears in the desert, issuing from a sand dune, a prolonged, smothered sound quite like the noive of a trumpet.
It lasts for some seconds, and then stops to resume itself in It lasts for some seconds, and then stops to resume itself in
another direction. The phenomenon renders the traveler , anxious. I suppose it proceeds from the friction against
about three shillings a dozen. The demand is steady, sucb as it is, but it is growing less year by year.

NOVEL CLOTH REGISTER.

It is no unfrequent thing for a salesman, while measuring cloth, to lose his count upon being disturbed by customers or otherwise, when the cloth must be remeasured or meas urement guessed at ; the first unnecessarily consuming time the second making no end of trouble
The engraving shows a compact and simple device for avoiding these difficulties, by registering each yard measured off, so that there will be neither mistakes nor delays.
Fig. 1 is a perspective view of the register, showing the manner of attaching it to the counter; and Fig. 2 is a side elevation, partly in section, showing internal working parts. The plate, A, is let into the counter, with the projecting knob at the end of the yard measure laid off on the counter A case, B, attached to the plate, A, contains a wheel, C ,

Fia. 1

HARRIEON'S CLOTH REGIBTER.

whose periphery is numbered from 0 to 40, or more or less as the case may require. These numbers show through an opening in the plate, A, and may be seen by both salesman and customer.
A lever, E, pivoted in the case, B, carries a pawl, F, which engages the ratchet, D, on the side of the wheel, C The pawl, F, is provided with a detent, which prevents the ratchet, D, from moving more than one tootb at a time.
The ratchet wheel, D, is engaged by a retaining pawl. G against which the teeth of the wheel are pressed by a spiral spring contained in the center of the wheel, \mathbf{C}.
The pawl, G, is provided with an arm extending back ward and engaged by a button, H, which reaches through he top plate, A.
As the wheel,
pressing the knob, at the end of every yard measured th
bell at the side of casing, B, rings, indicating that one yard has been measured.
This operation gradually winds the spring in the center of the wheel, C, so that all that is necessary to return the numbers to 0 is to release the wheel by pressing the button, H.
This device will undoubtedly save a great deal of time and trouble wherever adopted in our drygouds stores.
Further particulars may be obtained by addressing the flarrison Manufacturing Company, 48 and 50 Duane St. New York City, or Brenham, Texas.

ENGIMEERITG INVETTIONS

An improved stock car has been patented by Mr. Coroden An improved stock car has been patented by Mr. Coroden
J. Slafter, of Grand Junction, Mich. The object of this J. Slafter, of Grand Junction, Mich. The object of this
invention is to facilitate the transportation of animals in invention is to facilitate the transportation of animals
cars, and promote their comfort while being transported.
cars, and promote their comfort while being transported.
In pulverizing and concentrating ore for smelting a considerable portion of the ore, which is of light specific gravity, fioats as a scum on the surface of the water as it passes from the stamp mill or pulverizer to the concentrator and is thrown off as waste. It has been found that this scum is very rich in the metals which are sought to be saved, the said metals existing in the scum as sulphurets, chlorides, oxides, etc., which, by reason of their comparatively light specific gravity, do not readily sink to the bottom with the other ores, but float on the surface. Mr. Patrick H. Dunagan, of Boulder, Col., has patented an apparatus for saving and separating this scum. This apparatus is designed to be placed between the pulverizer mill and the concentrators, but it may be made to act upon the tailings or any form of pulverized ore, with valuable results.
An improved paddlewheel, recently patented by Mr. James W. Danforth, of Elizabeth, N. J., is intended to preveut the paddles from lifting water as they rise therefrom. An improved ore amalgamator has been patented by Mr. William H. Howland, of San Francisco, Cal. The invention consists in a stirrer formed by a rotary yoke carrying paddles combined with a pan fitted with dies, against which the pulp is forced by the paddles, and an inver ring that insures the circulation of the pulp.

EGGB OF BIRD PARABITES.

Among the little bird parasites are to be found the most extraordinary and fantastic structures.
The eggs of one of the species which infest the ground hornbill so much resemble the cells of some of the polyzoa that, deposited as they are in close contact one above another, and in many parallel lines between the flattened barbs on the inner surface of the frathers, they appear like some new species of sea-mat.
The strangely formed eggs found on the Australian crane are arranged in a similar manner, and a slide containing several rows of these eggs is a fine sight under the microscope. On one species of crowned crane (Balearica) are found eggs having a thick calcareous wall, being covered, as it were, with little white domes. Each of these projections appears to be deposited around and supported by a short spine proceeding from the shell of the egg, and supported by a subquadrate, pellate disk.
The egg of a parasite of the Australian mallee bird resembles somewhat the ripe fruit of the corn blue-bottle flower. The spines on the lowest or outer row on its summit are ornamented by little anchors, very like those of the Spicula synapta.

All these interesting eggs are, however, altogether exceeded in beauty by those of the Indian black-winged peacock, which are constructed so much like flowers that a botanist might amuse himself by describing every part of them in the technical language of his science.
The manner in which these eggs are deposited is also most singular. The animal attaches a mass of amorphous secretion to the inner side of the shaft of a feather, and then proceeds to construct two or three oval perforated or punctate sacs, much larger than the eggs. On and about, and in some cases buried, in these strange sacs are found the eggs in considerable numbers, the whole making a very interesting object for the microscope.
It is, of course, extremely difficult to tell the genera to which the eggs respectively belong. With foreign birls especially it is almust impossible to do more than form a probable guess on the subject. The peacock has a tine specimen of guniodes, and the common turkey is infested by a large goniodes and a lipeurus. There is a remarkable species of acarus, described by Dr Rubins, found spinning a white silken web on the base of the sparrow's thigh, or on the forepart of its body. On raising this delicate web you perceive that it is filled with minute eggs, from which the young issue, being in due time hal
are destined to annoy.
are destined to annoy.
Perhaps this slight s
Perhaps this slight sketch may induce some naturalist or microscopist to pay attention to a lit!le known page in the wonderful book of nature we are all trying to decipher.

egGs of bird parasites. A. Paracite of Black-winged Peacoc:-B, Ground Hornbill.-C, Anstralian Mallee Bird.-D. Common Hornhill.
-E. Goden Phe icant.-F, Crowned Crane.-G, Showing how the egge are fastened to a feather, with a parasite -E. Golden Phe isant.-F, Crowned Crane.-G,
among the well-todo was 50 ycars, and among the poor 32 years.
One of the most potent shorteners of life is the anxiety of providing for bare subsistence. The lack of sanitary conditions also shortens man's years. Idleness, as compared to intense industry, outweighs-prejudicially outweighs-all the advantages of ease aud abundance.

Mincral Wax in Now Zealand.

A large deposit of crude paraftin, or mineral wax, was discovered near Gishorne, New Zealand, last May. Mr. J. H. Stubbs, chemist at Port Jackson, after an examination of samples, reports the following as an approximate analysis:
"Paraffin 50, kerosene 10, light oils 10 , heavy oils 20 . earthy matter 10 per cent. The above is more remarkable for the almost total absence of tar, which is present in all petroleum. The present market pice of paraffin is $£ 80$ per ton, and as the deposit appears to be extensive, it could be utilized at once without any costly machinery. Paraffin is chiefiy obtained from the shales of Scotland and the more valunble petroleums of the States. There is only one other district in the known world, Galicia, where it is found crude under the name of ozokerite, and in such a state of purity as that recently discovered in our midst."
Mr. Stubbs has evidently wot heard of the large deposits of mineral wax discovered in Utah a year or two ago.

Ceylon Pearl Fishery.

The pearl fisbery which has just closed in Ceylon has been one of the most successful on record. The pearls procured from the oysters on the banks situated off Silavaturai, on the western coast of that island, have been famous from time immemorial for their purity, shape, and color. In these attributes they far surpass those obtained from the oysters of the Persian Gulf, although they are, as a rule, inferior to the latter in size. The oyster of the Arippu Lanks is scientifically known as the Meleayrina margaritifira, and is of a species not existing on all pearl oyster banks, and of a different genus altogether to that found in the Tamblegan Lake, near Trincomalee, on the eastern coast of the island, which is termed the Placuna placenta. The earliest fishery of which we con find any detailed record took place in the year 1798; and from that date the Ceylon Government, up to the year 1874, derived a sum of $£ 1,018,113$ from this source. The pearl oyster is curiously migratory in its babits; and from one cause or another the banks are for years together almost totally deserted by them, and long iutervals elapsed during which the fishery has, from this peculiarily, been closed, rendering the return from it quite unreliable as a source of settled revenue. Thus froin 1732 to 1746 , from 1768 to 1796 , and from 1883 to 1854, there were no fisheries at all, and it was feared at the latter date were no fisheries at all, and it was feared at the lat
that the oysters had altogetber deserted the banks.
that the oysters had altogetber deserted the banks.
A few words descriptive of the system under which a A few words descriptive of the system under which a
fishery is conducted will be of interest. A report having been received from the inspector that there are sufficient oysters of nature age on the banks, the Government advertises a date for its commencement. A large number of boat owners, both Ceylonese and from the opposite coast of India, apply to enrol their boats, and these, probably to the number of 150 to 180 , are divided into two fleets, sailing under red and blue flags, which proceed to the banks, situated some six miles from the shore, on slternate days. Each boat provides its own crew and divers, and has on board a guard, whose duty it is to see that the oysters fillied are not surreptitiously disposed of. Each diver stands on a fiat stone tously disposed of. Each diver stands on a flat stone
attached to the diving rope, and after taking a long inspiattached to the diving rope, and after taking a long inspi-
ration, closes the nostrils with one hand, and descends on the stone to the bottom, where he hastily collects as many oysters in his basket as the time he is able to remain at
the bottom admits of. This varies very the bottomadmits of. This varies very men: but in ecapacily of difions to the contrary, we believe that few divers can stay below heyond forty-five seconds. At a given signal the boats all sail for the shore. and on their arrival they are unloarled under inspection, and the oysters placed in the Government kottoos-palisaded inclo-ureswith a cement floor. Here the oysters are counted, and the proportion due to the boat owhers for their services is made over to them. The remainder, which is the property of the Government is put up, to auction and sold to the highest bidder. The purchasers remove their lots to private kottoos, where the oysters undergo the disagrecable process of rotting to enable the peariv 10 be washed out. The stench resulting from this decay is fearful, and it has of en happened that the operations liave had to be prematurely closed in consequence of the resulting outbreak of cholera. It says much for the carreful by Baron Kolb. Taking 1,000 well-to do persons and sanitary arrangements made by the offlials in charge that another 1.000 of poor persons-after five years there remained such outbreaks are not of recent occurrence. alive of the prosperons, 943; of the poor, only 655. After fifty years there remained of the prosperous, 557; of the poor. 283 ; at seventy years of age there remained 235 of the considerably exceeded, the returns having been $599,338 \mathrm{rs}$ $\left|\begin{array}{l}\mid \\ \text { prosperous, and of the poor, } 65 \text {. The average length of life }\end{array}\right|$ To some considerable extent this increase is due to the in:-
proved demand in India for pearls, the competition having silk. After draining the sheets are transferred by means of been very keen. As yet, official returns bave not been pub- brushes to drying boards
lished; but the Ceylon Observer has kept its readers very fully Similar processes are employed for producing paper from $^{\text {fin }}$ informed of the results of each day's fishing, and of the the gampi. The product is very fine and supple, and admiprices obtained. The total number of days on which the weather and other conditions allowed of operations being conducted was forty, and the fishing finally closed on April 27. The number of oysters fished during that period is reported to have been about $17,000,000$, and the average price realized for them about 84 rs . per thousand, though they occasionally brought as high prices as 43 rs . per thou-sand.-Cobonies and India.

Japanese Lacquer and Paper.

The manufactures of lacquer and paper, two industries for which the Japancsc are deservedly celebrated, were made special objects of study by Sir E. J. Reed on his recent visit to the Flowery Land, and the following notes are mainly taken from his inleresting volumes:
The Japanese lacquer is laid usually upon articles of wood, and not upon articles of papier-máché, as many suppose. It is produced from the sap of the Rhus vernicifera, which is taken in its natural state into a large wooden tub or vat, and then stirred in the sun with a large spatula, untrl its excess of water is evaporated. In some cases the varnish so produced undergoes careful straining; in others, it is mixed with sulphate of iron, with vermilion, with red oxide of iron, or with indigo; oil is sometimes employed, likewise powdered stone. Into some inferior varnishes, a sort of paste uade of rice enters in considerable proportion. There are a dozen methods of employing the varinus varaishes, differing according to the nature of the object to be produced. In the best lacquer, numerous coatings are applied, dried, and polished successively. The first polishings are done with a stone named tsu shimada (suitable for hones), the latter by means of water, and a charcoal made from Andromeda onalifolia, and the last with pulverized stag's horn. All the polishings are effected by the haud. When gold is used in smooth surface lacquers, where it is not to be in relief, the process is as follows: The design to be produced is traced on a leaf of paper, which is then reversed, and has repeated upon the opposite side of it the outlines and other features of the design, in a mixture of varnish and vermilion, softened over a mild fire. This side of the paper is then applied to the lacquer to be decorated, and the paper is rubbed and pressed upon it by means of a small spatula of bambon. The transfer of the pattern from the paper to the lacquered surface is further assisted by gently beating the paper down with a small silken bag, containing powdered stone. The paper is than peeled off, and can be used again if desired. The slight relief of the pattern so produced upon the lacquer is rubbed down with carbon polish, and the design, and that alone, is then lightly covered with a thin layer of quickly drying varnish. Gold, in powder, is then applied to the moist surface by means of a camel-bair pencil if the gold powder be fine, and by means of a small tube if it be comparatively coarse and heavy. The article is then dried for a day in a warm closet, such as is used for drying the ordinary lacquer varnish.
The design is next lightly coated with a very thin layer of varuish, applied by means of paper steeped in it, and passed very delicately over the object, which is then redried in the closet. The object receives further extremely light coatings of varnish and subsequent polishings before it is complete. Silver is applied in powder in the same manner. When gold or silver is applied to designs in relief, the details of the process vary considerably, but the application of the metals is effected in substantially the same manner. When gold and silver are applied in leaf, they are laid upon the varnished surface prepared for them, and dealt with in the usual manner, the varnish acting as a "size" for the metallic leaf. When mother-of-pearl is used as an incrustation for lacquer it is laid on during the varnishing processes, earlier if it be thick than if it be thin, and the final polishing is proceeded with until the pearl is brought to the surface.

PAPER.
Besides the papers made from rags and rope-waste by European methods, the true Jrpanese papers are produced from a limited number of materials, the chief kinds being Hishi, from the gampi (Wickstrremia canescens) and allied plants, and Kokushi, from the kozo, kodzu, or paper-mulberry (Broussonetia papyrifera), which latter is the more important. The treatment of the kozo plants for paper-making purposes is as follows:
They are cut into three foot lengths and steamed in a large boiler containing a little boiling water. The bark is then pceled off and steeped in water; the dark outer skin or rind is scraped off with a knife, and the scrapings are used to make inferior paper. The scraped and cleansed bark is arcfully washed in running water, and then exposed to the sun until bleached sufficiently white. After this it is boiled in a lye formed with buckwheat ash, to remove gummy and resinous substances. The fibers are then readily separated. After cutting out knots of excessive hardness, the workmen bea: the fiber into a pulp with wooden mallets upon blocks of stone. This pulp is united in tubs or vats with the needful quantity of water, to which is added a milky substance prepared with rice flour, and a gummy decoction from the bark of the nort-noki (Hydrang(a paniculata), or from the root of the tororo (Tororo hibiscus). When the steeping in
this mixture has proceeded sufficiently long, the pulp is this mixture has proceeded sufficiently long, the pulp is
spread out into sheets by means of finc sieves of bamboo and
rably suited for taking transfer copies, besides possessing the advantage of not becoming worm eaten. Paper is also made from the milsu mata (Edgroorthia papyrifera).

An Improved Ammoniacal Manure.

A company has just been formed with objects which will probably be of great interest to gas manufacturers. Lieu-tenant-Colonel Bulton and Professor Wanklyn, working in conjunction with several well-known gas engineers, Mr. F. W. Hartley among the number, have for some time past been engaged at the South Metropolitan Gas Company's works in perfecting a process for the economical recovery of ammonia from crude gas, in the form of a solid manure or fertilizing agent. The Journal of Gas Lighting says that the process is reported to be remarkably simple, and is intended to be applied in the course of the ordinary operations of the purifying house, without special plant. Washing and scrubbing will, it is expected, be done away with in the new process, a considerable saving in plant being thus effected, iu addition to which a common source of loss of illuminating power due to the absorption of bydrocarbons in the scrubbers will be avoided. The ammonia will be fixed in a dry form, sulphate of ammonia being procured, logether with phosphate of lime in its best state, the compound thus presenting all the characteristics of a perfect manure. The only labor needed to prepare the material for sale, after it is taken from the purifiers, is the slight service of pulverizing it in an ordinary disintegrator, whereby it is reduced to an impalpable soluble powder. It is also claimed that the process eliminates a considerable portion of the sulphur compounds, thus render ing it a highly desirable aid to the complete purification of gas. The Ammoniated Superphosphate Company is the gas. The Ammoniated Superphosphate Company is the
title of the new venture, which starts with a highly influtitle of the new venture, which starts with a highly influ-
ential list of subscribers, headed by the Right Hon. Lyon ential list of subscribers, headed by the Right Hon. Lyon
Playfair, C.B., M.P., and there is every reason to expect that it will speedily be in a position to transact an important business.

Industrial Art Instruction in Philadelphia

Durng the past summer classes in industrial and decoraive art have been taught in one of the Philadelphia public schools, under the direction of Mr. Charles G. Leland.
In order not to interfere with the regular studies of the scholars during the day the classes were first held in the evening only. Afternoon classes were later established for those who could attend at that time. A large proportion of those applying for entrance to the classes wished for instruc tion with the view of becoming teachers, but very many were children of from twelve to fifteen years of age, who seized gladly this opportunity to learn how to make something salable. After three months' work specimens were forwarded to the School Board of what had been accomplished in painting, wood carving, needle work, and metal work. Painted plaques and tiles, carved walnut panels and brackets, doilies, tidies, chair backs, and hammered b ass work were shown, none of which, bowever, represente more than the third attempt of any pupil, many being the first ones. The work is of such a character that, Mr. Leland says in his report to the school committee, "we are quite capable even now of producing work which would meet with ready sale, and if orders were given for ordinary sheet brass work and wood panels, suitable for common decora tion, I would qualify all the scholars in a few days to fill them."
The instruction and practical work proposed for the Philadelphia schools cover the rudiments and simpler processes of tile painting, leather work, wood carving, braiding, netting and mat making, sheet metal work, inlaying, etching, papier mache work, glass work, pottery, drawn work, calabash work, sewn leather work, fan making, dye, or tapestry painting, modeling in clay, art needle work, Indian work stenciling, mosaic work, bamboo and rattan work, jewelry rustic work, horn work, turning, basket making, outline embroidery, and illumination.

Castinge or Delicate Natural Objects.
The following process is recommended by Abbass for producing metallic castings of flowers, leaves, insects, etc. The object, a dead beetle, for example, is first arranged in a natural position, and the feet are connected with an oval rim of wax. It is then fixed in the center of a paper or wooden box by means of pieces of fine wire, so that it is per fectly free, and thicker wires are run from the sides of the box to the object, which subsequently serve to form air channels in the mould by their removal. A wooden stick, tapering toward the bottom, is placed upon the back of the insect to produce a runner for casting. The box is then filled up with a paste of three parts of plaster of paris and one of brickdust, made up with a solution of alum and sal ammoniac. It is also well first to brush the object with this paste to prevent the formation of air bubbles. After the mould thus formed has set, the object is removed from the interior by first reducing it to ashes. It is therefore dried slowly, and finally heated gradually to a red beat, and then allowed to cool slowly to prevent the formation of flaws or cracks. The ashes are removed by pouring mercury into the cold mould and shaking it thoroughly lefore pouring it out, and repeating this operatiod several times. The thicker
wires are then drawn out, and the mould needs simply to
be thoroughly heated before it is filled with metal in order that the latter may flow into all portions of it. After it has become cold it is softened and carefully broken away from the casting.

AGRICULTURAL INVENTIONS.

Mr. Richard J. Gallway, of Austin, Texas, bas patented an improved seed planter having several novel features, which cannot be fully described without engravings.
Mr. George s. Latta, of Berea, N. C., has patented an mproved combination fork and rake, which can be readily adjusted for use in either capacity. The invention consists in constructing a combination fork and rake with a handle having sockets or keepers attached to its end, a head having a shank, a jointed brace hinged to the shank, and having a shoulder upon its rear part, the locking har having a corre sponding shoulder, and a screw band for clamping the varisponding shoulder, and a screw band for clamping the vari-
ous parts of the implement together, whereby the implement cas parts of the implement together, where.
can be adusted as a fork or a ruke. can be readily adjusted as a fork or a rake.
Messrs. Isaiah H. Reiner and Samuel Rei
Messrs. Isaiah H. Reiner and Samuel Reiner, of Line Lexington, Pa., have patented an improved sulky harrow. The invention consists in improved mechanism for manipulating a harrow. It cannot be clearly described without engravings.

The Panama Canal

Dr. Charles Peitzch, a German physician of New York, has just returned from Aspinwall and Panama, and gives a very gloomy account of the country and the prospects of the De Lesseps Canal scheme. "If any of your friend; think of going to Panama," said the doctor to a Tribune reporter, "advise them not to. In all my travels I never saw a more sickly, poverty stricken, and forsakeu people. I was induced to go there by the promise of a large business in my profession. There was plenty for me to do, but no money in it, and I came away as soon as I could. There are about 250 people at work on the Panama Canal, 200 of whom are negroes. Half of them are sick, haggard, and starving, and the death rate is alarming, although the facts are suppressed as much as possible. There are not more than 100 able-bodied men at work at any time, and the force is constantly being renewed, because the laborers fall victims to disease, then lose their places and starve, or die of fevers and a peculiar wasting a way of the system. The canal company wants to get all the laborers possible, and it offers the inducement of high wages, board, plenty of work, and free passage. Agents gather laborers up wherever they can find them and take them by boat to Aspinwall and rail to Panama. They receive $\$ 17$ a month, and the worst board imaginable. They are crowded into shanties and fed on the cheapest kinds of fond: rice t wice a day, tea or coffee in the morning only, salt beef once a day, and no bread; fresh meat, never. Once there, it is impossible for laborers ever to return, as the men have no money, and it costs $\$ 25$ to ride back to Aspinwall; a distance of forty-seven and a half miles, and they are too weak to walk. White people soon become yellow and look like death, and beg tourists to take them away.

- Work is advancing very sluwly on the canal, and there is nothing to show for the money spent. It is generally believed in that country that the canal wili never be finished. It is about as wide as Broadway from bouse to house. There are some stakes driven down and planks laid along and the earth stirred up a little, but that is all. It seems hardly possible to live in that country. It is marshy and malarial, and infested with alligators and serpents and poisouous insects. I was bitten iu the hand by an insect, and my arm has swollen up and been useless for a month. The population is composed of negroes and Spanish and French of the lowest class. The climate is warm-terribly warmmoist, and oppressive, and tends to induce the use of stimulants. St. Louis beer costs thiry-five cents a bottle, Milwaukee beer twenty-five cents. Whisky is cheap, and the best imported Holland gin only 40 cents a quart. Beef and fish are very plentiful and cheap, as are also fabrics. On the whole, the country is no place for any but a very patient man with plenty of money."

Farming by Telephone.

M. P. Dhamelincourt, of Hendebouville, France, makes use of a portable telephone apparatus, with which he directs works at a distance on his farm, thus saving the time and trouble necessary for a personal visit. His plan is simply to have a tripod carrying a movable roller, on which is wound a conducting cable composed of two insulated wires. Below this on a movable board is a small box, in which is placed a telephone and bell. The system allows the current to pass from the bell to the telephone without using a commutator. Thus, the telephone being at rest, the bell is in connection with the line, and when the telephone is in use the bell is cut out of the circuit. Another telephone and bell are fixed in the bouse of the farmer, with a commutator.

$$
\begin{aligned}
& \text { spectra of Fire Files. } \\
& \text { summer Mr. W.G. Levi }
\end{aligned}
$$

During the past summer Mr. W.G. Levison, of Brooklyn, N. Y., has studied the spectra of the light of fire flies and other light-producing insects. He finds that the ordinary small species of fire fly gives a spectrum from which the blue and riolet are omitted, and that in all cases examined the less refrangible rays predominate. Phosphorescent oils and glowing phosphorus give a spectrum consisting of green light only. A fire fly that is injured and glows perinanently seems to give a nearly similar spectrum, but the bright light given by the insect when living affords an entirely different spectrum, as mentioned above.

The study or American Antiquitios.

The fourth congress of the "Learned Association of Americanists" will begin in Madrid, September 25, under the presidency of the King of Spain. There will be, at the same time and place, an exhibition of American antiquities. The Spanish Minister at Washington gives the following programme of subjects to be discussed:
The comparison of the three kingdoms of Cuzco, Trujillo, and Quito, which formed the empire of the Incas at the time of the conquest; the difference which their religion, legislation, language, architecture, customs, etc., presented; the nationalities which existed in Central America before the invasion of the Aztecs and other northern people and the formation of the Mexican Empire; the emigration of the penple of Chibcha and their relations with Mexico and Peru; the music and dancing among the indigenous Americans; the military condition of the empires of Mexico and Peru before the discovery and conquest of the New World, and a comparison thereof with that of the other ancient races; the expedition before the time of Columbus of the Biscayans to Newfoundland and the neighboring coast countries; whether the voyages of Juan de Fuca and Lorenzo Ferrer Maldonado are apocryphal; the influence of the missiunaries in spreading a knowledge of American geography; the geological proofs of the existence of the Atlantis of Plato, its fauna and its flora; the progress of American cartography; what have been the changes and other effects caused by the influence of the Plutonic forces of the globe, or by other natural causes, in the position, course, and flow of the water of the interior of America, in order to study the question not only from its historical, geographical, and clinatological points of view, but also in view of the interest which it has for the present populations of America, in the sense of their development, well being, and the study of geological phenomena at present found in the the study of geological phenomena at present found in che
Island of Cuba, that the latter was united or not to the conIsland of Cuba, that the latter was united or not to the con-
tivent of America before its discovery by Columbus; American prehistoric archæology; the emblematic and religious value of the diverse types of idols, efflgies, and images which are found in the Peruvian tombs; investigations concerning the "Usnus," " Xayhuas," " Sayanas," and other analogous monuments containing images, signs, or inscriptions; whether from the archæological investigations which have taken place in our day in the Island of Cuba, and from the general types of some of the idols found therein, it may be inferred that these idols must have belonged to other indigenous Cubans than those which Columbus found on the island; prehistoric anthropology; the nature of the principal contagious diseases which have been reciprocally commuvicated by the people of the Old and New Worlds; the nomenclature of the races and tribes of America before the conquest, and an ethnographical chart of the territory occupied by each one of them; whether there exists ethnographic afflinity between the races of America and Oceanica; the Quipus, considered especially in their relations to the ancient systems of writing and the possibility of their translation; whether it is possible to reach a practical knowledge of the orgarization and construction of the indigenous languages by means of the past Latin dialects with wbich they have been compared by European philologists and investigators, and the bibliography of the vocabularies, grammars, and dictionaries of the American languages.

Acres of Yollow Lilles.

A correspondent of the Evening Post describes a remarkable floral display on a mill pond in Sharptown, N. J. Some four years ago there appeared in the pond a little patch of a gigantic species of water lily. In four yeurs the patch has spread until it covers three or four acres. The flower and the plant which bears it are most remarkable. The leaves, almost round like the common lily-pad, are often two feetin diameter from erge to edge and as tough as several thicknesses of bruwn paper. Each leaf will easily support a pound weight. The water, when it breaks over the edge, forms a great globule that rolls over the green surface like quicksilver. The flower grows upon a strong stem four feet ligh, as thick as the end of a man's little finger, and as straight as a reed. A foot out of the water comes the blossom of a light but brilliant yellow, with many rows of petals. It is shaped like the ordinary white water lily, with fragrance quite as strong but not so delicate. The blossom is of wonderful size. When fully expanded it will measure six inches across, and at the same time three or four inches up and down. Two opposite petals can easily be stretched until they measure six inches from tip to tip, and the bud is as large as a good-sized bowl. The magniticence of the flower when in bloom is simply indescribable. Inside is a large round seed vessel surrounded by a mass of delicate silken filaments. Iu this vessel, some two inches across at its upper surface, and diminishing to half an inch where it joins the stem, there develop, in the autumn, seeds of the size of buckshot. These seeds the boys gather to eat the kernel, which tastes like the meat of the chestnut, hence the loral title "chincapin" of the lily, the name also of the
dwarf chestnut of this region. This great lily is rare in the dwarf chestnut of this region. This great lily is rare in the
United States. There is a small patch in a pond at W oodsUnited States. There is a small patch in a pond at Woods-
town. It grows also in Oneida county, N. Y., in Sussex town. It grows also in Oneida county, N. Y., in Sussex
county, N. J., and in the Connecticut River near Lyme, Conn., where it is miscalled the Egyptian lotos. The display made by the acres of plants on the Sharpstown pond
is most magnificent. The correspondent, who has seen the

Kew Gardens near London and the great botanical grounds
at Paris and Cologne, asserts without hesitation that if all at Paris and Cologne, asserts without hesitation that if all the llowers in the three were put together they would not Half the leaves rest on the water, the other half rise abov it as a foil for the resplendent yellow beauties which blos som above them in thousands, one or two in every square foot of space. As the spectacle bursts upon one riding down the Sharptown road it seems as though a vast sheet o fiery splendor had been clipped from the yellow sunset aky and dropped on the murky waters.

New Jermey Marl.

The great marl belt of New Jersey stretches from the head of Delaware Bay northeastward to the const opposite Staten Island, a distance of about one hundred miles. The belt varies from five to fifteen miles in width. At some places the marl crops out on the surface, and is as easily dug as common dirt; at others it lies fifteen or twenty feet deep, and must be taken nut by machinery. The marl belongs to the cretaceous epoch of geology- the epoch which Dana describes as " the closing era of the reptilian age, remarkable for the gencra of mollusks and reptiles which end with it, and also for the appearance during its progress of the modern types of plants and fishes." It was an age of finishing and of beginning. There are four great marl layers in New Jersey, made up of (1) the clay marls, 277 feet thick, with dark-colored clay as a large constituent element; (2) the lower marl bed, 30 feet thick, in which appears a grcensand marl, much used for fertilizing; (3) the middle marl bed, 45 feet thick, where appears a marl of chocolate color and als of olive green; and (4) the upper marl bed, 37 feet thick, where are found two marls-ash colored and blue; making altogether 389 feet of marl strata under New Jersey. The marl was formed by the chemical decomposition of organic matter, chiefly shells, along with sand and other earthy substance. The geologiststell us that during the period of marl formation New Jersey must have risen and sunk in the waves several times, and that even now she is subsiding, as is shown by the encroachment of the ocean on her lower borders. The changes must have been slow, extending over measureless geological periods, but they were immense in their total. How illimitable must have been the ages to form even the single set of marl strata with their 389 feet of earthy compost!
Exactly what marl is chemically the following analysis of Woodstown marl-a fair specimen of other analyses-wil show:

The value of potash, which acts like wood ashes, and of the phosphates is well known to many farmers. These are the chief fertilizing elements in marl
Marl was first found in New Jersey in 1768. An Irishman in Monmouth County digging a ditch threw some of the greensand out on a meadow, where its fertilizing qualities were noticed. By the early part of this century it had come into pretty common use, until now it has become essential to successful agriculture throughout central New Jersey. In the whole State several millions of bushels are spread each year, and its use constantly increases. The farmers usually spread it in the autumn, putting sometimes several hundred bushels on an acre. Now and then they flud a deposit on their own farms which can be dug with spades, but more often they have recourse to the systematically worked beds, where they pay forty cents for each load of twenty bushels. In Woodstown during autumnal days the marl wagons move through the streets almost in procession, and the roads for a quarter of a mile from the pits take their hue from the greensand which has sifted through the boards.
The marl is good for all crops; it renews them on exbausted land, it increases them on laud already productive. For potato plants it is a speciflc, killing worms, enlarging the root, and making the potato smooth-skinned and fair. There is a marl, however, very common, and known locally as "poison marl," the effect of which is quite opposite. It contains an excess of copperas, which is deadly to the fields, killing every living plant for several years. Not uncommonly a stratum of good marl runs into one that is noxious, and serious injury to a farm follows. The poisonous marl, however, can be cured by mixing it with lime; and in that case it becomes superior for raising crops to the marl which does not have to be chemically treated. The poisonous marl is detected by the length of time that is needed to dry it after it is wet by rain. But the farmers have what they regard as a more radical test. If white clover grows on the marl a few days after it is thrown from the pit the compost is good; otherwise it is poisonous. The best marl has thus a singular affinity for the germs of white clover floating in the air, and in a few weeks the biggest heaps may become lanketed with the little flowers.
The more geveral results of the continuous use of marls on the soils of Salem and adjacent counties are very striking. Lands that used to be worth five dollars an acre have been
enriched within a few years to a value of one or two hundred
dollars an acre. The surface stratum of this county consists of a light sandy soil eusily exhausted unless some artificial fertilizer is used; consequently it is not too much to say that he county has been absolutely reclaimed as to farming by the greensand which underlies it. The Salem farmers brag that no lands in the Union can compare with theirs in ave rage selling value, and so long as ordinary farms here bring a hundred dollars an acre the boast seems justified. What is true of Salem County bolds for most other parts of New Jersey through which the marl belt runs, and one effect bas been to increase during the last half century the average value of the farm lands of the whole State in a most extraordinary manner. Probably 1,000 square miles in the wild ordinary manner. Probably 1,000 square mater counties of the State are absolutely unimproved southern counties of the State are absolutely unimproved,
yet the new census is likely to show that New Jersey can sell her farms for more money per acre than any one of ber sister States. The story of her agricultural redemption is egistered in marl, and, though written in sand, the record only grows plainer with time.-C. D., in Evening Post.

RECENT INVENTIONS.

Mr. Willard D. Doremus, of Washington, D. C., has patented a lock so coustructed that after the key is started to e moved forward to unlock the bolt it cannot be moved back again, but must complete its revolution before it can be withdrawn.
An improved process of and apparatus for extracting juice from sugar cane and other vegetable substances has been patented by Mr. George A. Bazé, of Havana, Cuba. The invention consists of an upright cylindrical vessel divided internally into two chambers by a perforated horizontal diaphragm, the upper chamber being designed for the re diaphragm, the upper chamber being designed for the reception of the crushed sugar cane or other vegetable to be
reated, and the lower chamber for the reception of the treated, and the lower chamber for the reception of the
juices extracted therefrom; and it further consists of a cenjuices extracted therefrom; and it further consists of a cen ral vertical shaft carrying suitable spiral stirrers for agitating the contents of the upper chamber. It possesses other engravings.
An improvement in steam grain driers has been patented by Mr. Henry Cutler, of North Wilbraham, Masis. The inrention consists in a shaft made hollow at one end to receive the inlet steam, and with perforations at the other end to dis charge the water of condensation, the head cast in one pieco with one or more chambers, receiving steam through the conduction pipes connected with the cavity of the shaft and distributing the steam to the circulation pipes forming the heating surfaces, the return bends connecting the circula ion pipes in pairs to induce circulation.
Mrs. Helen M. Snyder, of Uxbridge, Mass., has patented an improvement in chrome painting upon ferrotype and other pictures. This is a process of coloring or painting photographs and other pictures to beautify them and make them resemble oil paintings. The method of coloring or painting a picture consists of first coating the picture with a compound composed of chromic acid burned with alcohol, isinglass, and soap and sugar, then drying it under alcohol, isinglass, and soap and sugar, then drying it under
a screen, then coloring it with suitable water colors, then a screen, then coloring it with suitable water colors, then
coating with a color or colors mixed with the compound of coating with a color or colors mixed with the compound of
burned chromic acid, isinglass, and soap, and finally drying the picture.
Mr. William Haslup, of Sidney, Ohio, bas patented an improved earth scraper, baving its bottom formed of one piece of sheet or plate steel, with its sides and end or back bent or curved up, to which the sides and end of the scruper, made of a single piece of sheet iron or other metal, bent angularly to conform with the shape of the sides and end of the bottom, and the hooks for the attachment of the bail, are riveted, whereby great strength is given to the scraper in consequence of the double thickness of the metal where riveted together, and the strain on the hooks, in operating the scraper, is borne both by the sides and bottom of the scraper.
Mr. Willard D. Doremus, of Washington, D. C., has pat. ented an improvement in locks designed principally for drawers and cupboards. It consists of a bolt provided with a spring for driving it into the locking position, combined with a catch for holding the bolt withdrawu, and a depressible thimble, sleeve, or exposed surface arranged about the keyhole, and adapted to be forced inwardly to allow the unlucked bolt to be shot from the action of the spring into a locking position without the application of the key.

Hanting in Greenwood.

Greenwood Cemetery embraces 500 acres and is traversed by twenty miles of drives. It is well named the City of the Dead, for it is already the final resting-place of more people than New York had when the cemetery was started forty years ago, or nearly 300,000 persons. It is also a considerable baunt of the living, many of this portion of its inhabitants causing no little trouble to the official trapper. More than 20,000 animals, large and small, have been shot or
The largest game was a fox, trapped in 1878 , and the smallest moles and ground mice. The official figures for five smallest moles and ground mice. The official figures for tive munks, 2,853; moles, 2,390; snakes, 366; rats, 208; cats, 395 ; dogs, 137; skunks, 10 ; muskrats, 9 ; fox, 1 ; total, 20,465 . All this work has been done by one man, who is expressly engaged for this purpose. His name is Fritz Wagner, but eng is more familiarly known to the 250 men emploged in the
cemetery as the "Mole Catcher."

busitess and ererspual.

The Charge for Insertion under this nead is One Dollar a line for each insertion; about eight words to a line Advertisements must bs received at publication office Leather Belting, Rubber Belting, Packing and Hose
Manufacturera' SupDles. Greene, Tweed \& Co., N. Y. "How to Keep Boilers Clean," and other valuable in sixty-four parges, published by Jas. F. Hotchkiss, 8 , sixty-four pages, published by Jas. F. Ho
Jobn St.. New York, malled free to any addre Small Machine Shop for sale. List
South Yirst St., Brooklyn. E. D., N. Y.
Valuable Patent for sale.-Automatic Cigar Lighter Alden Cruehers. Westigh No. 188.666. Processes for Manufacturing Paper
Pulp. Douglas Hickux, springfleld, ill. Patented Octomost perfect process in use on any kind of stock. Will
sell a few States. Would itke correspondence with
and

Blake's Belt Stude. The best fastening for leather and Sapplee Steam Engine. See adv. p. 140.
Abbe Bolt Forging Machines and Palmer Power HanSupplement Catalogue.-Persons in pursuit of information on any special engineering, mechunical, or sclenentific Americav supplemerex sent to them free. The SUPPI, EMEST contains lengthy articles embracing the whole range of engineering, mechunites, and phystList 26 .-Description of 2,500 new and second-hand Muchines, now ready for distribution. Send stamp for
the sume. S. C. Forsalth \& Co., Manchester, N. H. Combination Roll and Rubber Co., 27 Barclay St., P. Wir lo Punchink l'ressee \& Shenrs for Metal-workers, Power
Drill Presses, \&23 upward. Power \& Foot Lathes. Low Drill Presses, 835 upward. Power \& Foot Lathes. Low
Prices. Peerless Punch \& Shear Co..115S.Liberty St.,N.Y. Improved Skinner Portable Engines. Erie, Pa. The Eureka Mower cuts a six foot swath easier than a side cut mower cuts four feet, and leaves the cut grass
standligg light and loose, curing in half the time. Send for clrcular. Eureka Mower Company, Towanda, Pa.
Pure Oak Leather Belting. C. W. Arny \& Son, Maufacturers, Phlladelphia. Correspondence sollcited. Preses \& Dies. Ferracule Mach. Co., Brigeton, N. J. Split Pulleys at low prices, and of same strength and appeurance as Whole Pulleys. Yocom \& son's Shafting Works, Draker S..,
Wood-Working Machinery of Improved Design and
Workmanship. Cordesman, Egan \& Co., Cincinnati, 0 . Workmanship. Cordesman, Egan \& Co., Cinclnnati, 0 . Experts in Patent Causes and Mechanical Co
I'ark Benjaain \& Bro, 50 Astor House. New York Malleable and Gray Iron Cautings, all descriptio Erie Malleable Iron Company, llmited. Erie, Pa
National Steel Tabe Cleaner for boiler tabes. Adjust-
able,durable. Chalmersaspence Co., 10 Cortlandt St. W.Y. Corrogsted Wrougit Iron for Tires on Traction En Corragated Wrought Iron for Tires on Traction En-
gines, etc. Sole mfra., H. Lloyd, Son \&Co., Pittsb'g. Pa. Bext Oak Tanned Teather Belting. Wm. F. ForeNickel Plating. - ole manufacturers cast nickel odes. pure inickel sults. IIpporters Vlenaa lime, crocus.
etc. Hanson \& Van Winkle, Newark, N. J., and 92 and 94 Luberty St., New York.
Presses, Dies, Tools for working Sheet Metals, etc.
Hruit and other Can Tools. E. W. Blise, Brookiyn, Hruit and other Can Tools. E., W. Bliss. Brooklyn, N. Y. Peck's Patent Dmp Press. See adv., page 141. For best Duplex Injector, see Jenks' adv., p. 142.
For Mill Macb'y \& Mill Furnishug, see illus. adv. p. 140 . C. B. Rogers \& Co., Norwich. Conn., Wood
Machinery of every kind. See adv., pake 141.

Suw Mill Machinery. Stearns Mfg. Co. See p. 142. For Pat. Safety Elevators, Roisting Engines. Friction Safety Boilers. See Harrison Boiler Works adv., p. 157 . Long \& Allstatter Co.'s Power Punch. See adr., p. 158. Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box 423. Pottsvillo, Pa. See p. 158 . Rollstone Mac. Co.'s Wood Working Mach'y ad, p. 157 The Common Sense Dry Kiln prevents check, warp, Fire Brick. Tile, and Cliay Retorts, all shapee. Borgner For best Portable Forges and Blacksmiths' Hand
Blowers, address Bumalo Forge Co., Bamaio, N. Y. The Brown Automatic Cut-of Engine; unexcelled for workmanship, economy, and durabillty. Write for in-
formation. C. H. Brown \& Co., Fitchburg, Mass. Ball's Variable C'ut-ofl Engine. See adv.. page 173. Brass \& Copper in sheets, wire \& blanks. See ad. p. 173. The Twin Rotary Pump. See adv., p. 141.
The Chester Steel Castings Co., offlee 407 Library St., Philadelphia, Pa.. can prove by 15,000 Crank Shafte, and
10.00 Gear Wheels, now in use, the superiorty of their Castings over all others. (Yreular and price list free. Wh' Vaknt Mrate Bar. Sec aid. page 178. The Improved Hydraulic Jacks. Punches, and Tube
Expanders. R. Dudgeon. 24 Columbia St.. New York. Ragle Anvils, 10 cente per pound. Fully warranted. Geiser's Patent Grain Thrasher. Peerless, Portable. Tight and Slack Barrel machinery a speciaity. John Greenwood \& Co., Rochester, N. Y. See illus. adv. p. 173. For the manufacture of metallic shells. cups, ferrules, blanks, and any and all kinds of small press and stamped work in copper. brass. zinc, tron, or tha, address C.J. God
frey a Son, Union Ctty, Conn. The manufacture of small wares notions. and norilties in the above line, a specialty. See advertisement on page 1 it.
Diamond Engineer, J. Dickunsou, 64 Nassau St,, N.Y.

Steam Engines: Eclipse Safety Sectional Boiler. Lam-
bartilie Iron Works, Lambertville, N. J. See ad. p. 157. Berryman Feed Water Heater. See Illus. adv., p. 173 Houston's Sash Dovetailing Machine. See ad., p.178 Hew Economizer Portable Engine. See illus. adv. p. 173 Hand and Power Bolt Culters, Screw Plates, Taps in
reat varlety. The Pratt \& Whitney Co., Hartford, Ct Rue's New "Little Gluat" Injector is much praised or its capacty, rellability, and !ong use withont repaire The Sweetland chack. Sce illas. adv., p. 172. For Shafts, Pulleys, or Hangers, call and see
Fopt at 79 Lberty st. N. \mathbf{x}. Wm. Sellers \& Co Wm. Sellers \& Co., Phila., have introduced Machine Knives for Wood-working Machinery, Book Binders, and Paper Mills. Also manufacturers of Soloroan's Parallel Vise. Taylor. stiles \& Co., Riegelsville. N.J. untll you have written Val Don't buy a Steam Pump
Machine Co., Easthampton, Mass.
Use the Vacuum Oils. The best car, labricating, en gine, and cyllinder oils made. Address Vecuum oll Co o. 3 Rochester Suvings Bank, Rochester, N. Y

For Machinists` Tools, see Whitcomb's adv., p. 173.

new books and publications.

Anales del Ministro de Fomento de ita
Republica Mexicana. Tomo IV
Republica Mexicana. Tomo IV
Mexico, 1881. Mexico, 1881.
This recently reccived volume of the Annals of the Minister of Public Works conslists of 604 pages.
About half the volume is devoted to a report by Professor Mariano Barcena, on the second exhibition of representing Productore," an association of individual Talisco, organized in 18i7, for the purpose of promoting the education of the masses, securing safety for life and property, introducing railways and telegraphs throughout the State, securing privileges to inventors, the diffusion of mach and low-priced scientifc literature, and the improvement of the conntry and its people generally The report, which is very exhausilive, is followed by description of the city of Gaudalajara by the same
author. The other papers which go to make up the author. The other papers which go to make up the of the Clties of quéretaro, Zacatècas, and Durango, and in the Longitude of Mazatian," by Leando Fernandez "Perlodical Phenomena of Vegetation for 1879," by Mariano Barcens; "Memoir on the Work done from Janaary, 1878 , to June, 1880, in the Central Astronemical
Observatory." by Francisco Jimenez; and a "Report rendered to the Minister of Public Works by "Repor mission appointed to study the Most Effectaal Means of Destroying the Locust." This report, like its prede cessors, is handsomely printed, well illustrated, and alto gether refects great credit on the enterprising repablic which publishes it.
Report of the State Commissioners of Fisheries. 1819-80. Harrisburg, Pa acellent work in protecting and extending the fisherie of the State. More than half of the hundred and afty three species of iteh native to the State are edible and
worthy of cultivation; and the numerous rivers a worthy of cultivation; and the numerous rivers of
Penngylvania afford good waters for carp, salmon tront, California salmon, and other importations. The report contsins good descriptions of all the ish found in Pennsylvania, with engraved illastrations of forty of the more important species.
The Telescope. By Thomas Nolan, B. S o. 51 of Van Nostrand's Science Beries, diecassing he optcal principles of the telescope, with illustration
Modern Minling. By Robert Grimshaw Philadelphia: Henry Carey Baird \& Co 8 vo , cloth, pp. 53 . $\$ 1$.
The eabstance of two popalar lectures on moder milling and high roller milling, the parpose of which oeems to have been to make clear the changes going styles of new machinery.

Observations of the Transit of Venus December 8 and 9,1874 . Part I. Edited $\begin{array}{ll}\text { December } 8 \text { and 9, 1874. Part I. } & \text { Edited } \\ \text { by Professor Simon Newcomb. } & \text { Wash } \\ \text { ington: Government Printing } & \text { Office }\end{array}$

 ington1880.

It is intended to iesue the whole of the observatione at the several stations, with their reductions in four the operations of the Transit Commission, and reduction and discussion of the observations. Part II., which is soon to follow, will give in detail the obscrvatons made
at each station, with their reduction. Part III. will be at each station, with their reduction. Part III. will be
devoted to a diseassion of the longitude of the stations; devoted to a discussion of the longitude of the stations;
and Part IV. to measnres of the photographs, with their reduction and discussions.

Harfard
Moses
and
King.
its
Cambridge: Charles $\underset{\text { By }}{\text { W }}$ Sever. Third edition, revised and enlarged. Cloth, $\$ 1.50$.
A handsomely made little book which must com mend itself t, all who take an interest in Harvard Col
lege and its surroundings. Its :llustrations compris thirty or more heliotypes of buildings, etc., and nearly

Predazzo: A Study. By Ed. Reyer. Wien, The author of this work is well known as an authority in tin and zinc mining industries, and has in this case the geological formation of the monntains surround Ing the hamlet of Predazzo in Northern Italy. Numefully prepared work.

4bleme Murvies
 HINTS TO CORRESPONDENTS.

No attention will be paid to commanications unless
cocompanied with the full name and address of the writer.

Names and addre iven to inquirers.

Wen $t o$ inquirers.
Wenew our re
We renew our request that correspondents, in referring to former answers or articles, will be kind enough to same the date of
of the question.
of the question.
correspondents whose inquiries do not appear after a reasonable time should repeat them. If not then pubilshed, they may conclude that, for good reasons, the
Editor declines them. Editor declines them
Persons desiring special information which is purely of a personal characier, and no of general interest.
ahould remit from $\$ 1$ to $\$ 5$, according to the subject, should remit from $\$ 1$ to $\$ 5$, according to the sub obtain such information without remuneration. Any numbers of the Scientipic Ampricin SUppleoffice. Price 10 cents each.
(1) E. E. M. asks: What would the effect be on the flues of an elytht-horse locomotive boller if
the door is open when there is a fire in the furnace and the door is open when there is a fire in the furnace and
arking pressure on the boiler? Would it tend to a working pressure on the boiler ? Would it tend to
preserve the flues or would it tend to make them leaky A. It would be likely to set them leaking, especinlly if the damper was to remain open, so
draught of cold air through the flues.
(2) T. G. Y. asks: 1. Is there any chemi cal process by which I can remove the gray color from
feathers and make them perfectly white
A. Feathers may be bleached by exposure to the vapor of barning sulphur (sulphurous acid) in a moist atmosphere, but it is usually necessary to remove the oily matters from them before they can be satisfactorily so bleached. This may be accomplished by immersing them for a short time in good naphtha or benzine, rinsing in a second vessel of the same, alid thoroughly drying by exposure to the air. This treatment does not injure the
feathers. 2. What dyes should be need to give a gray color to feathers that are naturally white : A. Use a
A. weak aqueous solution of nigrosine.
(3) C. G. F. writes: 1. I have a figure of bly a quarter of an inch in thickness. How can I soften the pare rubber so as to do this-how prevent sticking to the cast? The mould is desired to oe flexible and as soft as it can be kept. A. Use the purified gum rubber, aud soften it by contact with hot water or steam, and
mould by pressure. Use powdered soapstone to premould by pressure. Use powdered soapstone to pre-
vent sticking. See How to Make Rabber Stamps, in Supplement, No. 83. 2. Also, what is the best bath for nickel plating 9 A. The double sulphate of nickel and
ammonia dissolved in water is gencrally preferred. See article on Nickel Plating, page 153, vol. sliii.
(4) G. B. L. asks how plumbers burn perpendicular seams in lead tanks on thin sheet lead. A.
The edges are bronght together, bammered down into channel cat out of wood,and secured with a few tacks. The hollow is then scraped clean with a scraper, rubbed over with tallow, and a stream of hot lead is poured into it, the surface being afterwards smoothed with a hot
(5) J. A. asks for the best method of making the ornamentations on tin that look like crystals
or like the frost on windows in winter. I have tried dior tike the frost on windows in winter. I have tried di-
luted sulpharic acid and citric acid, bat have had poor success. Also, how to give the same different colors.
A. Use nitric acid dilated somewhat with water. See t. Use nitric acid dilated somewhat wilh water. See them quickly in clean water on coming from the acid. They shoold not remain many minntes in the latter.
The colors are imparted by washing them with very dilute shellac (or other) varnish colored with the anilline (6) C. A. B. writes:
(6) C. A. B. writes: The shaft of mg water wheel is upright, making 40 revolutions to the
minute; on its top is a pilley 60 inches in diameter, driving one on another upright shaft 42 inches in diameter On the second upright is a gear wheel, with 35 cog shaft. On this horizontal shaft is a 78 inch puiley, which drives a 16 inch pulley on the end of my saw mandrel, running a 48 inch saw, which gives my saw about 191
revolutions, or about 2.400 feet per minute. Will my saw do as good work making that number of revolutions as it would do if geared higher? The belt that connects my 60 inch pulley on mill shaft and 42 inch
pulley on upright, is a 12 inch belt. My difficulty is pulley on upright, is a 12 inch belt. My
this: When my belt is tight enough to do good work it soon bursts: if left loose enough to prevent bursting it Blips. Will you please suggest a remedy! i have tive motion, but have never seen any in use. Would you advise fts use? If so, what size? A. You should
speed up your saw to about 500 revolutions per minute. You will then have less feed per revolution, and your belt will stand.
(7) R. A. asks what to use for making rasty saws and shovels look bright and new. A. Scour with pumice stone powder moistened with muriatic with emery cloth or paper and oil, and finally with cot aste ora cloth and oil.
(8) R. D. S. writes: I have a tin roof painted with boiled linseed ofl and oride of iron. It
does not wear well. What can I add to this mixture and what proportions, to make it more durable o Would raw oil be better than bolled? A. Use good raw oill. It should be ground with fine (calcined) oxide. We know of no cheap
prove its darability.
(9) W. A. asks (1) for the names of the nakes (if any) of New England. A. (1) mills adder poisonous? A. No.
(10) F. asks if an electric light can be run by a battery instead of engine; if there are companies
that sell the lamps and batteries for the same and is what would be the cost. A. Electric lights can be operated by batteries, bat the method is very expensive and troublesome, and not to be recommended except or experimental purposes.
(11) J. A. B. asks how to dissolve gold for gliding china or glass that has to be burnt. A. Triturate gold leaf in a mortar with a little honey. until reduced
very fine; then dissolve out the honey with bot very fine; then dissolve out the honey with hot water,
and mix the gold dust with a little gum water for use; and mix the gold dust with a littule gum water for use;
or dissolve the gold in hot aqua regia, evaporate to or dissolve the gold in hot aqua regia, evaporate to
dryness in a porcelain dish over a hot water batb, and diasolve in ether for use.
(12) P. S. N. writes: There is any amount of broken glass around here. Would there be any use
made of it wifhout the addition of any new material in making bottles and common glassware \& A. If the is to crush it, wash free from earthy matter, etc.. der coarsely, and remelt. No addition need be made. (13) H. A. I. asks for a receipt for making canvas waterproof, also to make straw board water
proof. A. See article on waterproofing, page 81 , carrent volume of Sorentifio Ambrican.
(14) S. B. G. sends the following: A cider press, the beam of which is 1 foot by 2 feet by 25 feet
long, and weight 48 lb . per cubic foot. Required the ong, and weight 48 lb . per cubic foot. Required the
pressure on the cheese, which is 4 feet from the end of the beam which is in the post. A. Yoar beam, 1 foot by
2 feet by 25 feet long, at 48 lb . ver cublc foot, would 2 feet by 25 feet long, at 48 lb . ver cubic foot, would
weigh $2,400 \mathrm{lb}$., and the center of gravity at mid length; weigh $2,400 \mathrm{lb}$., and the center of gravity at mid length;
hence your beam becomes a lever, with distance from hence your beam becomes a lever, with distance from
fulcrum oo press 4 feet, and from fulcrum to ceuter of gravity of the beam 12% feet, or $3 \% / 8$ leverages, and $=7,500 \mathrm{lb}$. press
(15) J. W. writes: 1. I have a water power of abont 14 feet head, and a good supply of water, and
wish to carry the power to a factory distant about 3,000 feet. Which would be the cheapest and most practicabie, to do it by means of a wire rope tranemission, or to use compressed air? A. By a wire rope. 2. Coald you give me the name of any party transmittiug power by con-
pressed air that distance successfully? A. No, we do pressed air that distance saccessfuly? A. No, we do
not has been practiced successfully for such a
(16) C. L. S. asks for a receipt for some rransparent glaze that can be put on clay tobacco pipes with a moderate degree of heat, for instance such as is
used by the pipe manufacturers in Powhattan County, Va., and at Akron, O. I am abont to engage in the basiness of making pipes by machinery. I wish to use only a moderate degree of heat, so that in glazing the only a moderate degree of heat, so hat in plaking the
pipes will not be burned too hard. A. 1. Make a saturated solation of sogar of lead (lead acelate) in hot water. Dip the pipes in this, or apply it with a brash to the outside, then dry and expose in an open mume at a
low red heat until properly glazed. 2. Potussinm carlow red heat untin properiy glazed. 2. Potussium car-
bonate. i part; borax, 5 parts; melt together in a sand crucible and ponr out on an iron plate to cool, then pow. der and mix into a paste with a little turpentine oil for ane. Apply with a brush or clean rag, and heat slowly in a muffle or oven to incipient redness.
(17) A. E. M. asks for an easy proceas for extracting the essence from flowers. A. The finer perwith water, and condensing the eessential oils which pass over with the steam and separate from the water of condensation from the latter. The retort is preferably of earthenware or glass, and its beak is joined to the glass

inder of sheet metal closed at the ends by wooden plugs through which passes the glass tube; cold water dows
in throngh the tube and eacapes through \mathbf{D}. The disin throngh the tube and eacapes through \mathbf{D}. The
tilled liquids are collected in E , in which the essential oils separate and are drawn off, ihe water being returned the retort wish a fresh charge of fowers.
(18) A. W. S. writes for directions for putting lightning rods on a barn 40 an 100 feet, on the general
principles involved in their erection for the protection principles involved in their erection for ine protection
of buildings. Some claim that insulation is necessary, while I maintain that the rods should come in direct contact with the wood or brick. Who is right 9 A. Without knowing the form of the roof of your barn it would be impossible to give specific information. In gencral terms, ron your rod to the highest points on the
barn. Use ${ }^{\circ}$ a rod at least five-eighths of an inch in barn. Use ${ }^{\circ}$ a rod at least five-eighths of an inch in ciameter,and attach it directly to the barn without insuof the rod twenty feet away from the barn in a trench dug deep enough to reach earth that is always moist. nect gatters, pipes, and all metallic parts of the barn with the rod.
(19) C. B. C. asks for a receipt for a mixfure that will keep a piccolo moist and make the tone
clear without injuring the wood. A. Rub a little pure glycerine on the wood occasionally and then wipe it dry with a soft cloth.
(20) J. N. S. writes: I have a galvanizing wine press. and as you do not recommend the use of
galvanized iron, can yougive a formula for taking off
the amalgam.'so as to leave the press anfe to use for
grapes, etc.? A. The coating of zinc may he removed grapes, etc.? A. .ae courtz moistened with muriatic
by scouring with sand quar by scouring with three volumes of water or by boiling
acid diluted wolution of potash. The latter process does
in a strong solution in a strong solution
(21) E. B. asks: Can you give me a simple process by which I can make ozone? A. Put a few
sticks of clean phosphorus in a basin of water, half coverithem with fresh cold water (soft), and put a closed bell jar or inverted glass vessel (cleanl) of any kind over course of an hoar the air thas confned will be found charged with ozone.
Minerals, etc.-Specimens have been reeived from the following correspondents, and examined, with the results stated:
R. Q. and C.-No. 1 is pyromorphite- essentially $\mathrm{PbCl}+3\left(3 \mathrm{PbO}\left[\mathrm{PO}_{6} \mathrm{AcO}_{5}\right]\right.$). No. 2 is spathic iron oreof baryta. It is used in adniterating white lead, and once as a white pigment.-Miss S. A.-The crystals are The powdered mineral exhibits the phenomenon of phosphorescence strongly when moderately heated in the dark.- J. B. H. M.-The clay is too impure to be
of much value, even for brick making.-P. I. - It is mon.-J. M. McB - The box marked P 1. contains sand and sulphide of iron-of no value.-W. I. F.-The conglomerate contains a littue sulphide and carbonate
of copper-not enough to make it valuable as an ore.-F. S. P.-It is not corundum or emery, but mag netite-protosesquioxide of iron-S. S. M.-A fin
silicioas
clas containiug much iron sillcious clay containing much iron oxide-of little
value.-T. W. \& Co.- It is quartz and limestone containing galena-lead sulphide-and pyrites, Galena to a valuable ore of lead.-W. H. L.-The clay containa only a trace of lime phosphate, but much carbonate. s. T. D.-It would require an assay to determine the alae of your ore. The rock is quartz. J. McC.-The ine particles are mica and snlphide of iron-the sand contains no valuable metals.-G. M. R.-Such mica is colorless or white mica. The stain cannot be removed without spoiling the sheets.-L. J. -It contains galena lead sulphide-and probably a little silver. An assay vonld be advisable.
[OFFICIAL.]
INDEX OF INVENTIONS
Lettors Patent of the United States wer
Grantod in the Week Ending August 16, 1881.
AND EACH BEARING THAT DATE [Those marked (r) are reissued patents.]
Δ printed copy of the specification and drawing of any arent in the annexed list, also of any patent issued Ince 1986, will be furnished from this offlee for 25 cents. ordering please state the number and date of the New York city. We also furnish copies of patents

Air cooling and purifylng apparatus, II. J. Dykes. 245, ,15
Alumina, manufacture of sulphate of. C. Semper. 25,750 Anemometer, recording, H. J. Green.............. 245,225
Ant-freezing receptacles, attachment for, J. B.
Gordon................ M. Meeoh
Wxling, box, castable, T. V. Le Roy (r).
xle labricator, ve
Bag. See Mall bag

Bag. See Mall bag.

BagginR material, I. T. T
Bar. See Car draw bar.
Bed and stretcher, adjustable cot, F. T. White.
Beehive, dividilig, J. D. Sha
Bench. See Yolding bench.
Blackling apparatus, shoe, J. H. Gwinner......
Block. See Boot and shoe crimping block.
Blowing engine, E. Reynolds.
Board. See Musical instru
Bobbin winderped. C. B. Thompson,
Bnller. See Steam bolle
Boller. C. E. Haynes......
Boiler furuace. steam, Mathews \& McGranshan
Boot and shoee crimpling block, P. Fischer...
Boots and shoes. manufacture of, C. C. Ballou
Bottle stcpper, S. S. Newton
Bottie stopper. D. Rylapper, B. D. Marks
Box Yastener. L. A. Centllvre.........
Brace. See Fence center brace.
rrake. See Car brake. Wiagon
Brake. See Car brake. Wagon brake
Brotling apparatuas. H. M. Kinsley....
Backle, M. Dattlebaum.
Bung catting machine, w. M
Burner. See Vapor burner.
Button, L. H. "lise
bolt
Cameras, ground glass, frame for, M. Fi
an. See Flour can. Sheet metal can.
Car brake, J. W. Cloud
Car brake, M. A. Deas
ar coupling, J. W. Bates.
ar coupling. J. H. Blanchard
Car conpling, D. F. E. \& H. H. L. Hawk.
ar coupling. W. R. Jones.........
ar draw bar, rallway, W. S. Sampeo.
Car running gear, rallway, J. D. Fee.
ar, sleepling, \boldsymbol{A}. . C. Rodgers
ar, spring,
C. Scott.
ar, stociz, Goodrich \& Pope
Car, stock, C. C. Starke
 Carringe jack................
Cement. manufacture of ington
Chain. J. T. Brough.
Chandelier, S. B. H. Chandelier, s. B. H. Vance............... Clay press attachment. G. W. Mc Farla Clutch whinger gearing, J. Bacon Conch pad, E. R.
Coat. A. Peyser
Cock, four-way, J. Sheppard.
Cock, self-closing. E. W. Mc Coin holder. J. Chantrell.
Cotn holder, F. N. Young.
Collar, borse. C. Roehng..........
Concrete mill, White \& Baldwin
Cornstalk shocker and DInder. J. B. Whitbeck. Corset busks, fastening for, G. H. Coll Cotton opener, Clarke \& Perhan
Cotton opener, R. Kitaon Cotton opener, R. Kitson
Cotton wast
Cotton waste, proceas of and apparatua. for ex.
tractlog olly and greasy matter from, \mathbf{C}. Bastand...
Coupllng. See car coupling. shaft coupling. Whip coupling.
Coupling pins, die for forming, J. H. Alker. Coupling pins, dle for forming, J. H. Alker.. ...
Coupling plns, die for shaping a rounded head
knob on. J. B. Alker knob on. J. H. Alker..................................... polnt ends of. J. H. Alker
Crusher. See Ore crusher

```
Cult|vator, J. N. Davis.
```

Cushlon. See Horseshoe cushion.
Dental bracket table, W. N. Morrison
Dental plate. J. Bryant.
Denture, E. Rauzorot
Digker. See Potato digger
Dish. table, I. L. Landis...
Deor
Sexton, Jr.
Door hanger. C. Brinton...
Door securer, J. J. Tierney
Drer.
Drier. See Frult drier.
Drill blanks, machine
Drill blanks, machine for twisting, Nicols \& Web Drying apparatus, S. G. Phillips.
Dumping devicee, M. Cooper.

Mlectric machines, device for ventil
armatures or dynamo, E . Weston..
End gate. Wagon. Winkelmann \& Stewart Engine. See Blowing engine. Steam engine.
Pumping engine. Traction engtne. Feed water heater and condenser for stea
bollers, R. Levelly Feed water heater and purifier, B. Brazelle Feed water, removing air and grease from. D. D. Feeder, antomatic atock, i. . .. Mias. Feeder, bollter, B. Brazelle
File, letter, I. stoner
Firearm, breech-loading, J. H. Gramps Firearm lock, S. Forehand.
Firearm, magazine, J. H. B
Friearm, magazine, J. H. Bulliard
Firearm, revolving, R. P. Cory......................
Frre extingulsher, automatic, J.R.Brown.. 245,914
Fire extinguisher, automatic, H.A.Stearns. 245,88
Fire extinquithers, alarm valve for automatic,
R. Brown.. Flour can, familly. E. Forbes, J
Flour, artificial, J. Boshardt.. Flour, artifcial, J. Boshardt.
Flying shlp, W. Beeson
Folding bench. J. K. Dugdale. Folding bench. J. K.
Fork. See Hay fork. Forks, method or and means for drawing t
tines of agricultural, G. D. Walcott............ rines of agricultural, G. D. Walcott.....
rame. See Photographic printing frame. Pocketbook frame. Fult jar, M. Harris Furnace. See Botler furnace. Gug runner, R. W. Jones.
Game tally, J. Sargent...
Garter. W. W. Anderson.
 Gas apparatus, hydraulio main for, w. R.
Gas globes, cover for, J. Gruenebaum.... Gas plobes, cover for, J. Grueneba
Gas lighting apparatus, electrical, W Gas machine, His. Maxtm Gate. See Raliway
Gate, E. Lexgetc...
Gate, J. Thompson
Gate, J. Thompson
Generator. See Steam gene
Glove fustener, A. Hopen Governor, steam engine, L. Hradley Governor, steam engine. E. Wright
Governor valve, C. Rinderknecht Governor valve. C. Rinderknecht....
Grain binder, c . W. Levalley....... Grain binder, platform, E. B. Keith Grain meter. C. B. Gros.
Guard. See Saw ruard. Gun, machine, W. Gardner
Handle, See Shovel handle. Handie. See Shovel hand
Hanger. See Door hanger
larrows and cultivators, spring tooth for. \mathbf{W} Harty...
Harvesting
 Houses, etc., apparatus for moving. H. 8 .
Ice cutting machlne. R. Henry........... Jack. See Corriage Jack.

Jar. Bee Frult jar.
Jewelry, device for setting stones in, J. Hagerty.

25.715
250.977

 Dorter. 8pooling mach
Suspenders. , C. C. Bheiby
Suspendera

Plano action, upright, R. E. Letton
Planoforte. L. Stremmell..........
Pick, T. Wiliams................
Pin receiver. C C. Namamore.
Plane, bench, J. Siegrey.......

Plow
Plow
Plow

它若
Potato digser W. D. Robingnux. of T. Michters.
Press. See Printink press.
Printing machine, F. B. Dodge.

Pumpling engine, steam. B. Brack.
Hack. See Hat and clothes rack.
Rallway crossing, P. J. Cochrane
Rallway gate, automatc. G. F. Forbes.
A. G. Cummings.
Railways. gripe for rope, Grim \& Low.
Rake. See Horse rake.

Rake. See Horse rake. Ring. See Spinning ring

wads, apparatus fo H. I. Grennell..

Rules, sllding gauge for jolnt Saw guard, circular. G. Grill.

Saw mills, feed and set work for, F. A. Huntingt
 Saring machlne, dras, K. I. 4 .
Scalie, ingredient, W. J. Miller..
Scarf, neck, B. Bichter.
Scraper, Wheeled. G. J. Weber.
Scraper, Whoeled. G. J. Weber.
Sear lors, A. . Martel.
Settee, folding, R. T. White....
Sewing machine, J. Bond. Jr.
Sewing machine attachment, s. c. Ferriss ..

Sewing machine, hat wiring. W. F. Beardsle
Sewing machine tension deviee, G. Fillett.
Sewing machine thread controluing derice
Sewing machine thread controlling device. ©
Willett..................................
Sewing strai brald, machine for and method os
R. Lamont.............................

R. Lemont Shackle or silp pook, Bezer

Shaft conpling. W. B. Black.
Shaft coupling, J. E. Miller.
Sheet metal can or box, G. F. Grimn ..
Snovel handle, P. W. Groom...........
Snovel havale, P. W. Gromm.
Signal. Bee Rall way ignal. Telephone siknal.
siphon
Siphon, bung, H. Karcheski.
Slate, school, A. Kachler.....
Slate, school. A. Kachler......
Sleeve protector, C. Sprakue.
Smoke consumer, locomotive.
Smoke consumer. locomotive. J. McMurtry ..
Snoker's cabinet. D. L. Wilcox.
Sole channeling and shaping mac
den
Spark arrester. French \& Mellon.

Spinnting mule. 11. Macon.
8plinning ring w. Mason
spining ring. W. Mason......................
spooling machine bobbin supporter. o. k. Watt. Spring. See Car spring.
Square, carpenter's,
square, carpenter's, I. Low.
Starching machine. D. \& C. G. Rowley

 Steel from the same heat of metal, producin
difirent Stone channeling machine, Webster \& Willard. Stopper. See Bag stopper. Bottle stoppe
Stove, cookiog R. Hect Stove, cooking, R. Hatchman
Stove. cooking, ©. Temme...
Stove grate, W. Hagerty (r)...

Telephone signal. Anders \& Watson.....
Telephone alknal apparatus, J. A. McCo

$\stackrel{9}{2}$

:

Tongue for plows. Mangam

Torpedoes, Aring pin for projeot tle, J. Ericason... 245.893
Toy, G. \& A. C. Stout.......................... 24.671
Toy carriages, gauge for boring holes for splndles


```
Tricycle. Reed \& Parker.....
``` Truck wheel, G. H. Hood rrunk and mall box, W. S. Soule .........................
Tug, thill, C. B. Pineo......................
Twisting abrous materials, machine for, W. Murray.................... Valve, steam engine osci
Valve, stop. R. Inke...
Vapor burner, C. H. oo
 Velocipede, J. Hopwood...
Veloclpede. J. W. Krueger
 DESIGNS.
\begin{tabular}{|c|}
\hline \multirow[t]{13}{*}{} \\
\hline \\
\hline
\end{tabular}

TRADE MARKS.

English Patents Issued to Americann.
From \(\lambda\) ugust 12 to \(A\) ugust 16, 1881, inclusive
Brake. rallioad. J. V. D. Reed, New York city
Electricul apparatus for telegraph and tele
willams, Jr. el al., somervile, Mase.
Electrical distribution, T. A. Edison, Menlo Park, N. J.
Electric light, R. R. Momatt et al., Brooklyn
Electric light, R. R. Mortatt et al., Brooki yn, N. N. Y.
Electric light, A. F. W. Parta, Philladelohia, Pa.
Electric light, A. F. W. Partz, Pblladelphla,
Electric likht, A. L. Arey, Cleveland. O.
klectric lipht, A. L. Arey. Cleveland. O.
Moulds for plaster. D. W. Stockstill et al.,
Paper hangings, machine for coloring. T. Smith. Weat
New Brikhton, N .
Nem Rrighton, N. Y.
Paper folding machine. W. Smith. Plainfleld, N. J.
Petroleum. combustion of, H. T. Litchfild et ul., H
Mass.
Pump. rotary, C. Comstock, New Cannan, Cunn
Registering apparatus for vehicles. J. W. Fowler et al.
Brooklyn. N. Y.
Type distributing machine, T. Reeve, Brooklyn, N. Y.
Vulcantzing tasks, J. S. Campbell. New York oity.

\section*{DR. SCOTT'S ELECTRIC FLESH BRUSH.}

ASTONISHING CURES!

\section*{\(=2=2=2=\)

 \\ ETP CUERTS Rheumatism, Sciatica, Gout, Nervous Debility, Lumbago, Neuralgia, Toothache, Malarial Lameness. all Pains and Aches resulting from Colds, Impure Blood, and Impaired Cireulation. It acts quickly in Stomach. Liver, and Kidney Troubles, and is a valuable assistant in their Treatment. It quickly Removes those " Back Aches" peculiar to LADIES. \\ It keeps the skin healthy, beautitieg the complexion, and impart
viror and energy to the whole body People of sedentary habitis and \\ Proprletors: The Pall Mall Electrit A Aeociation
of London.
New TESTIMONIALS

 \\

}

\section*{THENTION}

MONEY RETURNED IF NOT AS REPRESENTED.
As soon as you reeelve the Brush, if not well satisfled with your bargain, write us, and we will return the money. What can be fairer? The Proprietors
A. BIEA UTIIE'UI, BERTEIEI, LASTING FOR YEARS,

 For STEEP and FLAT ROOFS of all kinds
Can henpled by ord nary morkmen at onj

 W. Adreas \({ }^{\text {B }}\).
\begin{tabular}{|c|}
\hline \multirow[t]{18}{*}{\begin{tabular}{l}
NO E E CURED, \\
A SMALL STEAM YACHT FOR SALEE CHEAP \\
PHYSICAL STUDIES OF LAKE TAHOE. \\
By Prof. John LeConte. - A Very comprehensive stady
of the physical characeristics of this noted lake.
Treating of: The relation of temperature to depth. \\
Why the water does not freeze in Winter. Why the
bodes of the drowned do not rise. The investigations \\
of Prof. Forel. Cause of superior transparence. Color \\
 \\
 \\
Mad at this ofice and from all newsdealers.
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

\section*{SEND TO DNDUN EEFAY OFITON
THE BEST BAND SAW BLADE}

THE CAT AND ITS RELATIONS - BY

\section*{}

\section*{TEXAS}

\section*{ATERANTEAE ATVD TOUIETAINA.} CHEAP HOMES FOR ALL!
\(\mathbf{5 0 , 0 0 0}\) Laborers can get Immendiate Emplopmont, at Good Wagoen THE SOUTE W WSITERNT TMMMIGRATION CO,

\section*{WOLS MORKNG MACINRBY \\ PLANING, \({ }^{\text {NG }}\), DATCH \(^{\text {NG }}\), SING. TENONWGGARVING \\ BAND \& SCROLL SAWS \\ \(V_{A R I E T Y}\) WODD WORKERS, \\ J. A. FINCANNATI.O.U.S.A.}

THE CATHEDRALS OF GREAT BRI

 MANIPULATION OF CHEMICAL AP

 WANTED

\section*{-165 FACE ST- JAS. MURDOGK JR CINCINATI:
BRAS.S. COPPERR SILVER}

WILL TREAT WITH PARTIES TO TAKF

\section*{}

CAVEATS COPYRIGHTS, LABEL Messrs. Munn \& Co., in connection with the publicaHor of be SCIERTIFIC AMERICAN, contine to exis for Improveme
Inventors.
In this line of business they have had over turrety TRaRs' Experiexoc, and now have unequaled facilitie for the Preparation of Patent Drawings, Speciications,
and the Prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Mesers. Mund \& Co. also ateend to the preparation of Caveats, Reissues. Assignments, and Reports on Infringements if Patents. All business intrusted to them is done with
terms
We send, free of charge, on application, a pamphies
containing further information about Patents, and hoor to procure them; directions concerning Labele, Copy righte, Designs. Patents. Appeals, Reisenes, infringemente, Aseignmenco, Rje Alea ca of Patents, etc.
Foreity Patenta. - We aleo send, free of charge, \({ }^{8}\) Synopeis of Foreigi Patent Laws. showing ici cal coun. method of securlng patents in ain he presold bear in mind that, as a general rule, any invention that is valioable to the patentee, in this country is worth equally as much in Rngland and some other forelgn countries. FHvc patents-embracing Canadian, English, German, French, and Belgian-will secure to an Inventor the exclusive monopoly to his discovery among abont ons HUXDRED AND FITTY Mulion or he mof inillisen people in the world. The faclite parnts can be obsteam conmunicanow are itizens almost as easily as at home. The expense to apply for an English patent is 875; German, 8100; French. 8100; Belgian, 8100; Canadtan. 850 .
Copies of Patents.-Persons deesiring any papient IRsoed from 1836 to November 20. 1886, can be suppide With offcial copies at reaeonabie cost. ne lingt of specifications.
Any patent iesued since November 20, 1886, at which time the Parent office commenced printing the drawings and epecifcations, may be had by
this office 25 cents. \(\Delta\) copy or the claims or any
will be furniebed for 25 cents.
When ordering copies, please to remit for the came \({ }^{2} s\) above. and state name of patentee, title of invention, and date of patent.
 United Statee patents, sent free. A handromicty bound Reference Book, glit edges, contuains to pher nid. many engravings and tables entee and mechanic, and is a nsefni hamide fre.
ence for everybody. Price 25 cents, mailed fre.
Adce Ior everyb
Address
biehere SIIENTIFIC AMERICAN.
37 Park Row, Ncw York.
WRahingtom b. \(C\).

\section*{Geo. W. Read \& Co, MAHOGANY,}

Cabinet woocis.
CUT AND PRESS DRIED
THINLUMBER,
CIGAR BOXES, Panol stock, Fic., Fio.

186 to 200 Lewis St., New York.

SILK-PRODUCINGGOMBYOES

Steam Fittors' \& Plumbers' Supplies. STURTEVANTS' FAN BL.OWERES. Send for Circulare Price List of COPE \& MAXWELL M'F'G CO'S STEAM PUMPS BOILER FEEDERS

\section*{50 BEAUTIFUL ALHEND DEGGINSOO Rgh} Chromo Cardis, name on, 106. Card Mills, Northford, \(C\). PHYSICAL SCIENCE IN OLR COMMON
 and

\section*{30 dars trial allowed,}

DR croo-Voltaic appliances. Invented by the eminont Dr. Ar. M. Dee, and
especially designed for the cure or all Mervous

 pamphiet sent free.
VOLTAIC BELT CO., Marshall, Mich. OPTICAL TELEGRAPHY. - DESCRIP

等
 THE NEW OT'TO SIIEN'I GAS ENGINE
 TEXTILE FIBERS UNDER THE MICRO

\section*{}
 SURVEYiNG of Mining claims in

\section*{SUPERINTENDENT WANTED.}

\section*{NEW YOR
\((1)\)}

 INDUSTRLILL CHEMISTRY. - BRIEF

PATENTS SOLD Parnurers
Sectred.

THE WALLACE DIAMOND CARBONS,

- 109 Liberiy st., New Tark.
mekean, newhahid borre, Philadelphia (Luvering) Sngar Refinery dofire to nequag a siperntending chemist of the bot, NEW DISCOVERK REGARDING GELA

DO YOUR OWN PRILTTINE
 H. HOOVER, Phila. Pa.

\section*{"BLAKE'S CHALLENGE" ROCK BREAKER.}

 frivitums blake Crusher

\section*{OWNERS OF THE U. S. PHOSPHOR \\ BQONZE PATEMTS}

Sole Manufacturers of Phesphor-Broaze in the U.S.

MOSS ENGRA VING CO.

THELARCEST ESTABLISHMEN
COMPLETE PREVENTION OF BOILLER

 ewsdealers.
 WATER RLEVATOR, OR STEAM JET PEMP

 VAN DUZEN \& TIFT, Cíncinnati, O.
 ALCOHOL IN NATURE--A DETAILED

\section*{MACHINERY}

\section*{of every degcription. 121 Chambers and 108 Reade Sts.
New Yurk, TEEGBORGK 1 LACEMACHINEX AGKNCY} HAND B(O)NK FOR STRAM ENQI NEFRS.

CHEMICAL ENERGY AND ELECTRO

 FORSTER'S CRUSHER AND CRUSHER AND PULIVERIZER

ROOT'S NEW IRON BLOWER
 IRON REYOLVERS, PERFECTLY BALANCED, Has Fowor Parts than any othor Blowes P. H. \& F. M. ROOT8, Manufacturers, B. 8. TOWNGBND, CONNERSVILLE, IND.
 =-ND FOR PRICED CATALOGUE. OIL PRESSING MACHINERY, - AN 2ocount of methods employed in crushlng oil from seedas
with a descripton of improve mectinery or the pur
pose. ill

WIPHERBY. RUGG \& RCHARRDON. Manufacturere
 GEORGE STEPHENSON.-AN INTER

 facturing purpoees. Plot zioxto. One three-story bulla ing front ing on three street. Ad Aress
W. It. PISENTICE. I'rentice Stores, Brooklyn, N. Y. CONSTIPATION AND ITS EFFECTS. the literature of a subject litrle trented of in medical

 COLOGNECATHEDRAL-AFULL

New York Ice Machine Company,

THE PORTER-ALLEN High Speed Steam Engine. SOUTHWARK FOVDREY \& MACHINE CO., DRUNKENNESS OPIUM EYaNit
 \(\int 5\) Per week. NTELLIGENTACENTS can

\section*{Ex
 \\ Establí EACLE ANVILS. 1843
 Double Screw, Parallel, Leg Vises,
}

THE ONLY RESERVOIR PEN IN THE WORLD WITH A CIRCLE OF IRRDIUM AROUND THE PoIN THE HANCOCK IMSPIRATOR CO.
 PATENT QUICK SHAPERS Can be Changed while in Motion. E. GOULD \& EBERHARDT,

MAChinists' TOOLS.

 Jenking' Patant Packing ,ngd Valves

\section*{Sifis polivi} A. At Low Prices. LROWN, Lirge Assorted Stóck. Pond's Tools, Davill w. powio, Worcester, Mass.

\section*{\(\xrightarrow{\text { FOR BEST }}\)} JOHN HOLLAND, Mfr., \(19 \begin{gathered}\text { Wend for } \text { Price List } \\ \text { Sth St., Crincinnati. }\end{gathered}\)

\section*{Boiler Feeder}

40,000 IN ACTUAL USEE. NATHAN \& DREYFUS,
Sole Manufacturers, NEW YORK.

THE J. L. MOTT IRON WORKS,

Stevens' Roller Mills, GRADUAL REDUCTION OF GRAIN John T. MoYe de soxs, BUF FALO, N. X Working Models

SHEPARD'S CELEBEATED \(\$ 60\) Serew Culting Poot Lathe

THE SCOVILI Pop" Safety Valve, SIMPLE, RELIABLE, DURA BLE

\section*{TO TNVENTORS} AND MANUFACTURERS

\section*{The Semi-Centennial Exhibition}

\section*{HARTFORD}

STEAM BOILER

\section*{Inspection \& Insurance} COMPANY
W. B. FRANKLIN.V. Pres't. J. M. allen, Pres't. J. B. PIERCE. Sec'y.

\section*{Jarvis Furnace Co}

ICE AT © 1.00 PER TON. PICTET ARTNTVIAL PGE CO, Nimited,

1880 Cutien \(\begin{aligned} & \text { so } \\ & \text { cents }\end{aligned}\)

\section*{ERICSSON'S}

Ner Cadrici Puminig Figia
DWELLINGS AND COUNTRY SEATS.
Simplest cheapest, and most economical pumping engine
for domestic parposes. Any servant fric can operate.
DEIAMATER IRON WORTS C. H. DELAMATER \& CO., Proprietors,
No. 10 Cortlandt Street, New York, N. Y PAYNE'S AUTOMATIC ENGINES.

ROOFINa.

\section*{WIRE ROPE}

LOW PRESSURE BNNARY ABSORPTION SYSTEM.

\section*{ICE AND COLD AIR.}

\section*{Low Pressure when running. No pressure at rest. Ma}

TO INVENTORS

THE
Howid liminaturinic Co.
364 \& 366 Broadway, New York.

\section*{PATENTED NOVELTIES} Yankee Notions,
OF EVERY DESGRIPTION AMPLE CAPITAL.
Latest Improved Machinery. CONNECTIONS WITH ALL WHOLESALE MERCHANTS IN THE UNITED STATES AND CANADA.

Agents in Foreign Countries.
Correspondence without charge, with all wh desire their inventions in our line developed.

\section*{pil \\ }

\section*{§ximtifii Antrricam}

The Most Popular Seientific Paper in the World. VOLUME XLY. NEW SERIES.
comigences july 1.
Only 83.20 a Yenr, including postag.
This widely circulated and splendidily illustrated teen pages of useful information, and a a arge number of original engravings of new inventions and discoveries,
representing Eggineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc. All Classes of Readiers find in The Scientific AmERICAS a popular resume of the best scientinc into present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind, reading. It is promotive of knowledge and Terms of Subscription.-One copy of The SCIENTIFIC Americax will be sent for one year- 52 numbers-
postage prepaid, to any subscriber in the United States postage prepald, to any subscriber in the unted wenty
or Canada, on receipt of three dollars nud cents by the pubilishers; six months,
months, 81.00 . Clubs.-One extra copy of The SCIENTLFICAMER-
CAN will be supplied gratis for every club of five subseriber at \(\$ 3.20\) each; additional copies at same proportionate
rate. One copy of The Scientiftc Amerioan and one copy
of The ScIEntific American Supplement will be sent for one year, postage prepaid, to any subscriber in the
United States or Canada, on reeeipt of seven dollars by United States or
the publishers. The safest way to remtls ply eostal inside of envelopes, Express. Money carefung phace addressed, seldom goes
securely sealed, and correctly
sstray, but is at the sender's risk. Address all letters and make all orders, drafts, ete., payable to

\section*{MUNN \& CO.}

37 Park Row, Now York.
To Foreign Subacribers.-Under the igclitles of the Pootal Union, the Scientific Amkrican th in becribere in Great Britain, India, Australia, and all other
British colonles; to France, Austria. Belgium, Germans, Russia, and all other European States; Japan. Brasti Mexioo, and an States of Central and South America.
Terms, when sent to forelgn countrles, Canada excepted, *4, gold, for Scientipic American, 1 year; 86 . gold, for
 \begin{tabular}{l}
postal order or draf \\
Row. New York. \\
\hline
\end{tabular}
PRINTIING INKS:
```

