[Entered at the Post Office of New York, N. Y., as Second Class Matter.]
a Weekly journal of practical information. art. SCIENCE. mechanics, chemistry and manufactures.

Vol. XLIV.-No. 9.]
 NEW YORK, FEBRUARY 26, 1881.

AMERICAN INDUSTRIES.-No. 67.

Ashesius

That American mechanics, inventors, and business men are pre-eminently practical is acknowledged the world over. They are always pronounced utilitarians-making the first count in their valuation of almost every new article answer to the questions: What is it worth to usto-day? How much can we save by its use? Will it meet our necessities better than what we have heretofore used? It is important that forward way, in regard to every new product whose manufacture is destined to take a permanent place in our indus tries. But what reply would such inquiries have elicited twenty years ago, supposing them to have been then made, as to the usefulness of asbestos, or anything made therefrom? The probability is that comparatively few people at that time even knew that there was such an article. A few students, however, might have furnished some very curious reports about it-how the ancients used to wrap the bodies of their dead in asbestos cloth to keep their ashes separate ago it was supposed to be very rare, but since there hasbeen
from those of the funeral pile; how Charlemagne had a a demand for it in considerable quantities new sources of suptablecloth made thereof, and astonished his guests by ply have been opened up, and it is now found in many parts throwing it into the fire after dinner, whereby it was of Europe and America, the best quality coming from this cleaned without burning; how an Italian chevalier had country. The inquiry for asbestos for manufacturing pura complete dress of asbestos, with which he made successful poses had, we believe, its commencement with the foundaexperiments in testing its protective qualities for firemen's tion of the industry which we illustrate in this paper with uses; how numerous tricks in fire handling have been engravings of the manufacturing establishment of the uses; how numerous tricks in fire handling have been
engravings of the manufacturing establishment of the been developed nothing of any considerable practical value, \quad out of the business established by Mr. Johns in 1858.
and the possibilities of future usefulness in this fine fibered, fire and acid proof mineral were, apparently, no better than they had been when the pyramids were built. mineral, and the nature of his patented inventions. That variety of them a Greek word meaning inconsumable) is he has labored intelligently in this comparatively new field chemical of the hornblende group of minerals, and the is proven by a gratifying success and a world-wide repumagnesia alumina and ferrous oxide; but thequalities vary for structural and mechanical purposes are employed Every widely. In color it is usually from white to gray and green \quad year additional improvements and processes have been made -sometimes yellow, when impregnated with iron-with fine, by Mr. Johns, and, as the various branches of the industry crystalline, flexible fibers of a silky luster, and feels some- became better known, it is not strange that he has had what oily to the touch, although in its native state it is as many imitators in his line of manufacture.
many imitators in his line of manufacture.
The main departments of the factory will be readily distinguished at a glance from our artist's representation. The [C'ontinued on page 130.]

ASBESTOS WORKS OF THE H. W. JOHNS MANUFACTURING COMPANY.

Striuntific gmmerican.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
published weekly at
NO. 3 Y PARK ROW, NEW YORK.
O. D. MUNN.
A. E. BEACH.

TEIRMS FOR THE SCIENTIPIC AMERICAN. One copy, one year postage included..
One copy, six months, postage included

8390
160
Clubs.-One extra copy of THE SCIENTIfIC AM ERICAN will be supplied same proportionate rate. Postage prepaid.
Remit by postal order. Address

MUNS \& CO , 37 Park Row, New York.
The Scientific American Supplement
isa distinct paper from the Scientific american. The supplement is issuad weekly. Every number contains 16 octavo pages, uniform in size
with SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEM INNT, \$5.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by
all news dealers throughout the country. all news dealers throughout the country.
will be sent for one year postage free, on receipt of seven dollars. Both will be sent for one year postage free, on receipt of ser
papers to one address or different addresses as desired. The satest way to remit is by draft postal order, or registered letter.
Address MUNN \& CO., 3 Park Row, N. Y.

Scientific American Ex
The Scientific amprican Export Edition Edition. odical, issued once a month. Each number ccntains about one hundred large quarto pages, profusely illustrated, embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the scrw plates and pages of the four preceding weekly issues of the Screstify
AmvRICAN, with its splendid engravings and valuable intormation: (2.) Commercial, trade, and manufacturing announcements of leading houses.
TTerms for Export Edition, $\$ 5,00$ a vear, sent prepaid to T'erms for Export Edition, 85.00 a year, sent prepaid to any part of the
world. Single copies 50 cents. Manu acturers and others who desire to seeure foreign trade may have large, and handsomely displayed announcements published in this edition at a very moderate cost. The SCIENTIFIC AMELRICAN Export Edition has a large guaranteed circulation in all commercial places throughput the worid. Address MUNN
CO., 37 l lark Row. New York.

NEW YORK, SATURDAY, FEBRUARY 26, 1881.

Contents.

(Illustrated articles are marked with an asterisi.)

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 269.
For the Week ending February 26, 1881. Price 10 cents. For sale by all newsdealers.

ENGINEERING AND MECHANICS.-The Accelograph. Used for
measuring the pressures developed by gunpowditigases, and for

 AGRICULTURE, ETC.-Luke Blackburn, the Famous American

THE ENCOURAGEMENT OF INVENTIONS-WITH A RESERVATION
A curious phase of opinion crops out constantly in news paper comments on patents and the rights of inventors. Even journals of metropolitan dignity and influence give frequent evidence of it, and thus unwittingly encourage the attack upon the patent system of parties interested in the infringe ment of patent rights. The opinion referred to is hard to formulate, but it seems to be, in brief, that inventors ought always to be encouraged-provided they do not invent too much or do their work too well. In all secondary and rela tively unimportant matters the inventor's rights should be strictly respected and rigorously guarded; but when the in ventor produces some article or process of exceptional value, something that the public cannot afford to do without, after they have learned to use it, then it should promptly be taken away from him. Having control of something that every body wants, the patentee becomes an "odious monopolist." His service to the public in producing so great a conveuienc is forgotten or grudgingly admitted. The direct or indirect advantage of the invention to the public may be a thousand dollars to every hundred dollars received by the inventor for its use; the thousand is accepted as a natural right and no account is made of it, while the inventor's hundred is eyed askance as so much paid for an intangibleidea. It was such a simple thing! Scores of people must have thought of it if he had not; why, then, should people pay for what they might have had for nothing if they had only had the mind to think of it? No comparison is made between their condition before the invention was made and after it was adopted, but only between their condition with the invention and paying for it, and their condition having the invention and not pay ing for it. The visible thing is the inventor's profit, and hat is grudged him
A pretty illustration of this thankless logic is furnished in the editorial comments of the Herald on Judge Nixon's recen decision sustaining the right of the Bate Refrigerating Company to the processes covered by their patent.
The Herald says: "Our patent laws sometimes lead to practical absurdities. If there be but one safe and economi cal method of preserving fresh meats shipped to Europe, the vast dimensions and possibilities of this expanding trade make it for the general interest of commerce that this method should be free to all. It would be well if all patents wer granted subject to revocation in the public interest on pay ment of a reasonable compensation. Processes are often patented of such extreme simplicity that hundreds of ingen ious minds would readily discover them, and when the paten injuriously obstructs a great branch of foreign trade the pub lic should not be compelled to await its expiration. Th government which creates these artificial rights should gran them with an explicit reservation in favor of the public.' The absurdity of this position is simply grotesque. It as sumes that the patent system is not designed "in favor of the public;" but that its purpose is to reward the inventor only The truth is the patent system regards the inventor and his encouragement simply as a means to an end, and that end is the advancement of the useful arts and sciences for the public benefit. The proposed reservation would simply de feat the eud aimed at by attaching a penalty to successful invention.
The alleged obstructiveness of the more perfect inventions when patented is equally absurd. Admit, for the sake of argument, the assumption that there is but one safe and economical method of shipping fresh meat to Europe. Without the inducements held out by the Patent Office that method would not have been developed, perfected, and patented. Knowing that a successful solution of the problem would be profitable to them, the inventor and his associates thought, studied, and experimented until the solution was gained, and then accepted the terms offered by the government for the temporary monopoly of their system. Without the invention there could be, it is assumed, no profitable shipment of fresh meat to Europe. With it such shipment is possible. So far there has been an extension, not an obstruction of trade. Other men are at liberty to perfect, if they can, the previously existing methods or to devise new methods. They plead that they cannot; therefore, they say, our inventor must let them use his method for nothing, or for a price which they think is reasonable. If he will notconsent he is an obstructor of trade.
To revoke the "obstructive" patent because its value has led other men to covet the privilege it covers would be a breach of contract on the part of the public that would react disastrously in the discouragement of further invention. To confiscate the property indirectly by compelling the owner to surrender it at a price not fixed or agreed to by himself would be equally impolitic and scarcely less unjust. We doubt whether there was ever an invention which the invent."
The Herald asserts that when an invention has been prove tion "for the public benefit" for nothing, or at a price which the patentee or his friends might fix as reasonable, the Herald would probably speak disrespectfully of his intelli-

IS GLUCOSE UNWHOLESOME

The manufacture of glucose and starch sugar having in creased with surprising rapidity recently we are frequently asked whether its use will injure the health. Some claim that it will, others assert the contrary. Reliable experiments by competent persons are rare, and every fact which throws any light upon the subject is welcome and will haveits effect. We are, therefore, willing to give place to certain statements made by Dr. J. Nessler, of Baden, in regard to his own experience with starch sugar. In Germany the starch is made from potatoes, and of course German glacose may possess some properties unlike ours, which is made from cornstarch. The specimen used by Dr. Nessler in his experiments may or may not have been a fair average of the glucose made in that country, but his statements will suggest to courageous parties at home the propriety of putting American glucose to the same tests or similar ones.
This kind of sugar has been used for nearly fifty years, says Dr. Nessler, for improving sour wine, in making beer, and in confectionery. Since starch is not injurious to the health, and the sulphuric acid is almost completely removed, it was assumed that no hurtful substance could be formed by the action of dilute acid on starch. Up to a very recent period no one harbored a suspicion thatstarch sugar could exert any injurious effect. This kind of sugar is cheaper and is better fitted, for other reasons too, for making cheap drinks than cane or beet sugar. It had, therefore, been recommended officially and privately, even by Dr. Nessler himself, under the conviction that the use of brandy could best be checked by the manufacture of good and cheap drinks.
Not long since A. Schmitz, who drank natural wine one day and wine containing glucose the next day, tried the experiment of injecting the unfermentable substance contained in starch sugar into the veins of a dog. He noticed that starch sugar had, or might have, a stupefying or narcotic effect.
Incited by these statements of Schmitz, Dr. Nessler began some experiments with the unfermentable constituents of such sugar. He obtained from Alsace a 20 per cent solution of a sugar which was free from arsenic and in which there was 26 per cent of unfermentable substances. To the solution he added enough yeast to set up fermentation, and when this was added, filtered the liquid and evaporated one liter of it to a sirup. The alcohol and any other volatile product of fermentation were thus expelled. This sirup was now diluted to 100 c.c., so that it contained ten times as much of the various unchanged constituents as the original solution. At 7 A.M. he took 50 c.c. (nearly 2 fluid ounces), representing 100 grammes of sugar, and at 10 A.M. as much more. Its taste was bitter and repulsive. Toward noon he felt rather badly, but not sufficiently to be able to ascribe with certainty any hurtful action to the extract which he had taken. At 2 P.M. he took as much of the residue as represented 100 grammes of sugar, but this time it had not been evaporated so far as the first time, but only to two-fifths. An hour later a violent perspiration broke out, and a little later violent headache set in which lasted until late in the night. A few days later Dr. Barth, assistant at the experimental station, took the unfermented portion from 90 grammes (over 3 ounces) of the starch-sugar at $10 \mathrm{~A} . \mathrm{M}$. The fermented and filtered liquid was again evaporated to three-fifths. A cold perspiration soon showed itself, attended with a tightness of the chest. At noon he had no appetite, and threw up the soup which he had eaten. In the afternoon he was seized with a violent headache that lasted until evening, and the next day he did not feel well.
Dr. Nessler thinks there can be no doubt left a substance injurious to health remains in the liquors made by ferment. ing this sugar. Possibly not all starch-sugar has the same effect, but there is always a bitter substance or extract left after fermenting and evaporating, which turns the plane of polarization to the right. It is probable that all are more or less injurious according as it contains more or less of this substance.
Whether this substance is formed during the fermentation or was already there, and whether its injurious effects are not destroyed or neutralized by the alcohol in which it is usually dissolved, are questions which he does not attempt o answer.

WRITING INK.

There are few chemical preparations the use of which has become so general as that of writing ink. And yet it is rare to find an ink that fulfills all the conditions required of it. This is explainable upon the ground that ink recipes are not constructed according to any chemical formula, but that we are compelled to rely upon empirical experiments and make use of the results gathered by practical experience. A good black ink must flow easily from the pen, and must yield either immediately or in a short time a deep black writing. It must not corrode metallic pens nor destroy the paper. Further than this, a good ink should contain no considerable sediment when kept in airtight bottles. In ordinary ink bottles a sediment will always form, and the more it is exposed to the atmosphere the faster it will form. An ink that is to be used for important documents must not be washed out with water or absolute alcohol so as to be permanently illeg. ible.
Ink may consist of either a clear solution of any dyestuff, or, as in the case of common black ink, a finely divided, insoluble precipitate suspended in water. The chief materials used for making this ink are gallnuts, green vitriol, and gum, which are employed in the most varied proportions. The
gallnuts are crushed to a coarse powder and boiled in water, or better, digested for several hours at a temperature near the boiling point, and the gum and green vitriol added to the filtered decoction in solution.
The following example will serve as ink for ordinary use: 12 parts galls, 5 parts green vitriol, 5 parts gum senegal, and 120 parts water.
An exceedingly fine ink is said to be produced by the following recipe: 11 parts galls, 2 parts green vitriol, one-seventh part indigo solution, and 33 parts of water. Here the relatively larger quantity makes the gum unnecessary, while the indigo solution makes the brilliant black seem still deeper. Writing executed with this ink may, it is true, be removed by means of dilute acids, but it may be rendered visible again by chemical means.
There is also an ink in the market in which the galls are replaced by logwood; but the writing is less black and can be totally destroyed by treatment with acids and cannot be restored by other means.
The so called alizarin inks flow easily from the pen, but they mostly suffer from the fact that the writing appears at first only of a faint greenish, bluish, or reddish color, although it gets darker afterward.
The most permanent writing is done with India ink, be cause the black coloring matter of this ink consists of finely divided carbon, which is unaffected by chemical reagents. Its high price seldom permits of its use.
For ordinary use only such ink is recommended as consists either of pure galls and iron, or of some mixture in which these are the chief ingredients.
A small quantily of salicylic acid, one-half gramme to the liter, will prevent it from moulding even when kept in open ink bottles. Tiuis is far preferable to the bad smelling carbolic acid, or the very poisonous bichloride of mercury, so frequently used both in ink and mucilage to prevent souring, fermentation, or mould.

PROPOSED DIGEST OF PATENTS.

In his recent annual report the Commissioner of Patents, Mr. Marble, calls the attention of Congress to the necessity of having a digest made for the use of the office and the pub lic, of the inventions patented in this and foreign countries. The preparation of such a work, he says, would cost a large sum of money, but he thinks the government would soon be reimbursed by its sale. The advantage to the public, especially to inventors and manufacturers, would be incalculable, and for these reasons he earnestly recommends Congress to take action looking to an early commencement of the work.
To prepare such a digest would, indeed, be an immense work, but there is no doubt of its value as an assistance to inventors in determining the probable novelty of their inventions, provided the books were kept up to date and made readily accessible to the public. To Patent Office examiners the work would be of especial convenience in helping them to reject new applications for patents.
A beginning of the proposed work might be made with the American Patents; and when that digest is complete then take up the foreign patents, as the latter would necessarily contain many repetitions of the devices found in the Sarily contain many re
American patent lists.
But before anything is done in respect to this proposed compilation we would suggest that the Commissioner of Patents take steps to provide for the convenient access of the public to the printed patents that now exist in the Patent Office. This would seem to be a comparatively simple matter; but somehow or other it is hedged about with insuper able difficulties It is a curious fact that although the U . S . patents are printed in convenient form, and are public records, kept in a public building especially designed for the access and information of the people, still it is next to impossible for an individual to go to the Patent Office and refer to any complete part of the printed patents. For example, an inventor having made an improvement in flat irons, calls at the Patent Office and requests the privilege of looking over the various flat iron patents, with a view to applying for a patent if his stpposed invention is new. He is shown sundey portfolios or volumes, purporting to contain all the previous inventions, finds nothing like his device, files his application, and is rejected. He then ascertains that some of the drawings or some of the patents, including the one resembling his device, had been temporarily removed, on some excuse or other, from the portfolio when he examined it, and that the set was not complete; so his examina tion was fallacious. He further finds that there is no uni-
form system followed at the Patent Office whereby the public form system followed at the Patent Office whereby the public may enjoy convenient and certain access to all of the printed patents in any particular class or branch. We suggest that before the new digest proposed by the Commissioner be commenced, the printed patents should be thoroughly classified, and several complete sets thereof mantaned in conve nient places for public reference.
We are inclined to believe that the Commissioner of Pa . tents already has authority to establish such a system. Its efficient realization would be of great value to manufacturers, inventors, and all who are concerned in patent affairs.

THE SUN SPOT MAXIMOM.

We are now approaching the period when frequent and large sun spots may be expected. In 1870-71 this was the case, and the evidence is quite conclusive that they return with tolerable regularity at intervals of about ten or eleven years. As I write (January 28) there is in the sun's southern hemisphere, near the western border, a dark and conspicuous
spot surrounded by a distinct penumbra. The umbra by itself
is about 20 seconds in diameter is about 20 seconds in diameter, or in linear units about 9,000 miles, larger than the earth would appear at the same dis ance. There is also in the northern hemisphere a pretty group of four spots; and there are several others scattered Spots have been recorded over 100,000 miles in diameter and visible to the naked eye, and as many as a hundred are some times noticed at one time. Frequently, however, the surface is entirely barren. ' The large spot mentioned above may almost be seen through a piece of smoked glass, and a
spyglass of quite low power will render it casily visible. It is now moving off the disk; but in about twelve days it will probably return on the eastern edge; probably, but not certainly, for these large spots sometimes last for months and ometimes are dissipated in half an hour.
Care musi be taken not to look at the sun through a telescope without the intervention of a piece of smoked glass over the eye end of the telescope. Loss of sight may result from neglect of this precaution. The best way to view the surface of the sun is to point the tube through a hole in the
window shutter or other screen, and allow the window shutter or other screen, and allow the image to fall on a piece of white paper, the eyepiece being first drawn out and the paper moved toward and away from it till the true focus is found. This gives a miniature but correct map of his surface, which can be seen by a number at a time without any risk or difficulty. If some of the readers of the Scientific American would keep a regular record of this kind, mapping and describing the phenomena observed systematically and accurately, they would find themselves much interested, and the records might have a scientific yalue. It is said of Schwabe, to whom we are indebted for more of our knowledge of the sun spot and associated phenomena than to
any one else, that "twelve years he spent to satisfy himself; six more years to satisfy, and still thirteen more to convince mankind. For thirty years never has the sun exhibited his disk above the horizon of Dessau without being confronted by Schwabe's imperturbable telescope, and that appears to have happened, on an average, about 300 days in a year." This persistent work of observation, even sometimes with very limited means, has given us the reliable basis of theory; and there is nothing to hinder many an American observer
continuing the record and keeping watch for the phenomena now to be explained, which seems to be associated with these sun spots.
These observations of Schwabe's, continued till 1868, and those of Wolf since, show very conclusively the ten year period above referred to. This being unquestionably determined, all kinds of eleven year cycles have been supposed o be discovered on the presumption that whatever affects the sun affects also all terrestrial activities. Herschel endeavored to show that the price of wheat changed with the sun spot period, being lower at times of maximum. But
notwithstanding the authorily of his great name, his success is very doubtful. Equally fruitless is the attempt to find an eleven year cycle coincident with sun spot maxima in the great financial panics and eras of commercial failures, which some Englishmen of good reputation have been recently indulging in. But there is one relation in which the observations are so complete that we may believe it to be established -the relation between photospheric activity on the sun and electrical activity on the earth. Through a long course of years it has been shown that the periods of magnetic variation coincide with the period of sun spots; not rigidly, but sufficiently close to prevent the probability of a chance con nection. In at least one case, when observers have been look-
ing at the sun through telescopes, and have recorded the exact instant of solar activity, the magnetic needles over the earth were violently affected, rigidly pointing out a new meridian. Auroras were noted, even in southern latitudes. Telegraphic lines refused to work, and shocks were given to the operators.
It is not difficult to explain a connection between earth currents of electricity, auroral display, and magnetic dis turbance, but how these are caused by sun spot prevalency, or how a common cause produces all, is a problem which has not been satisfactorily solved. In the meantime it is well to heap up the records; to keep a close watch on the sun and note the size and character of his dark and bright spots; to look out also for auroras and record their appearance and duration; and for those who have opportunity to observe ny especial disturbances in telegraphic currents and any od freaks of the magnetic needle.

ANOTHER NEW DISINFECTANT.

Preserving and disinfecting agents have in recent times acquired an importance and scope regarding the methods of using them that could scarcely have been suspected at a relatively recent date. Dr. Koller cites, as examples, the antiseptic treatment of wounds which has been so exceptionally successful in the science of medicine. The discovery and application of true disinfectants and antiseptics may be designat as a most important practical question. The sanitary weal of the indıvidual, of the masses, of cities,
and of countries depends upon rational disinfection. The army of contagious diseases cannot be conquered by anything more successfuily than by the weapons of disinfection. The mutability, the changeableness, the self-sufficiency of the germs of decomposition and decay are characteristic of everything organic; but also characteristic of no men is that restless striving to lend a longer life, a quiet stability, to hangeable nature. This conservative character is a feature
are sharply defined in this well-lighted picture, and time alone, with her flitting and varying forms, conjures up the conflict, whose final solution, however, only testifies to the old and innate conservatism.
The step up which the present has climbed in the recognition of disinfectants and antiseptics is quite a high one; but glancing back upon leaves of science, covered with glory, it is not difficult to predict that in this domain we shall still have many important advances yet to rejoice over.

At the head of the list of disinfectants which belong to modern times are carbolic and salicylic acids and thymol. A definite circle of action was found to belong to each when experience had leveled the way. Carbolic acid is in general the disinfectant of crude masses of organic substances; salicylic acid is the disinfectant of the kitchen, the cellar, and the larder, but thymol (most costly of all) is the disinfectant of the boudoir.
To the above mentioned must now be added a new one, says Andeer, viz., resorcine. Before we enter into a discussion of how it acts it is advisable to consider more closely its nature.
Resorcine was discovered about fifteen years ago by Barth and Hlasiwetz. At that time it was obtained as a product of the decomposition of certain gum resins like gum ammoniac, galbanum, assafœtida, etc., by fusing them with caustic potash; also by the dry distillation of Brazil wood. It de: rives its name from resina, resin, and orcin, a substance which it resembles, and which occurs ready formed in all lichens used for making litmus and archil, and is also obtained by the dry distillation of acids and ethereal bodies obtained from these lichens.
Sommer afterward called attention to the fact that umbelliferone, obtained from the umbellifera resins, when fused with alkalies gave the same substance. This umbelliferone crystallizes in colorless, odorless, and tasteless prisms, which are very soluble in boiling water, alcohol, and ether, and fluoresce strongly. It can be made from the resin which occurs as a drug in the market, or from the resin obtained by extracting angelica root, or levisticus, or imperatoria, with alcohol, and evaporating the alcoholic extract.
Resorcine belongs to the numerous compounds of benzole derivatives, especially to the dihydrox-benzoles or diphenols. A cheap method of making resorcine from benzole derivatives has been invented, and the dyes derived from it have justly attracted very extended attention.
Among the methods for making resorcine, the following are worthy of mention, because they furnish it at a reasonable price:
The chlorobenzol-sulpho-acid is made by dissolving chlorobenzole in fuming sulphuric acid. Its sodium salt when fused with caustic soda forms resorcine.
On warming a solution of phenol in sulphuric acid the metaphenolsulphonic acid is formed, and its sodium salt fused with caustic alkali also yields resorcine.
The third and best method, it seems, for making resorcine is from the dibenzolsulphonic acid, which is made by benzole vapors into warm sulphuric acid. A large quantity of resorcine is formed by fusing its sodium salt with caustic soda. The relation that exists between resorcine and phenol (carbolic acid) as to their constitution led Andeer to ask whether therr action might not be similar. In fact further experiments proved that resorcine bas the property of stopping decay. Chemically pure resorcine, which withstands. the light, when in a one per cent solution stops the development of fungi and mould. This has been proven not only by artificial experiments in the laboratory, but also chemically on the appearance of the symptoms of disease.
What seems deserving of special remark is that absolutely pure resorcine, in every degree of concentration, coagulates albumen and precipitates it from solution. On this account the author considers it an excellent caustic to remove un. healthy tissue. In crystals it cauterizes as powerfully as lunar caustic, but, he assures us, without pain, nor does it form metallic albuminates, which are insoluble or difficult of solution, causing a scar. In a comparatively short time, say three or four days, the skin regains its natural appearance. In homeopathic doses the pure resorcine will preserve ink and colors which would otherwise mould very quickly, and not injure the color.
A one per cent solution will not prevent fermentation, but only retard it in favorable cases. To stop it completely requires a comparatively strong solution of $1 \frac{1}{2}$ to 2 per cent. uires a comparatively strong solution of $1 \frac{1}{2}$ to 2 per cent.
Andeer adds that resorcine is soluble in all liquids except chloroform and sulphide of carbon, and unites readily with animal fats and oils, especially in the presence of alkalies, and helps to emulsify them. Hence it is an antiseptic, caustic, to a certain extent a styptic, and an emulsifying gent. It has one advantage over the other disinfectants derived from benzole, that it can be used in every form prescribed by the pharmacopœia.
It seoms that we are to be enriched by a new disinfectant which shail take a position in the future of unlimited usefulness. Resorcine will be the disinfectant, and in a certain sense the antiseptic of the physician, the druggist, and the laboratory.

Mr. Watson, in his Mechanical News, says that the best packing he ever used for faced joints, either steam or water is common drawing paper soaked in oil. After a short time the heat of steam converts it into a substance like parchment so that it is practically indestructible. It has the advantage of stripping readily from surfaces when it is desired to break of stripp
a joint.

ASBESTOS.

[Continued from page 127.]
location is a most convenient one in Brooklyn, at a point on location is a most convenient one in Brooklyn, at a point on
New York Bay where there are admirable dock facilities for receiving and shipping goods.
Asbestos materials are woven, felted, or matted fabrics, and sheets of various fineness and thickness, used for filtering acids, for non-conducting and fireproof coverings, linings, and for many other purposes. Mill boards of one-sixteenth to one-half inch or more in thickness are used for packing gaskets around steam, fire, oils, and acids; also for fireboxes, coverings for locomotive boilers, etc. Sheathings, in sheets and rolls, make fireproof linings under weatherboards of wooden buildings, and in fire and boards of wooden buildings, and in fire and
boiler rooms. Steam packings, in the form of boiler rooms. Steam packings, in the form of
rope, wick, loose fiber, etc., are for use in stuffing boxes around valve stems and other moving parts of steam engines, acid and oil pumps. Cements and coatings in great variey are employed for repairing gas and other retorts, and for use around furnaces, acid works, etc.; roof cement for covering and repairing roofs, and jointing cement for steam and other joints; while the concrete coating is used for rendering beams, posts, girders, and other wood work fireproof. The following facts are given under the authority of Mr. Johns: A stick of wood thus coated and thrown into their furnace, for experiment, was taken out in its original form after this exposure, the asbestos coating, however, then covering only charcoal. Fireproof paints are used for interior woodwork. The largest drygoods firm in New York had their stores and warehouses thus painted, the total woodwork covered amounting to four and a half acres. Besides \mid suited for out-door work or interior decoration. They work the above are asbestos paper, thread, and numerous other articles, widely varying in their character and adaptations, which form an interesting portion of the business of the establishment, but they are less important to a large class of persons than H. W. Johns' asbestos roofing, liquid paints, and boiler coverings.
The department for the manufacture of asbestos roofing, and the machinery employed therein, whichforms the subject of one of our engraved views, represents a branch of business to which Mr. Johns first devoted his attention, having commenced it in 1858 . The machine which is shown in this department is the result of a long series of experiments by Mr. Johns, and by its use the whole operation of manufacturing roofing from the raw materials is completed. Some two miles of this fabric, about 40 inches wide, is turned out daily by this machine. It is furnished in rolls containing about 200 square feet each, and the covering of a roof is quickly accomplished. The Johns patent asbestos roofing differs from other composition roofing, and is claimed to be about equal to tin, while it costs only about half as much. Its structure will be readily understood from the small engraving. The actual thickness is about one-tenth of an inch. It consists of a manila lining, upon which is a layer of waterproof composition, then a strong canvas, another layer of waterproof composition, and a surface layer of asbestos-coated felt. This composition is claimed to be acidproof as well as

Roofing.

waterproof. It is also said to be equally adapted for use in all climates, and for flat or steep roofs. An occasional application, at slight expense, of the asbestos roof coating, keeps a roof in good order, and the white fireproof coating with which the surface is tinished makes a light roof, which is not only air and water tight, but an effective nonconductor of heat, and one that will protect the roof against fire from adjoining buildings.
Asbestos roofing has been in use for many Asbestos roofing has been in use for many years, and it has met with the approval o of railroad buildings, bridges, warehouses, and for factories, etc., for which purposes it is especially adapted.
The utilization of asbestos in the manufac ture of paints attracted the attention and be came the subject of experiment with Mr . Johns at an early period in his investigations, and it forms a valuable ingredient in the fireproof paints referred to in the foregoing list of asbestos materials. This company also manufacture on an extensive scale a superio grade of pure linseed oil paints, in liquid form, for general structural purposes, which are de signated by the peculiar trade-mark which is shown at the head of this article. Our artist has made two representations of department where the manufacture of these paints is car ried on, which give but an incomplete idea of he magnitude of this branch of the business. The manner of grinding and mixing is differ-

boiler and pipe coverings

| ent from that followed in other establishments, and, although | ments. For pipe coverings they especially recommend |
| :--- | :--- | :--- |
| paints form only one of several classes of goods made by | their asbestos lining felt, a representation of which is given | this company, their production in this class alone is claimed in our engraving. It consists of a pure asbestos sheathing, to be larger than that of any other manufacturers in this line to one side of which is attached "flocked" asbestos. It is in this country.

The purest linseed oil and colors enter into the composition of these paints, and they contain no water, alkalies, benzine, or other deleterious or useless adulterations or dilutions. They are furnished only in liquid form, furnished in sheets and rolls, and forms an insulating cush-
ion or non-conducting lining, over which is placed a layer of hair felt and then one of non-porous fireproof sheathing, while, if still further protection is required, another layer ready for use, in all the standard shades, and of qualities affords, and the manner of its of covering will be readily understood from the illustra-

ASBESTOS GRINDING reely under the brush in cold as well as warm weather. They are not intended to compete in price with any of the low grade paints sold in the market, but the company claim that by their superior durability, they are less expensive than anything else offered in this line.
The way in which these liquid paints are ground and mixed is said to cause a more intimate combination of the

Pipe Covering.
In the representation showing necessarily only a portion of the department for the preparation of crude asbestos for

Wadding.
its manufacture into the various articles made at this establishment, are several machines designed especially for the purpose by Mr. Johns. The different kinds of asuestos, of which there is always an extensive variety on hand, require varying treatment, not only as to the goods to be made, but from the quality of the crude material, and it has only been by years of experience that the processes of manufacture have been perfected. Asbestos, of which we give an illus. tration of a fine sample from this country, comes in irregular solid blocks, generally not larger than stove coal, but

Lining Felt.

by a gentle attrition, without breaking the fiber, a piece as large as an egg may be made to fill a half-bushel measure of what looks not unlike the finest wool. Upon the length, strength, flexibility, and fineness of the fiber depends the value of the different varieties.
Prior to 1868 Mr . Johns had been for several years prose cuting experiments looking to the industrial utilization of asbestos. For a long time he found it extremely difficult to obtain such samples as were needed in making his experimental trials, and he was, for a period, accustomed to search the country for it, after the manner of an amateur geologist. He succeeded in finding some asbestos beds in the vicinity of New York; but when he had completed all the other preparations by which he would be able to put forth a manufactured article, it was a matter of grave doubt with him whether it would be possible to secure a permanent supply of the raw material. He, therefore, at the commencement of this enterprise sent out descriptive advertisements, in reply to which samples began to come in from various quarters, many of them not being asbestos at all, and others of little or no value; but in this way the supply has ever since been steadily increasing, so that in a little over thirteen years he has built up an entirely new industry of large magnitude, one which has proved of great value to the public, and for which there yet appears to be
a wide field for future growth. It is worthy of mention that the largest contract ever made for paints, i.e., that for painting the Metropolitan Elevated Railroad of this city, was awarded to this company, and their liquid white has been exclusively used for several years upon the United States Capitol at Washington.

sbestos

The New York office of the company is at No. 87 Maiden Lane, where illustrated catalogues, descriptive of their inventions, can be obtained, and their goods are sold by dealers in all the principal cities and towns in this country and abroad. The London house of Messrs. Witty \& Wyatt, No. 9 Fenchurch street, E. C., have the sale of these goods in Great Britain and the English colonies.

PENCIL HOLDER AND SCISSORS.
A handy combination of pencil holder and scissors is shown in the annexed engraving. The pencil holder may be of any of the usual forms. The one illustrated is what is known as a pencil-point protector, having a shoulder in the middle to limit the extent to which the pencil can be inserted. The tube beyond the shoulder is fitted to receive a small pair of scissors, wbich are attached to a block connected with an external sliding sleeve, by means of which they are projected from or drawn into the tube. This invention was lately patented by Mr. H. C. Benson, of New York city.

Action of Vegetable Acids on Tin.

Professor Charles E. Munroe, of Annapolis, states that the ordinary fruit acids, such as those contained in apples, tomatoes, rhubarb, lemons, etc., all acted upon tin. Some cider which he examined, and which had been stored in a tin fountain, contained 117 milligrammes of metallic tin to the liter in solution. One case was given where persons eating fruit preserved in tin cans were made vio
Benson's Combined Pencil
Holder and Scissors.
hier and scissors.
lently sick, and tin only was found in the fruit. Corrosion of tin pipes by water was referred to, and it was suggested that the corrosion was due to the vegetable acids in the water.

NEW ICE CRUSHER.

We give an engraving of an improved ice
Thomas Mills \& Bro., 1301 North Eighth street, Pliladelphia, Pa., which is the result of a long experience both in the practical ase and in the manufacture of machines of use and in the manufacture of machines of graving is designed to be driven by power, but this firm also make crushers to be driven by hand.
The essential features of this machine are clearly represented. The movable and fixed spiked jaws converge, so that as a piece of ice becomes reduced in size by the crushing action of the jaws it continually falls until it finally reduced to small pieces which come within the capacity of the speculated rollers within the capacity of the speculated rollers
at the bottom, which can be adjusted to crush at the bottom, which can be adjusted to crush
the ice to any degree of tineness. Below the the ice to any degree of tineness. Below the
rollers there is a follower which pushes the crushed ice out toward the rear of the machine.
The largest of these machines will receive an ice cake weighing 100 lb ., and will crush 10 to 12 tons per hour. The smallest machine takes a cake weighing 10 lb ., and there are several intermediate sizes.
The advantage of this machine is that the ice can be rapidly crushed to a uniform size, insuring the degree of compactness most desirable for packing purposes.
These machines are in use by hotels, ice cream factories, fish packers, and private families, and are acknowledged to be efficient aid satisfactory.

NEW ADJUSTER FOR MIRROR AND PICTURE FRAMES. It requires no little skill to hang a series of pictures at a uniform angle, and it is often difficult to attach the cord to a mirror so that it will have the desired inclination without bracing or propping of some sort. To avoid these difficulties Mr. Charles A. Simpson, of Saxonville, Mass., has iuvented a very simple and inexpensive attachment for frame hangings, which is readily applied and holds the frame at hangings, which is
any desired angle.
any desired angle.
The frame is hung with cords in the usual way, but the screw eyes are so located that it may hang a little straighter than the desired angle. Near the lower corners, on either side of the frame, is placed a screw eye, C. A cord, D,
attached to the picture cord by means of a common hook, attached to the picture cord by means of a common hook,

SIMPSON'S ADJUSTER FOR HANGING FRAMES.
end with a flat hook, B, which clamps the cord by being canted by means of the weight of the frame. The hook, B, may be moved up or down on the cord, D , to alter the inclination of the frame. The adjustment is the same for both sides of the frame.
The advantages of this simple invention are 100 apparent to need recital here. It enables one to adjust his frames at any desired angle, and it insures their remaining in position.

Test of a Safety Elevator.

The proprietors of the Grand Central Hotel, in this city, ecently gave a public exhibition of the efficiency of a safety air cushion which had been affixed to their large passenger elevator by the inventor, Mr. F. T. Ellithorpe. The elevaor was, the makers claimed, the largest and heaviest in the world. The safety cushion consisted of a stout rubber bag, so placed beneath the floor of the elevator as to expand by the uptward pressure of the air confined in the elevator shaft, and gradually arrest the fall of the elevator by filling the shaft like a piston head, and retarding the escape of the air from a closed well at the bottom.

In making the test the supports of the elevator were severed, and the elevator was allowed to drop a distance of 123 feet, retarded only by the safety cushion. The inventor had faith enough in his protective device to trust his life to it, and made the hazardous trip not only without harm but without serious discomfort. The motion of the elevator was arrested with so little shock that several eggs on the floor were not cracked, nor was a goblet of water overturned. No record was made of the pressure of the air in the well or of the time covered by the fall. The motion of the elevator was very rapid until within a few feet of the bottom. The efficiency of the safety cushion was amply demonstrated.

Iridium for Electric Lights.

The latest material offered for an incombustible "burner" for the electric light is iridium. Mr. Holland, gold pen maker of Cincinnati, claims to have discovered a flux by means of which he is able to fuse iridium in an ordinary draught furnace. He casts the metal in any shape desired, and in bars or ingots weighing as much as ten ounces. The in bars or ingots weighing as much as ten ounces. The
metal thus fused and cast defies the file and resists all acids. metal thus fused and cast defies the file and resists all acids.
The only mechanical way of cutting it is by friction with a copper wheel charged with diamond dust or fine corundum. Mr. Holland claims, further, that the cast iridium makes suitable "burners" for the electric light, and that so used the metal is durable without protection from the atmosphere.

IMPROVED HAND HOE.

The engraving shows an improved hand hoe adapted to universal use in the cutting away of grass or manipulating the soil about plants. The novelty consists in the peculiar form of the blade, which is constructed of a main body portion setting off to one side of the longitudinal axis of the handle in a parallel plane therewith, and a curved or upturned end portion, which, as well as the main portion, is sharp upon both portion
edges.
This useful tool was recently patented by Mr. Robert L. Turner, of Olena, Ohio.

RECENT INVENTIONS.

Mr. George W. McKenzie, of Dyersburg, Teun., has patented an improvement in baling presses by which great pressure is exerted upon the bale, and which is ed upon the bale, and which is
easily and rapidly operated. A hinged lever, connected with the follower and provided with a clevis, pulleys, and rope for actuating the same, are the principal features of the improvement. Mr. Thomas D. Gallagher, of Cleveland, Ohio, has patented an improvement in stock cars,

Turner's Hand Hoe. which supplies readily detachable troughs for feeding and watering cattle during transportation. The trough is attached and detachably secured on the outside of the car by flanged edges working over longitudinal braces on the car.
Mr. Ross Hall, of Millersburg, Ohio, has patented an improved stove of that class having exterior attached reservoirs or feeders delivering coal into the lower part of the fire pot. The arrangement is such that the combustible gases evolved by heat from the coal in the lower part of the fire pot pass up through the incandescent coal, where they are consumed and add to the heat of combustion.
Mr. Henry H. Spencer, of Mound City, Ill., bas patented a rotary spading machine which imparts to the spades a compound rotary and reciprocating movement, their rotary motion being temporarily arrested while they enter the ground without checking the movement of the carriage or causing strains upon the gearing, and at a suitable moment withdraws the spades, completely frees them from the earth, and turns the latter over.
Mr. Abel Henning, of Easton, Md, has patented an improved carbureting apparatus, in which a peculiar arrangement of parts causes the pump which feeds the oilto a mixing chamber to be operated by the same power which actuates the air blower. Peculiar devices for volatilizing the oil and mixing the vapors with air are also supplied.
Mr. Samuel T. Richardson, of Cambridge, Md., has patented a lever power and dredge winder, designed more especially for oyster dredges, but applicable to analogous purposes, which not only mucb reduces the very hard labor of dredging in the ordinary way, but also avoids the danger to life and limb caused by oyster dredges catching on a rock.
Mr. Jacob Katzenberg, of New York city, has patented an improvement in suspenders
whereby they may be made cheaper and yet be strong, more durable, and more ornamental, with due elasticity.
Messrs. James Semple and Wilkinson Crossley, of Broad Brook, Conn., have patented an improved apparatus for extracting dyes, which consist of an upright cylindrical vessel containing horizontal plates for supporting the dye stuffs, provided with pipes for introducing steam, boiling, drawing off the extract, and forcing the latter from the vessel, and also provided with appliances for introducing the unleached dye stuff and removing the spent stuff. Devices for regu lating the process are also supplied.
Mr. Thomas Robinson, of Newtonville, Ind., has invented a potato-bug catcher, so constructed that the insects can be conveniently caught and removed from potato vines and other plants. The device consists of a box having an inclined apron and extended sides to receive the bugs, guard plates to prevent the bugs from shaking out, guard plates to intercept the flying bugs, and a socket and handle for carry ing the implement.
Mr. ThomasM. Ullery, of Wakefield, Kansas, has patented an improved lime kiln, which provides means for separating he burned lime from the ashes of the fuel, and for facilitating the drawing of the lime from the kiln. A horizontal shoveling plate is placed between the mouth of the kiln and the ashpit, coming short of the rear wall of the throat or opening into the bottom of the kiln, and supporting a grate inclined upward and backward from the rear of the shovel ing plate to the rear or back part of the throat. In passing down the inclined grate the burned lime is separated from the ashes.
Mr. Frederick F. Bioren, of Newark, N. J., has patented an apparatus for removing snow from streets and railroads. An oil tank is provided with a series of wick tubes, and a fan blower provided with corresponding pipes that operate as blow-pipes to direct the air from the blower forcibly upon the flames issuing from the wick-tubes, thereby forming blow-pipe flames which are directed upon the snow or ice to be removed. A combustion chamber which can be vertically adjusted to protect, direct, and concentrate the flames is used, and the entire apparatus is mounted on a wheeled platform, to be drawn along the surface of the street as may be required.
Mr. James Simmons, of St. Louis, Mo., has patented an mproved icebox, which has its main frame and wallsso constructed that the refrigerator may be taken apart and closely packed for shipment, and put together again for use when wanted.
Mr. Robert H. Dimock, of New Haven, Conn., has paented a marine paint and process for manufacturing the same. The paint cousists of linseed oil with certain preparations of copper incorporated therein to make a paint poisonous to animal and vegetable life.
Mr. Solomon B. Elithorpe, of Rochester, N. Y., has paented a lasting machine, which combines in a suitable frame a seat for holding a last, flanged levers for fitting the leather about the last, a vertically adjustable templet provided with clamps and pressing screws for holding and stretching the leather upon the last, and a gathering cord for holding the eather so stretched.
Mr. Joseph Johnson, of Lebanon, Ohio, has patented an improvement in harness, consisting in a novel construction and arrangement of devices used in connection with the back strap and collar, whereby provision is made fordispensing with traces or tugs for pulling, and with breechings for holding back

COOKING BY STEAM.

In the popular mind steam cooking is associated with charitable soup kitchens, public poorhouses, prisons, and similar institutions, where sodden and unsavory tood is urned out wholesale for uncritical palates. To apply steam for the finer work of the civilized kitchen is quite another matter; and to those who are unfamiliar with recent progress in this direction it seems little less than incredible that steam cooked food can, in range or quality, bear any comparison with that prepared by a skillful cook at an open fire. Yet it would seem to be precisely in the matter of quality in the product that steam is likely to pro
The one thing essential to good cooking (presupposing, of course, an intelligent cook and a proper supply of raw mate ials) is a supply of heat properly distributed and under per fect control as to intensity. These conditions are not easily met with direct fire heat, and when met necessitate incessant vigilance on the part of the cook to prevent such variaions in the heat of the fire as may injure the quality of the food in preparation. Even with the utmost vigilance much food is over :ooked either by miscalculation or to secure the proper cooking of the rest. In roasting and browning a joint, or instance, the thinner portions are very apt to be overdone or dried while the thicker parts are being sufficiently cooked
With steam cooking, under proper conditions as to appa ratus, these difficulties are entirely done away. With the same source of heat supply a dozen ovens in a row may be kept either at the same temperature steadily hour after hour, or each may be maintained at a temperature exactly suited to the work to be done in it, and varied as may be desirable, without affecting in any way the rest. This puts the work of the cook upon a strictly scientific footing, the various opeations being individually and collectively under perfect con trol, thus ruling out entirely the large and wasteful element
of uncertainty, which costs so much in spoiled food and spoiled temper under ordinary kitchen conditions.
A practical illustration of these truths, as well as of the capacity of steam cooking to cover the entire range of culi nary processes, is furnished daily in the extensive kitchen of the well-known restaurant of Messrs. Crook \& Nash. This establishment, which ranks among the first in New York in respect to age, size, and the quality of the cooking, has lately been refitted and provided with a complete outfit of steam appliances on the patented system of Mr. John Ashcraft. No fire is used in the kitchen, the steam being taken from an adjoinng building and distributed in pipes to the various sets of cooking apparatus. For baking, roasting, broiling, and other operations requiring a dry heat, the steam sur rounds the cooking chamber, but-does not enter it. Boiling is done either in jacketed vessels surrounded by steam, or as in cooking vegetables the steam is directly admitted to the articles, which are cooked in their own juices with no wastage of material or flavor. The meats cooked by this method are exceptionally tender and juicy, and free from the flavor of gases absorbed from the fire, the taint of scorched flesh or fat, and other unsavory qualities usually developed in irregular cooking with fire.

With the increasing use of steam in dwellings and larger establishments the employment of steam in cooking is likely to be greatly extended. Where public systems of stean beating are adopted steam cooking stoves must entirely take the place of existing ranges; and, judging from the result obtained by Messrs. Crook \& Nash and others, the change from fire to steam is pretty certain to lead to better as well as more economical cooking than now prevails.
Great economy is also possible through the employment of the waste steam of factories for culinary purposes. In many cases the heat now thrown away in waste steam would amply suffice to cook the food of the workmen and their families and do it better than is possible with the ordinary cooking stove

CONVERTIBLE TRAVELING CAP and SCARF

designed especially for travelers' use, and is convertible in

convertible traveling cap and scarf.

what is known as a " flat scarf" and into a cap, answering an excellent purpose in either capacity The top of the ticle is made in the form of a cap, and the flexible side por tions fold in when the article is used as a scarf. A clasp is secured to the top, which is engaged by eyes attached to the siles when they are closed down upon the top. By unclasping the sides and unfolding them, a comfortable cap is formed.
This article has been patented by Mr. A Weiler, of Cre feld, Prussia.

Substitutes for Lumber

We are in receipt, from Mr. S. W. Hamilton, of Law ence, Kansas, of a sample of lumber made from straw, manufactured after a process patented by himself, the par iculars of which he does not explain. He informs us, how ever, that he can manufacture lumber like the sample sent in any desired length, from 12 feet upward, and to 32 inches in width, at a cost competing with the better or finishing grades of pine, although he does not inform us whether this competition will apply equally to sections where lumber is comparatively cheap, as at Chicago, and at Western grain producing points, as at Kansas. We imagine, however, that the expense will vary but little at any point where traw is obtainable in large quantities.
The manufacture is, of course, confined to a grade which will compete with the better class of lumber, as there would be no object in filling the new product with knots, and shakes would scarcely be obtainable even if desired, while sap and decayed wood must be impossibilities. The sample sent to us will hold a nail as well as wood, is equally susceptible to a high painting finish, and can be polished to as high a degree as is at all desirable. Being made waterproof, we can discover no possible reason why it should not be as durable, or even more so, than pine or even oak, while its adaptbility is evidently as great for roofing purposes, as for the fine work of a dwelling.

The question of cost appears to us to be the most import ant element yet to be practically solved. We can see no reason why it is not susceptible of being worked uuder the plane or other ordinary tools of the carpenter, and when once fitted to its place, we can readily believe that it will be free from shrinkage or swelling. In appearance, the sample before us resembles hardwood, being about as dark as oak and more dense in texture, with a specific gravity one-fifth greater than thoroughly seasoned black walnut. For finish ing purposes, it will not, as a rule, be necessarily as thick as ordinary lumber, its tensile strength being apparently double that of wood of the same thickness. On the whole, we are favorably impressed with the appearance of the new artificial lumber
In connection with the new styles of building material, we may mention a new block of buildings now in course of erection on the corner of Randolph and Dearborn streets in this city, the facings and trimmings of which are wholly of terra cotta, which is another name for baked clay. These trimmings are moulded to the desired shape, and may be made as highly ornamental as is the carved pattern in which they are formed. By adding a mixture of sawdust with that portion of the clay which does not require a finished surface, the block may be reduced in any reasonable degree as regards weight, while, being hollow, a large piece is comparatively light. The faces being made of finer clay, care fully moulded, present a finished character, and the block as a whole presents as rich an appearance as any in this city of elegant buildings, and is in favorable contrast with the mas sive stone pillars of the lower part of this or the surrounding buildings. It is evident that inventive art combined with æsthetic taste will, in the future, readily adapt itself to the demands of civilization, and while building timber may grow scarcer, succeeding generations will think of the age of wood as well suited to the needs of a generation which, in its rapid settlement of a new country, found it indispensable, at the same time congratulating themselves upon the possession of more durable, fully as ornamental, and equally as cheap a substitute in clay, glass, paper, and iron. We may speculate upon the details of architectural estimates in the future as including paper for doors and window frames, floors, mouldings, and roof ${ }_{i}$ glass for porches and pillars, as well as for lighting; terra cotta for window caps and sills, and as well for cornices and walls; and iron for beams, joist, and rafters, with not a sliver of wood in the whole construction. Future generations.will realize what at present we but anticipate.-N. W. Lumberman.

INTERNATIONAL GEOGRAPHICAL CONGRESS

The Italian Geographical Society, to whom the direction of the Third International Geographical Congress has been committed, announce that the mecting will be held this yeit in Venice, September 15 to 22
The Third International Geographical Exhibition will be held at the same place, beginning September 1 and closing October 1.
The preparatory work of the Congress and the Exhibition has been intrusted to a managing committee, presided over by the President of the Italian Society. It is probable that the Congress will be divided into seven scientific groups

1. Mathematical Geography, Geodesy, Topography.
2. Hydrography, Maritime Geography
3. Physical Geography, Meteorology, Geology, Botany, Zoology.

Historical, Ethnographical, Philological Geography; History of Geography.

5. Economical, Commercial, Statistical Geography
 6. Methodology, Tuition and Diffusion of Geography

7. Explorings and Geographical Travels.

The Congresses at Antwerp, in 1871, and at Paris, in 1875, were very successful, and have had an important influence on the progress of geographical discovery. Correspondence, whether with regard to the Congress or the Exhibition, should be addressed to the Managing Committee of the Third International Geographical Congress, 26 Via del Collegio Romano, Rome.

Explosive Medical Compounds.

The medical and pharmaceutical journals have recorded a number of cases of explosions having taken place by the admixture of explosive substances. Among the prescriptions having given rise to such accidents we will mention the fol lowing: 1st. Mixture of hypophosphite of lime, 50 centigrammes; chlorate of potash, 3 grammes 75 centigrammes; lactate of iron, 30 centigrammes. 2d. Solution of glycerine, 8 grammes, in acid chromic, 4 grammes. 3d. Mixture of chlorate of potash, tr. ferri perchlorid. and glycerine has exploded in the pocket of a patient. 4th. Chlorate of potash mixed with catechu and used as a dentifrice, may ex plode in the mouth of the patient, provided hard friction is used. 5th. Pills of oxide of silver (frequently used in Eng. land in affections of the stomach) have exploded in the patient's pocket. Pills of permanganate of potash and ferri reduct., pills of golden sulphur of antimony and chlorate of soda, may explode during or after their preparation. It is, therefore, essential to avoid associating glycerine, and, in general, substances easily reduced, with such oxidizing agents as chromic acid, chlorates, permanganates, and cer tain organic acids.-Bull. gén de thérapeut.

A Fast Atlantic Passage. - The Arizona, of the Guion Line, arrived at Queenstown February 2, having made the 22 h . 23 m .

ELECTRO-METALLURGY

 lating.The first and most important operation in the electrodeposition of one metal upon another is to effect a thorough chemical cleansing of the surface of the metal upon which the coating is to be deposited, for if this is not accomplished the deposited metal will not adhere to the surface.
In cleansing, different metals usually require a somewhat different treatment.
The surface of most metals when clean soon become coated with a film of oxide when exposed to the air, especially when the surface exposed is wet, and to avoid this it is usually necessary to proceed with the plating immediately after cleansing.
Before proceeding to cleanse the articles they are usually "trussed" with copper wire to avoid the necessity of handling them during the operation or afterward, until the plating is finished. A very slight contact with the hand is often sufficient to make a second cleansing necessary.
If the article to be plated presents a smooth finished or polished surface the deposit will be "bright." If, on the contrary, the surface is rough or unpolished the deposit will ordinarily have a dead luster. If left too long in the acid dips used in cleansing, a polished surface is apt to have its finish deadened.
No interval should be allowed between the various opera tions of cleansing.

Cleansing copper and copper alloys.
Potash, caustic............ 1 gallon
Water, soft
Heat nearly to boiling in a cast iron pot provided with cover.
Brush to remove any loosely adhering foreigwmatters, truss, and suspend for a time in the hot lye; usually a few minutes will suffice if the article is not heavily lacquered. If any of its parts are joined with solder it should not be allowed to remain too long immersed, as the caustic liquid attacks solders and their solution blackens copper. On removing rinse thoroughly in running water.
If the articles are much oxidized, pickle in a bath composed of-

Water...
Sulphuric acid. 1 gallon,
1 pint,
until the darker portion is removed. Rinse in running water and dip in the following solution:

Water. soft
...... 1 gallon.
Remove from the bath, and quickly go over every part with a brush and fine pumice stone powder moistened with the cyanide solution. Some electroplaters prefer to give the articles a preliminary "brightening dip" in nitric acid, or a mixture of nitric and sulphuric acids and salt, followed by rinsing in water; but the cyanide, aided by the mechanical action of the pumice and brush, does very well without it in most cases. After the scouring dip the work momentarily in the cyanide solution, rinse quickly in running water, and transfer immediately to the plating bath.
Where the article is to receive a deposit of gold or silver its surface is usually softened by slightly amalgamating it with mercury, to insure perfect adhesion of the deposited metal.
The amalgamating is performed by dipping the article, after the cyanide scouring operation, for a few seconds in solution of-

Mercuric nitrate Sulphuric acid
 Sulphuric Water... $\frac{2}{7}$ ounce. $\frac{7}{5}$ 1

Stir until the solution becomes clear before using. Rins the work quickly on coming from the mercury dip, and ransfer to the plating solution.
The acid, cyanide, and mercury dips may be kept in glass or stoneware jars (avoid jars with lead glazing) provided with covers to prevent evaporation.
A "dead luster" is imparted to articles of copper or cop per alloy by dipping them for a few minutes in a bath composed of

Nitric acid (36°).
Sulphuric acid
Salt.
Zinc sulphate.
 20 pounds.
10 " .${ }^{\frac{1}{10}}$ pound.
$\frac{1}{10}$
$\frac{1}{10}$

Mix the acids gradually, add the zinc salt, then the salt, a little at a time (out-of-doors to avoid the acid vapors), stir well together, and let it get cold before using. Rinse thoroughly, and pass through the cyanide before putting in the plating bath.
cleansing cast iron.
Cast iron is freed from grease, etc., by dipping in hot alkali solution used for a similar purpose with copper, and after rinsing thoroughly is pickled in water containing about one per cent of sulphuric acid for several hours; then rinsed in water and scoured with fine sharp sand or pumice and a fiber brush. It is then rinsed and returned to the acid pickle for a short time, rinsed again, and put into the plating bath directly. If more than one per cent of acid is used in the pickle the time of immersion must be shortened, otherwise the iron will be deeply corroded, and the carbon which the metal con tains, and which is not affected by the acid, will not yield without a great deal of labor to the sand and brush.
Cast iron does not gild or silver well by direct deposit. Copper or bronze deposits are better, though not perfect; but if the iron is tinned the coat is adherent and will readily receive the other metals.

Cleansing wrought iron.

The cleansing of wrought iron, if much oxidized, is effected in the same manner as cast iron; but it will bear a strouger pickle and a longer exposure. Whitened, filed, or polished iron may be treated like steel.

CLEANSING steel

Dip in the caustic lye used for copper, etc., rinse thoroughly, scour with pumice powder moistened, rinse, and pass through the following dip:

Water
Hydrochloric acid
1 gallon.
4 pounds.
Rinse quickly (but thoroughly) and plunge in the bath.
Clean wrought iron and steel gild well without an inter mediary coating in hot electro-gilding baths. It is difficuit to obtain an adherent coating of silver on these metals without interposing an intermediate coating of copper or brass, which renders the further operation of silver plating easy.
cleansing zinc, tin, and lead.
Zinc is cleaused by dippiug for a few moments only (as the alkali quickly attacks the metal) in the hot potash lye, rinsing, and dipping into water containing about ten per cent of sulphuric acid for a few minutes. Rinse in plenty of hot water, and, if necessary, scour with pumice stone
powder and a stiff brush, moistened with a weak cyanide so lution, or scratch brush. This last operation is especially useful when parts have been united with tin solder.
Tin, lead, and the alloys of these metals are more difficult to cleanse perfectly than zinc or iron. Scour rapidly with the hot potash and brush, rinse quickly and brush, or dress with a piece of soft clean wood. It is very difficult to obtain a satisfactory deposit of gold or silver directly upon these metals or their alloys. The results are much better if a coating of pure copper is interposed.

sCratch brushing.

The scratch brush is often resorted to to remove the dead luster on or to impart a smooth surface to an object. They

are usually made of brass or steel wire, and of a variety of hapes to suit the object. Some of the forms are shown in the figure.
The wheel brushes are used on the lathe, the objects being manipulated in contact with the rapidly revolving brush.
The brush is usually kept moistened by a small stream of water while in use.

Ancient Works in New Mexico.

New Mexico is perbaps the most noted country in the world for research. The historian, the wealth seeker, and the "curious" can here find a rich field and reward for their labor. The Abo and Gran Quivira counties are perhaps the most renowned in the Territory for research. In the former here are evidences of great volcanic eruptions which overwhelmed cities and buried the inhabitants in ashes and lava long ages ago. It is evident that these people, who are perhaps older that the Aztecs, were a prosperous race, with not a little advance in civilization, as the Abo ruins in the Man zana Mountains indicate; also some indications of fine art; rude figures and the images of animals being found upon th interior of the walls of the structures beneath the débris.
It is evident that this non-historic race were seekers after mineral, and evidences also exist that mineral was obtained by them in paying quantities, there being the ruins of many ld smelters and acres of slag found near Abo. Here mine re found with the timbers so rotten with age that greatdif ficulty is experienced and danger jncurred in going down into the old shafts, where shafts are formed.
One of our informants gave as his belief that either the flow of lava or falling leaves and dust had filled many of the hafts up, and the sand, earth, and leaves so completely covered the ground that great care is required to find them, with but one or two exceptions-the Mount of the Holy. Cros covered.
One especially was found where human hands or lava or alling leaves and dust had filled it level with the earth, no shaft being discernible, and would not have been found, perhaps, had not an old trail been discovered. This was dug into, and at a depth of twelve feet a man could, in places, thrust his arm in up to the elbow between the granite walls of the mine and the earth which filled the old shaft. The mineral, unlike our White Oaks country, does not seem to outcrop, but seems to be deep in the earth; no float having
been found as yet except near the shafts or around the old smelters. On the eastern slope of the Manzana Mountains no quartz has been found excepting in a very burned and blackened condition. This part of the country will perhaps yield immense mineral wealth in time, and further developments aud prospecting are awaited with great interest to many.

The walls of some of the old ruins at Abo are six feet of solid stone-lime and red sand-the walls in places are yet six feet in height and in a state of perfect preservation. In the ruins are found vessels of various designs and sizes made of pottery-some representing birds and animals. Stone hammers are found here, but no indications that sharp-edged tools were used in this ancient period. In digging down one place the remains of an old aqueduct was found, which was probably used, as in the present day, by the Mexicans for supplying the inhabitants with water.
It is thought and believed, by specimens of ore found, that gold, silver, and copper were found in paying quantites. All the rock is more or less copper stained, and some of it is so much so that some of the "country" rock has run as high as 37 per cent copper.
Surely our bright, sunny land has been enjoyed long before the Anglo-Saxon made his appear once upon the scene. The future of New Mexico can only be surmised. Every day new evidences of untold wealth are thrust upon us, and the day is not far distant when the multitudes of the East will flock to our borders and assist in the development of the greatest mineral region in the world.-Era.

The Brush Electric Light in London.

Very remarkable progress continues to be made with the installation of the Brush electric light by the Anglo-American Electric Light Company, says Engineering. The Great Western Station at Paddington has been most successfully lighted by thirty-two Brush lamps, and we believe this company proposes to light up their goods station at Smithfield as well as the principal stations along their line by the same system. The Charing Cross Station of the Southeastern Railway Company has been now lighted for more than a week by sixteen Brush 2,000 candle lamps worked by a dyna-mo-electric machine in the Anglo American Electric Light Company's Works in Lambeth. The globes used at Charing Cross are very similar to Sugg Albatrine globes, and give a very soft light, of which, however, far too much appears to be lost by diffusion toward the roof. Some other large metropolitan terminal stations will also be shortly lighted by ropolitan terminal stations will also be shortly lighted by
the same system. In the provinces Messrs. John Bright the same system. In the provinces Messrs. John Bright
Brothers, of Rochdale. Messrs. Horrockses, Miller \& Co., the Blaina Iron Company, and Messrs. Courtauld, of Bocking, in Essex. are among the most recent users of the Brush system. The Bristol municipal authorities completed a series of experiments on Saturday last, to which we refer in more detail in our Notes from the Southwest, with a view tolighting the main streets of that city with the same system - the results obtained were in all respects satisfactory. Similar steps are being taken by the municipal authorities of several large continental towns, and also of towns in India with the same object. In Palace Yard Westminster, the number of Brush lights will be increased in a few days. There can be no doubt that this system fully merits the favor thus being so widely extended to it.

The New Orieans Cotion Exchange Building.

The attention of architects is invited to the professional opportunity offered in the competition of plans for a cotton excbange building in New Orleans, advertised in another column. The building is to be four stories in height, with an attic or mansard, absolutely fireproof as to elevator shafts and stairways, and as nearly fireproof elsewhere as can be witbout the use of iron.
The cost of the building, complete, is not to exceed $\$ 150,000$. The nature of the cotton business and the peculiarities of the climate of New Orleans necessitate large window spaces for light and ventilation, and a plan of building adapted to strong architectural effects. A premium of $\$ 1,000$ is offered for the design chosen (to be submitted on or before March 15,1881), with $\$ 500$ additional for details and specifications in case they may be required. Particulars with suggestive sketch-plans may be had on application to Henry G. Hestor, secretary of the New Orleans Cotton Exchange, New Orleans, La.

Preservation of Meat by Dextrine

In the Comptes Rendus of the French Academy for December 6, there is a note by M. J. Seure on some experiments made by him in drying and preserving meat by means of dextrine.
Of the three specimens exhibited before the Academy the tirst was a slice of lean meat which had been buried in dextrine and left exposed to the air on a shelf in a closet for twenty months. The meat had become mummified; but, on putting it in water, it separated from the dextrine and assumed its original physical character. The second was meat which had been chopped up coarsely and mixed without any particular care with dextrine, so as to obtain a thick paste. This paste was dried in the air, andretained its properties like the former. The third was meat beaten to a fine pulp with dextrine and run into a mould, the result being a very hard, dry, homogeneous cake of a handsome appearance. Each of these specimens when exhibited had been preserved for the same length of time-twenty months.

IMPROVED WAGON BRAKE

We give herewith an engraving of an improved automatic wagon brake recently patented by Mr. A. L. Withers, Jr., of Summit Point, W. Va., which is operated by a forward motion of the load on its roller supports on the bolsters. The connection of the rear hound with the reach is by means of a bolt or stud extending through a slot in the reach, and permitting the hound to move through a limited distance. A cross bar se a limited distance. A cross bar se-
cured to the hound carries two brake cured to the hound carries two brake
levers, projecting in opposite directions, having at their outer ends shoes whichare capable of pressing the peripheries of the rear wheels of the wagon. These brake levers are pivoted about centrally to the cross bar, and their inner ends are connected by rods or chains with the bottom of the platiform or wagon body, so that should the body move forward more or less on its roller supports, as in going down hill, the brakes will be automatical ly applied to the wheels.
A short lever pivoted to the side of the hound has its shorter arm connected by a rod or chain with the wagon body, and the longer arm is connected with the king bolt of the wagon by a rod or chain.
When the wagon reaches a level, the reach being drawn forward, the chain or rod connecting the short lever with the king bolt is drawn upon, moving thelever king bolt is drawn upon, moving thelever and drawing the wagon body backward,
releasing the brake shoes from the releasing the brake shoes from the
wheels. The forward and backward movements of the body are limited by suitable stops.
This simple apparatus is entirely automatic, and applies the brakes with more or less force according to the requirements of the case, and it may be readily adapted to any wagon.

apparatus for decorating pottery.

The decoration of china, until quite recently, has been done almost exclusively by hand, rendering it not only a slow but expensive operation. The engraving shows a sim ple machine, invented by Mr. S. J. Hoggson, of New Haven, Conn., for applying various styles of ornaments, but principally designed for borders.
The engraving shows the invention so clearly that a description is hardly necessary. The wheel which rolls upon the work to be ornamented carries the design and receives the color from the wheel above, and both wheels are sustained by a pivoted support provided with a handle, by which they may be raised or lowered or turned sidewise, as may be required to conform to various surfaces to he ornamented. The object to be ornamented is supported by a freely turning table, which is revolved as the impression roller is pressed upon the work. The inventor claims that there is no border or ornamentation, no matter how delicate or minute, ever came from the matrix of the type founder that cannot be produced upon china or any vitreous substance as perfect as if the impression had been taken by a master workman upon the finest paper, and with great rapidity.
The great advantage of this machine is in its applicability to plane, concave, convex, or any other surface, creeping over it as gently as a spider would, yet leaving its web-like tracings in euamel, which, when fired into the glaze of the ware in the usual manner, will last forever. It will work from ordinary type, electrotype, stereotype, wood-cut, or phototype patterns. The advantage of this over the transfer system used in old countries, on the cheaper kinds of ware, will be readily seen, and when we consider that, heretofore, all such decorations done in the United States were applications of the brush, in the same manner as an artist would paint a picture, we can begin to realize to what extent this little machine can be used.

Progress of the Telephone

Lowell, Mass., is connected by telephone with over one hundred cities and towns in the States of Massachusetts, New Hampshire, and Rhode Island. The longest circuit is from Springfield, Mass., via Worcester, Fitchburg, Lowell, Lawrence, to Exeter, N. H., over 150 miles, which is worked successfully. The telephone business between Boston and Lowell, a distance of 26 miles, amounts to $\$ 3,000$ annually. The Lowell Dis trict Telephone Company, which owns and operates the systems of Worcester, Lowell, and Fitchburg, and the lines of the Northern Massachusetts Telephone Company use 2,500 telephones, and pay the American Bell Company a monthly royalty of over $\$ 1,200$.
The company controls over 1,500 miles of wire, and employs in all divisions about twenty-five ladies and seventy five men and boys.

miscellaneous inventions.

Mrs. Frank J. Kellogg, of Flint, Mich., has patented an apparatus for draughting patterns, by which the waists of adies' dresses may be cut from measurement accurately and orm of a triangle by which the rorm of the pattern may be orm of a triangle, by which the form of the pattern may be

WITHERS' IMPROVED WAGON BRAKE.

Messrs. Egesippe D. Melançon and John H. Ayrand, Sr. of Paincourtville, La., have patented an improvement in plows, by which an adjustment for cutting deeper or shallower furrows, and of the handles to adapt them to taller or shorter plowmen, is easily made by simple devices.
Mr. Edward A. Pearse, of Downend, near Bristol, couny of Gloucester, England, has patented a machine for aerial navigation. The invention consists in improved means for suspending. an aerial car from a gas bag, and in a set of adjustable legs for propping up one end of the car before rising, in order that the propeller may act in the direction of an ascending plane.

Joseph E. Culver, M.D., of Jersey City, N. J., has patented a steam generator intended to abstract more of the heat from the gases of combustion and preventloss of heat by waste from the smokestack. A very novel and interesting arrangement and construction of parts is employed. The gaseous products of combustion and the steam may be used either separately or mixed for motive purposes. In the latter case the mixture is accomplished in a mixing pipe, into which both the steam and the gases are introduced through separate entrances.
Mr. Charles R. Nelson, of Corinna, Me., has patented a sheet-metal notching machine, which makes both square and bevel notches, at the same time clipping the lower corners of the plates preparatory to seaming and wiring the same. A flat bed plate is supported on suitable standards, having secured upon it a fixed and an adjustable cutting jaw and adjustable guide plates. A rocking shaft is journaled in the standards parallel with the bed plate, having keyed upon it a stationary and an adjustable dog, each of which carries a cutting jaw corresponding and operating which carries a cutting jaw correspondin
with the stationary jaws of the bed plate.
Mr. Thomas H. Davies, of Fairview, N. Y., has patented a harrow which consists of two or more series of longitudinal zigzag bars, connected together at their angles by short cross bars, the several series of bars so connected being hinged together. The zigzag bars carry sockets for the teeth, and each series has an eye at each, by which means the draught may be applied at either end of the harrow. Mr. C. Gordon Buchanan, of Brotlyn, N. Y bas tented an improved stone breaker of that class having two movable jaws. One of the jaws is pivoted at the top and the other at the bottom. The jaws are connected at the top by rigid links, and at the bottom by tension rods or tie bolts in such manner that almost all the tensile strain due to crushing is imposed upon the links and rods, thus obviating the necessity of casting the frame in one piece and of great weight and strength as heretofore. By pivoting the two jaws so that the motion of one is from the top and the motion of the other is from the bottom, a uniform crushing motion may be obtained from the top to the bottom of the crushing plates, if desired, and the throw of the jaws may be made shorter, saving power and securing more uniform crushing.
Mr. John P. Allen, of Dawson, Ga., has patented a seed planter and guano distributer, which will distribute cotton seed, corn, pease, and other seeds and grain, as well as guano, and other fine fertilizers, in drills, uniformly and in greater or less quantity, as may be desired, and which is simple in construction, strong, durable, and inexpensive in manufacture.
Mr. John W. McCorkle, of Freeport, Washington Territory, has patented an improved tuyere, which delivers either a single straight blast or a number of blasts radially inward to ward the center. A sort of triple channel is formed in an annular casting, in such manner that two of these castings fitted together inclose one straight passage and two semicircular ones, each of which is controlled by a valve. From the two semicircular passages radial passages direct the flow of air toward the center.
Mr. Edward M. Richardson, of Laconia, N. H., has invented a car coupling so constructed that it is unnecessary for an attendant to enter between the cars for coupling or uncoupling. The coupler has a longitudinal perforation and side slots, a bar, sliding in the perforation, a crossbar attached to the sliding bar and working in the cross slots, pivoted horizontal bars, pivoted triangular lever plates, pivoted upright bars, a cross bar carry ing the coupling pin, and a push bar placed in the rear part of the longitudinal perforation. The cars couple automatically and are uncoupled by moving the sliding bar forward Mr. Robert Cartwright, of Rochester, N. Y., has patented a head rest which can readily be attached io the back of a chair or other seat, and which can be raised or lowered, or adjusted forward or backward, as circumstances may require.

WEAVER BIRDS.

Among the most important families of the finches are the true weaver birds, all of which inhabit the hotter portions of the Old World, the greater number of them being found in Africa, and the remainder in various parts of India
The ribbon bird or collared finch has been long known as an inhabitant of West Africa, but its extent of territory is not confined to the western part, but reaches as far as the eaistern coast. In the Nile regions it is met with from the sixteenth degree north latitude to the gloomy forests of the steppes. It avoids the real desert, and is seldom found in the primeval forests, as these forests do not afford the grasses rich in seed from which it obtains its food. It is not known whether it eats fruit. In captivity it takes readily to fruit and similar food, but lives principally upon grain and especially grass seed
In North Africa these birds are commonly met with in communities of from ten to forty individuals, and are often united in large flocks with others of their species. This flock approaches the huts of the villagers fearlessly. In the morning hours they may be seen diligently employed in searching for their food, never running around upon ground, but climbing upon the low grasses. If the flock is disturbed the birds rise, fly to the neighboring trees, adjust their plumage, and the males begin to sing. As soon as the disturbance is over they all eturn to the ground. If a bird of prey approaches, the flock flies close together as swift as an arrow to some thick bush or tree, which affords them the necessary protection. In the middle of the day they sit quietly half asleep in the branches of a shady tree
The male is distinguished from the female by a more beautiful coloring and a broad, magnificent carmine red collar, which extends from one eye to the other over the white throat. The eyes are dark brown, the bill and feet pale brown. The main color of the female is a pale brown, the back being darker and the under side lighter; every feather is edged with black. The wing coverts have a large grayish spot at the end, which is quite conspicuous. The bill is very strong, scarcely longer than it is broad and high, flattened at the top, the under part being very broad. The wings are of medium length, and the tail short and rounded. The whole length of this pretty bird is five inches, the wings two and one-half inches, and the tail one and onehalf inches.
The nest of this bird is not known. The breeding time in Eastern Africa at least is in Sep tember and October, which period may be compared with our last pring months.
In captivity these birds collect the building material offered them into a more or less orderly nest. The females lay from six to nine white eggs, and the male alternates with the female in setting upon the eggs. The
In West Africa they are furnished by the natives in great numbers to bird dealers. They endure transportation well and require but little care.
The paradise whidah bird (Viduc paradisea) is often found in cages and menageries, as it is quite common in its native land, and bears confinement better than most tropical birds. It is an inhabitant of Western and Central Africa. It is a very graceful bird, perpetually in motion, and evidently admires its beautiful tail. Although not very brilliant in hue the paradise whidah bird is beautifully clothed with softly tinted plumage. The general color of the male bird is black, the wings dark brown, edged with pale brown. Round the neck runs a collar of rich ruddy brown, which edges the black line down the breast. The iris is dark brown and the foot brown. The female is the color of a sparrow, with two black stripes on the crown of the bead, and black wings; on the breast it is a rusty red. The wings are edged with rust color. The length of the bird, with the exception of the long tail feathers is six inches; the length of the wings a little more than three inches.
The tail of this bird is very singularly formed. Both webs of the two central feathers are extremely broad for about three inches, and then suddenly disappear, leaving the bare slender shaft to project for two or three inches; the two next feathers are equally elongated and rather broadly
webbed, being nearly three-quarters of an inch in width They are often more than eleven inches long, and sweep in a graceful curve from the insertion of their quills to the extremity of their points. The beautiful tail feathers fall out after the breeding season, and the bird exhibits the sincerest grief for his loss, appearing to be thoroughly ashamed of his undress. Of its habits in a wild state but little is known.
The blood finch (Lagonosticla minima) inhabits all of Cen tral Africa from the eastern to the western coast, and from wenty-two degrees north latitude to twenty-five degrees south latitude. Hartmann gives it a place similar to the one our house sparrow has gained, and, in fact, it may be considered as a house bird. At certain times this bird may be found in all of the villages of Southern Nubia and Eastern Soudan, even in the isolated huts standing in the midst of the forest. It is one of the first tropical birds noticed when traveling from Egypt to Soudan. Usually they are seen in the neighborhood of villages in large flocks, but they live also at a distance from men in the lonesome steppes, and

1. RIBBON BIRD.-2. PARADISE WHIDAH BIRD, FEMALE.-3. MALE.4. BLOOD FINCH.-5. FIRE FINCH and softened seeds of various kinds.
and quarrelsome in presence of a rival. The male and female alternate in setting upon the eggs. The eggs are matured in thirteen days, and the young are fed with insects

The color of the blood finch is a purple wine red, fawn colored upon the crown and shoulders, every feather being edged with purple. The side of the breast is marked with small white spots. The under tail feathers are a pale brown. The female is nearly all fawn color, purple appearing on the back and neck, and the breast is spotted with white. The eyes are a deep brown, the bill red, the feet reddish. Their length $31 / 2$ inches; length of wings, $13 / 4$ inches; and length of tail, $11 / 2$ inches. The blood finch is not only a bird of beautiful plumage, but is also an agreeable pet.
The fire weaver, fire finch, or orange bird, is distinguished hiefly by its plumage, which, in the breeding season, is peculiarly soft and velvety, and, with the exception of the wings and tail feathers, is black and vivid red. The other characteristics are a slort conical bill, whose edges are slightly curved toward the point, feet provided with strong claws, the wings reaching down to the middle of the tail, the first quill feathers being very small and short, while the four following ones are nearly equal, and a short slightly rounded tail.

Aside from the breeding season sparrow colored garment. Towards the breeding season the plumage of the male changes completely, not only in respect to the coloring, but also in respect to the quality of the feathers. Only the wing and tail feathers retain their usual character. At this time the male bird is of a velvety black upon the upper part of the head and breast, dark brown upon the wings with pale brown marking, the other parts being a brilliant scarlet. The new tail feathers grow to such a length as to nearly conceal the old ones. The pupil of the eye is brown, the bill black, the feet yellowish brown. The female is the color of a sparrow upon the upper side, a yellowish brown underneath, the throat being lighter. There is a yellow stripe over the eye; the bill and feet are the color of horn. The length of this bird is nearly 5 inches; length of the wings, $21 / 2$ inches; and of the tail, little more than $11 / 2$ inches
The fire finch inhabits the durra fields in regions abounding in water from Central Nubia to the depths of inner Africa. It prefers cultivated regions under all circumstances to uncultivated. A durra field is its paradise, from which it can only be driven away with difficulty. Its habits are more like those of the reed bird than like the other weaver birds. Like them it climbs dexterously up and down upon the grasslike stalks, slides upon the rush grass to the ground, and when in danger, like the reed bird, conceals itself among the thickest of the stalks. After the fields which have given it shelter during the breeding season are harvested, this bird, with others of its species, makes raids about the country. The fire finch is notable for its sociability. Although the males are excited to sing at the same time they seldom come into contest. There exists among them the most harmless kind of rivalry, and they appear to enjoy each other's society. Their nests even in the mountains at an altitude of 1,500 meters above are skillfully woven together, but are built more simply the level of the sea, although they are rarely found there. They are very active, and are excelled by few of their species in the rapidity of their flight. At midday they seek protection from the oppressive heat of the sun in the shady foliage of the evergreen trees.
They finish moulting in the last months of the dry season, and the breeding season begins with the first spring rains, somewhere in the beginning of September. Until then they live in flocks, but now separate in pairs and go into the cities and villages and look about for a suitable place for their nests under the roofs of the thatched houses and the clay huts of the natives. Here in some cavity or upon some suitable foundation they build a tangled nest of dry stalks, whose inside is well rounded. Their nests contain from three to seven white round smooth-shelled eggs. It is said that they breed more than once in the year; and this is in accordance with the knowledge we have of imprisoned birds of this kind. The male is very tender in his behavior to the female,
than those of the other weaver birds. They are held up by the grass stalks but not suspended from them, and are partially, sometimes wholly, concealed by the high tufts of grass between the stalks of the durra. In form and size they differ from each other; some are round and some elongated. Upon an average their length is from seven to eight inches. The walls are lattice-like, and so loosely joined together that the beautiful blue eggs may be seen through them. There are from three to six eggs in a nest. Often from ten to twelve of these nests are found near together. It is thought that the female alone sets upon the eggs, but it can not be asserted with certainty. The young fly before the durra is harvested. and after the birds have left their nests they collect themselves into large flocks and become a plague to the country. In order to protect their grain the poor Nubians are obliged to keep a constant watch over their crops during the whole day.
The fire finch may be found in our bird market, but is
often passed by by those not familiar with it, because it has on its beautiful plumage only a few months in the year. In cages it is kept upon the customary food, and with proper care will breed in them.-Translated from Brehm's Animal Life.

botanical notes

The Number of Existing Species of Plants.-Dr. Müller, of Geneva, has recently made the following calculation as to the total number of existing botanical species: We have at present, described in our books, about 130,000 species; and, if we suppose that, in round numbers, 30,000 belong to countries like Europe and North America, where there are hardly any species, excepting some cryptogamic ones, to be discovered, the remainder, or 100,000 , representing exotic plants, more or less tropical and southern, we may double the latter for new species, giving 200,000 for these less known regions, and altogether 230,000 for the whole globe, with the exception of countries still quite unknown botanically. Adding only 20,000 species for the latter we reach minimum sum of 250,000 species of plants.
The Effect of Freezing on Plants.-When frost attacks plants to such an conten that ice is formed in their tissues, says the Gardener Chronicle, it has been observed that the ice does not occur within the bags or cells of which the plant is made up, but outside or between them. The reason of this is probably because the contents of the cells are thicker and denser, and do not freeze so readily as do the thinner and more watery juices in the spaces between the cells. In this manner the essential part of the cell-so far as its life actions are concerned-the thick protoplasm, is less liable to injury. Moreover, as a consequence of the low temperature, the watery part of the cell-contents exudes from the interior through the cell-w'lls and there freezes. The expansion which takes place when water freezes, there fore, does not, at least in slight cases, take place within the cell, where it would do mischief by bursting the cell-walls, but outside them, where there is more room to expand and less risk of tearing the tissucs. When the frost is more severe the tissues do become torn, cracks and fissures occur, the protoplasm is killed, branches fall, ieaves wither or rot, and death ensues. But where the injury is less, and espe cially where the protoplasm is uninjured, when the thaw comes the ice outside the cells becomes melted, and the water, by the power of diffusion, pasces once more through the cell-wall into its cavity, there to mix again with the mor dense protoplasm. It is clear, then, that the danger to plants from frost is proportionate to the water they contain. If they are in an unripe, sappy condition the danger is far reater than if they are comparatively dry and at rest. Tubers and seeds, for instance, are specially adapted to resist cold; and how well they do so has been shown in the case of wheat which germinated at home after having nained throughout the winter in the Arctic regions.
The Pover of Movement in Plants.-Mr. Darwin, in his re cent work under the above title, now shows, after a pro longed course of experiment and observation, that "all the parts or organs in every plant, while they continue to grow, are continually circumnutating"-that is, the point of a grow ing stem, etc., is found to describe an irregular circular figure. This movement is not uniform, but consists, in some cases at least, of innumerable small oscillations. The phe nomena thus produced closely resemble many of the action performed, as is supposed unconsciously, by the simpler and lower animals. The author tells us that even among allied plants one may be highly sensitive to the slightest continued pressure, and another highly sensitive to a slight momentary touch. The author considers that the most striking resem blance between plants and animals is the localization of thei sensitiveness and the transmission of any influence from the part excited to some other part, which consequently moves. It is not, of course, contended that plauts possess a brain or other true nervous center, and a system of nerves by which it is connected with the whole bolly. But it is, to say the least, doublful whether such structures exist in the lowest animals, and it is probable that where present they serve merely for a more perfect transmission of impressions and more complete intercommunication of the several parts.
Mr. Darwin calls attention to the wonderful character of the ip of the radicle, which is remarkably sensitive. If, say he, the tip be lightly pressed, or burut, or cut, it transmits an influence to the upper addoining part of the root, causing it to bend away from the affected side; and, what is yet more surprising, the tip can distinguish between a slightty harder and a softer object, by which it is simultaneously pressed on opposite sides. If, however, the radicle is pressed by a simi lar object a little above the tip, the pressed part does not transmit any influence to the more distant parts above, but bends abruptly toward the object. If the tip percelves the air to be moister on one side than on the other, it likewise transmits an influence to the upper adjoining part, which kunds of sensitiveness into consideration, Mr. Darwin pronounces it hardly an exaggeration to say that the tip of the radicle thus endowed, and having the power of drecting the movements of the adjoining parts, acts like the brain of one of the lower animals, where the brain, seated withun the an terior end of the body, receives impressions from the sense organs and directs the several movements.
The Mexican Ocotilla.-The curious genus Fouquiera in cludes three described species, to which the Mexicans give the name "ocotilla," Although associated in the same na tural order with the well known Tamarix by botanists, therr
relationship would scarcely be guessed from their aspect, specially as they have long, showy tubular corollas. Rev Colorado desert, published in the American tour in the Colorado desert, published in the American Naturalist,
describes Fouquiera splendens as follows: "Extremely oddlooking, and not more odd than beautiful, is the small tree locally known by its Mexican name, ocotilla. It grows to the height of from 8 to 12 feet, and in outline is quite precisely fan shaped. To show how this may be, let me more particularly describe its mode of growth. The proper trunk usually 10 or 12 inches in diameter, is not more than $1 \frac{1}{2}$ feet high. At just a few inches above the surface of the sand this trunk abruptly separates into a dozen or more distinct and almost branchless stems. These simple stems, rising to height of 8 or 10 feet, gradually diverge from one anothe siving to the whole shrub the outline of a spread fan. Each eparate stem is clothed throughout with short gray thorns and small dark green leaves, and terminates in a spike, a foo ong, of bright scarlet trumpet-shaped flowers. This splendid oddity flourishes in great abundance in many places. The tems are not so thickly armed with thorns but that a man nay handle them if he will seize them circumspectly with is fingers, and being very hard and durable, as well as of convenient size, they are much employed for fencing pur poses about the stage stations and upon the ranches adjoin ing the desert. Give a skillful Mexican ocotilla poles and plenty of raw-hide thongs, and he requires neither nail nor hammer to construct a line of fence which, for combined trength, neatness, and durability, fairly rivals the best work of that kind done in our land of saw-millsand nail factories. As a tree or shrub of strange beauty the cultivators will vainly desire to add this to their list of varieties, unlesstheir art can reproduce the parched and sterile gravel heaps, and he dry withering atmosphere which it finds congenial."

The Compass Plant

The last number of Curtis's Botenical Magazine contains the following interesting account, by Sir J. D. Hooker, of th ompass plant (Silphium laciniatum) of the Western prairies This noble plaut was introduced (from America) int Europe in 1781 by M. Thouin, and flowered for the first time in the Botanic Garden of Upsala, in Sweden. It has been in cultivation in Europe ever since, though its name and fame as the compass plant of the prairies are of comparatively modern date, it having before that borne the popular uame of turpentine plant and rosin weed, except a mong the hunt ers and settlers in the Western States. With regard to the history of its reputed properties as an indicator of the meridian by the position of its leaves, I am fortunate in hav ing recourse to my friend, Professor Asa Gray, now in Eng and, who has most kindly furnished me with the followin very interesting account of this matter

The first announcement of the tendency of the leaves of he compass plant to direct theiredges to the north and south was made by General (then Lieutenant) Alvord, of the U.S. Army, in the year 1842, and again in 1844, in communica tions to the American Association for the Advancement of Science. But the fact appears to have been long familiar to the hunters who traversed the prairies in which this plan abounds. The account was somewhat discredited at the time, by the observation that the plants cultivated at the Botanic Garden at Cambridge, U. S., did not distinctly exhibit this tendency. But repeated observation upon the prairies, with measurements by the compass of the directions assumed by hundreds of leaves, especially of the radical ones, have shown that, as to prevalent position, the popular belie has a certain foundation in fact. The lines in "Evangeline familiar to many readers, and beginning-
Look at this delicate plant that lifts its head from the meadow,
ere inspired by a personal communication made by General Alvord to the poet Longfellow. Since the leaves tend to as sume a position in which the two faces are about equally illuminated by the sun, it might be suspected that their ana omical structure was conforned to this position. This has been confirmed, first by Mr. Edward Burgess, who, when pupil of mine, observed that the stomata were about equally abundant on the two faces of the leaf; and next by Mr Arthur, of Iowa, who has recently published in Prof. Bes sey's ' Introduction to Botany' a figure of a section of a lea showing that the arrangement of the ' palisade cells' of the upper and lower strata is nearly the sume. The leaves alway maintain a vertical position, except when overborne by their weight. As to their orientation, not only is thisrather vagu in the cultivated plant, but sujject to one singular anomaly, which may be commended to Mr. Darwin's attention. have several times met with a leaf abruptly and permanently twisted to a right angle in the middle; so that; while the lobes of the basal half pointed, say, cast and west, those of the apical half pointed north and south."
To the above (says Dr. Hooker) I have little to add. I have not been able to detect any orientation of the leaves in the Kew cultivated specimens. but these not being planted in a good exposure all round, are out of count as witnesses. On the other hand, when traversing the prairies with Dr. Gray, in 1877, I watched the leaves of many hundred plants from the window of the railway car, and after some time persuaded myself that the younger, more erect leaves especially, had their faces parallel approximately to the meridian line. may mention that I , on the same occasion, convinced mysel that the flower heads of various of the great helianthoid com positæ that grew in hosts on the prairie did follow the sun'
morning and evening positions being reversed. This observation did not, however, extend to the compass plant, the rigid tout peduncles of whose flower heads would not be expected to favor such a motion.

Fool's Parsley Not Poisonous.

For several centuries the common umbeliferous weed known under the common name of "fool's parsley," and botanically as Atthusa cynopium, has been an objectof suspicion and classed by botanists and toxicologists among poisons. But now Dr. John Harley, of England, comes forward and presents a vindication of this plant, which he calls harmless and innocent. In the St. Thomas's Hospital reports he relates several facts to corroborate the truth of his assertions. Having collected the plants at two seasons of the year, jusi before flowering and also after the plants had set their fruit, he expressed the juices of both stem, leaves, and roots, and preserved the extracts by the addition of alcohol. Being thus provided with a supply of material which supposably represented the active principles of the plant, he exhausted his supply upon four persons, one a little girl six years old, who took the extracts in quantities ranging from two drachms to two ounces; himself, who took them in quantiies ranging from two to four ounces; and two other adults, who were the subjects of spasmodic torticollis. These two look one or other of the juices, ranging from one to eight fuid ounces. Effects were carefully looked for, but none ollowed after any one of the doses.
Dr. Harley feels compelled to say, in conclusion, that the "fool's parsley" of Sussex, Essex, Kent, Surrey, and Hertfordshire, is not only absolutely free from the noxious properies ascribed to it, but that it is pleasant to the taste, sight, and smell, and, in the absence of the more fragrant and succulent'herbs, might well be used as a pot-herb or salad. Moreover, he asserts that his conclusions are independent both of locality and season, the only influence that these conditions have on "fool's parsley," as on "hemlock" (Conium), being that of increasing or diminishing its succu-
ency. Some years ago, Dr. Harley, after similar experiments. Some years ago, Donclusion in regard to the exper poison, cus properties of hemlock (Conium maculatum). This weed, although for all ages it has been esteemed extremely poisonous, is nevertheless caten as a pot-herb by northern natives-especially Russians-although the precaution is lways taken to boil it in several waters.
The poisonous properties found in many plants, however, are quite volatile, and are readily dissipated by certain manip ulations-especially by cooking. Those who have read Lin næus' "Flora Lapponica " must be familiar with the author's anecdote of the old Northland woman whom he saw picking theleaves of the aconite (Aconitum napellus). Asking her what the was going to do with them, she answered she was going to use them as food. He, thinking she had mistaken the plant for some species of geranium, warned her against its very poisonous nature; but she, smiling, assured him that she knew what she was about! He followed her to her dwelling, saw her boil the aconite leaves into a broth, and then, to his intense horror, observed the family of four persons sit down and partake of the terrible compound. But he great botanist is compelled to admit that not one of the persons seemed a bit the worse for their strange meal.

NEW INVENTIONS.

Mr. John T. Todd, of Chrisman, Ill., has patented an automatic car coupling, which consists of a concave-faced draw. bar, provided with interior upper and lower spring-actuated hooked jaws, and suitable levers for apening them. The coupling link has beveled ends, and shoulders or dogs for engaging the jaws.
A beehive, patented by Mr. David C. Cripe, of North Manchester, Ind., is so constructed that the bees are compelled to build their combs straight and of a uniform size The comb frames are substantially supported, and there is no exposed metal within the hive to attract moisture and frost. The hive is inexpensive to construct and convenient in use.
A corset steel fastening, patented by Isador Ulman, of Santa Cruz, Cal., consists of a pair of steels, one of which is provided with a series of transverse plates, having a catch on one end and an eye on the other end, while the other steel is provided with corresponding transverse plates, hav. ing a tongue on one end to engage in the opposite catcl, and eye on the opposite end.
Mr. John N. Brown, of New London, Conn., has patented seat pocket for vehicles, the invention consisting in a me tallic frame peciliarly constructed and arranged, and de signed as a substitute for the pockets usually made of enam eled cloth heretofore used.
Mr. Charles McQueed, of New York city, has patented a neck ruching pressing machine, whereby the work of press ing collars. collarets, or neck ruching, is rendered more ac time and labor, as compared with ordinary methods.
Mr. William E. Stanton, of Ridgeville, Ohho, has patented an improved lawn mower, to which an initial movement can be given that enables it to work with the same power when starting as after it is fully in motion.
A refrigerating apparatus, patented by Mr. Kennard Knott, of London, England, comprises an air-tight or nearly iir-tight non-conducting preserving chamber, and maintains a constant current of cooled, dried, and purified air through said chamber. for which, however, heated air may be sub stituted for certain purposes.

MECHANICAL INVENTIONS

Mr Newton P. Merchant, of Blaine, Mich., has patente an improved stump-puller, so constructed that it can readily be adjusted to operate with a quicker movement and less power for pulling small stumps and snags, or a slower move ment and greater power for pulling larger stumps. The nvention relates to that class of stump-pullers having inclined posts connected at their upper ends, a suspended frame for supporting the operating mechanism, and wheels and a pivoted shoe to adapt the puller to be readily moved from place to place.
Mr. Dolphus Torrey, of New York City, has patented an improvement in bells, which consists in a bell swaged from a composite plate made by inclosing steel in a box-pile baving ron top and bottom plates, and sides made by bending a narrow plate of iron so that its ends overlap each other, heating the pile so formed, and subjecting it to hammering or rolling to produce a plate having a steel center and iron sur faces thoroughly welded together. It. is claimed that such plates are harder, stronger, and more sonorous than iron plates, and possess better welding qualities than steel plates and that out of them may be made bells lighter, stronger and more durable than those of cast metal.
An improvement in traction engines, patented by Mr Samuel S. Barr, of Waukon, Iowa, provides better mean for guiding and controlling the movements of such engines thim has hitherto been supplied. To the centrally pivoted front asle is attached, on each side of the center, the ends of a rope, which is coiled tightly around a rod journaled in boxes attached to the under side of the vehicles. A cog wheel is attached to one end of this rod, and is actuated by suitable gearing. Turning the bar winds off the rope at one end of the coil, and on at the other, thus inclining the axle in accordance with the turning of the wheel.
Mr. James H. Gressom, of Erin, Wis., has patented an mproved wagon coupling, by which the front axle and sand board are not weakened by the mortise commonly made for he wagon-reach, and by the usual nine bolt holes for th hree bolts which ordinarily hold together the axle, sand-board, and front bolster. Other objections are also overcome by his improvement, in which he employs a coupling block trans versely mortised on the under side to fit over and upon the sand-board and front axle, to which latter it is held by a single fore-and-aft bolt, and having a circular socket in its top for the reception of the circular base of the bolster support, held herein by a cover and provided with a rearward forked lug that clamps the forward end of the wagon reach.
Mr. James J. Kean, of San Francisco, Cal., has patented a spark arrester for locomotives, etc., which consists in a revolving turret, closed at the top, and formed with sides of perforated material, and a receiving chamber for the sparks also in a conical and perforated sleeve, which is fitted within he turret, for assisting in breaking up the sparks, and a movable scraper for cleaning the inside of the turret.
Mr. Agustin Blasco y Fabregas, of Manila, Philippine Islands, has patented an improvement in vehicle wheels The felly, or rim, and the hub combine great strength and elasticity, and any of the spokes may be removed without necessitating the removal of others or of the tire or rim The felly is composed of laminæ of wood fastened together by screws; and on the metal tire which confines it are laced strips of leather which constitute a layer of elastic material. These strips of leather are separated at the ends, and on them are laid segmental steel plates, which form the peripheral portion of the wheel and sustain the wear. The hub is formed of the tapered butts of the spokes with lateral metal rings and tie-bolts.
Mr. Frank B. Galloway, of Farm Bridge, Ill., has patented a car-mover for starting and moving railway cars by hand. It consists of a lever provided with a hook at one end for the engagement of the car axle, and a spring pawlwhich ngages the perimeter of the wheel. Devices for adjusting he instrument to different sized wheels and for varying the purchase are supplied.
A car coupling attachment, patented by Mr. Thomas C Steward, of Chattanooga, Tenn., permits coupling of cars by the common link and drawhead without requiring the operator to enter between the cars. An adjustable bar or ever is employed to manipulate the link and guide it into the drawhead.
Mr. Henry Kenney, of New York city, has patented a machine for bending iron bars, for use in railroad work and where angular braces or stays are required, which is simple in construction and both'couvenient and powerful in opera tion. A bed-block with incline ${ }^{-1}$ arms, a top block with in clined perforated and countersunk arms, with an arrange ment of bolts, nuts, spiral springs, and a pivoted crosshead having a lever whereby the machine can be adjusted to bend different sized bars, are the principal features of the inven tion.
Mr. William Shortlo, of Springfield, Ill., has patented fish-plate joint which consists in the combination of an inner plate having screw-threaded bolt holes, an outer plate having inner and outer longitudinal keyways, bolts having their shanks thattened on one side, and keys to fit in the keyway and bear against the shanks and heads of the bolts to pre vent them from turning:
Mr. Lockhart Bibb, of Madison Station, Ala., has patent ed an automatic car coupling. The coupling link is pro vided with dogs or hooks at its ends, and is also longitudi nally slotted for the reception of a safety pin which hold the cars coupled should either of the dogs break. The dog on the link are engaged by spring-actuated drop catches to
automatically couple the cars when the draw heads are brought together. The drop catches are raised by chains or other suitable device when uncoupling the cars.
Mr. Teodor Remus, of Dresden, Germany, has pateuted pocket light which consists of a tubular case provided with a cylindrical cover with a roughened outer surface, which case contains a small candle or taper and a piece of tap covered with inflammable matter so arranged that when the cover is drawn off from the case the taper is ignited. The device is simple in construction, safe, convenient, and reliable.
EXPERIMENT ON THE LAKE OF GENEVA TO ASCER'PAIN THE VELOCITY OF SOUND IN WATER
The velocity of sound in water has been the subject of patient investigation. Observers were placed in two

SOUND PRODUCIN

, who the Lake of Geneva. Onc boat was furnished with an appatan, by which a submerged bell was struck, at the same init. In a charge of gunpowder was ignited in the air above rrival of the an ear trumpet was use to ween the noise and the flash being noted by a chronometer By this means it was ascertained that sound travels in wate at the rate of 4,708 feet per second, being about four time

SOUND RECEIVING.
more quickly than in air. It must be understood that the elucity of sound in water, as in air, is subject to variation y temp

Preservation of the Colors of Dried Plants.-Ac cording to M. Storbzl the slow immersion of the fresh plant in a boiling solution of one part of salicylic acid in six hunclred parts of alcohol, and then shaking off superfluous misture, previous to pressing in the usual way between than any other method.

GEOLOGICAL SURVEY OF NEW JERSEY.

We are in receipt of the Annual Report of the State Geolo gist (Prof. Geo. H. Cook) of New Jersey for the year 1879, setting forth the progress of the geological survey of the State. The survey being charged with work of an economic and practical character, the reports are necessarily largely confined to results related to this work. Joined to this there is, however, some work of a scientific character, and every year something is added to geological science.
The practical topics discussed in the report pertain to the iron mines of the State, soils, drainage, water supply, artesian or driven wells, economic geology of the State, topographical map of northeastern New Jersey, and the U. S. geodetic survey of the State.
Considerable space is devoted to the discussion of artesian or driven wells, of which there appears to be a large number, some of which supply water of a fair quality for economic purposes. In general, however, there is a large percentage of mineral matters held in solution. The deeper wells appear to afford water of a less satisfactory character than the shallower ones. Sulphates of lime, soda, and magnesia abound in nearly all the water drawn from deep wells in the State, and render it unfit for use in steam boilers or other apparatus in which scale is liable to accimulate. The water is of great use, however, for cooling purposes in breweries, etc., and for washing and rinsing where neither heat nor soap is required.
The question of water supply is of very great importance to New Jersey. It is difficult, if not impossible. in manylocalities to obtain water sufficiently pure for drinking and domestic purposes, except by the collection of rain water in cisterns. Especially is this the case in thickly settled regions near the seaboard. While these regions were sparsely inhabited the surface water, easily obtained by shallow excavations, could be used with comparative safety; but there is now so much danger of contamination from surface drainage that the use of such water is attended with great risk.
The report is an able and interesting document.

Hot lce and Critical Pressure

Prof. Carnelley's paper upon the effect of pressure on melting points which was published in the Scientific AmeriCan of Oct. 23, 1880, continues to attract considerable attention at home and abroad. The fact that boiling points are influenced much more by pressure than are melting points has long been known. An increase of a single atmosphere (760 mm .) will raise the boiling point of water, for example, from $100^{\circ} \mathrm{C}$. to 1214°, equal to an increase of $39^{\circ} \mathrm{Fab}$, while sulphur, which melts ordinarily at 111.5°, will meltat 1332° under a pressure of 520 atmospheres, an increase of less than half a degree for each atmosphere of pressure. Since the temperature at which a substance boils can be de pressed by simply diminishing the pressure upon its surface, it was but reasonable to expect that we could attain such conditions as would place the boiling point of a given substance below its melting point. In that case sublimation would precede and of course prevent fusion. Under the ordinary pressure the boiling point of metallic arsenic is lower than its melting point, so that it i, only possible to melt it under increased pressure, which pressure is Carnelley's critical pressure. In the same manner ice has a boiling point lower than its melting point, provided the pressure be reduced to 4.6 mm . of mercury. It does not, therefore, appear probable that the actual temperature of the ice. in his experiment, was higher than 32° Fah., for it is well known that when a body has been heated to its boiling point all the heat subsequently imparted to it is couverted into work and rendered latent by converting said body intoa gas. Neither can we heat any substance above its boiling print until it has been entirely vaporized. Ice boils at $3 \oiiint^{\circ}$ under a pressure of 4.6 mm , and no amount of heat can raise its temperature above 32° under this pressure.
Carnelley tells us that for corrosive sublimate the critical pressure is 420 mm . Haass, therefore, proposes, in a com munication to the German Chemical Society at Berlin, to use the corrosive sublimate for an instructive lecture experiment to illustrate "critical pressure." Take a strong glass tube, says be, sealed at one end, and place in it a piece of this substance, then connect the other end with a com mon filter pump provided with a manometer. As soon as the mercury has fallen to 420 mm . He corrosive sublimate may be heated as strongly as it is possible to do with a gas burner, and yet the salt does not melt, but sublimes into the colder part of the tube. If a little air is admitted so that the pressure is increased to 450 mm . it begins to melt. The experiment will prove an interesting one for the lecture table.
The phenomenon is easily explained. Corrosive sublimate melts at $265^{\circ} \mathrm{C}$., and boils, under ordinary pressure (760 mm .) , at $295^{\circ} \mathrm{C}$. We notice here a very slight differ ence between the boiling and melting point, hence we ought not to be surprised to find that a comparatively slight reducion of pressure, less than half an atmosphere, would bring its boiling point below its melting point.
The critical pressure of Carnelley signifies, when trans lated into familiar language, the pressure at which the melting and boiling points of a substance coincide or pass each other. Probably, in the exhaustive paper on boiling points which he promises to publish soon, Carnelley will take the same ground as above laid down, and admit that his hot ice was not heated above 32^{\prime} Fah.

Atlanta, Ga., Jan. 15, 1881,

Business and extonal.

The Charge for Insertion under this head is one Dollar
 Advertisements must be received at publication office
as early as T Thursday morning to appear in next issue For Sale.-Valuable HayFork Patent. Simple, cheap, and efficient. J. M Boyd, Oak Center, wis.
If you have a cold or cough, you can cure it by using If you have a cold or cough, you can cure it by using
Van Beil's "Rye and Rock." Van Beil's "Rye and Rock."
See "Abbe" Bolt Forging Machine notice, page 140. For Thrashing Machines, Engines, and Horse Pow.
see illus. adv. of G. Westinghouse \& Co., page 125. see illus. adv. of G. Westinghouse \& Co.. page 125. Parties interested in the manufacture of delicious
Cider, and desirous of obtaining the largest results
 rriting to Messrs. Boomer \& Bosch
for illustrated circular with prices.
Buy the Buffalo Port. Forge.' Have no other.
Putnam Engine, 13×36; Corliss Engine, 8×24. Bul-
Prd, 14 Dey st. New York, rd, 14 Dey St., New York.
For the manufacture of metallic shells. cups, ferrules,
 frey \& Son, Union City, Conn. The manufacture of small
wares. notions, and metallic novelties a specialty. See wares, notions, and metal.
The Inventors' Institute, Cooper Union, New York. Sales on patent righth s negotiated and ininention Yoxht
bited and advertised for subscribers. Send for circular bited and advertised for subscribers. Send for circular. A large manufacturing concern desires to enter into
correspondence with reliable houses doing business in sinking artesian
Haven, Conn.
Presses, Dies, and Tools for working Sheet Metals, Presses, Dies, and Tools for working Sheet Metals,
etc. Fruit and other Can Tools.
to Bliss $\&$ Williams, Brooklyn. N. Y . W . Bliss, suceessor toc. Biss \& Williams, Brooklyn. N. Y. Y. W. Biss, successo
Hartshori's Self-Acting Shade Rollers, 486 Broadway, New York. No cords or balances. Do not get out of order. A great convenience. Sold every here by the
trade. See that you get Bartshorn's rollers. Makers and trade. See that you pet Hartshorn's rollers. Makers and
dealers in infringing rollers held strictly responsible. Street Sweeper, Smith's patent, for sale. Machinery
Exciange. 261 N. 3 d street, Philadelphia.
Second hand large size Wood Planer, R. Ball \& Co.
 The Practical Papermaker, a complete guide to the manufacture of Paper. by JJmes Dunbar. \$1.00. Mail
free. E. \& F. . Spon, 416 Brome street, New York. Wanted-An experienced and thoroughly capable machinist, competent to design, build, and set up in work-
ing order lightt special machines in \dot{a} manufacturing ing order lights. special machines in a manufacturing
business; also to superintend repairs in shop coonected
unt with the factory; must furnish best reference as to to
character, habits, and ability. Address 1.0 . Box 539 Baltimore, Md.
Rollstone Mac. Co.'s Wood Working Mach'y ad. p. 92. Abbe Bolt Forging Machines and Palmer Power Hammer a specialty. S.C. Forsaith \& Co., Manchester, N.H.
L. Martin \& Coo., manufacturers of Lampblack and Pulp Mortar-black, 226 Walnut St., Philadelph. Large Slotter, $7 z^{\prime \prime} \times 18^{\prime \prime}$ stroke. Photo on a
tion. Machinery Exchange, 261 N. 3 d St.. Phila. List 25.-Descriptive of over 2,000 new and seco hand machines. now ready for distribution. Send stamp
for same. S. C. Forsaith. \& Co., Manchester, N. Books for Engineers and Mechanics. Catalogues free. 4 to 40 H P. Steam Engines. See adv. p. 93 Send to John D. Leveridge, 3 Cortlandt St., New York, Seroll saws and supplies, Eleectric Lishters, Tyson's Pure Oak LLea Belting. C. . . . Arny \& Son, Ma.
turers. Philadelphia. Correspondence solicited.
Eclipse Portable Engine. See illustrated adv., p. 9 Within the last ten years greater improvements have
been made in mowing machinest than any other agricult been made in mowing machines than any other agricul-
tural implement. It is the Eureka Moner Co., of TTowanda, Pa., are makisig
the best mower now in use, and every furmer should write to the manufacturers for catalogue, with prices. Jenkins' Patent Valves and Packing " The Standa
Jenkins Bros., Proprietors, 11 Dey St., New York. Presses \& Dies. Ferracute Mach. Co., Bridgeton, B Wood. Working Machinery of mproved Design and
Workmanship. Cordesman Eran \& Co Coincinatit The "1880" L Cre Cutter by mail for 50 , 1 The " 1880 " Lace Cutter by mail for 50 cts.; discount
to the trade. Sterling Elliott, 262 Dover St., Boston, Mass. Experts in Patent Causes and Mechanical Counsel. For Mill Mach's \& Mill Furnishing, see illus adv, phen Corrugated Wrought Iron for Tires on Traction Engines, etc. Sole mfrs., H. Lloyd, son \& Co., Pittsb'g. Pa. Erie Malleable Iron Company, limited. Erie, 'a. For Machinists' Tools, see Whitcomb's adv., page 73. Power, Foot, ancl Hand Presses for Metal Workers.
Lowest prices. Peerless Punch $\$$ Shear Co. 52 Dey st.N. Recipes and Information on all Industria! ! Processes.
Park Benjamin's Expert Office, 50 Astor House, N. Y. For the best Stave. Barrel, Keg, and Hogshead Ma-
ehinery, address H. A. Crossier. Cleveland, Ohio. National Steel Tube Cleaner for boiler tubes. Adjust-
able, durable. Chalmers-Spence Co. 40 John St., N. \mathbf{Y}. able, durable. Chalmers-Spence Co., 40 Iohn St., N.
Wren's Patent Grate Bar. See adv, page 109. Wren's Patent Grate Bar. See adv, page 109. Best Oak Tanned Leather Belting. Wm. F. Fore-
paugh,Jr. \& Aros, 531 Jefferson St.. Philadel phia, Pa. Saunders' Pipe Cutting Threading Mach. See p. 109. Stave, Barrel. Keg. and Hogshead Machinery a spe.
cialti, by E. $\&$ B. Holmes, Buffillo, N. Y. Wrights Patent Steam Engine, with automatic cut
off. The best enzine made. For prices, address william off. The best engine made. For prices. address Willia
Wright, Nlanufacturer, Newburgh. N. Y.
Peck's Patent Drop Press. See adv, page 109. Split Pulleys at low prices, and of same strength and
appetrance as whole Pulless appearrance as Whole Pulleys Yocom \& Son's Shafting
Works, Drinker St., Philadelphia. Pa. Blake " Lion and Eagle " Imp'd Crusher. See p. 109. Silent Injector, Blower, and Exhauster. See adv. p. 124.

The Brown Automatic Cut-off Engine: unexcelled for
workmanship, economy, and durability. Write for inmorkmanship, economy, and durability. Write for in
formation. C. H. Brown \& Co. Fitchburg, Mass. National Institute of Steam and Mechanical Engineer Ing, Bridgeport, Conn. Blast Furnace Construction and Management. The metalurury of iron and steel. Prac
icall Instruction in steam Enginering and a good situa tical Instruction in steam Enyineering. and
tion when competent. Send for pamphlet.
Nickel P.ating.---ole manufacturers cast nickel an odes, pure nickel salts. importers Vienna lime, crocus
te. Condit. Hanson $\&$ Van Wintle, Newark, N. J., and and 94 Liberty st., New York.
The American Electric Co., Proprietors and Manufacturers of the Thomas Houston System of Electric
Lighting of the Arestyle. See illus. adv., page 125. See Bentel, Margedant \& Co.'s adv., page 125. Machine Diamonds. J.Dickinson, 64 Nassau St., N. Y Steam Hammers, Improved Hydraulic Jacks. and Tube
Expanders. R. Dudgeon, 24 Columbia St., New York. xpanders. R. Duageon, 24 Columbia St., New York. 50,0co Sawyers wanted. Your full address for Emer
Son's Hand Book of Saws (free). Over 100 illustration son's Hand Book of Saws (free). OVer 100 itlustration
and pages of of vauable information. How to tratraighte
saws etc. Peeriess Colors-For coloring mortar. French, R Peeriess Colors-For coloring mortar. Fre
ards $\&$ Coo, 10 Callowhill St., hiliadelphia, Pa
For Pat. Safety Elevators, Hoisting Engines. Friction Clutch Pulless, Cut-off Coupling, see Frisbie's id. p. 126. Tight and Slack Barrel machinery a specialty. John Cylinders, all sizes, bored out in present positions Blake's Belt Studs. The strongest fastening fo Elevators, Freight and Passenger, Shafting, Pulley Elevators, Freight and Passenger, Shafting, P Y For Heavy Punches, etc., see illustrated advertise Steam Engines; Eclipse Safety Sectional Boiler. LamBest Band Saw Blades. See last week's adv., p. 125. Reed's Sectional Covering for steam surfaces; any ne can apply it; can be removed and replaced withou
njury. J. A. Locke. $\&$ Son, 40 Cortlandt St. N. X. Linen Hose and Rabber Hose suited for all purpos Mineral Lands Prospected Artesian Wells Bors. Pa. Diamond Drill Co. Box 423. Pottsvifile, Pa. see p.125 For best low priee Planer and Matconer, and latest
improved Sash.
Door, and Bind 1 Machinery, Send for improved Sash, Door, and Blinn Machinery, Send for
catalogue to Rowley $\dot{\text { \& }}$ Ifermance, Williamsport, Pa. The only economical and practical Gas Engine in the
 Penfield (Pulley) Blocks, Lockport, N. Y. See ad. p. 124. Tyson Vase Engine, small motor. 1-33 H. P.; efficient Use Vacuum Oil Co.'s Lubricating oii, Rochester,N.Y. Lightning Screw Plates and Labor-saving Tools, p. 125. Hotchkıss' Mechanical Boiler Cleaner, 84 John St., of them, the are all infringements. Engineers make ten per cent selling other parties than emplogers. Clark Rubber Wheels adv. See page 109.

HINTS TO CORRESPONDENTS.
accompanied with the full name and address of the
writer.
given to inquirers.
We renew our request that correspondents, in referring to former answersor articles, will be kind enough to
name ti.e date of the paper and the page, or the number name the date of the paper and the page, or the number
of the question. Correspondents whose inquiries do not appear after a reasonable time sloucld repeat then. If not then pubEditor declines them.
Persons desiring special information which is purely
of a personal character, and not of general interest, of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and labor Abtain such information without remuneration MENT referred to in these columns may be had at this office. Price 10 cents each.
(1) R. L. W. asks: How much water evaporated from 212° is a horse power? Some say 21
1 b ., others $27 \mathrm{lb} ., \mathrm{l}^{20} \mathrm{lb}$, and some as high as 36 lb ; if upon the perfection of the machine or engine through which the steam is used. 21 lb . per horse power would
be deemed an excellent result. It is a very good engine that uses less than 24 or 25 lb .; a very poor engine may (2) J. B. V. inquires: Has there ever been so early a winter as the present? What is the cause of
the polar waves or cold snaps? Can you send a record the polar waves or cold snaps ? Can you send a record
of the weather for the past fifty years? Can a person preetell what kind of a winter we wilh have? Can acwe will have a day, week, mor h , or year in advance ? Have you published anything ab.ut the weather in the SCIENTIFIC Amerioan or SUPPLEment? If so,
please refor to the number
A. There are certain things that are quite unknown to any one on the staff of the Scientific American, and the ability
to give an "accurate pradiction" of the weather daily, monthly, or a year in advance. is a fair type spondent will have to propound his queries to some of those entities which are said to be hovering about in
mid air, and who may thus be assumed to be cognizant of such matters, for to answer them is clearly beyond (3) A. and E. ask: Can you tell us of a cementthat will cement cloth or felt to iron? A. See ma-
rine glues, page 2510, No. 158, Screvtric rine glues, page 2510, No. 158, Scientipic American
Supplement.
(4) G. F. H. asks: How can I drill a one very hard steel drill with slow speed, or a copper o oft iron drill with emery or diamond dust and highe locity.
(5) R. F. M. asks: What is used for thin nin' printer's inks, both common and fine inks? A
Printer's varnish, or a thinner printer's ink. The var Printer's varnish, or a thinner printer's ink. The var-
nish is prepared by inflaming boiling linseed oil and stirring it while it burns untila black "varnish" of the
proper consistence is obtained. The flame is extinproper consistence is obtained. The flame is ext
guished by placing a tightly fitting cover over the pot.
(6) F. L. B. asks: 1. Do the directions given in Scientific American, of January 25, 1881, No. 35, under Notes and Queries, make a similar pad to tha
advertised as the hektograph ? A. Yes. 2. Would no a tin trough or plate answer as well as one of zinc ? A Nearly as well. 3. Will Cox's gelatine, such as can be oought at the grocers (used in cooking), do for the
gelatine part ? A. Yes. 4. When you say, "parts" do you mean by weight or bulk? A. Parts by weight. (7) W. E. J. asks: 1. Are oscillating en gines used now and for what? A. Yes, for many pur
poses. 2. Would there be any valuen an engine with poses. 2. Would there be any value in an engine with
similar valves to an oscillating toy engine, but with sta tionary cylinder, thus saving the power required to move the latter? Would such an engine make a good
motor? A. We think it would not be desirable for motor?
actual use.
actual use.
(8) A. J. C. asks: Will wood 3 feet long in a stove a little over 3 feet high and 2 feet wide las longer than wood cut short enough to lay across the
stove? A. In either case, its slow or rapid burning de pends upon the manner it is laid. If the sticks are laid parallel and close, they will burn slowly; if laid par tially crossing each other, so as to be open, they will burn rapidly
(9) F. L. S. asks how much more power a steam engine would have if there was no dead center, or, in other words, with the full Porce of crank for full
revolution. A. The difference would hardly be apprerevolution. A. The difference would ha
ciable, using the same amount of steam.
(10) A. S. L. writes: We have a boiler and furnace connected with our establishment; is it cheaper
to run both with pea coal, or to run the first with pea and the latter with furnace coal? A. It depends upon the prices of the different kinds of coal in your market; as a rule the pea coal is most economical.
(11) C. J. H. writes: I have a quantity of granulated test lead carrying, say, one ounce silver to the
ton. How snall I desilverize the lead and reduce to ton. How shall I desilverize the lead and reduce to
absolutely pure metallic lead $\&$ If reduced to a nitrate how shall I desilvertze and manipulate the resultant
salt after evaporation? A. For small quantities the how after evaporation ? A. For small quantities the
sall ato
following will answer. Dissolve in a small quantity of following will answer. Dissolve in a small quantity of
hot nitric acid dilated with half its volume of water and evaporate by heat nearly to dryness. Decompose with
an excess of dilute sulphuric acid (acid 1, water 2) Let stand (in the dark) with the liquid several houre then decaht the latter (which contains the silver), wash the white lead sulphate with fresh dilute sulphuric acid, dry, heat to low redness then intimately mix with
dry bicarbonate of soda and powdered charcoal in the dry bicarbonate of soda and powdered charcoal in the
proportion of 1 oz. lead sulphate, half an ounce bicarbonate of soda, and 40 grains of charcoal. Charge into a clay crucible, cover. and fire at a bright red for fifteen
minutes. Pour, or cool and break. Assayers rarely desilverize their lead; it is preferaole to determine accurately by assay the amount of silver present in a
given quantity, and allow for this in calculating results. (12) D. P. asks: 1. Can you tell me how the paint used in painting window curtains or shade
cloth is made. mixed, and applled \& A. Consult "The Painter's and Gilder's Companion." See addresses of
book dealers in our advertising columns. 2. How book dealers in our advertising columns. 2. How
can I perforate heavy paper for transferring designs? The perforations in postage stamps is what I want on manila paper. A. The perforations in postage stamps
are effected by passing the sheets between two cylinders, one above the other, and provided with a series of raised bands which are adjusted to a distance apart equal to that required between the rows of perforations.
Each ring on the upper cylinder has a series of cylin. Each ring on the upper cylinder has a series of cylin-
drical projections or punches which fit corresponding drical projections or punches which fit corresponding
depressions in the bands of the lower cylinder; by these the perforations are punched out. An endless band
zeparates the perforated sheetfrom the rolls. The sieets require pressing to remove the roughness caused by the perforating maching. The machine was invented and patented $i n 185 \%$, oy Mi: Archer, of England.
(13) A. B. asks (1) for a simple test by which to distinguish elkali water from pure water. A
Add to the water a small quantity of strong ceura tincture of litmus. If the water is alkaline the hitmus will changs in coior to a deep purplish blue. 2 , How
is the quantity of alkali in 2 giver quantity of water de is the quantily of alkali in 2 giver quantity of water de-
termined
b. The quantity of alkali in a water is most readily determined by titrating a measured sample with cal analysis 3olution of acid Consult Thorp's che to purify water that contains foreign matcer, so as tomake it suitable for raising steam: A. Consult our adver(1)
(14) E. H. L. asks (1) whether a lawu sprinkler would revolve if worked in a vacuum. A
Yes. 2 . The query is, what produces the revolution? it the difference of pressure of the water on the inside and at the openings, or is it the resistance of the air
to the small streams? A. It is the difference of pres-
(15) A. Y. F. asks for the process by which the ribbons used in type writers, hand stamps, etc.. are made and prepared. A. Saturate the ribbon
with a strong solution of one of the soluble aniline dyes
(16) W. S. R. writes: I have a Wedgwood sirup cup that is cracked and leaks, although the crack is only visible on the inside. Can you give used as a varnish, that will be insoluble in hot sirup or water,and stop the leak? A. See the thirtieth cement In the list, page 2510, No. 158, Sclentifio American
Sopplement.
(17) J. L M. asks: Is meerscbaum a manu factured article? Is it manufactured from sea foam?
A. True meerschaum (Ger., sentooam) is a native mine ral, a hydrous silicate of magnesia. Much of the so called meerschaum in the market is manufactured ot from sea foam, but from waste chips and powder of magnesia, water, silicate of soda, sulphate of mag.
(18) J. F. S. asks for some simple way of endering horns soft and pliable (without destroying their original shape). Have tried steam at 80 lb . with out any satisfactory result. A. Digest them in pure hydrochloric ac
(19) G. B. S. writes: I have a small sawmill engine 10 inches by 20 inches, and the connecting rod is only 34 inches. I think it a very poor propor
tion. Give me a better one, and give dimensions the fly tion. Give me a better one, and give dimensions the fly
wheel should be, also the speed? A. A connecting rod wheel should be, also the speed? A. A connecting rod
in length 2% times the stroke is considered a good proin length $2 \ngtr 2$ times the stroke is considered a good pro wheel should be about 6 feet 6 inches diameter and weigh $3,000 \mathrm{lb}$. If your engine is well balanced it may run from 130 to 160 revolutions per minute, or even faster the work requires it.
(20) E. A. C. writes: In putting up the feed water pipe on one set of boilers, which of the two valves must be near to the boiler, the stop valve or the
check valve? A. The stop valve should be placed next he boiler
(21) J. D A. asks: What ingredient can be mixed in the manufacture of tinner's solder (hal and half) which will be harmless to use and give a
quick flow to the solder? Should such solder be moulded hot or cool? A. Try a small quantity of bis
(22) C. H. H. asks: 1. Do freight trains on
v. Y. L. E. \& W. R.R. haul broad and standard gauge N. Y. L. E. \& W. R.R. haul broad and standard gauge
cars indiscriminately on same train ? A. Yes. 2. If cars indiseriminately on same train ? A. Yes. . If
so, how are draw bars arranged ? A. Draw bars for passenger trains by special link and distance block, an for freight trains by three-link coupling. 3. Are some cars \& A. Yes; but all one gauge if possible. 4. Do
cand ond they use broad gauge passenger coaches? A. Yes, on branches running through to Jersey City. 5. Is there a
third rail whole length of road; if not, between what third rail whole length of road; if not, between what
stations? A. Yes,on all the main linefromJersey City to Buffalo
(23) H. J. C. asks: Will the thickness of a in run over the same size pulleys make any difference
in peed, other things being equal? A. No, if there is (24)
(24) W. S. wants to know how much a one and one-eighth inch ship cable chain will sustain and
what size hook it will take. A. Ultimate strength $19 \cdot \%$ tons to $21 \cdot 5$ tons; proof test $15 \cdot 2$ tons to 15.75 . Shnuld not be worked regularly over oue-fourth the ultimate strength. Opening of link for hook or pin $11 / 2$ inch.
(25) H. S. asks: 1. Would a half-inch board hold up a piece of earth 10 feet thick: A. It would
depend entirely on the area of the board. 2 What sized battery (Bunsen's) would be required to light room 10 feet high, 15 feet long, and 12 feet wide ? A to 5 quat Bu
(26) P. writes: Scientific American, February 12, 1881, page 106, Notes and Queries, No. 19,
"Should be thicker than if vulcanized "ought to read galvanized. There is no such thing as vulcanized iron. Clearly a miste of the typo Our correspondent
(27) C. P. T. asks; 1. Does the pitch of a propelling screw increase or decrease its resistance to
the motive power? A. Increased pitch requires more power, and decreased less. 2. Does a sharp pitch prore at a greater speed than a less pitch? A. It propels at greater speed, if you have the power to drive it at the same velocity as the wheel with less pitch. 3. Suppos ing I had sufficient power, so that the question of ne-
cessary power was not considered, what pitch would cessary power was not considered, what pitch would
give the greatest speed ? A. There is no fixed pitch, give the greatest speed \& A. There is no fixed pitch,
for it depends upon many conditions, and each case for it depends upon many conditions, and each case
mustbedetermined by its own conditions. 4. Would a shaft 20 feet in length, upon which were four pairs of wings, 5 teet apart, give more propelling power than a
single pair-that is, supposing the wing single pair-that is, supposing the wings or screws to
be all of the same pitch and diameter? A. We think
(28) W. R. H. writes: With a 10×24 engine r?nning 100 revolutions, steam ports 114×4 inch,
exhaust $\approx 44 \times 4$ inch, bridges seven-eighths inch, valve steam lap half an inch, exhaust lap one-quarter inch, what would be the right travel of valve, and are the steam ports too small tor the speed of engine? A.
Your openings are rather small. Valve should have 3 inch travel, $11 / 2$ inch each way. Reduce the exhaust
(29) G. R. asks: Does the stran on belt driving an emery wheel increase with an increase of
speed? If so, in what ratio \% A. Not appreciably, the amount of work done by the wheel remainng tine same per revolution.
(30) D. E. T. asis. 1. What number of Callaud cells is required to work bell calls, ordinary single stroke, on a half mile line of No. 12 wire, one at
each end? A. It will require five cells. 2. How is a
relay constructed, and what purpose does it serve? A. relay constructed, and what purpose does it serve ? A A relay is much the same as a sounder. Its magnet is
wound with finer wire, and its armature lever, which is very light, is made to open and close a 10 cal circuit. I is used in lines 12, which the current is too weak to work
$\begin{aligned} & \text { a sounder } \\ & \text { 3. In the transmitter } \\ & \text { described by }\end{aligned}$ Mr Hopkins, in Scientific American of May 8, why could not the bottle be constructed with a cork in the top with small piece of glass tube for the carbon, and th platinum wire inserted at the side of the small tube an save the glass blowing, which seems to be the only par
of any dificulty for amateurs with limited facilities to wake A. The experimental transmitters of this kind
tion to the plan, provided the ends of the glass tube are
fused to remove the sharp edge. By attaching a small fused to remove the sharp edge. By attaching a small platinum point (about the size of a pin's head) to the
diaphragm instead of the carbon button the effective ness of the instrument will be increased. 4 What size should the platinum wire be ? A. It is immaterial copper wire will answer just as well if used in the man ner proposed by you.
(31) J. H. writes: 1. Our mechanic has made a dynamo machine as designed in Supplement No. 161, which did not work before it was connected battery about an hour it began to work, and has done so ever since. Now, will a dynamo machine work
without it being charged with a battery? A. Iron is usually more or less magnetic, and the slightest degree of magnetism in the iron of your field magnet would which would have increased rapidly until the maximum current was reached. It seems that your field magnet must have been neutral. After having been charged by the battery it retained sufficient magnetism to start the current. It has been found that when the field mag net is neutral sumcient magnetism to start the machine may be imparted to it by placing it on the earth's mag netic meridian. 2. Can machine which is strong enough to magnetize piece of steel in the form of a norseshoe magnet which is 12 inches long, $11 / 2$ inch wide, and $1 / 2$ inch thick? A. For this purpose you would need a large machine such as the Edison, Maxim, Brush, Weston, or Siemens, all
(32) J. P. E. writes: 1. In a late edition of your valuable paper you give directions for building an upright, single-acting rocking valve engine. Please tell me how I can get up a cheap, effective, steam supply for an engine on that principle, having 2 inch bore, and $21 / 2$ inch stroke. Would a copper boiler, 11 150 lb . to square inch, with 44 -inch wicks burning good refined petroleum, be at all effective and efficient? A Such a boiler should have 20 to 25 1-inch tubes. You would hardly get the full power of the boiler with the Pour wicks. 2. Would a grate burning fine coal be better than the oil supply $?$ A. Yes, much better. 3. of given dimensions. A. A pump having a piston oneuarter inch in diameter and 1 inch stroke would be sufficient to supply the boiler. It would be well to make either the speed or stroke of the pump variable.
(53) P. S. writes: I would like to make an induction coil, but I think the one in Scientifio
American Supplement, No. 160 , too large, and in the Scientific American, vol. xxxix., page 203, No. 14, too small. Would you please answer me the following questions. 1. Would a coil $4 / / 2$ inches long on inside, by $21 / 2$ inches diameter, be too large to give shocks,
using small battery power? A. It would not be too large, as you can regulate the strength of the current as may be required. 2. If not, please give diameter A. Diameter of core, five-eighths inch. Three layers of No. 18 silk covered wire for a primary, and 12 to 14 layers of No. 36 silk covered wire for the secondary. which draw out to regulate covering the wires of core, from working? A. It would modify the action some hat, but it would not entirely prevent its working.
(34) F. S. P. asks (1) how the connections re made in a "Gramme electro-magnetic" machine. After having wound the soft iron ring armature with a of these coils of wire connected to the copper strips upon the axis? A. The inside terminal of one coil is connected with the outside terminal of the next, and both together are connected with one of the copper strips, and so on throughout the entire series of coils and strips. 2. What position do these strips of copper outh pole of the magnet coil passes from north to with the axis, and the collector brushes which press pou opposite sides of the commutator cylinder should e adjustable, so that they may be moved from the neutral point
obtained.
(35) S. R. M. asks: Could a telegraph mes sage be sent over a wire of any length, one end being tank or lake of any size which was well insulated fro
the earth ? A. No; a complete circuit is required.
(36) H. B. writes: Referring to an article in your paper some time since, "How far can cannonading be heard?" would say many of us (I among
them) distinctly heard, two days (and think three) in succession, at Lynchburg, Va., while prisoners in the les on the Peninsula. It was clearly heard towards t sounded like a bucket bays big dreped clear sky water. W
about it.
(37) S. R. asks: What is the longest railway bridge in the world ? A. It is said that the railway he longest in the world, being 1,940 yards in length The next longest to it is that built for the Orenberg ailway over the Volga near Syzrau, which is a few yards short of 1,624 yards.
(38) A. B. M. inquires: How is pyrolignetilling wood in iron retorts. resembling those used for making illuminating gas. The condensed products of the istilation contain, with tar and numerous other bodies, well conducted distillation to about 7 or 8 per cent the wood employed. The gas that accompanies the liquefiable distillates is conducted to the furnace under the retort, and serves to continue the distillation without other fuel. In purifying the acid, it is first saturated ith lime, evaporated to dryness, roasted at a moderate decomposed in as to free it from volatile matters, and condenser of tin or silver, with hydrochloric acid an

parts acid distilled.

Minerals, etc.-Specimens have been re ceived from the following correspondents, and xamined, with the results stated
D. R. Y.-No. 1. Hornblende schist. No. 2. Red sand
stone. No. 3. Dolerite. No. 4. Cherty flint.

COMMUNICATIONS RECETVED

On Parhelia. By U.F. G

Experiment with Polarized Light. By Ona

NEW BOORS AND PUBLICATIONS

The Lo

MENT.
The logical-mathematical development of the caus of the principal phenomena of nature, such as gravity,
elesticity, light, color, heat, electricity, chemical com inations etc from a single fundamental principle By Theodor Wiesemann. Brussels• 18i9. Paper, 63 pag.

the Photographic Times.

The Photographic Times, which was formerly issue as an addendum to the Philadelphia Photographer, began with an able editor-Mr. J. Trall Taylor publication, the British Journal of Photography. The Januar number of the Photographic Times, now before us, contains a large amount of matter of interest and value to practitioners of the art beautiful. \$2 a year. Single
copies 25 cents. Scovill Manufacturing Company, pub copies 25 cents. Scovill Manufacturing
lishers, 419 Broome street, New York.

Johnston's Illustrations of Electricity Sheet 5. Electro-Deposition OF Metals. With Hand-Book. By Alexander Watt. Edinburgh and London:
W. \& A. K. Johnston. 10s. Size 50x W. \& A.

One ofa series of charts in color for use in teaching natural philosophy. The illustrations of apparatus, the several parts are colored as in the objects themselves. The sheet before us pictures twenty-three forms of voltaic battery, dynamo-electric machines and their elements, thermo-electric apparatus, and apparatus for electrotyping, electroplating, gilding, nickel plating, etc. The hand book briefly describes the objects figured and their uses. The chaits would seem to be admirably adapted for use in schools unprovided with say fifty cents or less a sheet, they might find a wide

A Text Book of Elementary Mechanics For the Use of Schools and Col-
Leges. By Edward S. Dana. New York: John Wiley \& Sons.
Though specially designed for use in schools this ele mentary treatise seems well adapted for individual
study. Its scope is limited to the mechanics of solids. It would add much to the practical value of the mathematicalcourses in our schools if a treatise like this could take the place occupled by surveling, navigation,
Smithsonian Miscellaneous Collections. James Smithson and His Bequest. By
William J. Rhees. Washington: Published by the Smithsonian Institution. This is the first authentic account of the man who uch great obligation by his bequest to found the insti. ution which bears his name. Though barred by law rom claiming the family name and honors of his father, he Duke of Northumberland, Smithson sought a higher fame in the discovery and propagation of scientific In one of his manuscripts was found this memo England's noblest families: " My name shall live in the memory of man when the titles of the Northum berlands and the Percies are extinct and forgotten." The prophecy bids fair to come true.
American Sanitart Engineering. By The Sanitary Engineer. 8vo, cloth, pp.
129 . A dozen lectures covering in a peculiarly suggestive
and practical manner the subjects of ventilation, house and town drainage, sewerage, and the like. The matter is presented in a way well calculated to command at sanitary engineers. The methods and appliances commended have been chosen for their fitness to met the conditions of our climate, our modes of life, and more obvious sanitary needs. The single marked defect of the book is the lack of an index.
DeBaun's Practical Calculator, No. 1.
New York: Bicknell\& Comstock. Folio. 50 cents.
A multiplication table extended to 100×100, and ver compactly arranged, so that one can readily find at lance the product of any two numbers within the mit. Obviously it can be used as a division table with equal readiness, and with slight figuring extended to Circulars of Information of the Bureau of Education. No. 4. Rural School
architecture. No. 5. English Rural
Architecture. No. 5. English Rural
Schools. Washington: Government Printing Office. 1880.
The Bureau of Education is doing good service in pre in these circulars. They should go not only to all chool officers or communities intending to build school houses, but to every school district in the land, for the There is a vast amount of barbarism in and about ou ountry school-houses which these circulars will help to mitigate.

INDEX OF INVENTIONS for which

Letters Patent of the United States wer

 Granted in the Week Ending January 25, 1881 AND EACH BEARING THAT DATE [Those marked (r)are reissued patents.]A printed copy of the speciffcation and drawing of an patent in the annexed list, also of any patent issue lar. In ordering please state the number and date of th patent desired and remit to Munn \& Co., 37 Park Row New York city. We also furnish copies of patent ranted prior to 1866; but at increased cost, as the sped

Air compressor, J. R. Cushie
Air engine, A. S. Lyman....
Bale bands, splicing. L. Miller
Baling press, M. F. \& M. F. C
Bedstead. folding.
Beehive, J. Mills.
Beer, etc., apparatus for cooling, H...................
Bench clamp, I Murphy..............-
Book, scrap, C. Sneider
Bottle, dose measuring, J. M. Dodge
Botte stopering device, B. Hegele.
Bracelet
Bracelet, F. W. F. K
Brush fly, Braddock, Pack, \& Jeffs
Buckle. J. B. Noyes...................................
Buggy gear, side spring, Thompson \& Hayward
Burglar alarm and door fastening, C. F. Crary Button fastener, R. B. Banister
Button, separable, J. H. Fleisch
Cables, machine for compressing, J. Brady

Candlestick, M. B Cane, R. Lamb.

Car brake and starter, E.
Car coupling, C. Gifford..
Car coupling, W. G. M. Hiat
Car coupling, W. C. Kelly.
Car, dumping, \mathbf{C}. K.
Sheple

Cars, cooling and ventilating, i. H. Caramels, manufacture of liquid, A D. Curran
Cardboard, machine for making, R. Shackleton Cards, apparatus for blacking borders of, H. Mcafee.
arding machines. device
flats of, W. H. Gould
Caster, sewing machine. B. F. Ry . der
Cement, bituminous, E. J. Desmedt.
Chistmas heater decoration, T. C.
Churn motor, J. J. Smith
Clock, F. A. Lane......
Clothes rack, F. T. Win
Clothes rack, F. T. Wing
Coffee roaster, C. L. Hall
Coke oven, A. M. Chambe
Collar and cuff, E. II. Espenh
Cooker. steain, I. B. Olmsted
Corn shelling machine, F. M. K
Corpsers to earthen and other
T. W. Brown...
dead centers, mechanism for moving the the
Hltivator, hand, H. B. Sherwood
Cultivator, cotton, R. G. S. Austin
Damper, stovepipe, J. K. Clark
Door check, F. V. Phillip
Dumping boat, automatically, N. Barney (r)
Earring, A. Claude
Easel and back rest,
Easel and back rest, picture............... Frame. c. E. Kellog
Electric circuits, switch board for, E. t . Frost
Electricity, electroplated insulated conductor
T. \& J. Cochran.
rell....
Evaporating solutions in contact with air or oth
Eas, apparatus for, J. I.
Evaporator, F. S. Harman ..
Exhibiting case, J. M. Clap
Farm gate, J. Bove
Fence barb former, wire, Pooter \& Jones (r)
Fence, portable, , I. M. Keller
ertilizer distributers, feed cup for, w. Marks.
inz G, machine for disintegrating and d
ing, G. Mercer...............
Fire service harness, R. H
Flood gate, W. Donnan..
Form, dress, J. Hall
Game, A. O. Hall ..
Game board, puzzle, C. J. Schumake
Gas regulator, Merritt \& Ford
Gas retort lid, W. J. Dooley
Gas retort lid,
Glove, 0 . Guittard
Grain binder, J. F. Steward
Grain drill, Elam \& Boggs....
Grain drill cleaner, D. J. shu
Grate bar, Stevens \& Borthwick
Grate bar, C. W. Withenbury
Griddle, cake, S. C. Schofie
Grinding mill, T. Michaut..
Halter, Mauk \& Perry.
nister
nist nister
Harveste
Hat block and chuck, G. F. Larkin
Hat pressing machine, Tyrrell \& Kearn
Hay, loader and raker, D. W. Bovee.............
Heat from gas, apparatug for obtaining, Allen Harris
Heel protector, A. (r)
Hog cholera compound, J. B. Shook
Hogrse rake and hay spreader, F. E. Nearing (r), 9 ,
Horseshoe nail plate, J. M. Laughlin
Hydraulic apparatus, , Be Belingrath

Incubator heat regulator, F. Meyer
Ironing board, M. Miles
Ironing board, M. Miles....
Jewel setting tool, L. Schul
Journal box, J. H. Allen.....
Journal box, lubricating, G. W. Fisher
Knitting and other light machines by power, dri
Lamp, J. M. Dexter.
Lamp supporting bracket, A. Roelofs37,

Liquid cooler, M. F. Capps..
Loom, Dawson, Myers, \& Smi
Metal shaping machine, W. H. H. Sisum......
Miter machine, J. R. Bodeli......................
Versing, C. M. Fairbanks.
Music chart, M. Knapp.....
Needle polishing machine, v. Milward.
Optometer, F. Scharpf.
Paint, J. F. Hoffman.
Paint mins, apparatus for feeding. H. Meinsen
Paint, mineral, D. E. Goodell.
Pants, S. C. Ferriss.............

regulator for, R. Hutton......................
Pen, fountain, J. S. Purdy............... \quad...... 237,0
Pen, stylographic fountain
Pencil, B. \boldsymbol{A}. Fiske.......
Phaeton, C. W. Saladee
Phe
Photographic camera, J. Suder
Pipe coupling, G. F. Ott
Planter and cultivator, comb'd corn, J. C. Sebring 236,9

Plow, sulky, C. Mowrey...........................
Plows, revolving harrow attachment for, Ken
nedy, Preston, Morand, \& Kennedy.
Printing press, J. Till.
Pump, W. S. Laney...
 Pump, force, P. Breiden Jach..
Panching device. G. E. Nue
Rail joint, J. Peck
Railway chair and splice bar,
Razor guard, P. L. Fontaine
Refrigerating butter box, Mosler \& Ladewi
Rock drill bar, H. W. Hammond
Rotary engine, G. T. Ellis...........
Rowing apparatus, boat, E. Heyde
Saddle, R. E. Whitman
Saddle, harness, Glove
Saddle, harness, Glover \& Smith
Salt purifying apparatus, J. . . Duncan
Sample ex. Donglas............
Saw, C. H.
Saw handle, J. R. Woodrough
Saw mill, reciprocating, T. S. Wilkin
Saw set, A. Rush.....
Scarf, neck, T. J. Flag
Scarf ring, B. F. Brow
Screw driver, N. Stow
Seaming elbows, machine for, E. W. Stoddard.
Sewer trap, H. Textor
Sewer trap, H. Textor...
Sewing machine, M. A. Donovan.
Sewing machine, J. J. F. \& W. F. Webst
Smoke consuming furnace, C. Smith.
Soap for toilet purposes, liquid p

Sole and welt trimmer, F. A. Dunhan
Sole trimming knife, W. R. Barton..
Spark arrester, F. A. Perry (r). ...
Spinning machine fier, J. F. Foss.
Spinning mule, E.
Stamp, canceling, L. Titton.
Stamp, postage, R. P. Sawyer
Station indicator, automatic, H. E. Bissell.
Steam engine, I. F. Davis ...
Steam generator, G. B. N. T
Stirrup, I. Hillen.
Stove, S. Shepard.
Stovepipe fastener, A. Trollope.................
Stovepipe taimble and cover, M. B. Scribner
Tag, A. N. Clark
Tag, A.N. Clark
Tanning compound, F. Foley..
Tea and coffee pot, J. B. Danie
Tea and coffee pot, J. B. Daniel
Teeth, treatiug, P. A. Palmer.
Teeth, treating, P. A. P.almer.........................
Telephonic receiving apparatus, C. A. Randall
Tire tightener, J. R. Bell....
Tool handle, I. W. Heysinge
Tooi handle, H. B. Sherwood
Tool or implement, hand, E. T. Starr
Truss, L. Westinghouse.
Turret, turret skylight, etc., G. Ha
Undervest, J. L. Copp.......
Vaginal dilating pipe, N. Mayer
Valve, balanced slide, J. B. Matt
Vagetables and fruit, apparatus for and process
of drying, A. J. Emery.
Vehicle spring, E. J. Moore
Vehicle spring, E. J. Moore........
Vehicle spring, H. G. Steenburgh.
Vehicle spring, H. G. Steenburgh.
Vehicle spring, J. Titon (r)..
Washing machine, W. F. Ashcraft.
Washing machine, W. F. Ashcraft....
Watch case
Watch case opener, Heyse
Watch key. A. N. Clark...
Water closet. H.
Water closet, , C. Moore.....
Water closet c. H. M.
Water elcvator, w. A. \& R. . Smith.
Whifletree and double tree, R. W. Davis........... 3
Wind motor, turbine, M. De La Torre..............
Windows, dust and wind guard for, R. M. Brun-
dige
Wood borders, making, G. C. Setchell
Gimp, J. H. Thorp. 12.143 TRADE MARKS.
Cigars, cigarettes, cheroots, smoking and chewing
tobacco, and snuff, L. Wertheimer............... 8 ,
English Patents Issued to Americans.
From January 21 to January 25. 1881, inclusive
Axle bearings, J. E. Maynadier, Boston, Mass
Feed water heaters, J. H. Dane, San Francisco, Ca
Ice machine, A.J Rossi et al., New York city. Ice machine, A. J. Rossi et all, New York city.
Inda-rubber
Mass.
Lawn mowers,
Mass.
Ore separator. J. F. Halbrook et al., Palmer, Mass.
Vinegar, nanuf. of, O. F. Boomer et al., Brooklyn, N.
Watches, F. C. Comsteck, Indianapolis, Ind.

Inside Page, each insertion - - - 75 cents a line. Back Page, each issertion -..- \$1.00 a line. Fingravings may head advertis to a line. Engravings may head advertisements at the same rate
pet line bive measurement at the letter press.
isements. tisements must be receieved at publication of efsio
as Thursday morning to appear in next isve. WANTED,
 stating salury expected, reterenceas, eto., tec.. to

For 1881 is an Elezant Book of 120 Pages on
 VICK' SEED. are the best in the world.
FLORAL GUDE Will tell how to get and grow them.

VIOLIN OUTFITS.

 "Ahbe" Bolt Heddind 1 fachind

 CLIMATE CURE IN NERVOUS DIS-

WESTON DYNAMD ELECTRIC MACHINE CD

 CONDIT,HANSON \& VAN WINKLE
Sole Agents
NDWARK Engish Agency, 18 Carof 92 and Sine St., Birmingham, England WANTED, BY ATLAS ENGNE WORKS Indianapolis, Ind., a young or middle age man as
Corresponding Clerk, Mus have a knowledge of stean
Engines, and business experience sufficient to enable him

GOLD
 PENS
 PENCILS, HOLDERS, CASES, \&c.

 A GOLD PEN and RURBER HOLDER, Pentinn. MABIE, TODD \& BARD.
 MANUFACTURERS OF LIGHT IRON
 mims by addressing HOW ARD PUSET, P. O. Box 200
䢒 Pingund waste. Send forc

THE NONESUCH TURBINE
 MILLith bairs Patant Lever bits,

 SELF-BALANCED SLLDE AALVE, State or County
for sale cheap. Address R. G. BISHOP, Chetopa, Kans.
 Or HALCN ZITHER. This is the best cheap-Estringed nistrument

 Instrument

'RELIABLE"

CET THE BEST AND CHEAPEST. Silver Finish.
 T. A Mincinationio, U. C. A.

PERIN BANDSATEDBLADES,

Gold, Silver, and Nickel Plating.

 THE BIGGEST THING oUT. Illustrated
 MACHINISTS AND STE Send FITTERS

WOOLS

 JGTV ISUEED. ROPERS ENGINEERR HANDF

I. M. INAGTE,

 ERIE PA.,ortable, Stationary Agricultural BTMAMM MNGINES.

Steam Hoiting Machines The Four Horse Power will raise
1,200 lb. 150 feet per minute. Other

NOBLE \& HALL,
 50 New Stlyes. Perfume Motto Moss. Roses. Violet. Jat

DRUNKENNESS OPIUM TYativit

$\theta 2$

 mandeme C ASTIN G S
"The 1876 Injector."

THE PERFECTED STYLOGRAFIC.

READERS' AND WRITERS' ECONOMY CO.

BAIRD'S Booxs
 FOR PRACTICAL MEN.

Valuable and Indispensable Pruticid and Sicielificic Buks. LIST No. 2.

 the Use of Engineers, Firemen, and Mechanics.
Prac ical Book for Practical Men.
ennustrated by

 ROCK BREAKERS AND ORE CRUSHERS.

 SURFACE FILE HOLDERS.

ROOFING.
For steep or flat roofs. Applied by ordinary workmen
at onetetirir the cost of tin. Circulars and samples reee.
Agents Wanted. T. NEW, 32 John Street, New York.

BARNES' PATENT FONT POWER MACHINERY.

FOUND

SHEPARD'S CEl/EBRATED Foot and Power lathen Foot Lathe

(PARIS FURNACE CO.

 B. F. avery \& sons Pond's Tools, Dovili W. PONo, Worcester, Mass.

The George Place Machinery Agency

the steam pumps made by VALLEYMACHINECO.

CENTENNIAL ANDPARIS MEDALS. ". New and Improved Paterns."
VOLNEY W. MA SON \& CO., Providence, R. I., U. S. A

Frepresents that part of the packing the Piston Rods and Valve Stems of Steam Engines and Pumps. createsibut little friction. in lengths of about 20 feet, and of all sizes from $1 / 4$ to 2 inches square.
JOHN H. CHEEVER, Treas. NEW YORK BELTING \& PACKING CO., $38 \& 38$ Park Row, New York.
$\underset{\text { European }}{\text { TOppresentatives }}$ of American Houses, with

ELEVATORS , stam and Hand Power. Auto
 HOUUDNING IILCHINES
Foundry Use. $\underset{\substack{33 \\ \text { per ct. saved in in labor } \\ \text { Mantatured by }}}{\text { by }}$ REYNOLDS \& CO. ORGANS S

COLD ROLLED SHAFTING.

We Stocks of this shafting in store and for sale by
FULLER, DANA \& FTTZ, Boston, Mass
Geo. Place Machinery Agency, 121 Chambers St., N. Y.
Shafts, Pillefs, Hangers, Rit.

登登

 MACHINISTS' TOOLS Gear Cutters, Shaping Machines, and special machinerv SGOULD \& EBERHARDT
NEWARK, N. J.
THE STEARNS MANUFACTURING CO,
 SAW ${ }^{\text {ERIE, PEANSYLVANIA, matee a apecalaty of fmproved }}$ MILL

Roots New Iron Blower.
 POSITIVE BLAST. IRON REVOLVERS, PERFECTLY BALANCED FEWER PARTS THAN ANY OTHER BLOWER. P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND. S. S. TOWNSEND, Gen. Agt., $\left\{\begin{array}{ll}6 & \text { Cortlandt SY., } \\ 8 & \text { Dey }\end{array}\right\}$ Sreet, ${ }^{\prime}$ $\left.\begin{array}{l}\text { WM. COOKE, Selling Agt., } 6 \text { Cortlandt Street, } \\ \text { JAS. BEGGS \& CO., Selling Agts., } 8 \text { Dey Stret, }\end{array}\right\}$ YOR a-SEND FOR PRICED CATALOGUE.

WOODWORKING MACHINERY,
SHAFTING, PULLEYS \& HANGERS. P. Pryibi, 461 to 467 W. 40 th St, New York.

SHORTHAND WRRTING Litoroninhly tanght

ERICSSON'S NEW MOTOR. ERICSSON'S
Ner Cancic Pinuming Bigiae
ELLINGS AND COUNTRY SEATS.
 DELANATER IRON WORES No. 10 Cortlandt Street, New York, N. Y

WOOD WORKING

 50 GHROMOS. name in nem tyen 10 oi by mall MACHINISTS' TOOLS.
Send tor new ilustratea atalague.
Laihes, Planers, Drils, \&c.

NOTICE TO ARCHITECTS. The New Orleans Cotton Exchange invite further pro
posais for designs of a Cotton Exchange, to be erected The sum of one thouns. dollars will be paid for the
rawings chosen, the association reserving the right to reject any and andil plans suciation reserving the right to
Designs to be submitted on or before the 15 th day At circular glving particulars and explapation, together
with rround plan and sketch plans suggestive of divi-
sions of the various floos petc will
 Chairman Com. on Building.

New York lee Machine Company 21 Courtland St., New York, Rooms 54, 55. LOW PRESSURE BINARY ABSORPTION STSTEM Machines Making

ICE AND COLD AIR.

Low Pressure when running. No pressure at
chines guaranteed by C. H. Delamater \& Co.
THE ADVERTISER, A NAVAL OFFICER

Partnership, - Wanted Partner (Engineer)

SHAFTS PULEYS HANGERS

 Jarvis Furnace Co.
 Nous; No. 18 Second St ., Batitimore.

Special Machines for Car Work, and the
Wood Working Machinery of ail kinds.
F.SIVILLA PRATS,

The Asbestos Packing Co. Miners and Manufaeturers of Asbestos,

PATENTED ASBESTOS ROPE: PACKING, LOOSE journal " MICK boaird SHEATHING PAPER,
FLOORING FELT. CLOTH m. 큭

(porter ma

 PICTET ARTIFICIAL PER TON.
 STILES \& PAREERER SHEALSIS

HY H .JOHISTS
 LIQUID PAINTS, ROOFING,

 H. W. JOHNS MFF:C.

LGHIGF VATMOY

Fmery Wrheel Gompany, Weissport, Par Manufacturers of Emery and Corundum Whee

FOR SALE BY
WILLAM COOKE, No. 6. Goitandt Sreet, New Yorki,

Carbon

 For all kinds ofMechanical
Purposes. Carbon for Mining Drills Best quality at the lowest
The old orice
Ostablished G4. DICKINSON,

ESECTORS

Are the cheapest and most effective machines Elevating Water aud Conveving Liquids

 ries, Distilieries, ougar Refineries, Paper nisis, Tanne
NATHAN \& DREEPUS, $\frac{\text { Sole Manufacturers, }}{\text { WOOD WORKING MACHINES, }}$

HOWARD MANUFACTURING CO. Manufacture and Introduc
Patented Novelties YANKEE NOTIONS.
THE LATEST NOVELTY.

Mirror, Pin Cushion and Tape Measure. PRICE 25 CENTS.
Sample by mail on receit of orice. A. liberal dis-
count to the trade.
$\underset{\substack{\text { HOWARD MANUFACTURING } \\ \text { Box } \\ 2295, ~ N e w ~ Y o r k . ~}}{ }$
ARNOUX-HOCHHAUSEN ELECTRIC CO.
[ELECTRIC LICHT.]

OFFICE AND SALESROOMS, 227
B GGARDUS' PATENT UNIVERSAL ECCEN

PROVIDENCE, P $_{\text {I }}$ I (PARK STREET)
HARRMIS-CORLINS ENGINE

COLUNBIA BICYCLE

 Plastic Cement and Hair Felt, with or without the
Patent "AA R SPACE? Method ASBESTOS MATERIALS,

Mill Stones and Corn Mills.

Electrotypers and Electroplaters
 HARTFORD
STEAM BOILER
Inspection \& Insurance
COMPANY
W. b. franklin,V. Pres't. J. M. ALLEN, Pres't. J. B. PIERCE, Sec'y.

TELEPHONE $\begin{gathered}\text { and Flectrical Supplies. } \\ \text { send }\end{gathered}$

SASH DOVETAILING MACHINE.

Notice to Water Works Builders
 AIIOS H. CAFFEE, Mayor, Carthage, Mo.

Before ordering engraving of any kind, send to
us for estimates and samples. We have the largest
engraving establishment in the world, and the best
facilities for doing work of the best quality, quickly
and cheaply
PHOTO-ENGRAVING CO

CATALOGUED.

the following manufacturers are pro MINENT in their respective Lines; in

- 最

 C.M.THOMPSON, Agt. 87 Liberty st., N. y.PLUMBING \& SANITARY QBODS
 HOISTING ENGINES. COPELAND NORK. BACON,
THE DEANE STEAM PUMP.
 MECHANICAL BOOKS. Send 10 cents for 96-page Catalogue of Books for
Machimst VERTIGAL STEM ENGINE VERTICAL STEAM ENGINES, NEW YORK SAFETY STEAM POWER CO.,
30 Courtand St., New York.

Korting's Improved Steam Blowers,

BRADLEY'S CUSHIONED HAMMER

 SHAFTS, PULLEYS, HANGERS, \&C. P. PRYYIBIL

461 West 40th Street, New York. CELEBRATED "RED STRIP" BELTING rubber belting, packing. and hose.
 MACHINISTS' TOOLS AND SUPPLIES. H. PRENTISS \& COMPANY,
Dey St. (P. O. Box 3362), New York.

DTENTSAFEETY JEWEELCCASEC
 BOLT CUTTERS and SCREW CUTTING MACHINES HOWARD TRON WORKS, FAIRBANKS' STANDARD NCALES,
 AIR ENGINES AND ELEVATORS
 THE PERFECTED TYPE WRITER. Faster and better than the most expert penman.
EREMINGTON $\&$ SONS, $281 \& 2$ 288 Broad way, New ROCK DRILLS \& AIR COMPRESSORS. 1-2 Park Place, ROCK DRILL CO., Nows.

Lehigh Valloy EmERY WHEEL CO., - Weisort, Pa

 FILES, DRILLS, CHUCKS, VISES, TAPS, REAMERS, STUB TOOLS, \&e., \&c. Goodnow \& wightman, Boston, Mass Metaline and Star Roller Bush Tackle Blocks, \&cC. Boston, Mass,, and 33 South Street, New York Establ'd EACLE ANVILS. 1843. solid CAST STEEL Face and Horn. Are Fully Warranted. Retail Price, 10 cts per lb.DOUBLR SCREW; PARALLEL, LEG VISES. Made and WARRANTED stronger than any other Vise
by FISHER \& NORRIS only, Trenton, N. J. BuY Barbers Bit isRACE

Brass Cocks, Valves, and Fittings.

EXETER MAACHINE WORK Steam Engines, Blowers, an
Steam Heating Aparats. DADDOW \& BEADLE
MINER'S PAT. SQUIBS for BLASTING. wfd. by Miners' Supply Co., St. Clair, Seh'll Coo., Pa Steam Engines \& Mining Machinery.
 The Greatest Rock Breaker on Farth.

STEARNS SAW MILLS. Saw Mill Machines, Boilers, and Ensines.
STEARNS MANUFACTURING COMPANY, Erie, Pa

