

Entered at the Post Office of New York. N. Y. as Second Class Matter]
a Weekly joitrnal of practical information. art. science. hechanics. chemistry and manufatures.

 LIEBIG'S EXTRACT OF MBAT.-MANUFACTORY AT PRAY BERTOS (SOUTH AIGRRICA)-(See page 84.)

§rientific ghmricau.

HETABLIBHED 1846.
MUNN \& CO., Editors and Proprietors.

published werilit at

NO. 3 ' 7 PARK ROW, NEW YORK.
A. e. bRACE.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, six months, postage included One copy, six months, postare included 160 gratis for every cuub of ave subscribere at $\$ 3.20$ each : additional coples a same proportionate rate. Postage prepald.
Remit by postal order. Address

MUNN \& CO., 37 Park Rotr. New Yort
The Scientific American Supplement is a distinct pr.per from the Scientiple AnERICAN. THE SUPPLIEMENT

 all news dealers throughout the country.
 HIII be sent for one year postage tree. on recelpt The safest way to remit is br draft postal order, or registered letter. Address MUNN \& CO . 5 Park Row. N. \mathbf{Y}.

Scientife American Export Edition.
 odical, issued once a month. Each number contalns about one hundred
large quarto pagee, profusely plates and pages of the four preceding weekly isaues of the SCl KNTIFII
AMKRICAN. with its aplendid engravings and valuable information: (2. AMkRICAN. WIth its aplendid engratings and valuable information: (2.
Commerclai, trade, and manufacturing announcements of leading hounes. Commerclal, trade, and manufacturing announcements of leading hounes.
Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world - Single copies 50 cents. LGe Marufacturers and others who desire to secure forelgn trade may have larke. and handsomely disp
nouncements pabilished in this edition at a very moderate cost. nouncements pablished in this eitition at a very moderate cost. The 8CIETIIPIC ANilichin CO., si l'ark Row. New York.

NEW YORK, SATURDAY, AUGUST 6, 1881.

TABLE OF CONTENTS OF the sciertific ambrican suppleicerit NO. 292,
For the Weot onding August 6, 1881. Price $\mathbf{1 0}$ cents. For sale by all uewsdealers.

m.

the indogtries of new york.

That New York is an important manufacturing center, as well as little thought of, yet it is this "productive industry"
ally ally little thought of, yet it is this "productive industry
which has principally caused its astonishing growth in whicu. has principally caused most of those who live here
population, and by which the moser find their support. Its vast commerce requires many work ers, and supports a large class who do little or no work, simply living on the interest of former accumulations; but the productive industry here, aside from the mere haudling of the products of the industry of others, distributes, through the counliess clanneels which reach the famile a thoroughfares to he ans or tated so many miles of street railways, elevated railroads, ferries, and bridges. The total of imports and exports of New York city for the last calendar year was $\$ 898,189,814$ $-a$ little more than half of that of the whole United States - but the productions of the workshops and factories of the city, whereby the raw or half finished materials were brought into shape for practical use, amount to more than one-halt the value of the exports and imports.
The statistics showing the extent of these manufacturing industries have recently been forwarded to the Census Bureau at Washington, by Charles E. Hill, who has been the cbief special agent here supervising their collection. They include the business of the year from June, 1879, to June, 1880, and do not cover a few special lines of industry, which bave only been made subjects of investigation by general agents for the whole United States. For 189 different brauches of business, as speciffed, the capital employed was $\$ 157,581,749$, in 11,083 establishments, employing 262,459 hands, using 1,812 boilers, and 1,124 engines of 41,951 horse power, and producing geods valued at $\$ 435.422,102$. Of these hands 133,998 were males above $16,63,482$ females above 15 , and 1,398 children and youth, and this euumer ation of help does not include proprietors or firm members, superintendents, bookkeepers, or salesmen-none, in short, connected with the mercantile department, but only those working for wages as producers. It will be at once observed that, adding these exceptions, we would greatly swell the number of those who find employment in the several branches of business, although the latter would largely be paid according to the profits of the business. Taking the materials used- $\$ 2067,043,236$-plus the wages paid, from the value of the products, we have $\$ 78,864,832$, for the payment of these others engaged and the interest on capital. The figures given for capital are, probably, more imperfect thau those for any other particular, for in many cases they represent an original investment, largely grown in value, and many of the industries have grown up literally aluost without capital, except such as furnished by the brain and muscle of their founders.
Among the important items not included in this list is the manufacture of silk goods (which was $\$ 7,842515$), gas ($\$ 5,199,979$), shipbuilding, and brewing and distilling, with several minor industries, for which the statistics have not yet been completed. The whole, it is estimated, will bring the total very nearly up to $\$ 500,000,000$.
The most important industry in the list is the manufac ture of men's clothing, a branch of business which has grown wonderfully since the introduction of power for cutting as well as sewing. The production in this line is valued at $\$ 59,798,697$, employing 64,056 hands, while women's clothing tigures for $\$ 18,599,487$, employing 17,287 hands. In boots and shoes, 123 factories make goods to the value of $\$ 4,799,371$, and 716 custom shoemaking shops produce $\$ 2,865,620$ worth. The products of slaughtering and meat packing were valued at $\$ 29,297,527$, including 244,275
beeves, 122,500 calves, and 662,600 sheep. In machinery beeves, 122,500 calves, and 662,600 sheep. In machinery
the product was $\$ 5,077,046 ;$ and in engiues and boilers, \$3,213,371; car building and repairing, \$547,037; metal goods and metal spinning, 8445,473 ; steam fitting and steam heating, $\$ 1,289,259$; iron casting and flnishiug, $\$ 5,489,251$; tin, copper, and sheet iron ware, $\$ 2,347,182$ furniture, $\$ 9,605,779$; wood brackets, moulding, turning, etc., $\$ 1,371,083$; and drugs and chemicals, $\$ 3,188,178$
But any notice of the business and manufacturing indus try of New York city would be incomplete without taking In into account the circumstances of its location, whereby a population of some 800,000 , just across the East and North Rivers, whose shores are fringed with the factories and
warehouses of city firms, ail contribute to swell the produc warehouses of city firms, ail contribute to swell the produc-
tion of this common center. The industries thus carried on tion of this common center. The industries thus carried on only the establishments within the city lines; when, how ever, the work of the Census Bureau shall be so far com pleted that it will be possible to collate the figures touching pleteproductive industry of these intimately related sections, the grand total will slow an aggregate of exchangeable commodities which will, in money value, bear no mean proportion to the total exports and imports of the port of New York

tOY pietols and locijaw.

On summing up the casualities of our explosive boliday the Fourth of July, the numbers of the killed and maimed rival those of some battles which have decided the fate of empires.
The majority of the injuries were inflicted by the thy pistol, using blank cartridges, the introduction of which has been followed by a general epidemic of lockjaw, particularly

The toy is a cheap contrivance of cast iron, with a barrel about two inches long. It is a breech loader, intended for blank cartridges, the powder being held in a metallic case either by a paper wad or by folding inward the slashed end of the cartridge case. There is no half-cock; the trigger catch is roughly made, and there is always danger of an accidental discharge when the hinged barrel is being returned to place after the insertion of the cartridge. At such times the barrel is beld in the left hand, and the discharge inflicts an ugly wound in the palm. Other wounds are inflicted by the paper wad, or by fragments of the cut end of the copper cartridge-case, which are shot off with considerable force. In otber cases buck-shot, gravel, nails, or other missiles, placed in the barrel by beedless or malicious urchins, have caused severe, sometimes fatal, injuries. The more serious wounds, however, are usually caused by accidentaldischarges, the powder, wad, or copper fragments entering the laceraled palm, and so injuring the nerves that lockjaw is the result. There were seventeen fatal cases of this sort in Baltimore on the Fourth. Fifty cases were brought in for treatment in three hospitals in this city, with eight or ten deaths; and there is no telling how many cases were under private treatment. Other towns appear to have suffered proportionally except Philadelphia, where, in consequence of fifteen fatalities from toy-pistol wounds last year, the use of the weapon this year was suppressed by the city authorities.
Other towns will do well to follow the example of Pbiladelphia. Parents are often ignorant or careless, and a five or ten cent pistol offers irresistible attractions to many boys. In anticipation of next year's celebration some means should be adopted to prevent the manufacture, sale, and use of such murderous playthings. Even the use of the pistol-shaped device for snapping paper caps should be stopped. No harm can result from them directly; but the habit which children acquire of pointing such things at each other in fun, is not conducive to care or caution in handling real pistols.

brlative riges of railway travel.

A few weeks ago, when a traveler was murdered on a railway train near London and thrown out of the car while the train was passing through a tunnel, a great ado was made, especially in American papers, with regard to the insecurity of travelers in the English cars. The plan of conflining two or three or at most half a dozen travelers in a small cab, out of reach and hearing of their fellow travelers on the train, and unprotected by conductors or other trainmen, was unsparingly criticised and ridiculed. For the sake of a degree of (undesirable) privacy any traveler, it was said, was liable to find himself cooped up with a murderer like Muller or Lefroy; or, in case of a lady, with a brute like Valentine Baker. The opportunity thus afforded for robbery, murder, or outrage was declared to be impossible with American cars, and remarks derogatory to the common sense of Englishmen were freely indulged in because they would not give up their system for ours.
The recent robbery of a train of cars on a Missouri road by a bold and well-organized gang of desperadoes gives the English press an opportunity to retaliate in kind. A promiuent London paper says:

The American cars seem specially made to invite this kind of outrage. With the English system such a wholesale raid is impossible. In any case one carrtage alone could be robbed here before the passengers and offlials could organize resistance. As there is no example of such an event in our railway history, we may assume that the difficulties and dangers are so grent as to deter even the most daring criminals. The actual danger of murder or robbery is far less on English lines than on American.
In this view of the case our English friends are as much at fault as the American critics of the English system were. The conditions under which the two systems are operated make a fair comparison of the relative security to life and property afforded by them quite impossible, while the rarity of violent crimes under both systems shows that the risk to the traveler in either is amazingly small. Indeed, considering the large numbers of persons always in transit by rail, both in this country and England, the rare occurence of crimes on the road must be accepted as proof either that traveling is exceptionally conducive to morality or else that, whether car compartments are large or small, railway travel affords fewer facilities for the commission of serious crimes than the ordinary conditions of social life. The murder of people in church during divine service is a more frequent occurrence, if criminal statistics are worth anything, than like crimes on railway trains; but that affords no basis for a comparison of car seats and church pews as aids o crime.
It is pretty certan that under ordinary conditions of travel no ill-disposed person would chnose a public car on an American ralway for individual murder or roblery with any reasonable hope of escape, as Lefroy and Muller did in Eng land. It may be equally true that an organized rald upon a train of cars on an English road would be prevented or made unsuccessful by the plan of the cars and the distribution of the passengers. But such a deterrent effect would be much less certain were the train to be run over a long and sparsely setted route, sucb as was taken advantage of by the Missouri train robbers. Such crimes are no more attempted in the neighborhood of our larger centers of rallway communcation then they are on roads leading from London or Liverpool, and it would seem that the surroundings of the roads and the more frequent stations are more influential in pre-
venting train robberies in the East as in England, than any thing in the construction of the cars or the make-up of the train. Given equal time for the work, we are iuclined to think tuat fewer men would be required to capture and go through a train of English cars than one of American cars while the robbers' chance of meeting serious resistance on the latter would be much the greater. But this question of comparative immunity from attack plays a very insignifcant part in determining the choice of large or small com partments, compared with popular customs, popular habits of thought with respect to privacy or promiscuity, the vary ing hazard of undesirable social contacts while traveling, and all that sort of thing. The English have their prejudices as Americans have theirs, and matters of this sort are more apt to be decided by prejudice than by the calculation of infinitesimal risks to life or property.

patekts in turgey and hibrila.

General patent laws have been lately passed and promulgated in Turkey and Liberia, in which countries American citizens may now, for the first time, secure their new inven tions.
The Turkish patent law is substantially a copy of the French and German systems. Any person may take a pa tent on deposit of drawings and specifications. Longes term of the patent fifteen years, annual tax $\$ 18$. The inven tion must be worked within two years from the date of the patent. The penalties for infriugement and the proceedings are the same as in European countries.
In Liberia the patentee must be the inventor, or must have awfully acquired the invention from the inventor. Draw ings and specifications must be furnisbed. The government fee is fifty dollars. The proceedings are much the same as in taking an American patent. The inveution must be worked within three years after the grant of the patent. Those desiring to obtain patents in either of the above countries may obtain further information at this office.

WATERPROOFITE

Witbout considering the processes by which cloth is waterproofed with such substances as India-rubler, oils, wax, and varnishes, there are several processes in practical use by which cloth is rendered non-absorbent of water-and for all practical purposes waterproof-without materially affecting its color or appearance, greatly increasing its weight, or rendering it entirely airproof. These processes depend mainly upou the reaction between two or more substances, in consequence of which a substance insoluble in water is deposited in the fibers of the cloth.

The following are several of these processes

Soften the glue in cold water and dissolve it together with the soap in the water by aid of heat and agitation.
The cloth is flled with this solution by boiling it in the liquid for several hours, the time required depending upon the kind of fiber and thickness of the cloth. When properly saturated the excess of liquid is wrung out and the clotb exposed to the air until nearly dry; \&hen digested for from five to twelve hours in the following solution:

Alum.... 18 ounces. salt \qquad 15	

It is finally wrung out, rinsed in clean water, and dried a a temperature of about $80^{\circ} \mathrm{Fah}$.

- Paut's process requires a small quantity of oil, but in other respects resembles the last. It is given as follows:

Soditum carbonate (com'l). Canastic lime................

23/2 pints.
Boil together, let it stand to settle, then draw off the clea lye, and add to it-

Tallow.
Revin.
1 pound,
previously melted together. Boil and stir occasionally for half an hour, then introduce-

Glue (previously softened)...
and continue the boiling and stirring for another half hour. In waterproofing one-half ounce of this soap is mired with a gallon of hot water, and in this the goods are soaked for about twenty-four hours, according to thickness and charac ter. The pieces are then allowed to drain until partly dried then soaked for six hours or more in a solution prepared as follows:

Shake together, allow to settle, and draw off the clear liquid.

Wring out after rinsing, and dry at a temperature of 80°

 Fab.Bienvaux uses, instead of glue and oil as above, the gelatinous portion of sea-wrack grass with a small quantity of a drying oil and common resin-soda soap.
In Reimann's process the cloth is passed slowly by machinery through a tank divided into three compartments, the first contaning a warm solution of alum, the second a warm solution of lead acetate, and the third pure water, which is constantly renewed. The cloth on passing from the latter is brushed and beaten to remove the salt adhering

o the surface, and finally hot pressed and

In 'Townsend's process two solutions are used as follows:
Britleh gam.
20 pounde.
Soap, white 10 gallone.
The solution is boiled for some minutes, and if color is required one pint of logwood liquor is added. The second solution consists of a saturated solution of alum in water or-

Water.
6 pounds.
9 gallons.
Bullard's process is somewhat similar to Riemann's. In this strong aqueous solutions of sulphate of aluminum an ead acctate are used alternately.
Berlin waterproof cloth is said to be prepared by saturat ing the cloth in a solution of acetate of aluminum and cop per, then dipping it successively in water glass and resin soap.

COTHER-OT-PEARL ARD PEARL ITLAYITG

Mother of-pearl is chiefly obtained from the pearl oyste Meleagrina margaritifera) which is found in the Gulf of California, at Panama, Cubagua, Ceylon, Madagascar, Swan River, Manila, and the Society Islands. The black-lipped shells from Manila are most highly prized. The Society slands furnish the silver-lipped sort, and Panama the "bullock" shells.
The genera Haliotus, turbo, etc., also furnish some mother of-pearl. Technically the mother-of pearl obtained from the pearl oyster is known as white pearl; that of Haliotus or sea ear as aurora or ear shell; it is easily distinguished from the former by its prismatic colors and wrinkled appearance.
The peculiar and varied tints exhibited by mother-of-pear is due to the structure of its surface, which, owing to the great multitude of minute grooves upon it-often many thousands to the inch-decompose the light which falls upon it and reflect different hues.
The pearl shell is lamellar in structure, and admits of being split into laminæ, but this method of dividing it is seldom resorted to owing to the liability of spoiling the shell. In working up mother-of pearl the saw. file, and grindstone are the principal tools employed. A shell is selected with a coating of the substance of a thickness as nearly as possible to suit the required purpise. Square or angular pieces are cut out with a small circular or buck or fret saw to suit con venience, the piece being held and manipulated with the hand or clamped in a vise. Buttons and such circular pieces are cut with an annular or crown saw fixed upon a mandrel. All such tools used in cutting pearl must be kept well moistened with water to prevent over-heating. The pieces are usually dressed upon a grindstone, the edge and face of which are grooved or ridged to prevent clogging. The stone iskept wet when in use; for this purpose weak soapsuds is better than water alone.
When the pieces have been properly shaped on the stone they are dressed with 'pumice stone and water. In some cases the better plan is to have the piece of pumice ston shaped so as to adapt it to the form required and held in a vise while the work, held in a clamp, is revolved in contact with it on the lathe. After the application of the stone fine powdered pumice stone, free from coarse grit, is applied with a cork or cloth moistened with water. In the final polishing rotten-stone is employed. This is moistened with dilute sulphuric acid (1 acid, 15 water) and applied with cork. The acid is said to develop inely the striated structure of the shell. In some works it is thought necessary to use emery before the rotten-stone and to use a limpid oil in place of the acid
Knife and razor handles of pearl, after having been roughed out, are drilled where the rivets are to be inserted, lightly riveted together, shaped on the stone, and finished as above described, the last finishing touch often being done by friction of the hand of the workman.
In some shops much of the polishing is done on cloth covered wheels, the moist cloth carrying the polishing mate rials. Separate wheels are used for the different materials. For some common work powdered chalk or Spanish whiting is used in place of rotten-stone.
Pearl is etched by a process very similar to that used in etching copper. The designs or patterns are drawn upon it with asphaltum varnish, and all parts not intended to be etched having been similarly protected, the piece is submitted to the action of nitric acid. When the parts unprotected have been sufficiently eaten away by the acid the piece is rinsed in cold water and the varnish washed off with a little turpentine or benzine
Thin pieces of mother of pearl of a like pattern are usually gang.cut ; that is, the thin plates are glued together, then held in a clamp and cut, drilled, and dressed as one piece, after which they are separated by being thrown into hot water, which separates the glue.
In common pearl-inlaid work, films or very thin pieces of mother of-pearl are connected to a background, usually of papior máché or iron, by japan varnish. The plate having been cleaned and dried receives a coat of the varnish, and when this is nearly dry the pieces of pearl, cut out with a scissors by the artist. to represent leaves or designs, are pressed against and adbere to the varnish. The plate is then put in the japanner's oven until the coating becomes hard. A second coating of varnish is then put on-indiscriminately over the pearl and all-and when this has been dried or hardened in the uven the portions adbering to the pearl pleces is removed
with a knife blade, and the whole surface is rubbed smonth with pumice stone and water. With the aid of a little gold ize, gold leaf, and color, and camel's-hair brush the artist then develops the design, the beauty of which depends of course upon his skill. Finally the article receives a coal of clear spirit varnish.
Besides the white and aurora shell referred to above, the glistening green snail shell is very frequently used. Its tints are light and dark green, yellow, and pink, blended. The varnished surface is sometimes ornamented with transferred drawings or engravings. When the varnish is nearly dry he engraving is spread out face downward upon it and care ully pressed so as to exclude air bubbles. After the varnish is thoroughly dry the paper is well moistened with warm water by means of a sponge. It may then be rubbed off, the lines of the print remaining adhering to the varnisb.

THE PARTS ELECTRICAL EEHIBITIOM.

Among the promised novelties connected with the exhibi tion will be a boat propelled by electricity. For this purpose there will be a water basin fifty feet in diameter, in which the boat will be kept moving. In the center of the basin, on a pedestal, will be a brilliant electric light. At vari ous points within the palace models of statues will be placed as supports for electric lights. Each exhibitor of lights is also to have a saloon set apart for the special show of his system.
The passenger station of theelectric railway will be within he exhibition building, and the track will run on the ground not elevated as at first intended.
During the exhibition there will be a congress of electri cians, of which sixty-five French members have been appointed by the President of the Republic. The congress will publish an official report, and only members will be allowed to be present.

Another Comet Dlecovered

Mr. J. M. Schaeberle, of Ann Arbor, Mich., dis covered, July 18, a new comet, the third of 1881. In the relescope it showed a bright center and a clear though fain tail. It appeared in the northeast, in the constellation $\mathbf{A u}$ riga, not far from the point of appearance of the comet now passing out of sight. The new comet is rapidly increasing in brightuess, and will continue to do so until about the 21st of August, when it promises to be quite conspicuous, cer ainly as a telescopic object. It will be nearest the earth bout August 20, a day or two after its perihelion passage when it will be about $40,000,000$ miles away. So far "the orbit presents no special resemblance to that of any known comet," the Harvard astronomers say, though Professor stone, of Cincinnati, thinks he findsin it a close resemblance to that of the great comet of 1887 . It seems to be moving in a northerly direction:

A Baltimore dispatch informs us that a carload of antl mony, ten tons in all, was on the 14th of July received by C. L. Oudesluys \& Co., from the southern part of Utah Terriory being the first antimony received in the East from the mines of that section. The antimony was mined about 140 miles from Salt Lake City. The ore is a sulphide, bluish gray in color, and yields from 60 to 65 per cent of antimony. All antimony heretofore came from Great Britain and the island of Borneo, and paid an import duty of 10 per cent ad valorem, and there is also some from Sonora $1 t$ is believed that with proper rail facilities to the mines of the West there will be no need of importatious.

Underground Telegraph Line in New York.

The United States Underground Telegraph Company has laid an experimental series of seventy-two wires, extending from the headquarters of the Fire Department, in Mercer treet, to Police Headquarters in Mulberry street. The wires are laid in long wooden boxes covered with a preparation of silica and other substances designed to exclude dampness and secure perfect insulation. It is said that if the present experiment is successful the system will be extended so as to include the police stations, engine-houses, and firealarm boxes.

Fired by Blectricily.

An interesting illustration of the danger attending the manufacture of some kinds of rubber goods was shown in the origin of the recent fire which occurred in the Etna Rubber Mills, at Jamaica Plains. The cement which fastens the seams of rubber coats is largely made of naphtba. The mere act of lifting a piece of rubber cloth from a pile of half-a-dozen similar ones, cut for garments, developed so much electricity that a spark was observed to eacape. It came in contact witls the naphtha cement, or with gases arising from it, and instantly the whole ronm was in a blaze. Fortunately the fire was extinguished without destroying the mill, the loss being only about a thousand dollars.
It is not known that anything can be done to prevent the occurrence of another accident of precisely the same kind. whenever all the atmospheric conditions are favorable. One would suppose, however, that a certain degree of dampness would remove all danger from that source.-Commercial Bulletin.
M. Bouchut's experiments with pepsine for destroying worms in the stomach and bowels have been continued with extremely promising results. Even the tape worm succumbs to the digestive action of pepsine in large doses, while the more higbly organized tissues of the stomach are unaffected.

Educated Mechanics.
We have received the twelfth annual and thirteenth statis tical report of the Cincinnati Board of Trade and Transport ation for 1881, which is a nicely printed pampllet of two hundred pages.
From Article II. of its constitution it appears that the object of this association is to collect and record such local and general statistical information relating to manufactures and commerce as may promote the manufacturing, com. mercial, and financial welfare of their city, and especially to protect, foster, and develop its manufacturing and other industrial interests.
After commenting on the success, financially and otherwise, of the Eighth Cincinnati Industrial Exposition, the directors, in their report. hint at the establishment of a school of technology, which their position as a manufacturing community makes peculiarly important. They say:
" We need educated mechanics; aud no mechanic is master of his business without the technical training such schools alone can give. The Exposition Buildings furnish ample room and accommodations for such an enterprise, the Mechanics' Institute School is a good nucleus to start on, the Department of Arts and Sciences of the same institution is a step in advance to the end desired, and this year the exposition should be made the means of enlisting a public co-operation which would provide fo: Cincinnati jus such a school as is needed."

gPEAKING TUBE ANNUNCIATOR.

The engraving shows a novel speaking tube annunciator, in clevation and in section. The tube, A, enters the box

gPEAKING TUBE ANNUNCIATOR.
B, and terminates behind the hinged drop, C. Tbere may be several tubes and as many drops. Below the drop or series of drops there is a rocker, D , whose arms extend into the box, and are connected by a cord, E, with the trigge of the bell at the top of the box.
When a person in a distant portion of a building wishes to communicate with another who is within hearing distance of the bell be blows in the speaking tube, and the air current thus created being directed against the drop, C , at the othe end of such tube, causes it to fall upon the outer bar of the rocker, D. The drop being constructed of a thick metal plate, and therefore heary, tilts the rocker, as shown in dotted lines, so that it pulls on the cord, E, which, in turn, tilts the lever that raises the hammer, which is instantly released and allowed to fall upon the bell, which gives the required notice. The person thus called will, after respond ing to the meseage, close or replace the weighted drop in its upright position, and thus relieve the rocker, which, being released, returns automatically to its former position, and released, returns automatic
This invention was recently patented by Mr. W. R. Ostrander, of New York city.

MOLES-HOW THEY AID $\triangle G R I C U L T U R E-H O W$ THEY CAN BECOME A FUISANCE-HOW THEY MAY BE

 DESTROYEDThe common ground mole or " meadow mole," as this little animal is often called, is of interest from a zoological point of view, but in this article it is proposed to deal only with the practical side of the subject in its relations to agriculture and horticulture.
The mole is both useful and hurtful. When his services more than counterbalance the injury he commits he should be left unmolested. On the other hand, when he becomes, as he often does, an intolerable nuisance, he may be more or less successfully dealt with in the manner we will proceed to describe.
It is very annoying to see a handsome lawn covered with unsightly ridges plowed by the noses and paws of these little depredators; but the knowledge that they are the natural enemies of the numerous worms and grubs that sometimes make fearful war upon the tender roots of growing young crops, renders it often difficult to decide whether the moles are to be welcomed as allies or combated with such means as are available.
The mole is a purely carnivorous animal, and never does
any damage to plant life except in pursuit of his prey. He the mole track, the prong head, D, meantime being held in may break and disturb the tender roots of young plants, its present position by the ring at the top of the upright but he does not devour them, and he is often wrongly square bar, F. Now let it slip from the band. The force blamed for injury which has been committed by the insect depredators he has caught and devoured.
The field mouse, on the contrary, does devour tender suc culent roots, and the mole is too often charged with the damage thus sustained by farmers, in addition to that really due to his burrowings.

Experiments performed in France to determine the use fulness of moles as insecticides show that the number of grubs, ctc., destroyed by them is enormous. A single mole, in one instance, devoured 432 maggots and 250 grubs in four days. Another ate 872 maggots and 540 grubs in twelve days.

Prof. Weber, a distinguished naturalist of Zurich, Switzer land, performed some interesting experiments with moles to prove their carnivorous character and their destructivenes to larve. In the stomachs of fifteen moles captured in dif ferent localities, not the slightest trace of vegetable matter could be found. He shut up two moles in a box in which fresh grass was growing, and also inclosed in the same box a case of grubs and earthworms. The moles devoured 341 white worms or grubs, 193 earth worms, 25 caterpillars, and a mouse-bones, skin, and all-in nine days. He next gave them raw ment cut in small pieces, and mixed with chopped vegetables. The moles ate the meat but did not touch the vegetables; and when vegetables alone were given them the animals soon died of starvation. It has been computed that a single mole may destroy 20,000 grubs in a single year.
a single mole may destroy 20,000 grubs in a single year.
Ir the face of these experiments it is positively asser
In the face of these experiments it is positively asserter
by some that moles will eat wheat grains with avidity, and that poisoned wheat introduced into their burrows through holes punched with a stick is sure death to them. We have tried the latter without impairing the health of the moles, and we have more faith in mole traps, in the use of which we have had considerable experience and with varying results.
We give herewith engravings illustrating two implements of destruction, both quite simple, either of which will be found practically useful.
The simplest form of trap, and one that will prove effectual if skillfully employed, is the jar mole trap shown in Fig. 1. A glass or stoneware jar is sunk into the ground under the runs, as indicated in the engraving. The moles, while running along, fall into the jar, and the vertical slip

Fig. 2.
pery sides of the jar prevent their getting out again. Field mice are also frequently caught in these traps, which leads to the suspicion that they are the authors of much of the mischief attributed to moles, whose burrows form convenient venues for the intruders.
Another effective mole trap was described and illustrated in the Rural New Yorker some time ago, and not unlike one illustrated in these columns a few numbers back. It is hown in Fig. 2 and is thus described by our contemporary The spikes, A, three-quarters of an inch wide and tapering somewhat at the end, are pressed into the ground beside the mole track as far as possible, so that the trigger, B, which is not yet attached to the lever, C, rests upon the surface of
of the spring, E, will drive the prongs, D, into the ground, perhaps half way. Press them entirely down with the foot, and raise and lower them several times so as to give firmpess to the earth and a free passage to the prongs. Then raise up the prong bead to its present position, and place the lever, C, in one of the notches of the trigger, B, according as the other end of the latter is more or less depressed. Now the mole cannot again pass through this track without so pressing upon the earth as to move the trigger, at B, which releases , the lever, \mathbf{C}, and permits the spring. E, to act, sending the prong head into its place with great force, securely pinning (generally killing) the mole.
There are a number of other traps more or less effective, but the two represented in our illustrations exhibit the two diverse ways for catching moles, other appliances in use being simply modifications of the plans represented.

NEW BAFETY PULLEY.

The engraving represents an improved safety pulley applicable to cotton gius and other machinery. when it is desirable to be able to quickly arrest the motion of the machinery in case of accident. The device is very simple and not liable to accidental derangement. Fig. 1 in the engraving is a plan view of the device, and Fig. 2 shows the principal parts.
The pulley is loose on the shafi, and has attached to one end a slotted plate, A, near which the collar, B, is secured on the shaft. A collar, C, carries three pins, which fil corre-

MOCORD'S SAFETY PULLEY.

sponding holes in the collar, B, and engage the slotted collar, A, attached to the end of the pulley. The pins projecting from collar, C, are kept into engagement with the collar, A, by a spiral spring surroanding the sbaft and pressing against the collar, C. The latter is provided with a grooved boss, which receives a forked arm attached to the lever, \mathbf{E}, and the lever, E , is connected with a foot lever, \mathbf{D}, so that when either lever is moved the pulley will be instantly disengaged from all connection with the shaft by the withdrawal of the pins from the slotted plate in the end of the pulley.
This device may be made double so that it may be made to shift from one pulley to another, and so reverse the machinery with which it is connected. It may be applied in this way to hoisting machines.
Further information in regard to this invention may be obtained by addressing Messrs. C. C. P. McCord and C. D. Churchell, of Hazel Grove, Independence County, Ark.

Conductory Priutlog once

It appears that German railway conductors are made happy by the addition to their equipment of a paper mill and printing office, the invention of a Berlin engineer, to be hung around the neck, which, according to an exchange, is to completely manufacture passenger tickets before the eyes of the wondering public. The apparatus is said to be somewhat complicated in construction, but its manipulation is as simple as its working is correct, for, should the operator not proceed in the way required by the mechanism, it will not print all the figures and words wanted, but the word "Falsch" (wrong) in the place where the fault was com"Falsch" (wrong) in the place where the fault was com-
mitted. At the same time this portable printer checks the mitted. At the same time this portable printer checks the
number of tickets issued, so that any given moment the money in the hands of the conductor can be compared with the value of the tickets printed and taken.

Nervoun Readacho.

Dr. Ehhlschlăger, of Danzig, says, in Augemeine Medicinische Central Zeitung, that he has found salicylate of sodium to be a remedy of great value in the treatment of nervous headache, especially if given in a dose of one gramme (gr. xv.) in the beginning of an attack. It usually produces drowsiness, and after a few hours the patient wakes up refreshed and free from paill. It, however, often fails to | produce this effect in cases dependent on anæmia.

the antegedente of the aenl telephone.

 sy avo M. horkins.Should the recent decision of the U. S. Circuit Court, at Boston, in reference to the Bell telephone patent, be sus tained by the higber court, it will prove calamitous not onl to inventors who have succeeded Bell in telephonic inven tions, but to the public at large, who will be at the mercy of a powerful monopoly, so far as telephonic communication is concerned. Already the workings of this power are beginning to manifest themselves in increased and appareutly exorbitant rents, with no corresponding increase in the effciency of the instrument or in the perfection of the ser vice.
This being the condition of things. it behooves telepbone inventors and telephone users to inquire as to the scope of Bell's patent, and to acquire a knowledge of the status of the art of telephony prior to the invention of Bell.
Should it be found that articulate speech had been transmitted from one point to nuother by means of electricity before Bell thought of the telepbone, or should it be proved that instruments as old as the telegraph, without any alterations or additions whatever, could be made to transmit and receive articulate speech through the agency of electricity, then it might be very properly questioned whether the broad claim for the "new art of transmitting speech by electricity" could be sustained, even though Bell's results were secured by improved devices.
In regard to the early transmission of speech, it is certain that Reis, in 1861, transmitted vocal sounds by means of electricity, and it is authoritatively stated that be transmitted words.* It is certain that Reis's instrument can be used to transmit articulate speech; but now this instrument is claimed to be crude and imperfect. The ordinary Western Union telegraph key and sounder, as elements of a telephonic system, are even more crude and imperfect, and yet with a common telegraph key, used as a transmitter, I have transmitted articulate speech, which has been received by means of a common telegraph sounder, and this withoul modifying either key or sounder in the least. It is simply a matter of adjustment. Now, could a broad claim for talk ing to a telegraph key and listening to a telegraph sounder be sustained? Can a broad claim for a "nero art of transmitting speech by electricity," by old and well known instru weutalities, be sustained, when the new results are secured by mechanical skill, exercised in adjustment merely?
Clearly, if Reis transmitted vocal sounds, or signals, or words, and if Bell has done the same thing through the agency of the same force, but in a more perfect manner, it should signify nothing, since degrees of perfection are not patentable. As a writer of this journal very aptly said a short time since: "If Reis's instrument was crude and mperfect, the same may be said of Bell's, for when it is constructed and operated according to his patent, and used independently of subsequent inventions, it proves inade quate for commercial purposes under the usual conditions of use." The original principle of the Bell telephone has really been replaced by Reis's inveution, as will presently appear. That is, the Bell telephone has reached its present usefulness and popularity through the adoption of the Blake or some other form of transmitter substantially like the original Reis transmitter.
It is claimed by the advocates of the Bell system of tele phong that the lack of effliciency in the Reis transmitter was due to the fact that intermittent currents of electricity were employed instead of an "undulatory" current, which Bell holds as essential; but it can be proved that in all contact telephone instruments the current is intermittent, and this is especially noticeable in the class having small contact surfaces like the Blake and Reis instruments.

* Bo:ttoer's Notizbatt, No. 15 ; Dingler's Podytechnic Journal, vol. 100

599. 1803.

If the language of the learned judge who rendered the decision above referred to is applicable to Bell's invention, it should also apply to that of Morse or Reis. The judge says: " There is some evidence that Bell's experiments with he instrument described in Fig. 7, before he took out his patent, were not entirely euccessful; but this is now immate. rial; fir it is prooed that the instrument will do the wort whether the inventor knevo it or not, and in the mode pointed out by the specification."
It is equally just to say that the telegraph key and sounder are operative for the transmission of speech, " and that it is immaterinl whether Morse and other telegraph inventors knew it or not, "for it is proved that the instrument will do the work," and us the invention of the telegraph now belongs to the public, every function of the telegraph instrument belongs to the public also.
It is even more just to say the same of Reis's invention. it makes no difference whether Reis knew it or not (but he did know it), the transmission of articulate speech by means of his instrument is an undeuiable fact.
From the foregoing it will be seen that it is at least questionable whether any one is now entitled to a broad claim or transmitting speech by electricity.
Many of the claims of Bell as to the particular method and means employed by him for the transmission of telegraphic and otber signals are manifestly too broad and cover some of the oldest iuventions in telegraphy.

For example, the first and second claims in his patent of March 7, 18i6, read thus
"1. A system of telegraphy in which the receiver is set in vibration by the employment of undulatory currents of electricity.
2. The combination of a permanent magnet or other body capable of inductive action with a closed circuit," etc. These claims are anticipated by the invention of Oersted in 1820 (Fig. 2). His apparatus consisted of a compound bar-magnet H mounted in a standard, I and surrounded near its upper end with a coil, J. This coil was in a ciosed circuit with a distant coil, \mathbf{K}, containing a vibratory mag netic needle. By moving the coil, J, up and down on the metic needle. By moving the coil, J, up and down on the
magnet, H , undulatory" currents were produced, which vibrated the needle, giving intelligible telegraphic signals. The more recent magneto-induction key of Siemens and Halske (Fig. 8) operates in substantially the same way.

> Fig. 8.-Siemens and Halske's Magneto-Induction Key.

Between the poles of the magnet, L, is placed a Siemens armature, M, which, being vibrated by means of the lever, produces "undulatory" currents in the circuit in which it is included. This system notedates Bell's.

The first Bell telephone is shown in Fig. 4. The armaure c is fastened loosely by one extremity to the uncovered eg of the electro-magnet b, and its other extremity is attached

to the center of a stretched membrane a. When a sound is uttered in the larger cone A the membrane attached to it is set in vibration, and the armature connected with the membrane is forced to partake of the motion, and thus electrical undulations are created upon the circuit which influences the electro-magnet f at the opposite end of the line so that the motions of the armature h and membrane t are the same as in the same members of the transmitting instrument.
Fig. 5 represents the later Bell telephone. The form is

Fig. B.-Bell's Later Telephone.
simplifled, but the principle upon which it operates is the same as that of the first instrument.
It will be observed that the transmitter and receiver are alike, that the instruments are upon a continuously closed circuil, and it seems to be questionable whether Bell's invention covers more than this specific arrangement.
But this arrangement is not the one so largely employed at present by our telephone exchanges. The instruments used at opposite ends of the telephone wires are incapable of being used interchangeably as transmitter and receiver. In the present system of telephony an instrument similar to that shown in Figs. 4 and 5 is used as a receiver, but employed in this way it is difficult to see how it differs materially from Reis's receiver, invented, used, and published twenty years ago.
The Reis receiver, shown in Fig. 6, is familiar to all

students of telephony, but the lack of patentable difference between it and the Bell instrument may not be apparent at first. In this instrument there are all of the essential elements of the Bell telephone-the magnet, the sounding board or diaphragm, and the armature, "capable of inductive action "-and while it can be used in its original form, as ghown in Fig. 6, it may be simplifled, whereupon the identical character of the instruments of Bell and Reis will at once appear.
The original Reis instrument 'Fig. 6 ' consisted of an electro-

Fig 1.-ORDINARY TRLEGRAPH KEY AND SOUNDER RMPLOYED IN THE TRANSIISSION OF ARTICULATE SPRECH.
magnet, A, mounted on a sounding board or diaphragm, B, and was provided with an armature, C, sustained by an arm, D, attached to the diaphragm. By dispensing with the adjusting screws and spring support of the armature (cutting them off on the dotted line in Fig. 6), and by attaching the armature directly to the angled arm, D, as in Fig. 7, an ope

Fig. 7.

rative instrument is formed, which, although \cdot simpler than the original instrument, possesses no patentable features.
By straightening the angled arm, D, so that the diaphragm may be placed directly in front of the poles of the nagnet as in Fig. 8, the form of the instrument is further changed

Fig. 8.
but it is substantially the same as the original. Leaving out the arm, D, and attaching the armature, C, directly to the diaphragm, B , is not an invention, and the instrument is still the Reis receiver.

Fig. 9.

Flg. 10.
Suppose the armature, C, to be Rattened or rolled out so as to be capable of replacing the diaphragm, B, the instru ment would then appear with but two of the original elements (Fig 10). viz. : the magnet, \mathbf{A}, and the armature-dia phragm, C: it is still essentially the Reis receiver. Is it supposable that a valid patent can be obtained by omitting a few non-essential elements from the original instrument?
Reis's receiver was used in connection with a transmitter of his own invertion, which was totally differeut from his receiver. The transmitter (Fig. 11) consisted of a box pro

vided with a mouthpiece, and covered by a membrane, E, carrying a platinum contact surface, F, which is touchen lightly by a platinum point carried by the arm. G, one end of the latter resting in the mercury cup to make a perfect yet frictionless electrical connection. The platinum, F, and arm, G, are in the circuit with the battery and receiver, and the interruptions of the current take place between the platinum point on the arm, G, and the platinum, F, carried by
the diaphragm. the diaphragm.
Fig. 12 shows the essential members of the Blake trans

Fig. 12.-Blake Transmitter.

mitter, which is now used almost exclusively. It is hardly necessary to point out the similarity between this instrument and the one just described. The diaphragm, $\mathrm{E}^{\mathbf{}}$, platinum contact, F^{\prime}, and spring arm, G^{\prime}, are substantially the same as the elements E, F, and G of the Reis instrument the only difference being the substitution of a piece of car-
bon in the end of the arm, G^{\prime}, for the platinum in the end of the arm, G.
From what bas been said it will be seen that the system of telephonic communication in use to-day is more Reis's than Bell's.
As Agricultural and Industrial Exhibition is to open on the 14th of September, 1881, at the exbibition grounds, Mile End, Montreal. The prize list fills a pamphlet of 200 pages Twenty-five thousand dollars in prizes are to be distributed

LIEBIGS EXTRACT OF MRAT.

Baron von.Liebig, Germany's great chemist, ascertained that the soluble constituents of 84 pounds of pure muscle meat (equal to 45 pounds of ordinary meat as it is received from the butcher) may be concentrated by boiling to 1 pound of extract, sufficient for the preparation of 190 parts of bouillon. With his koen perception be foresaw that the manufacture of this extract might become a great industry. He conceived the idea that the transmarine countries rich in cattle might become tributary to the necessities of Europe.
In the year 1850, at the beginning of the manufacture, the Royal Apothecary at Munich consumed scarcely one hun dredweight annually, that is, one-tenth part of an ox, and Liebig himself did not imagine that in a score of years the number of catcle falling victims to this industry would num ber millions. This statement will not appear exaggerated when it is considered that in the summer season there are led daily to the slaughtering bench from one thousand to tweive hundred oxen.
The manufactory of Liebig's Extract of Meat Company lies on the eastern (left) shore of the Uruguay River in that state, and is as important to Fray Bentos as Krupp's great steel manufactory is to Essen.
Proceeding systematically, we should consider first the immense pasturing lands upon which the cattle peacefully graze. These cattle are children of the Pampas, descendant of the European cattle introduced by the Spanish conquerors. The large level pastures were especially suited to them, and here they increased greatly and now rove in innumerable berds.
For the manufacture of the extract the best pieces of meat are selected, for the simple reason that these pieces are the driven proftable for the extract. When the animals ars driven in from the Pampas to Fray Bentos they are kept for a week upon the pasturing places mentioned, where they are
permitted to rest and feed. Then they are driven to the corpermitted to rest and feed. Then they are driven to the cor-
rals, great inclosures capable of containing five thousand oxen; from bere men mounted on horseback, swinging their lassos, drive the cattle by degrees into other smaller corrals, until finally the way is so narrow that the animals can only proceed one behiud the other. A man stands at the side upon a staging with a short knife. With unerring certainty he strikes the animal close behind the horns into the spinal marrow. As if struck by lightning the animal falls dead upon a platform which rests upon wheels. The body rolls upon a track to the slaughter house, where with almost incredible celerity it is skinned and cut in pieces by skilled and practiced men. In less than seven minutes a whole ox is
cut up. In the slaughtering season over five hundred men are employed, powerful fellows, who are very good hearted and harmless characters in spite of their bloody occupation, and notwithstanding the fact that their nourishment consists almost exclusively of mest. The dexterity with which they handle the knife excites astonishment. The meat is separated from the bones, as if the knife were guided through soft butter. One hundred and fifty to two hundred oxen can b handled in this way per hour.
The greatest cleanliness prevails. A plentiful supply of water is obtained from the river for washing. The slaughter house is roofed with iron and glass, and a railway co
it with the principal buildings of the establishment.
it with the principal buildings of the estabions ways from the
The material is conveyed in various slaughter house. The bides are salted, the horns stored, and the tongues are cooked and preserved in tin cans. The best pieces, as free from fat as possible, are used for the manufacture of the extract, while the inferior pieces are made into tasajo (meat salted and then dried in the air), which is a favorite article of food for the black population of Brazil and the West Indies. The fatty parts furnish material for the large tallow buying houses. The refuse and offal are dried and made into fertilizers.
The meat for the manufacture of the concentrated extract is freed from fat and gelatine, and passes through the fol lowing processes:
First it passes
First it passes through four cutting machines, which discharge it into nine large wrought iron tubs, each one holding five thousand kilogrammes. In these the meat with an
equal weight of water is heated to boiling. Then the liquid equal weight of water is heated to boiling. Then the liquid
passes through pipes into an apnaratus invented by Prof. Max Pettenkofer, where it is clarified and separated from the fatty part. Air pumps carry the remsining fluid mass into two reservoirs placed seven meters higher, from which it passes into the evaporating apparatus after it has gone it passes into the evaporating apparat
through several straining processes.

The evaporating is effected in five large reservoirs, each having a hundred disks of the same material, which revolve in the liquid; then the extract remains quiet in otber reservoirs until the next morning, when it is placed in two cast iron kettles surrounded by hot water jackets, each containing 10,000 liters of the extract, where it is reduced to a uniform mass. Then samples are taken which are subjected
to the careful tests of the chemist of the establishment. If these turn out to be perfectly satisfactory as to purity, aroma, and consistency, the extract is packed in tin chests, each containing one hundred pounds, and sent to Europe. Packing the extract in small stone jars for the retail trade is done at the general depot in Antwero.
The cooked meat remaining in the kettle is dried in the air, and with the addition of a few nutritive salts, and afterward being ground, is manufactured into the so-called meat food meal.
Connected with the establishment are tin, locksmith, and
joiner shops, a foundry, pump works, steam craves, etc. Joiner shops, a foundry, pump works, steam craves, etc.
The company import coal from England at a great cost, from 7,000 to 8,000 tons being consumed yearly.
Four thoussind tons of salt are consumed yearly for salting he hides and tasajo.
The cattle slaughtered for the extract are at least four years old, as younger animals will not supply a strong extract.
It is unnecessary to speak of the great value and extensive use of the extract, as it is everywhere acknowledged to be a standard article.

ENGITEERITAG ITVERTIONT.

An improved car axle box has been patented by Mr. William H. Taylor, of Richmond, Va. The object of this invenlion is to prevent journals of car axles from heating, and thus avoid the risk of danger and injury resulting from bot boxes on railroad trains. For this purpose the inventor provides for retaining water in contact with the box on one or more sides to dissipate the heat arising from friction.
An improved elevated railway has been patented by Mr An improved elevated railway has been patented by Mr.
John G. Curtis, of Ludlow, Pa. The invention is more particularly intended for use inside of a building, to convey goods from one purt of the building to another, and it may also be used for conveying goods from one building to another, or from place to place in a tannery or other extensive establishments. It consists in a novel construction, arrangement, and combination of an elevated rail or track, a two-wheeled truck, and a car or platform suspended from the truck.
Messrs. James F. Guild, of Dundee, County of Forfar, Scotland, and Arthur E. Knights, of New York city, have patented an improved steam steering apparatus. The objects of this invention are to move a vessel's rudder easily, quickly and with perfect regularity, to have it completely under control and almost silent in its action, thus in a great measure overcoming objections to the usual steam steering apparatus, especially on passenger steamers; also to provide for steer ing vessels either by hand or power; to provide for the relief of the operative mechanism from the injurious effects of shocks by strokes of waves against the rudder, and to reduce the power usually required in apparatus of this character. Messrs. John H. Reynolds, of Emerson, Iowa, Elisha P Reynolds, of Rock Island, Ill., and Ben Reynolds, of La Mine, Mo., have patented an improved self-dumping trap Mine, Mo., have patented an improved self-dumping trap
which automatically discharges its Ioad of earth or other which automatically discharges its load of earth or other
material into any receptacle below its dumping platforms on the release of griping irons by the operation of a convebiently placed hand lever. The invention consists in sup. porting one or more pivoted dumping platforms, in an elevated framework, said framework supporting the upper end of "ramps" or inclined approaches thereto, whereon eams drawing loaded vehicles may ascend to the platforms to deposit their load of earth or other material thereon and descend therefrom.
An improved baling press has been patented by John Brown, of Memphis, Tenn. The object of this invention is to improve the construction of the baling presses for which etters patent No. 220,216 were granted to the same inventor October 7, 1879, to adapt them to be operated by steam power, and to make them more convenient in use.

The Preaidential Cold Air Machine.

The apparatus which proved most satisfactory in cooling he chamber of the wounded President was furnished by a Mr. Jennings, of Baltimore. It was devised for use in a new process of refining lard. According to the inventor's description the apparatus cousists of a cast iron cbamber, about ten feet long and three wide and three high, filled with vertical iron frames covered with cotton terry or Turkish toweling. These screens are placed half an inch apart, and represent some three thousand feet of cooling sur face. Immediately over these vertical screens is placed a coil of inch iron pipe, the lower side of which is flled with fine perforations. Into a galvanized iron tank, holding 100 gallons of water, is put finely granulated or shaved ice (and salt when a low temperature is required). This water is sprayed upon the sheets in the lower tank constantly. In each end of the iron chamber are openings thirteen inches square. To the outer end of this chamber is a pipe connecting with an outdoor air conductor. To the opposite end is connected a similar pipe leading into an ice chamber at its top, and from the bottom of the same a pipe leads to a small exhaust fan, and from the fan the now cold and dry air is exhaust fan, and from the fan the now cold and dry air is
forced direct into the President's room through a flue some wenty feet, it length. Air at 99 degrees temperature to day is supplied at the rate of 22,000 cubic feet per hour at the register in the Prevident's room at 54 degrees, and with the windows and doors open the temperature at the President's bed (twen-ty-five feet away) is maintained steadily at 75 degrees day and night. When the cold air machine was introduced it was intended to keep the windows and doors closed, and under these conditions the machine would create and maintain a temperature of $\mathbf{6 0}$ degrees in the hottest weather with. out using the auxiliary ice-air chamber now used, which was the suggestion of Professor Newcomb and Major Powell, to neet the requirements of cooling the room with the doors and windows open. The closing of them gave the room an air of gloom. An extra ice chamber fan and engine has been put up in a room opening into the hall near the first apparatus, to be used in case of accident and to cool the corridors of rooms adjoining the President's,

gTEAI BOILRR HOTES.

The reports of the chief engineers of the English boiler insurance companies of Mancbester have been published
and contain much useful information for steam users. Mr. and contain much useful information for steam users. Mr
McDougall, of the Boiler Insurance and Steam Power Com pany, claims to have made 13,071 thorough internal exami nations and hydraulic tests, and to have had not one explosion and but one serious collapse among the 20,000 boilers in his care. The passage of the Employers' Liability Act, be thinks, will greatly extend the operations of boiler insur ance companies, and should tend to effect a great improvement. Mr. Lavington E. Fletcher, chief engineer of the Manchester Steam Users' Association, in his monthly report, states that 971 boilers were examined from May 28 to port, states that 971 boilers were examined from May 28 to
June 24 , of which 467 were thorough annual inspections.
une 2A, of which 467 were thorough annual inspections.
The discussion of the subject of flat cast iron boiler heads is still going on in Philadelphia, and the interest seems to increase. The Iron Age, possibly speaking by authority, repeats the assertion that "' the Hartford Company bave instructed their agents in Philadelphia not to approve boilers with flat cast iron heads with a greater diameter than 36 inches;" but says, " the company do not wish this action to be construed as indicating a desire not to accommodate manufacturers; but in view of the recent verdict of the coroner's jury, in the case of the explosion at the dye works of Gaffney \& Dolan, they do not care to continue writing on this class of boilers.'
Since the experimental bursting of a duplicate of the Gaffiney boiler bead by the makers, Sidebotham \& Powell, on the 13th of July, as suggested in our "Notes " of July 2, to the jury, and illustrated in the Scientific Americal of July 30, the inspectors of Philadelphia seem to have plucked up courage, especially the city inspector, Mr. Overn, who has been prompted by a lawyer, the city solicitor, to stand on bis dignity as a mechanical expert, and he accordingly appears, by the Ledger, to say that he regarded the lest as a satisfactory test as to the strength of cast iron in be ends of the boiler." The cast iron beld good up to 450 pounds, and under this showing he (Overn) would have oo hesitation in giving a boiler, with the same quality of cast iron, a pressure of 80 pounds to the square incb.
It is due to this gentleman to say that this is perfectly in accordance with his faith before the Gaffiney explosion, but a misinterpretation of the cause of that accident by some experts shook his faith in his own judgment.
Bome instances of apparent hardship to owners of steam boilers since the flat head controvery began are given in the Philadelphia Record of the 16th of July. The lumber mills of Van Horn \& Son, at Whitehall, have been closed since the 11 th inst., and are likely to remain so, waiting a city inspector's certificate. The machinery of this firm had been running night and day to fll orders, and the loss, besides the cost of new boilers, is represented as being heavy Cause, 30 inch flat cast iron heads in their 42 foot boilers Borie \& Mackay, Frankford, have received similar treat ment from one set of inspectors, while the other passed them so they could continue work, A large number of other boilers have lately been refused certificales, and when this is done by the city inspector they must stop. Messrs. Garsed \& Co., large manufacturers of cotton yarns, in Frankford, were compelled to throw out four boilers 80 feet long, while 40 feet of the furnace end of them that were removed fourteen years ago are said to be running now under inspection. It may be urged by the inspector that these 80 -foot boilers are dangerously long, but they bave an exceptionally good arrangement of supports, which has served for over thirty years to prevent undue strains from sagging. They rest at the ends upon solid supports. Two sets of four volute steel car springs are placed upon heary arched girders, at 8 S , that span the boiler settings at such intervals as to make even and elastic supports, thereby preventing undue strains on the lower side of the boiler from slender proportions.
These four boilers were built by Brooks and Stanhope, in 1850, John Powell (now of Sidebotham \& Powell) foreman, and for many years after they were put to work the engineer ased leaden gaskets for the man-hole joints, and he had a habit of adjusting his plate and gasket when closing the boilers and screwing up pretty hard. But if the joint was not tight after raising steam, he was accustomed to beat the head with a heavy sledge near the gasket seat, to settle the uneven plate upon the lead and make it steam-tight. The marks of this violence are still plainly seen on the castings, which are about the same thickness and style as the Gaffiney boiler heads.
The Ledger also credits Mr. Overn with the remark "tbat he was inclined to believe. from what be bad recently observed, that eventually the city would have the entire
work of inspection, for he thought the Hartford people would drop the inspection department of their business and confine themselves solely to insurance, relying on the city's inspection."
It naturally occurs to lookers on who feel an interest in the subject to inquire why the verdict of an unfriendly jury should make a breach between an insurance company who have heretofore been not only willing but desirous of insuring, and the friendly manufacturers who were willing and desirous of having them insure boilers that have dur ing their experience proved as safe as any of that type The Philadelphia Record, in commenting on the flat head muddle and its effect on the manufacturing interests since the Gaffney explosion, says: "Nearly two thirds of the boilers in use in the suburbs have flat cast iron heads, and
the owners are in daily fear that an edict will be promulgated which will put a temporary stop to their operations.' We learn that a boiler explosion took place about the $19 t \mathrm{th}$ of July, 1881, at Watertown, near Maricta, Ohio. The boiler of a saw mill was blown to atoms. Hiram Brockway and Eugene Barclay were instantly killed. Three others, Isaac Johoson, Robert Alexander, and William.Conner were fatally injured. Johnson has since died.
The June number of the Hartford Steam Boiler Insurance Company's circular contains the inspector's report for April, 1881, by which it appears that 8,980 boilers were viewed, of which 1.583 were inspected internally and externally, and 528 dangerous defects were found; notable among them were 23 safety valves in dangerous condition, and 74 boilers without steam gauges. $\mathbf{3 9}$ boilers were condemned in April There is also notice of 8 explosions in May, and one illustrate explosion that occurred in 1877, in Brooklyn,. N. Y.

MIBCELLANEOUS ITVETTIONS.

Mr. William A. Thompson, of Brooklyn, N. Y., bas patented an improved fire escape, which consists of a cradle formed of curved side bars connected by cross bars and proto a rod attached to the window casing below the sill, and having a ladder attached to its free end and provided with means whereby the fire escape can be extended from the window when required for use, and folded down inside the window when not required for use.
An improved baling press bas been patented by Mr. Nel on Arave, of Hooper, Utah Ter. The object of this invention is to press hay and other materials in successive bales by the continuous forward movement of the driving me hanism.
Heretofore alloys, in which lead forms a component part have been used for coating cast and wrought iron to protect the same against oxidation, and zinc and tin alone are in common use for this purpose; but several objections and difficulties attended the use of these materials when applied by the methods now known-as, for instance, when zinc o in is used and applied directly upon the iron the zinc at tacks the iron in such manner as to injure its durability and tenacity, and this is also true of such alloys as antimony bismuth, and lead, and nickel, tin, zinc, and lead; and, besides, in applying these alloys or the zinc a dross is formed
in the moltell baths, which is troublesome to remove, and In the moltell baths, which is troublesome to remove, and results in a loss of metal, and wrought or cast iron has never been successfully coated with unalloyed lead. Mr. William Frishmuth, of Philadelphia, Pa., has patented a process of horoughly and effectively coating cast iron or sheets of wrought or cast iron or other metals with pure lead, or with inc or tin, in such manner that the metal coated will be prolected agaiust oxidation and its durability and tenacity pre served, and in such manner that there will be no formation
of dross in the molten baths. The invention consists of dross in the molten baths. The invention consists essen-
tially in protecting or preparing the surfaces to be coated tially in protecting or preparing the surfaces to be coated
by depositing upon them, by electroplating or otherwise, a hin coating of nickel, or an alloy of nickel and aluminum. It is well known to workers of gold and silver ores that the pan amalgamation process always results in a very conderable loss of the precious metals and of the quicksiver act that the former being in a great measure due to the that repels the quicksilver or prevents its contact with the metal, and the loss of the quicksilver being principally due o the "flouring" of the latter, because of its trituration in the pans and because of the presence of certain interfering mineral substances that coat the globules of quicksilver and
prevent their reunion. Messrs. William H. C. Mathews, prevent their reunion. Messrs. William H. C. Mathews,
Cbaries W. Ayres, and Madison D. Campbell, of Bodie, Cal. have patented a cheap and effective compound to be use for preventing this loss of both the gold and silver and the quicksilver, by brightening the particles of the precious metals and by preventing the coating of the quicksilve globules.
An improved apparatus for separating sulphurets in ore ashing has been patented by Mr. William F. Devan, of Gwin Mine, Cal. The object of this invention is to improve ore washers and save the sulphurets by an operation that is
both continuous and economical. oth continuous and economical.
An improved bird cage has been patented by Mr. John B Abernathy, of Covington. Ky. The object of this inventio is to protect the animals confined in cages from suffering by external violence and from being preyed upon by larger animals.
An improved adjustable piston, which is so constructed bat the packing of the same can be depressed and spread accordingly, so that the packing will always fit cloeely in be pump-cylinder, has been patented by Mr. James Preston of New York City. A packing of any desired size is held
between the opposite convex or flat conical surfaces of the between the opposite convex or flat conical surfaces of the
plates, and in case this packing becomes worn off it can be spread by forcing the disks toward each other.

The Eyou of selence.

In a communication to the Herald, describing the wonders of the eyes which science has fashioned-telescopic microscopic, spectroscopic, and most marvelous of all, pho ographic eyes-Mr. Richard H. Proctor says:
Ordinary human eyesight, even when strengthened and extended by optical devices, possesses certain imperfections
and is used under certain difficulties. For instance, a and is used under certain difficulties. For instance, a
full look at any object. Even if the eye could see an object full look at any object. Even if the eye could see an object
in less time the image remains at least this time impressed on the retina. Thus the eye cannot see an object which on the retina. Thus the eye cannot see an object which
moves very rapidly, and even when an eye sees an object moves very rapidly, and even when an eye secs an object
moving not too rapidly, or moving in a circle so as continually to renew the impression (as where a burning rod is whirled round in a dark room), the object is not seen as it really is, but the successive images, owing to the persist ence of luminous impressions, are blurred together into an mage utterly unlike the real object. Again, when an ob ject is rapidly changing in shape the eye is often quite un able to see distinctly any one of the shapes which the object assumes. Thus scarcely one of the atitudes of a galloping orse can be seen by the human eye, insomuch that the finest pictures of a charge or a race show not one attitude which a horse really assumes when galloping. Yet again, the eye is often prevented from recognizing the true shape of an object which is itself at rest, by reason of continual fluc tuations in the medium through which the object is seen, as for instance when the telescopic image of a sun spot is ex amined through disturbed air, or when smaller details of he solar surface are examined through the air at its very stillest.
optical difficulties.
In all these cases the real trouble is that the eye requires certain deflnite though short time in which to take in, as it were, the visual image, and that during this time the ob ject forming the image is changing in form, either actually or apparently. On the other hand, there are cases of an op posite kind, in which the eye fails to recognize objects or their details because of their exceeding faintness, the eye gaining nothing by the length of time during which it is in action. Thus if we look at a point in the heavens at night where there is a telescopic star the eye fails to soe that orb if directed toward it during the tenth of a second (the period necessary for distinet vision under ordinary conditions), nor ean the eye see the orb better if directed toward it for a second or for a minute or for an hour. Now science posses es an eye free from these defects, by means of which ordi ary vision may be made to see an object as it would be seen f the human eye could take in the image in the thousandth part of a second, or even less time, or, on the other hand, as it might be seen if the human eye could look steadily for an hour or more, gaining distinctness of vision precisely in proportion to the increase of the time during which the eye was used.
a lightning glance.
For instance, in lecturing on the sun I have been able to ell my hearers that a certain photograph of the sun's surface had been so rapidly taken as to show details which no astronomer had ever actually seen or could see, even though he used the most powerful telescope ever made, and gave to the study of the sun with such an instrument every mo ment of his working life

a long anze.

On the other hand, but a few weeks ago I was looking in Dr. Henry Draper's observatory at a picture of the great nehula in Orion which bad been twn hours and twenty minutes forming itself on the retina of the photographic eye f science-in other words, the negative had required an ex posure of this duration. I say nothing, though I might well say much, on the mechanical skill and ingenuity required to retain the telescopic image so long unchanged in position, though all the time the diurnal motion of the heavens was carrying Orion round the beavens at the rate (in reality a slightly greater rate) at which the sun moves in the skies, nor do I dwell on the optical and physical diff culties involved in the task which Dr. Draper had thus suc cessfully achieved. The point I wish chiefly to dwell upon is this, that where such a photograph is taken science does is this, that where such a photograph is taken science does
in reality employ an eye which can give hours to a single look. And let it be noted that we see now but the beginning of the use of the photographic eye, which can see in the fivethousandtb part of a second if need be, or if need be can rest its gaze for many hours on the same object, seeing more and more as minute after mhute passes on. Yet alteady the swifter view of the photographic eye has shown details which the unaided buman eye, or that eye aided only by the telescope or microscope, could never see, while the stead fast gaze of the photographic eye has revealed what it has fast gaze of the pholographic eye has revealed what
been given to no human ege to see by direct vision.

akres afid delineates.

Note, further, that the photographic eye in seeing, deline ates also, whereas often enough the eye keenest to see is but ittle skilled to guide the band to delineate what is seen, and et oftener the ordinary eye can obtain but so brief a view on object that there is no time to draw what is seen with out trusting to memory, which in such matters 18 too often reacherous. The finest picture of the solar rice grains as drawn by any buman artist has much less value than have Janssen's instantaneous photographs of the sun's surface The best picture of the great Orion nebula-which, despite Mr. Delaruc's opinion in favor of the view taken with Lord Rosse's telescope, I consider to be unquestionably Mr. Trou velot's picture taken with the great Washington telescopeshows no details which are not clearly recognizable in Dr. Draper's beautiful negative, while skillful though Mr. Trou velot is as an artist, nature has surpassed him in presenting truthfully not only all details but all grades and varietics of shading. And these are but illustrative instances, belong ing, too, but to the beginning of the application of photo ing, too, but to the
graphy to science.

IUPROVED CAR BTARTER

No subject is more deserving of the attention of inventors than that of starting our heavily laden street cars after they have come to a full stop, and singularly enough no subject has been more bunglingly treated. The two essential qualities of a car starter are simplicity and durability. Compli cated and expensive mechanism for this purpose is eutirely out of the question, as no class of devices are subjected to greater wear or greater inequalities of strain.
The car starter shown in our engraving happily combines all the essential qualities, and has proved itself by actual and continued use to be adequate to all the requiremeuts of a device of this character. The clutch employed is of novel construction. and the leverage is equal to the radius of the wheels
In the engraving Fig. 1 is an elevation of a portiou of a car, showing the clutch of the starter in section. Fig. 2 is an inverted plan view. Fig. 3 is a perspective view of the clutch and clutch lever, and Fig. 4 shows the inner end of the clutch lever.
The axle, A, with which the apparatus is connected, has attached to it a sleeve, B, and a clutch, C, which may be rotated around the enlarged central portion of the sleeve.
In connection with this clutch there is a lever, D , the central pivoted end of which is pivoted in a slot in the clutch, C , in such a way as to have freedom of motion to a certain extent up and down. Upon the outside of this central portion are winged flanges which embrace the sides of the clutch, C. A pivotal pin, passing through these wings as well as the central portion, and clutch, C, give steadiness to the lever, D, and prevent it from lateral movements. At the extreme inner end of the lever, D, there is a recess, of a semi-globular form, elongated in the direction of the length of the lever. A ball, a, having freedom of movement, is placed between this recess and groove, around the central portion of the sleeve, B. This ball, in the movement of the lever at the proper point, is clamped against the groove, and, having freedom of movement in its own recess, presents continually a new wearing surface, and avoids the inconvenience and bad results which would follow if no such ball were employed.
By reason of the Songitudinal form of the recess, the ball, in the upward movement of the lever, is brought into engagement in the upper part of its recess with the groove in the sleeve, and therefore the resistance of the ball, being in a slightly angular direction, is increased to such an extent that it never slips.
The outer end of the lever, \mathbf{D}, is slotted to receive the link of the chain, E , which is held by a bolt, so that if it is necessary to shorten the chain at any time the bolt may be withdrawn, and then replaced through another link of the same chain. The chain, E, passes over a pulley secured to the bottom of the car, is attached to a rod, F, which, in turn, is attached to the draw bar, G, by a pivotal connection. The inner end of the draw bar connects with one end of the lever, D , pivoted to the bottom of the car. and a sprin', with this lever bet ween its pivotal point and its free end, presses it back, and draws back the draw bar
It will be seen that with any forward motion of the draw bar the lever, D , will be raised, and the power for the moment will be exerted to great advantage, and the car will be ment will be exerted
started easily withstarted easily with-
out strains orshocks out strains orshocks on the horse
To check any r trograde movemen of the car upon up grades, an auxiliary ball, b, is placed in a cavity in th a cavity in th clutch, C. When th carmakes the sligh est movement back ward the ball, b, wedges in the cavi ty and stops the car
The starter is no intended to super sede the brakes, bu to be used as sup. plementary to them The main object is to lessen the lubo of overconing the inertia at the initial of the forward movement, and also movement, and also to equalize the draught after the loaded car has been put in motion
There is also an at tachment by which the driver is enabled to reverse his ca by throwing the lever out of gearand preventing the locking of the whe \rightarrow simply by a pres sure of the foot. I
by any neglect on his part he should fail to put it in gear again, it acts automatically as soon as he attaches the horses o the draught bar
The ball of the checking device is thrown out of position o eugage the clutch by means of a rod attached to the yoke to eugage the clutch by means of a rod attached to the yoke,
H , and extending into the ball cavity. This yoke is ope-

MPROVED DROP PRESS,

rated by a pedal, L, through the medium of the angled levers, K, I, the rod, J, and a short section of chain conwecting the double arm of the lever, I, with the yoke, H By means of this mechanism the checking device may at any time be thrown out by the pressure of the foot on the pedal, L, and should it be desirahle to keep, it out of engage ment with the clutch, the catch on the pedal is hooked unde a plate in the platform.

One of the great advantages gained is that it removes the oncussion from the car, preventing the sudden jerking of passengers inside when the car starts up. So smouthly does it start that even a lady could get on at the time without inconvenience. Another advantage is that passengers stand ing up are not jostled and thrown around the car, as all the jerking and pitching is done away with. The explanation of the matter is simply that it moves the car to move the oad, instead of moving the load to move the car.
This improved car starter is in continuous use on some of our leading horse-car lines in this city, giving great satisfac tion. This starter has been applied to some of the car lines in Baltimore with great success, and it should meet the approval of all street railroad companies.
Further information in regard to this useful invention may be obtained by addressing P. B. Shaw, Grand Hotel, 31s street and Broadway, New York city, or the American Car Starter Co., Williamsport, Pa.

NEW DROP PRESS.

The variety of work that can be welded and forged under drop press, and the great economy und rapidity with which it cau be done, bave worked a complete revolution in the pro duction of steel and iron sbapes. In no otber way can dupli cates be made so surely to replace missing or broken parts We illustrate a new drop press which is a great improve ment over those now in use. The patent connection between the crank pin and hammer is slightly elastic and acts as a cushion.
The right tension can be much easier attained and changes can be more readily made than with the strap in common use. Its first cost is less, and when worn out can be quick) replaced at a small expense. We are informed that quite demand has arisen for this connection to replace old strap on lifters of drop presses of other manufacturers.
Iuternal steel ratchets-whose teeth are much stronger than those of external ratchets-are used in constructing this press, and the ratchet being attached to the rim of the main driving gear the transmission of the strain through the arms of the gear wheel is avoided. The greatest strain on crank and ratchet drop presses comes when the dog fails to catch a tooth at its furthest rebound, then it falls back to the next tooth. This ratchet contains forty-five teeth, and hence the falling back in this machine is always through a very small distance. This press is manufactured by Williams, White \& Co., Moline, Ill.

Steam Wagons.

The Colusa Sun says: "After all his experiments, Captain Roberts, of the San Joaquin Company, is still an enthu siast about his steam wagon enterprise. We had a conversation with him some time ago, and he thinks that roads suitable for his wagon can be built very cheaply. While the wagons run and pull very heavy loads on common roads, he thinks of digying two small graded ditches and flling with gravel, which will pack as hard as iron and give a solid road for each of the broad wheels, and for the wagon wheels that follow with the loads. The Chico Enterprise, of Tuesday, has an item to the effect that this 'steam wagon has been thoroughly overhauled and improved at the Union Iron Works, Sacramento, and ou a recent trial worked satisfactorily. Itsweight is 17 or 18 tons, and it is calculated to haul 50 tons of grain at each trip. It will be taken to the Upper Sacramento valley in a day or two, and will engage in grain bauling between Rice ville and McIn tosh's Landing.' " Capt. Roberts will, if this one shall prove the success he anticipates, put on wagons to run to all the principal land. ings on the river, and thus cross-section the entire Sa cramento valley. He will bave, in effect, a freight railroad across the valley, from foothill to river, every eight or ten miles. We sincerely hope that the wagons may prove successful, as it would be one of the grandest things for the Sacramento ralley that could be imagined; that is, always provided we can keep the river navigation from being destroyed."

GHELTERITG HAY RICI

A straw or hay rick that can be used as a shelter for cattle, horses, etc. . is shown in the annexed engraving. The frame of the stack consists of two square fences with a passage way between them. The passage is covered by a peak roof framed or tied, the rafters being formed of
thick poles, with their lower euds set a small thick poles, with their lower evids set a small in the spaces inclosed by the fences and upon the rafters, and the stack is built up to the ordinary height. Very long stacks can be provided with two passage wuys if desired it is considered advisable to construct the It is considered advisable to construct the
frames of these hay stacks as permanent frames of
structures.

Pharaoh's sorpent and the "son Sanke."

 We have heard a good deal about the amus ing chemical toy " Plaraoh's serpent," both harmless and injurious, from its unhealthy vapors given off in the process of burning, but little about another very ingenious and singular chemical phenomenon, discovered and exhibited by the late Prof. Graham, Master of the Mint, which might be termed, in contradistinction to Pharaoh's land serpent. cone "sea snake," as it is produced under the "sea snake," as it is produced underwater. His experiment weut to show the water. His experiment went to show the
prodigious amount to which the metal palladium will absorb hydrogen: an amount exceeding by some hundreds of times its own bulk. Two ribbons of palladium, attached to the two poles of a battery, were seen loose ly coiled in a water bath. The current was turned on; the ribbons took in so much by. drogen that they expanded, uncoiled, and stre:ched themselves across the bath, as if alive. The current was reversed, the bydrogen was thrown off, and the ribbone resumed their coil. They inigbt have been compared to a couple of and is rarely seen on the fisb stands. Sothern, the actor, conwrithing worms. The sight was amusing; but it exempli. fied the researcbes by which Prof. Graham has thrown light on an important question in cosmical science, and led him to the discovery of the metal to which he has given the name of "hydrogenium." " What do you think," wrote the Professor to Hofmann, " of a metallic hydrogen, a white magnetic metal?" The condensation of hydrogen in palladium, and the discovery of the occlusion of bydrogen in meteoric iron, confirmed the conclusion to which spectrum analysis had previously conducted us, that the meteorites came from an atmosphere of incandescent hydrogen existing under very considerable prussure. Grabum's fame ing under very considerable pressure. Grabam's fame as
one of England's greatest chemists justly rests upon thisimone of England's greatest chemists just
portant discovery.-Monthly Magazine.

THE EEA LAYPREY

The lampreys form a small group of hardly more than a dozen varieties, and are the most imperfectly developed, and occupy the lowest grade of all fishes, with the exception of the Lancelet. Their skeleton consists entirely of cartilaginous material. They are destitute of ribs, shoulder girdle, real jaws, and scales, and are possessed of ouly one nostril, and their gills have the form of fixed sacs. In their habit of feeding and attaching themselves to the bodies of other fish, from which they rasp off the flesh and suck the juices, they become very suggestive of the leech.
The body of the sea lamprey is olive-green, mottled with dark brown. Length from two to three feet; numerous rows of mucous ducts on the head and body. The mouth, when not attached to any object, forms a longitudinal tissure; wheu attached it is circular in form. The teeth are of various kinds generally dirposed in concentric cir cles. In the throat cles. In the throat and partially clos ing it, is a group o three large teeth (See illustration.) Lips fleshy. with a distinct and slightly fimbriated mem brave, and beneath a deep triangular fossa, baving a fold on each side.
Lampreysare fre quently found at tacked to sturgeon from th sturgeon from which the suck the slime and mucus exuded is abundance through the pores of the sturgeon. All the skate family provide favorite foo for the lampreys. in whose hodies they rasp out deep wounds, which

8EBLTERING HAY RICK idered it a great luxury, and was known to pay very high more brain food than any other fish.
It is related of the Roman emperors that, so great was

MOUTH AND TEETH OF 8EA LAYPREY

their valuation of the lamprey, botb as a luxury and stimu lating ford, artiticial ponds were constructed in which of fatten the lampreys, the principal ford used being well fattened living slaves, on whose bodies the eels would fasten and feed, affording an enjoyable pastime to the noble Roman.
The only place in New York city where the lamprey is erved up is at the Grand Union Hotel.
At the next dinner of the Ictuthyophagous Club, the sea
lamprey will receive special attention from the French cooks, and is to be served in every known style
The negroes of the Soull have great respect for the lam prey eel on account of its supposed medicinal qualities the wkins bejng in great demand as infallible cures for rheu matism and kindred ailments. The skins are bound abou the ankles, wrists, and neck of the patien while fresh from the body of the cel, and are worn for long periods of time, in fact often till they drop off.
In the months of March and April the lam preys begin ancending our fresh water rivers and streams that emply into salt water. Here they construct whit might be called a nest composed of stoncs piled up in a heap. These stones are carried from a distance by means of their sucking mouth. In these conical heaps of stones they deposit their spawn.

Botanical Soarces of Tonga.

Some time ago a native medicine called 'Tonga" was introduced into England and the United States from the Fiji Islands, where it hayong been in use as a remedy in neuralgic affections. No clew to the origin of this drug, which belongs to the vegetable kingdom, has hitherto been obtained, as the natives have jealously guarded the secret. According to a recent number of the Garden ers' Chronicle, however, the botanical source of the medicine bas now been found out through specimens sent by Mr R. L. Holmes, and submitted to Baron Von Mueller for iden tiffcation.
The component parts of tonga consist of two plants only. The first, called by the natives "Aro," is Premna taitensis, and he longs to the order verbenacex. Mr. Holme tates that it is, in open dry places, a shrub How-ring when quite small, but near water-courses become alall tree, the timber of which is used in building, the inner bark being the part used in medicine. The other plant known as " Nai Yalu," or "Walu," is an Arad, the Raphio dophora vitiensis of Seemann. It is a creeper. growing freely in sheltered places, climbing over stoocs and the like till it finds a tree, when it changes its nature. From a small vine, not thicker than a quill at the foot of a tree, it gradually expands, the stem growing to one or two inches in diame ter, and the leaves, as many feet long, become pinnatifid, forming a handsome plant. It is the dried scraped stems of this plant that form the second ingredient in tonga.

Presorvation of Flowers with their Natural Form

 and Color.One of the processes consists, says La Belgique Horticule in inclosing the flower or flowers in a glass jar provided with an air-tight, hollow ground-glass stopper, the cavity of which is filled with quicklime wrapped in leather. The object of the lime is to absorb the sniall quantity of humidity already existing in the jar or which might enter on a remova of the stopper. The dry air, deprived of its carbonic acid, occupying the jar, seems to brighten the color of the flowers and preserves them in their natural colors.
Mr. Cornelis's other method consists in burying the flowers carefully in sand and then drying them. The most conve nient receptacle that he finds for this purpose is a piece of paper wrapped in the form of a cone, the point being bent over so as to form a truncated cone. The desiccation may be effected at a temperature of $90^{\circ} 10100^{\circ}$, but the method which gives the best results is desiccation in a vacuum in the presence of com mercial su,pburic acid or any other substance which ab. sorbs water with avidity, such, for instance, as chloride of calcium or caustic potash. The fower once dried, which will be in eight or ten days. it must be removed from the sadd with great care, for it is very fragile. The dust remaining on the petals is removed by allowing coarse sand to fall upon them from a smitl beight. After this species of wash ing the specimen has received all the treatment neresshry. and in this state may be preserved indefinitely if it be inclosed in a her metically sealed jar along with a litt!e quicklime.

The preservation of color in dried flowers, however, will not in all cases be attended with success, the action of light upon them being very variable. Certain kinds stand the light perfectly-even the direct light of the sun; others are even influenced by a diffused light, and there are some again that are discolored even in partial darkness. Three plants, Abution selooi, Frithlaria imperialis, and Vanda suavis, exbibit an unlooked for phenomenon. When dried, these flowers become of a reddish-brown, but when they are exposed to the sun they assume a tint which is quite like their original one, except Fritillaria (the crown-imperial), which becomes violet.

cechanical inventions.

Mr. George W. Greene, corner 41st street and A. V. R. R. Pittsburg, Pa., has patented an improved machine for cutting tapered cork. This ingenious machine cannot be described without engravings.
A means by which the felly of a carriage, wagon, or other similar wheel may be enlarged for the purpose of tightening similar wheel may be enlarged for the purpose of tightening
the tire of the wheel, has been patented by Mr. William Downham, of St. Johns, Mich.
A velocipede designed to be operated by two persons standing and applying their wh weight to the treadles, has been patented by Mr. Oliver U. Guinand, of Lawrenceburg, Ky. This vehicle is more easy to mount than the velocipedes in common use and affords conveniences for carrying small parcels and packages.

An improved motive power has been patented by Mr Ohadiah W. Gibson, of Kelly ville, Texas. This invention relates to improvements in motive powers by which the entire power of the horse is thrown on the shaft that operates the gear mechanism, which may be ap. plied to the running of cotton gins, grist and flouring mills, and other purposes. The invention consists of an inclined wheel applied to a center shaft that turns in fixed bottom bearings and adjustable top bearings, and transmits the power by a crown wheel and gear wheels and shafts in one or both directions.

Mesers. Charles C. Henderson
and Jacob R. Henderson, of
Arkadelphia, Ark., have patented a machine adapted for valve, although the weight was set for a light pressure measuring beavy cloths, bagging, and similar materials in lengths, as desired, in place of the usual method of measur ing by hand. More particularly the object is to wind the material from the roll upon a suitable drum, measure the material as it is wound, and provide an indicator of the amount rolled off, so that the qesired quantity can be wound and then cut off.
A simple machine for rapidly peeling vegetables or fruits, such as potatoes and apples, has been patented by Mr. Hervey Law, of Chatham, N. J. This machine is especially designed for peeling potatoes, which are usually of very irregular forms and sizes; and the invention consists in means whereby the uutter may be quickly set to a longe
An improved cloth
An improved cloth-measuring machine has been patented by Messrs. Charles C. Henderson and Jacob B. Henderson, of Arkadelphia, Ark. This improvement relates to machines for winding off and measuring bagging and heavy bolt goods, and is designed to save the time and labor required in doing such work by hand. It is specially calculated to relieve the counting shaft of weight from the passing web.
An improved device for removing fire damp from mines has been patented by Mr. Francis Wodiczka, of Gratz, Austria. The invention consists in arranging a pipe or channel, provided with a series of suction funnels, along the ridge of all the galleries and adits of a mine, which channel is connected with a side channel, which, in turn, leads into the main or receiving channel, which is in communication with the gas flue or chimney.

Hot Water for the Heart.

In a letter to the Lancet, Dr. A. Paggi records the following observation: He states that in Paris he saw a case in lowing observation: He states that in Paris he saw a case in
which, under the inhalation of chloroform, the heart ceased to beat, and artiflicial respiration for ten minutes failed to restore circulation, when Dr: Labbé dipped a large cloth in boiling water and applied it to the region of the heart, with the result of immediately restoring the action of that organ.

The London Iron Trade Exchange, of recent date, pub lishes a complete list of blast furnaces in and out of blast in the United Kingdom. From the returns it appears that out of the total 943 furnaces built, 563 are in blast and 880 are standing. There are probably 40 furnaces in various districts which are not included in the returns, but none of these have been in blast for many years, and they will never be relighted; others are dismantled, and some have never been completed. The returns from Derbyshire were imperfect, and the figures relating to that district may not be quite accurate, but as regards other districts, the figures, says the Exchange, may be relied on.

EXPLOAION OF A ETEAY DRYIKG CYLITDER

ar b. n. habtwell

On the afternoon of July 10 a steam drying cylinder in the Staten Island dye house of Barrett \& Nephews, about one mile sonth of the steamboat landing at Port Richmond, S. I., exploded, seriously injuring five persons. The sketch, Fig. 1, shows the cylinder at \mathbf{A}, one of three driven by a small steam engine and used for drying piece goods. Fig. 2 is an enlarged detail of the head joint. The cylinder was made of copper, tinned on its exterior surface, 36 inches diameter by 48 inches long. The copper she!l was about one-tenth of an inch thick, brazed at its longitudinal seam and fixed upon a cast iron spool by means of wrought iron hoops shrunk upon the copper over the spoolbead shown in section, Fig. 2, in which B^{\prime} is the hoop, C^{\prime} the cast iron head, and $\mathbf{A}^{\prime \prime}$ a section of the copper. The copper was calked at the edge, between the hoop and head, to make it steam tight, and to support the head. The heads were flat, something less than three-quarters of an inch thick in the web, thickened at the periphery, as shown in Fig. 2. The barrel of the cast iron spool was hollow, having bollow wrought journals. The inlet and outlet pipes for the steam were half inch, and entered the journals through stuffing boxes. A small safety valve was fixed to the inlet pipe. This cylinder is said to have borne a test pressure of 100 pounds to the square inch, applied by the makers. This, however, may be an error. The cylinder was about three years old, but had lately been to the maker to be retinned, since when no one remembers to have seen steam escape from the safety

Diatoma.

Henry G. Hanks, State Mineralogist, Cal., writes as fol lows to the Mining and Scientific Prean:
A diatom is generally admitted to be a single celled plant, bearing a singular relation to the animal and even to the mineral kingdom, being considered by some to belong partly to the latter, and regarded as a vegetable cryatul, differing only from minerals in having the power of locomotion, and of multiplying by separation. Kutzing says: "ln com paring the arguments which indicate the vegetable nature of the diatomacem with those which favor their anima nature, we are, of necessity, led to the latter opinion."
In connection with the idea that the diatoms pertain some what to the mineral as well as the animal kingdom, it is a curious fact that silica deposited from fluoride of silicon, if crushed between plates of glass and examined micro scopically, with a medium power, markings may be seen on the outer surfaces of the vesicles which resemble those of the diatoms, spectally pleurosigma and coscinodiscus. It is also remarkable that Dr. James Blake collected ifty species of living diatoms from a hot spring in Pueblo Valley, Nevada, the temperature of which was 163° Fab. Flin probably originates from diatoms, as does also the silica in certain rocks.
The name diatom is derived from a Greek word signifying being cut in two. Diatoms resemble the desmids, but differ in having an outer skeleton, or frustule, of silica. The frustule of a diatom is a silicious box, always in two parts, one slipping over the other like a pill box or with edge apposed.
The thickness of a single diatom is, roughly, the sixth chat of a human hair, and its weight is estimated at the 187-1,000, C001b part of a grain. Some varieties attach the selves to ot
The study of the diatomaceex, aside from their scientific interest, is very fascinating. Their extreme and varied beauty is a source of constant pleasure to the microscopist and the question is often asked, Why is so much beanty veiled from human sight?
the beauty of the diatome
consists in their color, their general form, and sculpture, or natural markings, which characterize nearly all of them. These delicate markings are seen under the microscope to be processes, knobe, bosess, concavities, ribs, groovings, and
lines, so minute that the Kighest powers made by the most lines, so minute that the highest powers made by the most
akillful opticians are required to see them at all; even then skillful opticians are required to see them at all; even then they can only be seen when. The lines of certain diatom have been measured, and are used to test the magnifying and penetrating powers of object glasses. A slide called a test plate has been prepared on which twenty well known species are mounted, commencing with one on which the lines ar comparatively coarse, and ending with one-Amphipleura pellucida-which has 130,000 lines to the linear inch. Fo the convenience of study typical diatoms are mounted on a
single glass slide, so arranged that reference can be made to single glass slide, so arranged that reference can be made to a printed catalogue for the names, while in Eome cases the
names of the species are microphotographed on the slide.
The diatoms are placed on the plate by the aid of a ingenious device called a mechanical finger, by means of which the shells can be picked up singly and given the desired position. Moller's Typenplatte No. 1 has twenty-four lines in each of four groups, comprising about 500 individuais of 395 distinct species and 17 catalogue, is forty dollars.
Some microscopists are so fond of the study of these mi nute forms that they scarcely do any other work than to observe, collect, classify, and describe them.
When it is stated that the names of more than 4,000 dis tinct species of diatoms are given in a catalngue published by Frederic Habirshaw, of New York, each of which lias some feature by which it may be distinguished, that this vast kingdom, so to speak, is invisible to the human eye, or nearly so, that when highly magnitled many of the species are extremely beautiful, and all of them interesting, it is easy to understand why so much interest is taken in them the wide world over, and why every new discovery is heralded and calls for samples come from the whole scientific world
It is an established fact, strange as it may seem, that some of the greatest mountain chains, such as the Andes, and the very soil beneath our feet, are chiefly composed of the

bemains of andulcules,

invisible to the eye; that is to say, the matter has been used by animated beings, and returned again to the mineral king dom, retaining the form which it assumed while a part of their minute bodies. Byron has written with more trutb than he probably realized that "The dust we tread upon wa once alive," and the remark of Dr. Buckland is often quoted "The remains of these minute nnimals have added more to the mass of minerals which compose the exterior crust of the globe thas."
In the tertiary age heds of diatomacenus or infusorial carth were deposited, consisting almost wholly of these microscopic organisms. The extent of some of these deposits is almost incredible, and is regurded as an evidence of the great age of the world.
The Bohemian deposit in Europe is 14 feet thick, and, by the estimation of Ebrenberg, contains $40,000,000,000$ diatoms to the cabic inch.
Darwin observed in Patagonia, along the coast for hun
dreds of miles in extent, a bed of tertiary sedimentary formation, 800 feet in thickness, overlaid by a stratum of diatoma ceous earth. At Bilin, in Austria, a bed of iufusorial earth 14 feet thick, occurs. One merchant sells annually many hundred tons of it. The Bergmehl, or mountain meal, of Lapland and Norway, is from beds 80 feet in thickness. I must be remembered that these deposits extend over many thousands of square miles. Notwithstanding the astonish ing fact that vast areas of the earth's surface are built of these minute forms, the true nature of these deposits was not known until 1837, wheu Ehrenberg published bis celebrated work on that subject. The same deposition is taking place at the present time. In certain lakes in the United States nd elsew here, deposits several inches in thickness accumulate, composed wholly of the remains of recent diatoms. When thoroughly dried a chalky powder is obtained, which ander the microscope, is easily recognized. Similar deposit have been made known by dredging the botlom of the sea. According to Professor Joseph Le Conte: In the deeper arts of Lake Taboe, which sediments do not reach, the ooz s composed wholly of diatoms or infusorial sbells.
Dusty showers of a grayish or red color are not unfrequen on the Atlantic and Indian oceans near the coast of Africa. Ehrenberg examined this dust and found it to consist largely of diatoms. He estimated the quantity let fall during a dust hower in the year 1846, near Lyons, at 720,000 pounds, one ighth of which was diatomaceous, or 90,000 pounds, equal o 45 tons. Diatomaceous earth may be distinguished from other formations of a similar appearance by its insolubility in acids, extreme ligbtness, power of absorbing liquids, and property of polishing metals. It is instantly recognized under the microscope in the hands of one who is familiar with its use. Diatomaceous earth has its uses as well as its scientific interest. It is largely consumed as a polishing powder under the name of tripoli, from the locality which first gave it to commerce. It is known in California by the bssurd name of electra-vicon, and at the East by a variety o rade names. It is a very convenient source of soluble silica mployed in the manufacture of silicate of soda or potash, also known as soluble glass. The manufacture of this com pound is simplicity itself. Carbonate of soda or polash, a the case may be, is disolved in boiling water to saturation, in a capacious iron kettle, and fresh hydrate of lime added until all the carbonic acid is precipitated, and the alkali becomes caustic. Diatomaceous earth in a powdered state is then added as long as silica is dissolved, and the whole covered and allowed to cool. When the insoluble matters have set ted the clear liquid is drawn off and evaporated in a clean essel to the required density.
Diatomaceous earth is also used in the manufacture of porcelain, and it is a constituent of certain cements and arti ficial stones. At one tithe It was claimed to be a fertilizer but this is thought to be a fallacy, although Ehrenberg, states that the fertilizing power of the Nile mud is furnished by ossil infusoria.
Slabs of diatomaceous earth absorb liquids with avidity. and are used in laboratories for drying crystals and filters. This property might be more generally utilized if better known.
A convenient contrivance for lighting fires is a lump of diatomaceous earth with a bandle of stout iron wire. It is dipped into a vessel of petroleum, placed in the stove or fire place, and lighted with a match. It continues to burn afely for some time. It can be used again and again. No person, however, should make use of it who has not the common sense to carefully set away the vessel containing the coal oil before lighting the match.
Bricks that float in water are made of diatomaceous earth mixed with one-twentieth part of clay and well burned. The art of making these floating bricks was well known in the time of Pliny, but was afterward lost. It has recently been discovered. In the Italian department of the Paris Exhibition of 1878, these bricks were exhibited, which attracted considerable attention. Floating bricks, made wholly of California material, may be seen in the State Museum.
Kieselghar, or "fint froth," of the Germans, from a deposit in Hanover, is extensively used in the manufacture of dyamite. giant powder, lithofracteur, and other explosives. Diatomaceous earth absorbs from three to four times its weight of nitro-glycerine, with the adrantage over other absorbents of retaining the nitro-glycerine under greater pressure. Dynamite contains 27 per cent and lithofracteur 23 per cent of diatomaceous earth.
Before the kieselghur can be used it is subjected to treat nent to remove water, all organic matter, and coarse particles. It is frst calcined in a succession of furnaces, crushed between rollers, and sifted.
It is claimed that the diatomaceous earths of California are unft for this purpose, but it ts the opinion of the writer tha hey have not had a fair trial.
Diatomaceous earth is largely used in the manufacture n soap to mechanically increase its detersive power. The Standard Company receive large quantities of it from the sonthern counties of the State.

Imitation Ground Glase.

A very useful kied of varnish is made known by Léon Vidal, which is excellent for producing imitation of ground glass, and will doubtless be found available for other pur oses. The formula is:
Sandarac, 18 parts; mastic, 4 parts; ether, 200 parts; ben zol, 80 to 100 parts.

Golatine Rmalelon-making in Hot Weathor.
I have thought it might not be amiss to describe the plan have been following in making emulsion during the last hot weather we had. In my plate making room the tem perature was often at 85°; but, nevertheless, several hatche f plates were successfully prepared. The method adopted is very similar to that I described in my little book, "The Practical Working of the Gelatine Process;" but there are one or two alterations in procedure. In the first place I use the formula which was described in last Journal, using potassiun bromide instead of ammonium. It is as follows Potassium bromide, 250 grains; Nelson's No. 1 gelatine, 45 grains; water, 1 ounce; strong hydrocbloric acid, 2 dropa This is prepared in the usual way, and warmed up to 120° Fah., and the following added in the usual way: Silve nitrate, 300 grains; water, $31 / 2$ ounces.
Finally, this next solution is added: Potassium !odide, 12 grains; water, 1 drachm.
This I mix in a long hock bottle, shaking between each addition. This is transferred to a glass flask and bolled for half an hour, shaking up the emulsion at intervals. This is allowed to cool in the flask for half an hour, when to it is added, with shaking: Nelson's No. 1 gelatine, 120 grains; Coignet's gelatine (new brand), 120 grains; water, 8 ounces. After soaking and very slightly heating to melt it, about three drope of strong ammonia in half a drachm of water is hen stirred in, and the emulsion is poured out into a jam pot, which is immediately placed in iced water, a few lump of ice floating in it. In half an hour the gelatine will be firmly set. The jam pot is then dipped for a few seconds into boiling water, which will loosen the gelatine from its sides, and the lump of emulsion is transferred into moist canvas, and squeezed through into a jar of iced water (the water having been run through filter paper to get rid of all floating matter), in which a few small lumps of washed ice are floating. After ten minutes the water is changed, and after another ten minutes is changed again, when it is again col lected in the canvas and squeezed through into water. One more change of water should be sufficient to free it from all except traces of soluble salts. It is then transferred to the canvas and allowed to drain over a jar half an hour to three quarters.
It is again transferred to the jam pot and melted, and a sight trace of carbolic acid (or other antiseptic) added, and then once more placed in iced water. In half an hour it is set, when it is covered with alcohol and allowed to ripen for a day; and if the jar be placed in water containing a lump of ice, so much the better. When plates have to be coated, the slab on which the plates have to be set is covered with small lumps of ice for half an hour, and if it be thick it is only very gradually cooled; but, on the other hand, it also only very gradually gets warmed again. During this time the emulsion is melted, six drachms of alcohol added, and filtered.
When the plates are coated (after the slab has been dried from all water) it will be found that the fllm of emulsion will set in a couple of minutes, and that the slab remain cool enough to enable five or six batches of plates, filling the slab, to le prepared; that is, supposing your slab to hold eight plates, you can coat forty to forty eight without reconl ing the slab. I find that the gas of the drying box may be lighted immedistely, and the drying of the plates will pro ceed rapidly and not remelt. If gelatine be once weell sect it requires a bigh temperature to remelt it; and the more wate is evaporated the higher the temperature required. As the current of warmed air pasees over the plates the moisture is rapidly abeorbed, and hence the drying can be effected with safety.
My excuse for writing this must be the fact that I have had many letters asking how I prepare emuleion in this weather, and I trust that this description may be taken as an answer to them. Doubtless there are other modes which will succeed as well; but I think, for an amateur, this plan will be found to be everything that is required. I would just say, that, supposing by any chance the emulsion appeare too thin before costing the plates, 40 grains of Coignet's gelatine may be melted in 8 drachms of water and added to the emulsion, with much stirring. immediately before filter ing.-W. de W. Abney, F.R.S., in Journal of the Photo graphic Society.

The Chlleat Moteor.

The State Mining of Burcau California has lately come into possession of the meteorite found among the Alask Indiaus by Mr. John Muir. The meteor was seen to fall, it is said, hy the father of one of the oldest Indians in Cliilcat over a hundred years ago, and was afterward sought out and carried to his hut in triumph. Through the co-operation of the Northwest Trading Company, the Mining Bureau suc ceeded in conducting negotiations for its purclase; and for a consideration which seems meager as Esau's mess of potlage in the eyes of scientists, the State of Californis acquired clear title to the meteor, and it arrived in the cits, June 24. This aerolite is exceedingly irregular in shape, and the projecting points are as bright as if they had been Jurnished. A succession of nut-shaped hollows, which cover almost the entire surface, give it an exceedingly curious aspect, and its fantastic contour looks almost as if it had been moulded by some unknown power into the shape of the head of a strange beast. It weighs a hundred pounds or upward, and has beer christened, in honor of the locality from which it was procured, "Chilcat Meteor."

In 1841 Mr . H Withech Farm.

Kent Avenu. H. Witte established a small leech farm in Kent Avenue, Williamsburg, L. I. In course of time this
small establishnent was abandoned, and one of thirteen acres was established near Newtown, L. I., and to him the writer is indebted for the following information and descrip. tion of the only leech farm in Americu. The breeding ponds consist of oblong squares of one and a half acres each. The bottoms of these ponds are of clay, the margins of peat. In June the leeches begin forming their coccons on the peat margins of the pond.
The greatest enemies to the young leeches are musk rats, water rats, and water shrews, who dig the cocoons out of the soft peat breeding margins. Next to rats and shrews is overbeating of the peat or the water of the pond. In fact, nothing is so fatal to leeches as a too high temperature. Mr. Witte tells the Oil and Drug Nevos he has had leeches frozen in solid ice, but by slowly dissolving the ice and gradually increasing the temperature of the water the leeches sustained no iujury. The depth of the water in the ponds during the summer is three feet; in winter time the depth of water is increased to avoid freezing.
The leeches are fed every six months on fresh blood placed in thin linen bags, which are suspended in the water. The leeches, as soon as they swell the blood, assemble from all parts of the pond, and attaching themselves to the outside of the bag, suck the dissolving coagulated blood through the linen. Digestion proceeds very slowly with the leech, stomach of the leech is in a fluid state, as if just taken in The excremental deposits are of a grass-green color. The best substance for packing leeches in is the peat of their natural ponds made into a stiff mud. Water containing
tannin, tannic acid. lime. salt, or brackish water, must be tannin, tannic acid. lime. salt, or brackish water, must be
guarded against always; iron is not objectionable, but is an advantage in small quantities.
The demand for leeches in the last few years bas somewhat fallen off in the Eastern and Southern States. The Western States and California are now the heaviest buyers. Mr. Witte's sales alone average a thousand a dry. The number of leeches imported into the United States amounts to about thirty thousand yearly.
The custom of stripping and salting leeches, to cause them to disgorge after having been applied, has passed away, as many well established cases have occurred of infectious diseases having been communicated on the application of the same leech to a second party. A very popular error exists that a leech when applied takes ouly the bad blood (whatover that may be) and rejects the good; this is a mis. take. With a leech blood is blood, be it the cold blood of a fish or the warm blood of a human being, no matter how diseased that human being may be. So long as blood is not tainted or putrid the leech will thrive on it. A friend of mine, who was the proprietor of a large leech-breeding establishment at the foot of the Hartz Mountains, when wishing to feed his leeches, was in the habit of hiring poor laborers, at six cents per day, to stand in the water for half an hour nearly up to their thighs, that the leeches might obtain a full gorging of human blood.

In the marshy lauds of Roumania the wild leeches are captured by means of men entering the water and allowing the wild leeches to fasten on to their naked bodies. The leech fishers then strip them off after reaching the shore.
[If it is dangerous to apply the leeches a second time the druggists should beware of the Hartz leeches. And the question may be asked whether the blood feeding practiced at Newton may not also produce poisonous leeches.]

Dangers or sulphuric Acld.

A driver named Sellers lately lost his life at Leeds, England, by the upsetting of a wherry or cart loaded with sulphuric acid. A witness testified that the horse was going at a good pace, and the deceased was unable to pull up, and therefore the deceased turned into a lane, but a wheel coming into contact with a stone the wherry upset, and Sellers fell into the road with fifteen carboys of vitriol, many of them broken, on the top of and around him. When the witness got up he could see nothing of the driver, but, after some moments, discovered that he was lying under four broken carboys. He got assistance, and a quantity of water and milk was thrown over the deceased, whose clothing was being consumed and flesh eaten away by the liquid. He was taken up and carried in an insensible state to a farmhouse near. The skin and muscles of his left upper arm, near the shoulder, had been destroyed for some distance. laying bare the bone. The left foot and avkle were similarly destrayed, as were also several other parts of his body. Shock to the systen caused by the extensive destruction of
accident.
The coroner, in addressing the jury, said the case seemed to be one of accidental death. It was dangerous for a man to ride on his wherry, ats the deceased had done, with such a load bebind hin; but, of course, he would not expect any accident to happen. Seeing what had been the result of the accident, happening where it did, it was a matter for consideration as to what the consequences would be were such a terrible affair to occur in a crowded thoroughfare, passing through which these wherries of carboys were every day. He had seen the carboys packed in three tiers with only a rope put loosely round them, and should an accident happen the chemical might run down the causeway and produce frightful results to foot passengers. It was a question for
the autborities of the cown as to whether this mode of con veying vitriol was a proper one. The jury returned a verdict of "accidental death."

The Preventiou of Fouling in Irom shipa.

The prevention of fouling iu the hulls of iron ships is a watter that has long engaged the attention of those interested in the construction and equipment of iron vessels. Many methods have been tried in order to protect vessels against the growth of barnacles in tropical waters, but it can scarcely be said that any of these have proved entirely successful. At present, ships require to be periodically docked and cleaned, and this entails not only a loss of time, but considerable expense. Much interest is, therefore, taken in a new ship which was launched from the shipbuilding yard of Messrs. T. B. Seath \& Co., Rutherglen. This vessel, which is naued the Bessie, is built from designs by Mr. G. L. Watson, naval architect, for Mr. John Clarke, Paisley, and is intended as a tender for the yacht Condor.
The novelty about the Bessie is that it is covered over the hull, to six inches above the water line, with a plate of zinc, and by means of this it is believed that the vessel will be thoroughly proof against fouling. The thickness of zinc employed is not great, and it is fitted so closely as not to interfere in the slightest with the delicate outlines of the ves. sel, but its thickness is sufficient to last, it is calculated, for fully six years. The pateutees of this system are Mr. J. Jepson Atkinson, barrister, and Mr. C. F. Henwood, nava architect, of the Middle Temple, London.
The well known action of iron on zinc in salt water led to the discovery of this invention; but while the use of zinc was well known, the difficulty of attaching it to the hulls of ships remained. Mr. Atkinson and Mr. Henwood have completely overcome this difficulty, and there can be no doubt that the use of their system will be watched with much interest by the shipping community. The method employed in fixing the zinc is simple and effective. The zinc sheets are attached to the iron plating of the vessel at spots nine to welve inches apart, and at these spots a mechanical joint is made by an alloy or solder, the surface of the spots being about an inch and a half square. The method of attachment causes the zinc to act like copper on the bottom of a wooden ship. Zinc in the ordinary seaway coming in contact with iron oxidizes to the extent of ubout two to three ounces per square foot in a year, but by attaching zinc. of sufficient luickness the vessel can be kept at sea for several years without docking, cleaning, or painting. Scraping will uot be required, and the speed of the ship will not be diminished by the growth of barnacles. Mr. H. N. Moseley, of the University of London, has expressed himself satisfled with the chemical action of the new process, and there can be no doubt that the invention will, if successful, be of immense importance to shipowners. The career of the vessel will consequently be watched with great interest.-Marine Engi neer.

Componite Portralts.

At the last meeting of the Photographic Society of Grea Britain, Mr. Francis Galton, F.R.S., read a paper on "Composite Portraiture," in which he stated that his attention was first directed to the subject some years ago, when he found that by taking two or more portraits of different individuals under exactly the same conditions, and superimposing them the features, if not absolutely dissimilar, blended together and formed an idealized portrait which could be well seen when the image was thrown upon a magic-lantern screen. The register he adopted, so that the features should be identically superimposed, was by drawing a borizontal line through the eyes, another parallel to this through the mouth, and a third perpendicular to and bisecting these horizontal lines through the nose. The point of bisection between the eyes was that which he was especially careful to maintain in the same position in each portrait. Mr. Galton's
first method of producing composite portraits was by means of a copying camera, paper positives being used. He now, however, used transparencies, and he exhibited and de scribed the apparatus which he had adopted for the pur pose. One purpose for which he believed composite por traits would be valuable was that of producing a standard plysingnomy of disease With this object he had taken the portraits of a number of consumptive persons, male and female, and had combined them; and it was remarkable bow a certain average of faces was found to be almost identical. Mí. Galton also exbibited a number of what he called typi cal portraits. One was the face of an idealized criminal, formed from a combination of seven portraits of criminals, others were the faces of consumptive patients, and a third serics was that of the portraits of offlcers and uen of the Royal Engineers. In one case he had combined the por traits of twelve officers, in another the portraits of eleven privates, and in a third he had combined the portraits of officers and privates. In each instance Mr. Galton said the ndividualty marking each class was strongly brought out and idealized. He also pointed out how, in every case, the idealized portrait was better looking than the faces from which it was made.
In conclusion, Mr. Galton referred to the use which pho tographers might make of composite portraits. He thought the process could be turned to a most interesting account in the production of family likenesses. Artistic excellence was of no consequence in the negatives, and all that was neces sary was that the portraits should be taken under the same aspect, either as a perfect profle or a perfect full face, and
under the same conditions of light and shade. The result of the combination of a number of faces of the same family was often very curious, not the least singular point being the circumstance that there was often a difference of opinion
as to whom the idealized portritt was most like. Mr. War as to whom the idealized portrait was most like. Mr. Warnerke said, that when Mr. Galton first described his method, some years ago, he had tried the production of composite portraits, and found the result exceedingly interesting. Captain Abney expressed surprise at the result of an experiment which Mr. Galton had made to show that repeated exposures on the same plate made no difference in the result. Had not Mr. Galton proved that he was right, he should ave expected some difference. After a remark from Col. Wortley, Mr. Galton observed that one curious result he had noticed was in the case of a combination portrait of two criminal boys. This portrait was given to an artist to copy, and, singularly enough, although the artist had never seen either of the boys, the picture he drew was a portrait of one of them rather than a copy of the composite.

becent inventions.

A table especially designed for convenience in writing on large heavy books, such as books of record that are used in registers' and other public oflces. has been patented by Mr. John A. Harriman, of Bellaire, Mich.
An apparatus for preparing wheat for grinding has been patented by Mr. James Willard Smith, of New York city. The object of this invention is to remove the dust, fuzz, and other impurities from the creases in the kernels of the wheat, and also to prevent the bran from being pulverized and mixed with the flour.
An improved vehicle specially adapted to the use and amusement of children, which shall serve either as a wheeled carriage or as a swing, its construction insuring the comfort and safety of the occupant, has been patented by Mr. Mason Remley, of Hamden Junction, 0.
An improved lye-trough for soap-makers, patented by Mr. Daniel F. Trout, of Feesburg, O., consists of a trough or pan made of metal or wood, with a spout at one side or end, which is on a level with the bottom of the trough or pan. In most of the so-called " magic " pen and pencil cases the pen cannot be pushed out for use unless the pencil is also out; hence, in using the pen the pencil is apt to become inked and its point or lead thereby injured. Mr. Richard M. Collard, of New York city, has patented a pen and pencil case in which this defect is remedied, by so constructing the case that the pencil can be attached to or detached from the "magic movement" at the will of the user, so that the pencil-point will not be out while using the pen, though the case be drawn out to its full length.
An improved ice cream freezer has been patented by Mr. John Marsden, of Chester, Pa. The object of this invention is to furnish ice cream freezers so constructed that they will make smoother cream than the ordinary freezers, and will make a greater quantity of cream from the same quantity of material.

A Phosphorus Mlerophono.

In his photophonic experiments, Professor James Blyth, of Edinburgh, was led to construct a useful form of selenium cell by dovetailing two brass combs, having alternate teeth kuocked out, and filling up the spaces between the interlocking teeth with the selenium. A moditication of this pattern is made by fastening a brass disk on wood, and sawing it across until it consists of radial sectors, which are afterwards connected by selenium. While trying to use
amorphous phosphorus in place of the latter substance he amorphous phosphorus in place of the latter substance he
found the phosphorus evolved a current which varied with the prese phosphorus evoived a a and the idea occurred to him that a microphone could be made from it, which would not generate its own electricity. He therefore took a shallow wooden box having a brass bottom, and spread a layer of phosphorus upon it, a thin fexible brass lid covering the box and touching the phosphorus. Wires from a telephone were then connected to the metal top and bottom of the box, and on speaking into a mouthpiece directed to the thin brass cover, the words were distinctly reproduced. The varying pressure of the sound waves on the phosphorus established an undulating current, which, passing through the telephoue, caused it to give out the original words. When a battery was included in the circuit the sounds were remarkably clear and loud and free from the grating which disturbs the carbon microphone. Professor Blyth also finds that the cell, which is really a form of loose contact, operates as a receiver as well as a transmitter, and will of itself emit
reat.

silicon lu Steol Ralle.

Dr. Dudley's formula for the composition of steel rails allows 0.04 per cent of silicon, but other experiments sbow that ten times that amount of silicon can be admitted, and still retain an excellent physical character. The allowance of this margin is fortunate, because of the inability of determining when silicon is removed, as can be so exactly determined in the case of carbon.
Out of 35,000 rails on Swedish state railways, only 4 broke in the winter of 1880 , under a composition of 0.20 to 0.30 carbon, and 0.1 to 0.3 eilicon. The diverse views held by different experts, and various conclusions arrived at. show that much yet remains to be determined by experiment, before the best composition for a steel rail can be offered.-North American Manufacturer, July 14.

Geiser's Patent Grain Thrusher. Peerless, Portable Tight and Slack Barrel macchinery a specialty. John
Groeavood \& Co., Rocheatar, N. Y. See illue. adv. p. 78 . Hoaston's Pour-8ided Monlder See adr page 78. Houghton's Boiler Compoond contains nothing th can Injure the iron, but it will remove soale und preven Long \& Allistatter Co. 's Power Punch. See adv., p. 7 . Long \& Allistatter Co. 's Power Punch. See adv., p. 77
For Mill Macb'y \& Mill Furnishug. see illus. adv. p. 77. For Mining Mach'J, see ad. of Noble \& Hall, p. 76 New Economizer Portable Engine. See illua. adv. p. 76. The Chester Steel Castings Co., ofice 407 Library S halladelpuia, Pa.. can prove by is,000 Crank Shafta, and 0.000 Gear Wheels, now in use, the superiorty of thet
Castigge over all others. (Ircular and prioe litat tree. Combined Concentric and Eccentric Univeral and In opendent Jaw Chucks. The Pratt \& Whitney Co.. Hart ord, (onn.
The I. B. Davis Patent Feed Pump. See adr., p 77. Rae's New "Little Glant" Injector is much praised or its capecity, rellinblility. and long uee without repalin. se Manufacturing Co., Phlladelphia, Pa .
Rowland's Vertical Engine. Wearing parts of stee, Wm bealing Co. Con Wm. Sellers at Co., Phila., have introdnced a ne For Shafts, Pulleys, or Hangers. call and see atocik Saw Mill Machinery. Stearns Mfg. Co. See p. 78. Wiley \& Ruseell M'rg Co. See adr., p. 45.
Don't buy a Steam Pump untll you have written Va
Uee the Yecaum Oils.
Use the Vacuum Oils. The beat car, lubricating, on Ind and cylinder olls made. Addrese Vacuum
No. 3 Rochester Savings Bank, Rochestor, N. \mathbf{Y}.

4atics 4urius

HINTS TO CORRESPUNDENTS.
No attention will be pald to communications unles

Names

Names and add
We renew our request that correspondente, in referrin
o former answers or articles, will be tind enough of the question. of the question.
reasonable time should repeat them. If not then pnblished, they may conclude that, for grod reasons, the Editor declines them
Persons desiring special information which is parely a personal character, and not of general interes, hould remit from 81 o 35 , according to the subject obtain sach information without remuneration.
Any numbers of the scientitic Aribican SuppieMEMT referred to in these columns may be had at this
omice. Price 10 cents each.
(1) H. K. asks what is the velocity of steem through a six inch plpe open at the end, at presenre of 20 lb , 60 lb ., and 100 lb . A. 20 lb . above at mosphere, 1,418 fret velocity per second; 60 lb abov
tmouphere, $1,47 \%$ feet velocity per second: 100 lb . bove atmosphere, 1,464 feet velocity per second.
(2) E. G. asks at what age German carp, ader conditiona, the second year.
(3) B. \& P. ask for a receipt for making Disoolve sanflient quantity of good ruchpin (anlline red) by tritaration in warm glycerine. See inks, in Suppismerint. No. 157.
(4) G. S. H. asks: What will remove moke stains from ivory 1 I have a valuable set of and
amoked badly. A. Immerse the pieces in benxine, and go over them with a brusb. W
will dissolve the sooky matter.
(5) A. J. asks: Can the dark part of the in f:-otographing the lumidre cendree, or "earthshine" the "continents" were to be distinguished clearly from the " eeas". This dispoeses of the viem comedmes dvanced, and held by some eminent astronomers, that the new
lua ion.
(6) E. M. asks: When and where was the arst telegraph ased in this coontry ${ }^{\text {P A. The irst tele }}$ graph line in this coantry was eetablished on Long by frictioval electricity. We can't give exact dato.
(7) A. C. and others inquire how to etch on pteel A. The ciecan piste mast be covered with an
even alm of wax, either applied while the plate is unl rormly heated, or diseolved in alcohol and fowed on th warm plate. The etching Auld may be made as follows:
Pyroligneous acid. 4 oz ; alcohol. 1 oz.; nitric acid oz., by measure. Or use fodive, 1 oz.; Iron alinge, haif drachm; water, 4 oz. The lines are cut through the wax with a ine stoel point, so as to leave the metal
arface bare under the lines. The etching fuid is then poared on, and removed as soon as the metal is suffi ently etched.
(8) L. T. asks for a simple process for extracting oilh from herbs. A. The volatile oils are senerally obtained ty distilling in a deep narrow retor the articles along with an equal weight of water; but
some subetances that give out their oll with difficuity re frst soaked for twenty-four hours in twice thet veight of water, to each gallon of which 1 lb . of com mon salt has been added, by which its bolling point is rained, and consequently the oil comes over more
water being drawn off and retarned to the retort, and
this is repeated until distilled water ceases to come over mixed with oll. The reculication of the oill in per ormed without water, by the carefnl application of heat just sumbieut to caase them to fow over prett time as poosible.
(9) H. R. asks how to make a strong paste hat will not sour. A. Try the Pollowing: Four part cold water for come hours, and then moderately heate all the solation becomen quite clear; es parts of bolling water are now added with stirring. In another resse 0 paris of starch paste are stirred up with 20 parts of cold water, so that a thin milky guid without lumps is obtained. Into this the boilling glue solation is ppared with constant stirring, and the whole is kept at the acld are added to the paste. The paste must be preserved in clowed bottles to prevent evaporation of the water, and will in this way keep good for years.
(10) D. W. S. asks how to make and apply good aquariam cement. A. A good cement is com ooin. These are allowed to melt together over a gen he fire. If $t 00$ mach oll is need, the cement will ra down the angles of the aqnarium; to obviate this, ity to cool under cold wier, and it not found sunm dently frm, allowing to simmer longer, or have mor car aud resin added. The cement should be ponred in the angles of the aquarium while in a liquid state, but not when bolling, or it would most anenredly crack the hass. The cement will bocome fral in a few minaten, and the aquariom may then be tulted up in a difieren componition adheres frmily to the gisess, is so pliant that it may be preseed into any shape by the fingers, and it does not commanicate any poleonoss quality to the
(11) W. M. M. writes: 1. I have some glase pickle jars of 18 tuid measure $89 /$ diameter by 8% deep. I have nine jars,
and can get elgat more same as these, and I want to ake a battery for experimenting electric light, electro plating, etc., and I want to know the best way to at nem up, using carbon and sinc ? A. For general ox continued nee the blchromate battery with a poroo cell is best; but your bottles would be too small to admit of the ase of a porous coll. See Suppimanerrs,
Nos. 157, 158, 159, for information in regard to batt Nos. 157, 158, 159, for information in regard to bat
ceries. 2. Is it beat to put a zinc between two carbone ceries. 2. Is it best to put a zinc between two carbons, ar a carbon between two sincs, or one carbon and one Use two carbons and one zinc, placing the zinc between the carbons. 8. What solution is best: Smee solution of rater and acid, or bichromate of potash ? A. Use a bichromate solution and amalgamate the zincs. 4 illil the positives and all the negaives are connected, wall it be the same, and give the same power, as if it was all one surface and in one cell ? A. Yes. B. Is heat 9 A. For experiments with limited battery power the elements should be connected for intensity. 6 . Can you give a description of a small powerfal microphono-one that will repeat ordinary conversaecessary to use an induction coll in the circuit of the be used with it $\&$ A. Use the Blake tranamitter and the Bell receiver. An indaction coll is essential.

(12) C. H. B. asks how to prepare the mix are used in the storm glasses sold on the streets. A The mixture is made as follows: Place in a long nar | apirts of wine, 11 drachms. When the camphor is dis. |
| :--- | olved add the following mixture: water, 9 drachme saltpeter, 88 grains; sal ammoniac, 38 grains. Diseolv hese salts in 9 drachms of whter before miring with che camphorated spirits, then shake the whole together ork np tight, and ceal with wax, then make a email have a small clean bole. Heavy atmoesphere will cane he salts to rise; a light amosphere, wofall. Cost of mixture, 10 or 15 cents.

[OFFICIAL.]
INDEX OF INVENTIONS
or whice
Letters Patont or the United Statoe
Grantod in the Weok Ending
July 5, 1881.

AND BACH BEARING THAT DATE

[Thoee marked (r) are refsened patents.]
A printed copy of the apectication and driming of any
natent to the annezed list. also of any patent isered
nce 1808 , will be furnished from this ofice for one dol
ar. In ordering please state the number and date of the
patent deasred and remit to Munn \& Co., 57 Part Row.
New Yort elty. We also furniah coples of patenta
ranted prior to ises; but at Increased cont. an the ape
Alarm. See ire alarm.

lumina, manufact ture of sulphate of, B. E. R
Newlands.
malgamator
smalgamator, J. Scoott......
Axle box, orar, I. A. Rapp.
Axle. carringe. A. R. Smith
Axle skeln, I. E. Rictetto..

Canp, H. Neuffld.............
Car brake, triction. \mathbf{T} sprit
arr coupling, J. R. A. Ament.
ar coupling J.
Car coupling, Jonnson \& Robison
Car, tron rallway, W. A. Cushman
Car, ron rallway, A. F. Marte
Car, stock, M. O'Neal.
Car, stock, M. O'N Neal. ...
Car, stock, J. J. Paden.
Car, street rallway, W. Roblinson.
Carriage. P. Danserenu........
Carrier. See egr and frutt caurier.
Ceee. See baling came. Plano case.
Caster, J. Toler
…. 243,28181

Whatr. Bee convertible obair. Bocking chalr.
Chicken cholern compound, D. Croan
Chicken cholera oompound,
Chuck, drill, G. 8. Rominger..
Chuck, drul. o. D. Slate.
Churn. J. c. Eile.
Churn. J. C. Kile
Cigar end cutter, J. Ochs.
Cligar lighter. B. B. Bchneilder.
Clear mould, B. Roman.

Comm, D. R. Johnson. 248.91
Clllapalble boet, s. W. Wardwell, Jr. 24.00

converer. J. s. Leas.
Cooling rolla, Journals, and ahaftu, W. R. Jonea...
Corn from the cob, machine for cutting green, \mathbf{V}
orn from the cob, machine for outing \&reen, V.
Barker..888,
Cornet, c. V. Turner. 28,18
Cutton or orther press.
Cotton prese. revolving, J. M. Sham................ 28,88

eaming can, D. W.
Creaming can, D. W. Potter........................ 24,900
Crucibles, method of and composition for lining
plumbago, J. Pedder 2438
Cultivator teeth, attaching. C. M. stevens (r).................. $2 \mathrm{~g}, 78$
Cup. See oll cup.
Cutter. See band catter. CIgar end outcor.

Doll house, etc.. Dorn \& Crandall...................
J. A. Lee. Sr................................... us,28
Drain pipee, teeting. F. Tudor... 24,74
Drill. see seed drill.

Edger. W. MoDonald.
Reg and fruit carrier. L. H. P..............
Electric droult switoh board, F. Blate.
lootric machine, dynamo, J. J. Wood..
leot ric wires, conducting. W. M. Con
Electrion armatures, machine for winaling.
Bray
Brady.......
merator. See sucker rod elevator.
Elevator, E. Raber
Engine. see rus encine. Road ently. P...... 248,74
engine. Steam and other enginet
Engtne, C. L. Work................................... 2ss,82

Fabric．dee knit fabric．			
		S	
	边		
		＊	Cincuntio cis
		为	
		（1000	SHORTHAND
，			Ton and prepatation
			Hed
domer			
		隹	
		Thrashing machines，Aultman \＆	THE BEST BAND SAW BI．AL
ort			
Hecmind		gavertisements．	
aras			
		otomatio ohbintr－ptay ant tune	
			grparation or rate ins， gry－
Hose coupling．compound，G．Westinghouse，Jr．． 243			
	Sap，R，	TANING－A VALTABLE	
Sedem			Orit orsar
locking switch and signal mechanism．J．A． onnen ．．441	Sole		
	Soleme		
\％ex			nesterivamaty
	namid	THE PORTER－ALLEN	
Steremo		High Speed Steam Engine．	14
Sortion			
			MACHINES For Propicing coiv
		．	
			等
	maid naempener	E Ho	
			At．
			tatoso

ITEVT BOOEX MODERN MITTTNG JU̇ST PUBLISHED.

8WEEPSTAKES, WITH THE ELLIS

 50 Nill Gold, Chromo, and Lut'g Cards (No ${ }^{2}$ alike) STEEL STAMPS Geo. W. Read \& Co., MAHOGANY, Oabinet ∇ OOCls. solin manofaoturers
CUT AND PRESS DRIED
THIN LUMBER,
CIGAR BOXES,

186 to 200 Lewis St., New York.

 the new otto silent gas engine.

PATENTS.

MRSSRSS. MUNN \& CO., in connection with the pabHeation of the Scientricic Arericas, continue to ex-
amine Improve for Inventors.
In this line of business they have had thirly.five years' experience, and now have unequaled facilities for the proparation of Patent Drawings, Specifications, and United States, Canada, and Foreign Countries. Mesars Mann \& (0.0 also attend to the preparation of Caveats, Copyrights for Books. Labels, Reissues, Assignments, and Reports on Infringements of Patents. All businces Intrusted to them is done with special care and promptness, on very reasonable terms. A pamphlet sent free of charge, on application, con-
tuining full information about Patents and how to procare them; directionan about Patents and how to proDesigne. Patenca, Appeals, Reissues, Iffrigements, As. siggments, Rejected Cases, Hints on the Sale of Pa-
tents tents, etc.
Patent aleo send. froe of charge, a Synopsis of Foreign patents in all the principal countries of the world. MUNN \& CO., Solicitors of Patents, 87 Park Row, New York.
BRANCH OFFICE-Corner of F and 7 hh streets,
Wasbington, D. C.

NEW YORK BELTING AND PACKING COMP'Y. \approx The Oident and Lar reen Manaffectarers or the orleinal PMERETWEDES

Pond's Tools, DAVID W. POND, Worcester, Mass.

MACHINISTS' TOOLS.
 Larhes, Planers, Drills, \&o.
"BLAKE'S CHALLENGE" ROCK BPEAKER
Fi For Mnendam Rond Patonted Novomber 18, 1879,
 ITR blake crusher co., Sole Makers, New Haven, Conn.

MACHINERY

DEAN BROTHERS, Steam Pump Works, INDIANAPOLIS, IND.
Manothotarers of
Manthoturess of
BOILER PEEDERS AND PUMPING MCHNERY,

HOW TO SOFTEN HARD WATER-

MOSS ENGRAVING CO

DEAF 5mame 853 Brondway New york $\$ 72$ A WREKK. 812 and at home easily made. costy PAYNES AUTOMATIC ENGINES.

PATENT QUICK

DUC'S ELEVATOR BUCKET,
 THOS. F. ROWLAND, Sole Manufacturer, Brookilyn, N. Y.

FOR SECOND-HAND ENGINES,

THE SCOVILL

"Pop" Safety Valve, RIMPLE, RELIA BLF, DURA BLE,
For Locomotive, Stationary, Marine, and Portable Send for deseriptive Bolieriarirs and price lists to
THE THE HANCOCK INBPIRATOR CO.
BOSTON, MASS.

FORSTER'S CRUSHER AND CRUSHER AND PULVERIZER,
 Addreen totten el CO., Pllobarre, Pa.

IRON REVOLVERS, PERFECTLY BALANCED Is sIMPLER, AND HAS FEWER PARTS THAN ANY OTHER BLOWER.
P. H. \& F. M. ROOTS, Manufre, CONNERSVILLE, IND.
 Wim. CoOKE, solling Agt, 8 Cortandt Stroot,
JMS, BEGSS \& CO., Selling Agts., 8 Dey Stroot,

WITHERBY, RUGG \& RICHARDBON. Manufacturens
 THEBEST =Wizwimpiaioin
 THEE BAKIAR BLOWER. The beat in the World for

 EFEND FOR OUR CATALOCUEG

Por PATRNT RRNDING ROILIS Hilles \& Jones, wilmington, Del.
TO MACHINISTS.
 THE WALLACE DIAMOND CARBONS.
 READTHIS
We will send ON TRIAL (before purchasing Dr. Joy's Celebrated Electric Devices,
 Vil Nervoan Pimears, Gencrail Debulty. Lon

AGNER \& CO., Chicaco. ml .

BÓLER

The following Wire Rope Sheave Pulleys, of Roebung't

Advertisements.

Establd EACLE ANVILS. 1843, Solli CA ET STERL Face and Horn. Are Fuly War Double Screw, Parallel, Leg Vises.

 ENSILAGR POWRR ! Ourr-Horse Entera
 BOILER COVERINGS,
 the patest air space coverings.

 , wimzem
 Descriptiv COATINGS, UEMENTS, Et H. W. JOHNS M'F'G CO. 87 Maiden Lane, New York.

 | new York betting a nd packing |
| :--- | :--- |
| Wellington Mills Emery | Uned in ONLY our Wheole.

WIRE ROPE

Address JOHN A. ROMBLING'S SONS, Man ifact urorg Treentand Rand Rop.
send for circuar.

Boiler Feeder

 simple, Reliable, and Effective 40,000 IN ACTUAL USE. NATHAN \& DREYFUS. Sole Manufacturers, NEW YORK. Send for D

Mill Stones and Corn Mills.

The Mackinnon med
 LOW PRESSURE BINARY ABSORPTION STSTEM.

TO TNVENTORS AND MANUFACTURERS

The Semi-Centennial Exhibition

Horizontal Steam Engines,
 (LAMBERTVILLE IRON WORKS,

ERICSSON'S

 New Caloric Pumping EngineDWELLINGS AND COUNTRY SEATS.
 DELANATER IRON WORIS C. H. Delamater \& co., Proprietors,
No. 10 Cortlandt Street, New York, N. Y. NOISELESS ROTARY FANS.

 oorants br one mumole UNIVKORTINGETOR

HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY
N. B. Franklin.v. Pres't. J. m. alluen. Pres'i J. B. PIERCE. Sec'y.

Established 184.

ICE AND COLD AIR.

TO INVENTORS

Howaril liminaciminic Co.
364 \& 366 Broadway, New York.

PATENTED NOVELTIES YaNKEE NOTIONS,
OF EVERY DESCCRIPTION
AMPLE CAPITAL.
Latest Improved Machinery.
CONNECTIONS WITH ALL WHOLESALE ME- CHANTS in the united states and canada. Agents in Foreign Countries.
Correspondence without charge, with all wh

Midy

§rientific Amrricau

 FOR 1881The Most Popular Scientific Paper in the World, VOLUME XLV. NEW SERIES.

Only 83.20 n Y
So Numbers a Year. Weikly.
paper is pubilished virculated and splemaialy illuatrated toen pages of useful informationmand a large number of orikinal engravings of new inventions and discoveries. representing Engineering Works, Steam Machinery. Now Inventions, Novel Les is Mechancs, Manufactures, tecture, Agriculture, Bortlcalture, Natural Histors, ett. All Classes of Rendera find in The Scientific Amebican a popular rcsume of the best selentige information of the day ; and it is the aim of the publishers to present it in an atcractive Yorma, avoinik as much as this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in every commanity where it circulates.
Terms of Subscription. -One copy of Thr SciEsripic AxEricav will be sent for one vear- 52 numberb-
postage prepald, to any subscriber in the United States or Canada, on receipt of three dollarn and iwenty cents by the publishers; six months, 81.00; three months, 81.00 .
Clabs.--One extrn copy of The scientific AMkri-
OAN will be supplied gratis for every ciub of Ane subectibert oan will be supplied gratis for every cub of kne oubserbers
at $\$ 2.20$ each; additional coples at same proportionate rate.
One copy of The Scirstipio Amerions and one copy for one jear, poetage prepald, to any subscriber in the United States or
the publishors.

the publishors

Express. Mones to remit is by Postal Order, Drath, or Express. Money carefully place inslde of envelopes
securely sealed, and correctly addressed, seldom poes astray, out is at the sender's risk. Address all letter to., payable to
MUNN \& $C O$.
37 Park Row, New York.
To Foreign Subscribers.-Under the acillties of the Postal Union, the Scirntipic American ts now sent
by post direct from New York, with regularity, to ere in Great Britain. India, Australia, and all other British colonies; to France, Austria, Belgium, Germany
Russia and all other European States ; Japan. Brasil Mexioo, and all states of Central and South America. Terms, when sent to foreign countries, Canada excepted,
 both SCIRNTTPIC AMERICAN and SUPPIEM RNR
year. This includes postage, which we pay. Remit by postal order or draft to order of Munn \& Co., 87 Park

PRINTINE INKS:

THE "Scientific American" is printed with CEAA
ENEUJOHNON CO. SNK. Tenth and Lom
bard Sts. Philadelphia, and 59 Gold st., New York.

