

a Weekiy journal of practical information, art. science. mechanics, chemistry and manufactures.

NEW YORK, JANUARY 1, 1881
$\left[\begin{array}{c}\text { [3.20 per A } \\ \text { [POSTAGE } \\ \text { PREPAD. }\end{array}\right]$

BELL'S PHOTOPHONE

During a recent visit to Paris, Professor Graham Bel favored La Nature with an extended account of the investi gations and discoveries which led to and resulted from bis ate remarkable invention, the photophone. He also supplied our scientific contemporary with certain details not previous our seie public, topth y made public, together with drawings of his apparatus and xperiments, the engravings of which we here reproduce with Nature's translation of the text
Our readers are already aware that the object of the photophone is the transmission of sounds both musical and vocal to a distance by the agency of a beam of light of varying intensity; and that he first successful attempts made by Prof Bell and his o-laborer Mr Sumner Tain ter, were based upon the known property of the ele ment selenium, the electric resistance of which varies with the degree of illumination to which it is exposed. Hence, given a transmitting nstrument, such as a flexibe mirror by which the ibrations of a sound could vibrations of a sound could hrow of sensitive selenium, formng part of an electric circuit with a battery and a telephone, should suffice to trans ate the varying intensities of light into corresponding vaying intensities of electric current, and finally into vibrations of the telephone disk udible once more as sound. This fundamental conception dates from 1878, when in lecuring before the Royal Institution Prof. Bell announced the possibility of hearing a

Fig. 5.-THE ARTICULATING PHOTOPHONE-THE TRANSMITTER.
have by necessity been so near to one-another that the voice as an electric lamp, falls upon a mirror, M, and is reflected of the speaker was audible through the air. Under these through a large lens, L, which concentrates the rays to a circumstances it is extremely difficult to say whether the focus. Just at the focus is interposed a disk pierced with sounds that are heard proceed from the diaphragm, or holes-forty or so in number-arranged in a circle. This whether they merely come through the air to the ear, and disk can be rotated so that the light is interrupted from one if they come from the diaphragm, whether they are really to five or six hundred times per second. The intermittent the result of the varying light, and not mere sound vibra- beam thus produced is received by a lens, T, or a pair of tions taken up by the disk from the speaker's voice crossing lenses upon a common support, whose function is to render the air. Prof. Bell hopes soon to settle this point, however, the beam once more parallel, or to concentrate it upon the by appeal to experiment on a larger scale with the receiving $/$ disk of ebonite placed immediately behind, but not quite touching them. From the disk a tube conveys the sounds to the ear. We may remind our readers here that this apparent direct conversion of light into sound takes place, as Prof. Bell found, in disks of all kinds of sub-stances-hard rubber, zinc, antimony, selenium, ivory, parchment, wood-and that he has lately found that disks of carbon and of thin glass, which he formerly thought exceptions to this property, do also behave in the same way. We may perhaps remark without impropriety that it is extremely improbable that the apparent conversion of light into sound is by any means a direct process. It is well known that luminiferous rays, when absorbed at the surface of a medium, warm that surface slightly, and must therefore produce physical and molecular actions in its structure. If it can be shown that this warming effect and an intermediate cooling by conduction can go on with such excessive rapidity that beams of light falling on the surface at
redth of a second apart proparticular electrical combination that suggested it; for not In Fig. 1 we illustrate the simple musical photophone of sion and contraction, then the mysterious property of matthe least of the remarkable points in this research is the disovery that audible vibrations are set up in thin disks almost every kind of material by merely throwing upon them an intermittent light. With the photophone as with the telephone, there are instruments of different de. rees of perfection. The original telephone of Philip Reis could only transmit musical tones, because it worked by rapid abrupt interruptions of the elec ric current; while the ar culating telephone of Graam Bell was able to transmit peech since by its ransmit construction it was able to send undulating currents to the distant receiving station.
We may in like manner classify the forms of photophone under two heads, as (1) articulating photophones, and (2) musical photophones.
Up to the present time, Prof Bell informs the imple receiving disk of ebonite or hard rubber has only served for a musical photophone; the reproduction of the tones of the voice by its means has not yet been demonstrated in practice-at least to his satisfaction. For while it produces unmistak able musical tones by the direct action of an intermit tent light, in the experiments made bitherto with articulate speech the instruments

Fig. 6.-THE ARTICULATING PHOTOPHONE-THE SELENIUM RECEIVER
ith the littl opaque disk fixed on the en of the little lever just in fron of the holes in disk, R, and which can be worked by a Morse key like a telegraph instrument, thus producing at will alternate sounds and silences. With this musical photophone sounds have been carried by an interrupted beam of light for a distance exceeding a mile; there ap pears, indeed, no reason why a much greater range might not be attained.
The articulating photo phone is that to which bithertopublicattention lias been most largely directed, and in which a selenium receive plays a part. Fig. 2 gives in diagram form the essentia parts of this arrangement A mirror, M, reflects a beam of light as before through a lens, L, and (if desired for the purpose of experimental ly cutting off the heat rays) through a cell, A, containing alum water, and casts it upon the transmitter, B. This transmitter, shown again in
[Continued on page 4.]

Sinuutifir glmerican.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
PUBLISHED WEEKLY AT
NO. B'Y PARK ROW, NEW YORK.
O. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year postage included..
$\mathbf{8 3} 90$
.160
Clubs.-One extra copy of The Scientific American will be supplied same proportionate rate. Postage prepaid.
Remit by postal order
dress
MUNN \&
MUNN \& CO., 37 Park Row, New York.
The Scientific American Supplement Is a distinct paper from the Scientific amirican. THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages, uniform in size with Scientific American. Terms of subscription for Supplem ent, $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by
all news dealers throughout the country. Combined Rates--'the Scientific American and Suppiemmat,
will be sent for one year. postage free, on receipt of seven dolars. Both will be sent for one year, postage tree, on receipt of seven dolhars. Both
papers to one address or different addresses as desired. The satest way to remit is is by draft, postal as desired
The adder The satest way to remit is by draft, postal
Address MUNN \& CO., 37 Park Row, N. \mathbf{Y}.

Scientific American Export Edition.
The SCirntific Amprican. Export Edition is a large and splendid peri-
odical, issued once a month. Each number centains about ne hundred large quarto pages, profusely illustrated, embracing: (1.) Most of the large quarto pages, profusely illustrated, embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the ScIENTIFIC AMルRICAN, with its splendid engravings and valuable information: Commercial, trade, and manufacturing announcements of leading houses.
Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the erms for Export Edition, 95.00 a year, sent prepaid to any part of the
world. Single copies 50 eents. Manu facturers and others who desire to secure foreign trade may have large. and handsomely displayed announcements published in this edition at a very moderate cost. The SCIENTIFIC AMMELICAN Export Edition has a large guaranteed circu-
ation in all commercial places throughout the world. Address MUNN \& CO., 37 Park Row, New York.

NEW YORK, SATURDAY, JANUARY 1, 1881.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT INO. 261.

For the Week ending January 1, 1881.

Price 10 cents. For sale by all newsdealers.

land. Full page illustration....................................... Salmon and Crossland's Stone Grinding and Polishing Machine.
1 đgure ... II. ${ }_{\mathbf{W}}^{\mathbf{W}}$

ARCHEOLOGY.-Ancient American Pottery.-Contributions to
the Archæology of Misouri.The Ancient Pottery of Eoutheast-
ern Missouri.

PATENT ROYALTIES ON SHOE MACHINERY

The shoe manufacturers of the United States, or at least a considerable proportion of them, have lately been finding fault with our patent laws and the way in which they are enforced, without, as we conceive, a just apprehension of the grounds on which their complaint is based. They re cently held a National Convention of the trade in Philadelphia, for the discussion of this question, and matters re lated thereto, during the progress of which, notwithstand ing that many untenable propositions were made, and very extreme opinions were put forward by individual members, it must be allowed that great good sense was manifested, the conclusions reached pointing in what was perhaps the
only direction from which practically beneficial results might be reached.
For some years past it has been an extremely unpopular and up-hill work to endeavor to sell to shoe manufacturers a machine for which a royalty was charged on the work done to cover the rights of the patentee. There were many in the trade, including some of its most influential members, who took the position that, for any machine that was of decided advantage to them, they would be willing to pay a sufficient round sum down, and then be the owners thereof, to use as they saw fit, while they did not believe it was possible to offer them a machine the payment for the patent rights in which was to be made on the basis of a specified tax for each pair of shoes produced. There are, of course, twosides to this question. There are many manufacturers who would not be able to purchase outright a machine covering the introduction of valuable patents, but who would find it no tax, comparatively speaking, to pay such royalty as would be enforced upon all other users of the same improvement, and hence would become a regular item in the cost of production in all goods of the kind. In this way the royalty system, where all are taxed alike, places the small manufacturer on an equal basis with the producer possessed of unlimited means. Perhaps quite as common a ground, however, for the adoption of the royalty system in the introduction of any particular patented improvement, is the skepticism with which new inventions are sometimes looked upon when first brought to the attention of those practically engaged in the particular industry for which the improvements are intended. The old workmen are prejudiced against and look with distrust upon the innovation, so that, if they give to the inventor any credit at all, their allowance is so meager that it would hardly afford a basis for fixing any proper compensation for the improvement, and even this concession is frequently accompanied by the assertion that the patent is for something not new, or not entitled to the protection of a patent. The last question must, of course, always go to the courts for final decision, although the patent itself is prima facie evidence of its own validity. But the manufacturer who takes a machine on trial, the patentee to be paid by royalties, seldom binds himself to pay anything for the improvement unless he finds it valuable to him; in other words, he need not produce his goods with its aid, but may keep on according to his old methods, and so be free from all royalty payments. In this way many of the most valuable patented moval of first prejudices, been made to work successfully the tax at first being so light as to seem insignificant. The inventor, in fact, has been to all the expense of perfecting his machine, device, or process, overcoming objections thereto, and proving its practical success, before obtaining any return for his outlay, and, therefore, according to all business principles, is entitled to a proportionate reward. There are many inventors and patentees who bave traveled this road to meet failure only; many more have achieved a prizes can be counted on the finger ends.
The boot and shoe trade affords one conspicuous instance of the splendid success of a patented improvement, as exemplified in the sole-sewing machine. It was only by a long course of experiment and the investment of a great deal of money that it was perfected; it did not easily obtain a first introduction, so the system of putting it in faciories, and allowing the manufacturers to pay forits use a small royalty per pair of shoes made, was the only one then thought practicable, and certainly was at the time eminently satisfactory to the trade. Under the able management of one who wasas accomplished a mechanic as he was a shrewd business man, the machine almost revolutionized the boot and shoe manufacture, and has yielded magnificent profits to the patentee This triumph, however, gave a strong encouragement to other patentees to adopt the royalty system, and the number has become so great as to cause much opposition to royalties in the trade; and this was a principal topic of discussion at the late convention in Philadelphia. The prime object in calling the meeting was to consult in regard to how much longer the royalties must be paid on the sole-sewing machine.
We noticed, a few weeks ago, the decision of Judge Blatchford, virtually affirming that the patents would hold good, and royalties thereon be collectible, till next August, but there are many in the trade who were not disposed to
accept this as final. Ample discussion accept this as final. Ample discussion at the convention,
however, showed the doubtful utility of any however, showed the doubtful utility of any further contest
on this point, as the representatives of the sole-sewing machine patents made it too clearly evident that they had the law on their side. Great as had been their profits, it was not denied that they had done a vast deal for the pros perity of the trade, particularly among small manufacturers;
but while they now stood, as a strong corporation, ready and able to meet the issues at law with the manufacturers, they were willing to confer and negotiate in regard to such future royalties as had not been decided upon in their favor by the courts. The convention thereupon appointed a commitlee of representative manufacturers to take charge of such negotiations, not only with this company, but with all others owning patents which were paid for by royalties, with power owning patents which were paid for by royalties, with power advisable.
Patentees generally can certainly have no oljections to negotiations looking to a settlement in cash in lieu of royalties for their rights, and such moderate action on the part of the convention is far more sensible than it would have been for its members to rush blindly into expensive and almost interminable litigation.

THE PRALL SYSTEM OF HEATING.

During their recent convention in this city the members of the American Society of Civil Engineers were entertained by the Prall Union Heating Company. The dinner was cooked throughout by superheated water: and whatever may have been the cost on the relative economy of the system, the cooking was accepted as unquestionably satisfactory.
That bread can be baked and meat roasted by hot water may seem quite incredible to those who think of boiling water only as commonly seen in open vessels. Under atmospheric pressure water can be heated no higher than 212°, far below roasting temperature. But when confined there is no limit o the temperature it may receive save the weakness or trength of the containing vessel.
The Union Heating Company propose to supply heat and power to houses by a system of pipes circulating water heated under pressure to about 376°, that is, a pressure of about 160 pounds above the atmosphere. In being conveyed a mile in boxed pipes, under ground, the water, it is claimed, loses not more than 1°, so that a temperature of 375° can be maintained in the pipes of a cooking range, a heat sufficient for all culinary purposes. The heating of houses can be effected either by air currents circulating around hot-water coils, or by means of steam radiators, the hot water being converted into steam in small converting chambers.
In the operation of the system, central boiler stations will be established in districts of about one square mile area. The pipes conveying the superheated water from the central station and back again, are laid in the same trench, and are so connected as to allow a forced circulation. The reurn pipe conveys to the generator all the water not drawn off for domestic or other purposes, thereby saving all the heat not available for heating purposes or for steam power. The alleged advantages of this system of circulating superheated water over systems of steam heating consist in the smaller size and cost of the service pipes; in the smaller loss of heat by radiation and condensation, owing to the smallness of the pipes; and the saving of fuel through the return of all the unused condensed water to the central generator.
At the trial station at 125th street about 3,000 feet of pipe have been laid. The water to be circulated is heated to about 342°, and is said to be driven through the system at such a rate that no water is allowed to be more than fifteen minutes away from the boiler. It is estimated that two or three cubic feet of water an hour will suffice for heating an ordinary city house, and that the cost to consumers will be much less than with any other system of heating. To determine this, however, we are inclined to think that something more than brief experimental trials, under the management of the company's engineers, will be necessary. However promising a system may be theoretically, serious difficulties are apt to be encountered when it is put to the test of practical use at the hand of ignorant and unskillful servants. In the ordinary use of steam at low pressure for domestic purposes, leaking joints and valves are a source of constant trouble; much more must they be troublesome under a pressure four or five times as great. At any rate the successful use of superheated water in the way proposed will necessitate a style of valve making and steam fitting marvelously better than builders and house owners are able to obtain now.

THE RESTORATION OF OUR COMMERCIAL AND NAVAL MARINE

No question before the American people to-day presents so wide a range of problems of national interest, so many problems having a direct and vital bearing on the prosperity and security of the country as a whole, as that which seeks an answer in the restoration of the United States to their former and proper place among the commercial and naval powers.
Our industrial interests cry aloud for a reconquest of the sea by a commercial marine flying the Stars and Stripes. The security of our coasts, not less than the protection of the mercantile fleets which our enterprising traders are bound to set afloat before another generation passes, demands the speedy building of a navy commensurate in magnitude, capacity, and power, with our position as a nation among the ruling nations of the civilized world. The universal reign of arbitration and international peace is yet a long way off; and it will not do for the wealthiest country of the world to leave her great depositories of wealth open to sudden incursions from powers less peacefully inclined. Besides the consciousness of insecurity inseparable from a lack of means
of defense may cost in comfort if not in cash more than the needed defenses would.
We may take it for granted, therefore, that the American people, now that they are comparatively free from pressing demands upon their thought and means arising from internal complications, and now that they have become pretty generally aroused to a sense of their maritime weakness, will pay to naval affairs henceforth that attention which can meau nothing less than ultimate supremacy in this direction. When the American people make up their minds to do a thing it is done, and usually on a scale that is not niggardly or mean.
At this juncture it is timely, to say the least, to inquire what the rest of the world has been doing in naval matters during the period of our naval quiescence. We shall find, as will be shown elsewhere, that other nations have not been idle; indeed, the past ten or fifteen years have covered a period of greater activity in naval affairs than any corresponding period in the history of navies.
Within this period, as has been so forcibly expressed by Chief Engineer King, in his splendid work on the war ships and navies of the world, "all the navies of Europe have been undergoing reconstruction, while those of Asia and South America have been in great measure created. Never has there been a period in time of peace when such large expenditures were being made for naval purposes as at present, and never a period in the history of steam screw navigation when such radical changes were being effected in the construction of ships of war, in the mechanism of steam pro pulsion, and in the application of machinery to various pu poses on board ship hitherto accomplished by hand. Never before have such vast strides been made in so short a time in the fabrication of great guns for naval warfare, necessi tating, of course, the introduction of new mechavical appli ances for working them; while the development of torpedo warfare and the newly invented methods of operating those dangerous weapons, promise to add to future maritime con tests an element hitherto almost unknown.'
In all this activity there has been a large measure of pro gress; chiefly, however, along lines of improvement firs marked out by American inventors; a fact clearly recog nized by Mr. King in his concluding chapter on the needs of our navy. The beautiful outlines of American fast sailing vessels were copied in Europe. The first war ship propelled by the screw was built in Pbiladelphia. Shell fire and sub sequently heavy guns were first introduced here. The tor pedo is an Λ merican invention, and so is the revolving tur ret for vessels of war. It remained, adds Mr. King, fo European naval powers, having large appropriations at com mand, to develop and expand American inventions. Th ideas for the present powerful mastless sea-going armored ships of the English grew out of the visits of our turret ves sel Miantonomoh to British ports; and the unarmored fleet of fast ships, of which the Inconstant was the first in Europe, owe their development to the building of the Wampanoag.
It is not to be presumed that an approach has been made to the limit of possible improvement in war vessels and their equipment. And there is every reason to anticipate that when American inventors and shipbuilders again turn their attention to naval problems, the radical and daring novelties which made America the pioneer in the creation and develop ment of the several types of modern war vessels and thei equipment in use to-day, will be more than paralleled in the evolution of the war vessel of the future. In any case we shall have the advantage of the knowledge gained during the progress of the costly experiments made in Europe dur ing recent years, both in teaching what to do and what to avoid, and our advancement should be correspondingly sur and rapid.
If we could be certain that our present peaceful caree will continue unbroken-as we hope it may-for anothe score of years, some justification might be found for a con tinuance of the policy of inaction. Indirectly we cannot fail to be benefited by all the improvements, and the failures as well which Europe is making at such heavy cost in naval construction and armament, provided the improvements are not suddenly turned against us while we are unprepared to meet them. To rest, however, on such a precarious ground for idleness would be sheer foolishness, when we know that our coast defenses are antiquated and practically worthles for protection against a heavily armed and armored foe.
It is true that modern wars are not apt to be suddenly de clared, and that much might be done in a few months to put our coast in a fair condition of defense. Still it must be borne in mind that many months are required for the construction of powerful cannon and fortresses, whether fixed or floating; and when the emergency comes we may not be called upon to meet a slow moving and honorable enemy but a gang of dashing and irresponsible private adventurers, who might sail into any of our sea ports any day with a vessel so strong as to enable them to destroy property or levy tribute to a larger amount than the cost of a great navy.
That there is any need of our emulating England and France and Italy in the construction of enormous sea-going iron clads, costing millions each, is not at all apparent. In deed it may rather seem that the line of experiment in that direction has already been pushed to the utmost extreme and that the new conditions of naval warfare, as developed in great guns, torpedoes, and so on, demand a radically new departure in naval architecture. In any case it becomes our national government to make provision for such action in our public and private navy yards as shall invite our ship
builders and inventors to show what American genius ca do to meet our peculiar needs in this direction.

electro-brass plating.

Many articles of bronze composition, of zinc, or cheap alloys receive a coating of brass by electric deposition, as a basis for the bronze luster, which is more easily applied and better retained by such a surface. The brass finish is also applied by this method to iron, steel, and composition wire. The preliminary and finishing operations and the disposition of the baths are the same for brass as for copper deposits. Heat is applied for brass deposits by those who electroplate coils of iron of composition wire, etc., with this alloy. For other articles the baths used are not usually heated. The hot bath is usually contained in an oblong open iron boiler lined with sheet brass, while that for cold plating is generally placed in a wooden tank coated with gutta percha or asphaltum. The anodes are of plate or sheet brass joined together and arranged along the sides, all connected with the last carbon or copper of the same battery. The strength of battery current is regulated by the surface of the articles to be electroplated. The articles are suspended in the usual way-by copper or brass hooks to stout rods of he same metal, all connected with the last zinc of the battery.

the brass baths

Where the ordinary cheap commercial cyanide is employed he following answers very well:
Sulphate of copper 4 oz.
Sulphate of zinc........... Water. 1 gall.
Dissolve and precipitate with 30 ounces carbonate of soda; allow to settle, decant the clear liquid, and wash the pre cipitate several times with fresh water-after as many set lings. Add to the washed precipitates:
Carbonate of soda.
Bisulphite of soda.. 15 11/2 oz.
Stir to effect solution of these last two, then stir in ord ary cyanide of potassium until the liquid becomes clear and coiorless. Filterif much iron or iron oxide (derived from impure zinc salt and cyanide) remains suspended in the liquid. An additional half ounce or so of the cyanide im proves the conductivity of the solution.

COLD brass bath for all metals.
Carbonate of copper (recently prepared).
Carbonate of zinc
Carbonate of soda.

Water.. $1^{\frac{1}{0} \frac{1}{0}}$ gall.
ilter if necessary.
The arsenious acid is added to brighten the deposit-an xcess is apt to give the metal a grayish-white color.

> MANAGEMENT OF THE BATH.

The losses of the bath are to be repaired by the addition of copper and zinc salts (and arsenious acid) dissolved in resh cyanide, and water
The operator determines the requirements from the rapidity of the deposit, its condition, color, and so on
The difficulty in brass electroplating, especially with small baths, is in keeping the uniformity of the color of the deposit as the electric current having to decompose two salts, each offering a different resistance, must, according to its inten sity, vary the color and composition of the deposit. A feebl current principally decomposes the copper salt and results in a red deposit; while too great intensity in the current de composes the zinc salt too rapidly and the deposit is a white or bluish-white alloy. If the deposit has an earthy or ocherous appearance, or if the liquid is blue or greenish, the solution is deficient in cyanide. When in proper working order the liquor is colorless. If the coating becomes dull and unequal, a slight addition of arsenious acid will usually mprove it.
If the deposit is too red, use more battery power or add more zinc salt; if too white, decrease the current or ad more copp ${ }_{j r}$ salt. The specific gravity of the bath may vary rom 5° to 12° Baumé; when it exceeds this latter gravity it should be diluted with fresh water to decrease the electric re istance.
If the brass deposit is irregular, remove the articles from the bath, rinse, scratch-brush, and put again into the bath until the color and thickness of the deposit are satisfactory cratch-brush again, and, if necessary, rinse in hot water dry in warm white wood sawdust, and put in the stove room The last three operations are indispensable for hollow pieces.
In the disposition of the brass plating bath it is always necessary to have all the articles suspended at about equa distances from the anodes.
The bath may be subdivided by several anodes, formin partitions, so that each loaded rod is between two anodes. The anodes should always be removed when the bath is ot in use.
In order that the brass electroplating of zinc or coppe may be lasting the deposit must not be too thin, and mus be scratch-brushed, washed in lime water, and dried in the stove room.
Generally ten to twenty-five minutes' exposure in the bath suffices in ordinary practice to throw on a good coating. Cast and wrought iron, lead, and its alloys require a bath richer in the metals than when brass plating zinc or its alloys.

The battery power should also be greater. For lead the bath works better warm (at about 90° Fah.). When once placed in the brass bath articles should not be moved about, as there is a tendency under such circumstance to the formation of a red deposit.
In brass plating wire the hot bath is usually employed. As before mentioned, the vessel containing the bath usually consists in an oblong open iron boiler, lined with sheet brass anodes, and heated by fire, steam, or hot water. A stout copper or brass rod in the direction of the length of the boiler rests upon the edges, from contact with which it is insulated by pieces of rubber tubing. The rod is connected with the zinc pole of the battery. The binding wires are removed from the coil, the wires loosened, and the ends bent together into a loop. The wire is then dipped into a pickle of dilute sulphuric acid, and hung upon a stout round wooden peg fastened in the wall, so that the coil may be made to roate easily. After a scrubbing with wet sharp sand and a hard brush the coil is given a primary coating of copper. It is then suspended to the horizontal rod, where only a part of the coil at a time dips into the solution and receives the deposit; the coil is then turned now and then one-half or one-fourth of its circumference. By dipping the coil entirely into the liquid the operation is not so successful.
The wires are washed, dried in sawdust, and then in the stove room, and lastly, passed through a draw plate to give hem the fine polish of true brass wires.
The temperature at which the hot bath is commonly used varies between 130° and $140^{\circ} \mathrm{Fab}$.

Bridge Bet

The first shipment of the heavy steel beams for the super structure of the East River Bridge has been received. Now that the requisite machinery has been made for turning out beams of the required size, the contractors claim to be able to produce them rapidly. The four great cables to be placed under the floor of the bridge from tower to tower, to strengthen the bridge against upward and lateral wind press. ures, have also been received. They are regarded as the largest steel wire ropes ever made in this country. These opes are made in seven strands each
The central strand bas forty-nine No. 11 wires, and the six strands surrounding and enveloping this have nineteen wires each, of Nos. 4, 5, and 7 gauge, making one hundred and sixty-three wires in all. Every wire put into these and all other ropes used in the bridge is tested in strength, elasticity, and tension. The strength must equal 160,000 pounds per square inch cross section. The stretch must be not less than four per cent, and the wire must stand being wound around an iron rod three times its own diameter without showing flaw or fracture.
The great ropes just received are each 1,550 feet in length, 3 inches in diameter, and their aggregate weight is 102,495 pounds.

Death of Henry R. Worthington.

Henry R. Worthington, one of the most prominent hydraulic engineers in this country, died Dec. 17, 1880, in this city, after a very brief illness, at the age of 63 years. Mr. Worthington was a native of Brooklyn. He engaged in mechanical pursuits at an early age, and became a hydraulic engineer while a very young man. His success in his profession was marked, and be inveuted a number of important improvements in hydraulic machinery. He constructed the pumping machinery for the waterworks of a great many cities, including that for the new high service works at 97th street and Tenth avenue. He maintained an office at No. 239 Broadway, and was also President of the Nason Manufacturing Company, at No. 71 Beekman street. He was Vice President of the American Society of Mechanical Engineers, which he assisted to found, and was a member of the Society of Civil Engineers.

The Freight Traffic of the N. Y. Central R. R.

The unprecedented activity of trade this fall is indicated by the unusual traffic of the great lines of railway. During the forepart of December 50 trains, of 38 cars each, passed eastward over the road; a total of 1,900 cars. For the West there was 40 trains, of 45 cars, per day; a total of 1,800 cars. For a week, going East, 13,300 cars; going West, 12,600 cars; a grand total of 25,900 cars. For a month, going East 57.000 loaded cars; for the West, 54,000 ; a grand total of 11,000 cars for a month. These statistics are aside from the passenger traffic.

Mount Baker an Active Volcano.

On several occasions during recent years reports bave come from Washington Territory that smoke columns and similar indications of volcanic activity had been seen on Mount Baker. A dispatch from Seattle, W. T., dated December 12 , says that the mountain was then in eruption, and that sharp shock of earthquake was felt the evening before.

The Air Brake Patents.-The suit brought by the Westinghouse Company against the Eames Vacuum Brake Company, of Watertown, N. Y., for an alleged infringement of air brake patents, was abandoned December 16, Westing. house withdrawing the action and paying the costs.

The Electric Railway.-Messrs. Siemens and Halske have obtained a concession from the authorities for building an elevated electric railway in Berlin from Lichterfeld to Yeltow.

BELL'S PHOTOPHONE

Continued from first page.]

Fig. 5, consists of a little disk of thin glass, silvered on the front, of about the size of the disk of an ordinary telephone, and mounted in a frame, with a flexible India-rubker tube about sixteen inches long leading to a mouthpiece. A second lens, R, interposed in the beam of light after reflection at the little mirror, renders the rays approximately parallel. The general view of the transmitting apparatus given in Fig. 5 enables the relative sizes and positions of the various parts (minus the alum cell, which is omitted) to be seen. The screw djustmen adjustments of the supportserve to direct the beam
It may be well to explain once for all how the vibrations of the voice can affect the intensity of the reflected beam far away. The lenses are so adjusted that when the mirror, B , is flat (that is, when not vibrating) the beam
projected from the apparatus to the distant station shall be nearly focused on the receiving instrument. Owing to the optical difficulties of the problem it is impossible that the focusing can be more than approximate. Now, matters being thus arranged, when the speaker's voice is thrown against the disk, B, it is set into vibration, becomes alternately bulged out and in, and made slightly convex or concave, the degree of its alteration in form varying with every vibration of the voice Suppose at any instant-say by a sudden displace ment such as takes place when the letter " Γ " is sounded-the disk becomes considerably convex the beam of light will no longer be concentrated upon the receiving instrument, but will cover a much wider area. Of the whole beam, therefore, only a relatively small portion will fall upon the receiving instrument: and it is therefore possible to conceive that, if perfectly adjusted, the illumina tion should be proportional to the displacement of the disk, and vary, therefore, with every vibration with the utmost fidelity. The receiver of the art culating photophone is shown on the right hand culating photophone is shown on the right hand side of the the selenium receiver, and shows, first the way of conneldistand diagram (Fig. 2) sketched by Prof. Bell. A mirror of para ing the alternate dists; and, secondly, that the current from bolic curve, C C, serves to concentrate the beam and to re- the battery, P, cannot go round the telephone circuit withflect it down upon the selenium cell, S, which is includedin the circuit of a battery, P, along with a pair of tele phones, T and T. Here again a general view like that given in Fig. 6 facilitates the comprehension of the principal parts of the apparatus. The sensitive selenium cell is seen in the hollow of the parabolic mirror, which is mounted so as to be turned in an desired direction. The battery standing upon the ground furnisles a currentwhich flows through th elenium cell and through the telephones. When ay of light falls on the selenium-be it for ever so short an instant-the selenium increases in conduc ivity, and instantly transmits a larger amount of electricity, and the observer with the telephones hears the ray, or the succession of them-hears, indeed, their every fluctuation in a series of sounds which, since each vibration corresponds to a vibra tion of the voice of the distant speaker, reproduc the speaker's tones.
The great diffioulty to be overcome in the use of the selenium as a working substance arose from its very high resistance. To reduce this to the smallest possible quantity, and at the same time to use a sufficiently large surface whereon to receive the beam of light, was the problem to be

Fig. 3.-SECTION OF THE SELENIUM RECEIVER

disk to the next. The special advantages of the "cell" iskis the "cell" devised by Prof. Bell are, that in the first place the thick ness of the selenium that the current must traverse is no
ig. 2.-THEORETICAL DIAGRAM OF THE ARTICULATING PHOTOPHONE.

great interest, especially to those who desire to repeat for themselves the experimental transmission of sound by light. The greatest distance to which articulate speech has yet been transmitted by the selenium-cell-photophone is 213 meters, or 233 yards. When sunlight is not available recourse must be had to an artificial source of sufficient power. During the recent experiments made by Prof. Bell, in Paris, the weather has been adverse, and the electric light has been called into requisition in the ateliers of M . Bregnet. The distance in these experiments between the transmitting diaphragm, B , and the parabolic reflector, C C, of the receiver was fifteen meters, the entire length of the room in which the experiments were made. Since at thisdistance the spoken words were themselves perfectly audible across the air, the telephones connected with the selenium cell were placed in another apartment, where voices were heard without difficulty and without doubt as to the means ter with the brass disks. But this arrangement was in no of transmission. The transmitter shown in Fig. 7 consists of a way preferable, for in practice it was found that moisture fixed plate, P , provided with numerous slots and of a like movwas apt to penetrate at the surface of the bare mica, spoil- able plate attached to the diaphragm, $l l$, mounted in a frame ing the effect. provided with a mouthpiece, E. The vibration of the movIn Fig. 8 the transmitter is shown as used in combi nation with a collecting lens, L, in place of the para bolic reflector. In Fig. 9 a transmitter is shown which is based upon the effect of electricity on polarized light. A lens, L, throws the beam of a light, F, upon a Nicol polarizing prism, R, and the polarized beams traverse an analyzer, R^{\prime}. A helix, B, is placed between the two prisms and in the circuit of an ordinary microphone, M. By speaking, the intensity of the current traversing the helix is varied, and this causes the plane of polarization of the rays to be turned more or less, and consequently more or less rays are extinguished by the analyzer, R^{\prime}.
Of the earlier and less perfect forms of the photophone little need be said. One device, which in
rof. Bell's hands worked very successfully over a nce of eighty-six yards, consisted in letting the beam of cht pass through a double grating of parallel slits lying close to one another, one of which was fixed, the other movwere placed exactly one in front of the then these were placed exactly one in front of the other the light could traverse the apparatus, but as the movable grating slid more or less in front of the fixed one, more or less of the light was cut off. Speaking to the diaphragm, therefore, caused vibrations which shut or opened, as it were, a door for the beam of light, and altered its intensity. The mirror transmitter of thin glass silvered was, however found superior to all others; and it is hard to see how it could be improved upon, unless, possibly, by the use of a thin disk of silver, itself accurately surfaced and polished.
Whatever be the future before the photophone, it assuredly deserves to rank in estimation beside the now familiar names of the telephone and the phonograph.

Responsibility of Employers.
While a boy of 16 was at work upon a printing press in the press room of a New York paper the press was unexpectedly started. The boy sprang back from his dangerous position, and in so doing tipped over the bench he was standsolved before any practical result could be arrived at. After many preliminary trials with gratings and perforated disks of various kinds, Prof. Bell and Mr. Tainer finally settled upon the inrenious device to be described genious device tound brass disks, A number of round brass disks, about two inches in diameter, and a number of mica disks of a diameter slightly less, were piled upon one another so as to form a cylinder about two and a half inches in length. They were clamped together from end to end, the clamping rods also serving to unite the disks of brass electricilly in two sets, brass electricilly in two sets, alternate disks being joined, the 1st, 3d, 5th, etc., being united together, and the 2d, 4th, 6th, etc., being united in another series. This done, the edges be-

FYg, 4.-Diagram showing theaction of the Selenium Receiver

Hg. 8.-Condenser Eecetver.

Fig. 9.-Polarized Light Trangmitter. his arm ther press, which caught make it indured it so as to sued the for ever useless. He rior Cour prietor in the Supefor $\$ 3,000$ damained a verdict for $\$ 3,000$ damages. The de-
fense was that the accident was caused either by the negligence of the plaintiff or of a fellow workmat, for which the propriworkmau, for which the propri-
etor was not responsible. In etor was not responsible. In
charging the jury, Judge Speir said thatif the plaintiff or a skilled fellow workman were negligent the plaintiff could not recover damages; but that if the agent of the defendant employed persons not skilled in their work and the accident occurred through the negligence of one of such persons, the defendant was responsible. An appeal was taken from the judgment on the grounds that Judge Speir erred tween the brass disks were next filled with selenium, which action of light on selenium being almost entirely a surface in thus charging, and in permitting the plaintiff to exhibit was rubbed in at a temperature sufficiently high to reach action, the arrangement by which all the selenium used is a his mutilated arm to the view of the jury, thus arousing the melting point of selenium. After this the selenium was thin surface film could hardly be improved upon; and that, their sympathy. The General Term has afirmed the judg. carefully annealed to bring it into the sensitive crystalline thirdly, the symmetry of the cylindrical cell specially adapts ment in a long opinion written by Judge Freedman and state. Then the cell is placed in a lathe and the superfluous it for use in the parabolic mirror. These details will be of concurred in by Chief Justice Sedgwick.

Another Cliff Town Discovered.

The occurrence of ancient cliff towns, built upon or rather in almost inaccessible places along the precipitous sides of river canons in Colorado and New Mexico, was made known several years ago. Another very important discovery of this nature was made a short time since by Mr. James Stephenson, of the U. S. Geological Survey, in New Mexico. The city lies in a cañon thirty miles long, never before visited by white men, and is about forty miles from Santa Fe and ten miles from the Rio Grande. It consists of a succession of excavations in the solid rock throughout the length of the canon, making, perhaps, the largest cliff town yet discovered.
The houses are dug out of the rock side to a depth of from fifteen to twenty feet. Apparently they were excavated with stone implements. They are almost inaccessible from the plains. Mr. Stephenson, however, managed to clamber up the rocky precipice, and entered and examined a number of articles that he thought remains of their first possessors. A scientist who has traveled in that region and visited other caves and excavations of a similar kind says he is disposed t_{1}) believe that they have been tenanted within modern times. by Indians at war with other tribes, seeking safety and advantage over their enemies. He thinks the remains found there are the remains of the things these belligerents have used, eaten, or worn, and not the relics of the first owners of the rock houses.

The Utilizing of the Tide

A Philadelphia engineer has invented, it is claimed, a machine by which the power of the tides can be utilized. Numerous plans have been proposed for the accomplishment of this most desirable end, but only under exceptional conditions have they been practical or economical. If the new device can harness the tide in an open channel, so as to convert any considerable portion of the vast power into working force, the inventor will rank among the great benefactors of humanity. Emerson says somewhere: Hitch your wagon to a star. A device for utilizing mechanically the free tides, as they sweep along our shores, would come next to that, since it would enable us, through converters and carriers of electricity, to hitch our wagons to the sun and moon.

CREMATION TEMPLE.

The engraving shows the Cremation Temple lately built in the beautiful cemetery of Milan by Mr. Albert Keller This temple, built in the Greco-Doric style, is surrounded by columns and pilasters, and surmounted by a cupola forming a chimney through which the products of combus The furnace is in the basement and nearly in ion escape. The furnace is in the basement. and nearly in he middle of the building. The interior of the building is divided into four large halls, in the first of which the mourners assemble before the body is brought into the urn or cremation chamber; adjoining this hall there is a room in which the bodies in their coffins are awaiting cremation. The next apartment is a large storage room for coal and wood, and beyond this are the furnaces. In an adjoining hall the "Cremation Society of Milan" has its office, and transacts all its business. Here is a curious collection of antique and modern vases, documents relating to cremaion, models of furnaces, etc.
The cremating furnace is arranged transversely in the emple to permit of watching the entire operation through a small window in the side wall of the temple, as shown in the engraving
The body is placed upon a grate, under which a basin is placed to receive the liquids and ashes that may drop down.
Two furnaces are now be fore the public, known as the Gorini and Venini furnaces, after the inventors.
The engraving shows Gorini's furnace, in which the flames and products of combustion pass over the body, thence down a flue and under the base upon which the body rests, thence up the chimney. The body, thus completely enveloped in the flames, is converted to ashes in from ne and a balf to two hours. Wood or coal may be used, and the expense is about one dullar.
Mr. Venini's apparatus is more complicated than that of Mr. Gorini, but it transforms the tissues of the body into gases in a more perfect manner than any other furnace.

The Electric Lighting.-The Commissioner of Public Works, New York city, has granted Mr. Edison a permit to introduce his system of electric lighting in the lower part of this city.

AUTOMATIC GOVERNOR FOR WASTE WATER PIPES.
The governor shown in the annexed cut, taken from the Deutsche Geroerbe Zeitung, controls the flow of the waste water rom a surface condenser.
The valve, V , which closes the inner end of the outlet, \mathbf{C}, is mounted in a frame, R, which has its fulcrum at D, and presses the valve upon the end of the outlet with considerable pressure, insuring a close joint, which is not affected by the accumulation of sediment. The valve is operated by a

GOVERNOR FOR WASTE WATER PIPES
eries of levers which are actuated by a float, S , which ris and falls with the water, and opens and closes the valve, V accordingly. The apparatus is said to work equally well at ow or high pressure.

Uncertainty of Blood Stains in Evidence.
The circumstantial evidence of minute blood stains in criminal cases has been made much of in several recent trials The value of such evidence has been seriously questioned by Dr. Charles O. Curtman, of St. Louis, who shows that, even when the suspected blood has been shown to be unmistak ably human, the accused may plead that the blood stain were caused by predatory insects. In his experimental in vestigations Dr. Curtman allowed mosquitoes to take their fill of human blood, then, after keeping them in close confine-
gives the following sizes: Human blood (after imbibition by the mosquito) averages, in dilute glycerine, 1-3200 inch; in 80 per cent alcohol, $1-4000$ inch. Mosquito blood averages, in dilute glycerine, $1-14000$ inch; in 80 per cent alcohol, $1-18000 \mathrm{inch}$. In the case of bedbugs it was found that these insects digest blood much more rapidly than mosquitoes do. After twelve hours no trace of human blood was discovered.

An Ice Cave in Montana

Two explorers named Lambert and Caruthers discovered, ast summer, a large cave on the Dry Fork of Arrow Creek, in the Belt Mountains, in which was half an acre of solid ice of unknown depth. At the time of the discovery, about August 1, the ice was covered with ten inches of water, which prevented a thorough exploration of the cave. The Fort Benton Press says that the ice gives every indication of being in great body, and it is believed, from its appearance, and he fact that in the hottest season only a few inches of it was melted, that it is perpetual. The cave is described as being a great resort for game, as all kinds were killed close o its entrance.

Pampas Grass

The cultivation of pampas grass, now so much used for decorative purposes, has become quite a profitable industry in Southern California. Threequarters of an acre planted in pampas grass yielded, at $21 / 2$ cents per head, $\$ 500$. Another grower sold all he could raise at $71 / 2$ cents per head. Last year 10,000 heads or plumes of this grass were sold from that region.

ENGINEERING INVENTIONS

A circulating device for steam generators has been patented by Mr. Dan Abell, of Carson City, Nev. This invention consists in combining with the feed water and circulation pipes of a steam generator a steam pump for keeping up a continuous and rapid circulation of the water within the space of the generator.
An improvement in that class of devices called "selfcouplers" and "uncouplers," las been patented by Mr. Louis C. Slonecker, of Stauffer's Station, Pa. It consists of two spring-actuated spear-headed coupling pins or hooks, pivoted parallel with each other on either side of a vertically adjustable drawhead, and extending forward in front of the drawhead to couple with a like device.
An improved car truck bas been patented by Mr. Edward P. Cowles, of Wequiock, Wis. The object of this invention is to provide running gear for a car or other vehicle designed especially to run on round rails, and to avoid the use of flanged wheels and the friction and abrasion caused by them. The invention consists of a car frame of novel design, provided with flat faced vertical wheels to run on the top of the track, and with inclined flat-faced guide wheels that run under the inside edges of the flat wheels squarely against the side of the track.
An improved propeller has been patented by Mr. Rio Gardner, of Westerly, R. L. The invention consists of a Lub having short arms, and of blades united thereto by mortise and tenon joints and suitable bolts and screws.
Mr. John Forbes, of Harrisburg, Pa., has patented a core box having a lid fitted for use as a sweep in striking the core and apertured to give access to the box; also, in the combination, with the core box, of flanged tubes for strengthening the legs of the core and giving vent.
Mr. William J. Watson, of Marion, S. C., has patented an improved stump puller, so constructed that it can be readily applied to the stumps and will be powerful in operation. The invention consists in providing a stump puller with a lever strengthened by a truss rod and stud, and having a clevis at its forward end for the attachment of the draught, and a chain at its rear to be attached to a stump, a swiveled standard for connecting wheels, and an axle with the lever to carry it, and a right angled lever for adjusting the carriage and fastening it in place.
Mr. George W. Veil, of Bucyrus, Ohio, has patented a machine for opening and grading tile ditches, so construct-

THE MILAN CREMATION TEMPLE

ent for periods of varying length, he killed them and ex mined the blood
In all cases, up to forty-eight hours after a meal, a large proportion of human blood corpuscles were unchanged and readily recognizable. The size and color of the corpuscles of mosquito blood are very different from human. As the result of more than a hundred careful measurements, he
ed as to leave the bottom of the ditch straight and smooth. An improved locomotive spark extinguisher has been pa tented by Messrs. G. A. Gunther, of Bath, and W. Kowal ski, of Brooklyn. N. Y. The object of this invention is to eaden or extinguish sparks passing out through the smoke tuck of a locomotive. The construction of this device is peculiar and cannot be readily described without engravings.

the growth of large elms.

A Providence gentleman contributes to the Journal of that city an interesting description of the large elms in that neighborhood, with measurements of their girth and spread of limbs at different intervals of time. The latter facts are of more than local interest, since they give a clew to the rate of growth in old trees
Of No. 1, an uncommonly beautiful tree, the girth at feet from the ground was, in May, 1858, 13 feet 11 inches; in June, 1864, 14 feet 4 inches; in October, 1880, 15 feet 8 nches.
Of No. 2, the smallest circumference was, in May, 1858, 14 feet 9 inches; in June, 1864, 15 feet 2 inches; in October 1880, 16 feet 6 inches.
Each of these trees gained 21 inches in girth in 21 years The trees were probably set out in 1748 or 1749.
Of No. 3, at about 6 feet from the ground, the smalles place, the girth was, in May, 1858, 11 feet 11 inches; in October, 1880, 13 feet 4 inches; an increase of 17 inches in 22 years.
No. 4, a conspicuous elm on Congdon street, near Pros pect Terrace, is, by its situation, symmetry, and magnificen Medusa-like head, perhaps the most remarkable tree within the old limits of the city. Its trunk is quite uniformly columnar. In January, 1858, it measured, 4 feet from the ground, 11 feet 8 inches; in October, 1880, 12 feet 10 inches howing a growth of 14 inches in 22 years.
No. 5, perhaps the oldest tree in Providence, measured, at the smallest part between the ground and the branches, 11 feet and 5 or 6 inches in April, 1858; and 12 feet 9 inches in October, 1880.
No. 6, set out about 1790, measured at its smallest circum ference, $31 / 2$ feet from the ground, January, 1858, 11 feet April, 186?, 11 feet 4 inches; in 1868, 11 feet 11 inches; Oc tober, 1880, 12 feet 11 inches. For 22 years it has gained a full inch of circumference annually; in its entire growth the yearly gain has been about $11 / 2$ inches.
No. 7 was set out in 1771, and shows signs of decay. The following measurements were made in July, 1858: Girth at the smallest place, $41 / 2$ feet up, 11 feet 2 inches; at 1 foot up, 14 feet; from bough-end to bough-end, north to south, 110 feet, or a little more. Subsequent measurements of its girth, at $41 / 2$ feet up, were: April, 1862, 11 feet 5 inches; in 1868 1 feet 11 inches; November, 1880, 12 feet 3 inches.
No. 8, planted in 1786, is probably a century old. Its chief branch, spreading full 40 feet, shows marks of decay. The girth of this tree, at 6 feet up, was, in July, 1858, 9 fee 8 inches; in October, 1880, 10 feet 11 inches; a growth of 15 inchesin 22 years.

Disappearance of Medicinal Plants.

At the recent meeting of the American Pharmaceutical Association, at Saratoga, the president, Mr. G. W. Sloan, in his annual address, spoke at some length on the growth and cultivation of medicinal plants in this country. He called attention to the fact that in California many native plants are disappearing before the incursions of herbaceous species ntroduced from Australia and Africa. He also discussed he effects of the destruction of forests in this country upon the production of native medicinal plants, commenting on the disappearance of many of the smaller herbaceous spe cies and of shrubs, owing to the clearing away of the under brush and the pasturage of the woodlands. An effort made in Illinois to raise from seed some of the plants used in pharmacy had met with but indifferent success. Yet, in botanical gardens, experience has demonstrated that almos very kind can be cultivated if judicious selection of the ground is made and close attention is paid to the habits o ach plant. As the government shows no disposition to ex periment in this direction, he thought the matter should be taken in hand by State Pharmaceutical Associations, in conjunction with State Boards of Agriculture, since the destruction of forests demands attention in respect to the ex termination of medicinal plants, just as much as in othe important particulars.

Where Our Forests are Going

To make shoe pegs enough for American use consumes annually 100,000 cords of timber, and to make our lucifer matches, 300,000 cubic feet of the best pine are required every year. Lasts and boot-trees take 500,000 cords of birch, beech, and maple, and the handles of tools 500,000 more The baking of our bricks consumes $2,000,000$ cords of wood or what would cover with forest about 50,000 acres of land. Telegraph poles already up represent 800,000 trees, and their annual repair consumes about 300,000 more. The ties of our railroads consume annually thirty years' growth of 75,000 acres, and to fence all our railroads would cost $\$ 45$, 000,000 , with a yearly expenditure of $\$ 15,000,000$ for repairs These are some of the ways in which American forests are going. There are others; our packing boxes, for instance, cost, in $1874, \$ 12,000,000$, while the timber used each yea in making wagons and agricultural implements is valued a more than $\$ 100,000,000$. Fishkill Standard.

The Possibilities of American Wheat

Speaking of our gigantic crops of wheat, the American Miller remarks that few people, even in our own country realize how inexhaustible our resources are for wheat grow ing. The total area of lands available for wheat culture in the United States is not less than $470,000,000$ acres. Our entire wheat crop of the past year, phenomenal though it was, would not supply seed enough to sow so vast an are of wheat land.

Hydrophobla Five Years after Inoculation. M. Colin related to the Académie de Médecine, at its last meeting, a remarkable instance of prolonged incubation of hydrophobia. The case was that of a man who died a few minutes after being admitted (on August 31) into the hospital, presenting maniacal excitation, expectoration, fear of drinking, and apprehensions, during more lucid moments, least he should injure thoseabout him. The autopsy showed no lesions, but some smal cicatrices were noted on the left wrist and in the front of the thorax. Further inquiries showed that the man had been ill two days only. On the first he complained of a severe pain in the hepatic region and extreme thirst, although he could not drink; as soon as he raised the cup to his lips he was seized with shivering and spasm. The next day he complained of severe sense of constriction in the pharynx and a feeling of a wish to bite The symptoms thus seemed clearly those of hydrophobia. No history could be ascertained of a bite from a dog during the previous five years. On November 2, 1874, however, in Algeria, he had been bitten by a dog, which was attacking bitten The latter bassistance he went, and who wast aso and died in eight days of hydrophobia. The patient of M Colin was cauterized half an hour after the receipt of the bite. Some authorities, as Devergie, have maintained that the cases of prolonged incubation are really cases of "nervous hydrophobia;" but the symptomatology of such a case as this seems too precise for the theory that an attack so virulent could result from "nervousness." Hydrophobia is relatively common among the soldiers in Algeria, especially in the interior of the country, at the farms, where there are
Arab dogs; and it is still more common among the civil population.
In regard to these prolonged periods of incubation in bydrophobia, of which this case presents an instance most remarkable, if not altogether beyond the reach of criticism, it is worth while to refer to one of the results obtained by M. Pasteur, of which we gave an account last week. It has ong been a favorite explanation of these cases to suppose that the virus remained localized in the wound, developed here, and only caused the symptoms when, in consequence of some adventitious circumstance, it passed into the blood. M. Pasteur has shown that this explanation is, as regards some diseases, not a matter of theory but of fact. He has found that in the chronic cases of "cholera of fowls" the poison does develop in certain organs, and not, as in other cases, in the blood, and that when, after a variable period, the organized poison passes into the blood, severe symptoms come on rapidly, and the creature soon dies.-Lancet.

The Health of Cities.

Statistics compiled by the National Board of Health show hat for the year ending October 31, 1880, the more import ant cities of the world rank as follows in comparative health ulness. The death rate shows the number of deaths to eac 1,000 persons during the year

city.	Population.	Death rate.
Philadelphia	850,000	
St. Louis....	... 333,577.	
Boston	375,000.	
Baltimore	393,79	
London	.. $3,254,260$	
Leeds	318,921.218
Glasgow.	589,598.	
New York.	1,203,223	
	1,988,806.	
Brookly	. 556,889.	
New Orleans.	216,	
Lyons.......	342,815.	
Berlin.	.1,096,644.	
Dublin	6...	

In the American Journal of Pharmacy for August, 1880 is an excellent method for preparing an antidote to arsenic which is recommended by Dr. McCaw, a Canadian physician. The following is the formula: R. Tincture of chloride of iron, \mathcal{Z}_{j}; bicarbonate of soda or potash, \mathcal{Z}_{j}.; tepid water teacupful. Mix
Dr. McCaw gives a preference for this antidote over al others for two reasons: first. it formed the surest antidote; second, the ingredients are always accessible. That the in gredients are always accessible, the reader will readily see that it is a sure antidote, I proved by the following experi ment: Having prepared the antidote as above described, et it drain on a filter for a short time, and then mixed a portion of the magma left on the filter with a solution of arsentc containing about half a grain. After stirring the mixture and filtering, the filtered liquid gave no evidence of the presence of arsenic by Marsh's test. This showed the antidote was a sure one.
I was also induced to test the efflicacy of another antidote viz., the freshly prepared sesquioxide of magnesia,* recommended by Bussy. (" U. S. Dispensatory," 14th ed., p. 30 . I dissolved an ounce of sulphate of magnesium in a smal quantity of warm water, and added aqua ammonia to satura tion, which threw down the proposed antidote. After drain ing for a short time on a filter, a portion of the magma was mixed with a solution of arsenic, and themixture stirred and filtered. The filtered liquid gave no evidence of the pres ence of arsenic by Marsh's test. This would seem to show that the sesquioxide of magnesia is another sure antidote to
${ }^{*}$ The author probably means the hydrated oxdde, $\mathrm{Mg}_{\mathrm{H}_{2}} \mathrm{O}_{2}$, as we know
arsenic, and the fact that the ingredients, Epsom salts ani: hartshorn, are so often found in the family, gives it an advantage over the antidote recommended by Dr. McCaw.Phil. Hoglan, in Pharmacist.

mechanical inventions.

Messrs. William G. Wilson and George S. Darling, of Chicago, Ill., have patented improvements in shuttle races for sewing machines. These improvements relate to circular race-ways for oscillatiug shuttles, and are designed to guide and steady the shuttle as it starts forward and insure its entering the loop of thread.
Mr. William E. Hill, of Big Rapids, Mich., has patented an improved machine for rolling and turning logs upon saw mill carriages and logways, turning the logs upon the head blocks, and pressing them back against the knees. It is simple, convenient, and effective.
An improved support for carriage tops, which can be adjusted forward and backward, as also sidewise, has been patented by Mr. Patrick B. Collins, of South Boston, Mass.
An improvement in bicycles has been patented by Mr. Henry W. Britton, of Stoughton, Mass. The object of this invention is to furnish bicycles so constructed that the rider can adjust his seat to keep it in proper position over the arge wheel when riding upon inclined ground.
Mr. Jacob R. Scott, of Nyack, N. Y., bas patented an mproved machine for sewing boots and shoes, in which he stroke of the needle is automatically varied by the variation in the thickness of the material, so that each stitch will be drawn tight. The invention consists in devices operated by the presser foot to limit the upward stroke of the needle, and in a spring device attached to the horn for retaining the looper in the proper position relative to the needle. The needle bar is hung on a rocking lever supported on a vertical standard which rests at its lower end on a beveled slide block. The slide block is connected by a crank lever with the presser foot, so that the slide block is moved thereby to raise and lower the needle-carrying standard. The horn is fitted with a piece forming the bed and containing the looper.
An improved machine for grinding planer knives has been patented by Mr. Charles J. Le Roy, of Palestine, Texas. This invention relates to an apparatus that may be securely attached to the frame of a wood planing machine for grinding the revolving knives of the planer without removing the knives from its shaft or the shaft from its bearings upon the frame of the machine
An improved saw-filing machine has been patented by Mr. Philip Bossert, of Lebeck, Mo. The invention consists in pivoting the file holder to a bar adapted to slide horizoutally in a swinging frame that is pivoted to a carriage which slides parallel to the saw clamp.
An improved hub for vehicle wheels has been patented by Messrs. Alonzo Gandy and Joln R. Shugert, of Freeport, O. The object of this invention is to construct a hub for a vehicle wheel so that the box cannot move lengthwise or turn in the hub after the spokes are set, and so that the spoke tenons shall be potected from the contact of the hub or collars.
Mr. Francis Murphy, of New York city, has patented an improved apparatus for forcing exhaust steam from engine into boiler. The invention consists of two vertical cylinders with pistons, each having two suction and two discharge openings. The suction pipes connect with a closed tank, into which the engine exhausts; a check valve prevents the passage of the exhaust steam back to the engine.
Mr. George William Curtis, of Pbiladelphia, Pa., has pa tented an improvement in the class of car couplings in which the ordinary closed oval link is employed in con which the ordinary closed oval link is employed in con-
nection with a coupling hook, which is pivoted and adapted nection with a coupling hook
to slide within a draw head.

Watchmaking in France

Besançon almost monopolizes the watchmaking of France, Il but 2,488 of the 444,798 watches manufactured last year coming from that town. Of the Besancon watches, 149,907 were gold and 292,403 silver, the whole being valued at over $\$ 4,000,000$, half of which represents labor. Nearly all these watches are sold in France. The foundation of the watch trade at Besançon dates from the close of the last century, when a number of workmen from the Swiss side of the frontier, persecuted for their politieal opinions, took refuge there and were induced to remain. Since then this industry has continued to prosper; but it was not until after the conclusion of the treaty of commerce in 1860 that the business assumed anything like its present proportions. There is a school for teaching watchmaking at Besancon; but though liberally endowed by the municipality, it is said not to be well attended.

What Women Invent

Some one who has taken the trouble to count the patents issued to women finds that the number for the year ending July, 1880, was seventy, or ten more than the average. Most of the inventions of women have to do with household appliance. Among the past year's are a jar lifter, a bag holder, a pillow-sham holder, a dress protector, two dust pans, a washing machine, a fluting iron, a dress chart, a fish boner, a sleeve adjuster, a lap table, a sewing machine treadle, a wash basin, an iron heater, sad irons, a garment stiffener, a folding chair, a wardrobe bed, a weather-strip, a churn, an invalid's bed, a strainer, a milk cooler, a sofa bed, a dipper, a paper dish, and a plaiting device.

DECISIONS RELATING TO PATENTS, TRADE MARK8, ETC New York.
bignall vs. harvey et al.-PATENT FOR COOLING and drying meal
Blatchford, J.
This suit is brought on reissued letters patent granted to John Deuchfield, January 16, 1872, for fourteen years from April 20, 1858, for an improvement in cooling and drying meal.

1. A printed publication, in order to defeat a patent, must furnish such clear and definite information as to enable a skilled person, beyond any reasonable doubt, by following them, without aid from anything not known when they were made, to construct an apparatus like that patented.
2. A patent granted to a person of one name and reissue under a different-as granted to Deuchfield and reissued to Deuchfield-is a question of identity merely, and proof is always competent in such a case.
Infringement of the first claim of the reissue is proved and not contested. As the patent has expired, there can be no injunction, but the plaintiff is entitled to the usual decree in other respects in regard to said first claim.
The same decision is made in the cases of the same plain iff against Thomas Elwood and others, Henry Roder and others, and Sidney R. Brown and others.
United States Circuit Court-Eastern District of New York.
Clarke, trustee, vs. Johnson.
Benedict, J.:
This is an action for an account and an injunction to restrain the defendant from making a certain form of disk used for valve seats in steam joints, upon the ground that such manufacture infringes a patent issued to Nathaniel Jenkins, August 3, 1869, known as reissue No. 3,579, and now owned by the plaintiff.
3. Reissued letters patent No. 3,579, granted to Nathaniel Jenkins, August 3, 1869, construed to be for elastic packing composed of four-tenths refractory earthy or stony matter mixed with rubber prepared for vulcanization by using less than twenty five per cent of sulphur, and then vulcanized, whence results a material composed of forty per cent and over of refractory matter held together by a skeleton of soft rubber.
4. The patent is not infringed by valve seat disks containing sulphur in excess of the above proportion, whereby vulcanite is formed when the compound is subjected to a vulcanizing heat
5. Although it is known that both rubber and vulcanite become soft at the temperature at which steam packings are used, it does not follow that the employment of vulcanite for rubber as the skeleton of a packing is a mere substitution of material, particularly in view of the different qualities presented by packings made by the two methods.
6. In Jenkins vs. Walker (1 O. G., 359) the excess of sulphur united with lead or litharge to form refractory material, and in Jenkins vs. Johnson, the excess of sulphur was taken up by the oxides of lead or iron in a similar manner.
Held that the plaintiff has failed to prove infringement, and the bill is dismissed with costs.

United States Circuit Court.-- Illinois.

Roberts

1. The word "Parabola," registered June 27, 1871, by Robert J. Roberts, of New York, as a trade mark for needles, held to be not descriptive, but an arbitrary term adopted by complainant to distinguish bis needles from those of other manufacturers, and his right to so select and apply it affirmed.
2. The use of it by another manufacturer, prefixed by the manufacturer's name, would be, is accordance with a former decision of the court, "that any prefix or suffix used with the trade mark would not give others the right to use it in connection with the manufacture of similar goods," an infringement of the exclusive right of the complainant to use that term to designate goods of his manufacture.
I shall order an injunction on the complainant's filing a bond in the penal sum of $\$ 5,000$, conditioned for the payment of any damages which the defendant may sustain by reason of the issuing of the injunction, and also require complainant to put in his proof within thirty days after the answer in this case is filed as a condition of the granting of the injunction.

United States Circuit Court-District of California.
 the giant powder company vs. the california

Field, J.:

1. Reissued letters patent granted to Alfred Nobel, March 17, 1874, for explosive compounds, declared to be invalid.
2. A reissue can only be had when the original patent is inoperative or invalid from one of two causes-either by reason of a defective or insufficient specification or by reason of the patentee claiming as his own invention or discovery more than be had a right to claim as new-and even then only where the error has arisen from inadvertence, accident, or mistake, and without any fraudulent or deceptive intention.
3. The power to accept a surrender and issue new letters patent is vested exclusively in the Commissioner of Patents.

He must judge of the sufficiency of the original specification, whether the same is defective in any particular, whether such defect was the result of an unintentional error, and, if so, to what extent a new or additional specification should be allowed to describe correctly the invention claimed.
4. But this does not preclude the examination by the court of the original and reissued patents, to see whether or not they disclose on their face a case in which the Commissioner has no jurisdiction to act, or a case in which, by his determination, he has exceeded his jurisdiction; if so, the reissued letters patent must fall.
5. The record of a judgment of a judicial tribunal may be in all cases examined to see whether such tribunal had jurisdiction of the subject matter and of the person of the defendant, and if such jurisdiction be wanting the judgment is ineffectual for any purpose.
6. Whenever it appears, on a comparison of the two instruments, that the original patent is valid, it is clear that the Commissioner has exceeded his jurisdiction, and the reissue is without authority of law.
7. When it appears, upon comparison, that the specification of the reissue only differs from the original in containing an invention of broader scope, it is clear that the origibal patent must be valid if the reissue would be.
8. If the original patent is valid to the extent of its claim, a reissue is without authority of law.
9. Where an invention was described in one portion of the specification as compounded of the explosive substance nitro-glycerine and an inexplosive porous substance, and in another portion of the specification a more detailed description of the porous substance was given without mentioning its inexplosive character: Held, that the two passages are to be read together, and that the invention is a compound of nitro-gly cerine with an inexplosive porous substance of the character described.
10. Where the original patent described a compound consisting of two ingredients, one of which was an inexplosive porous substance, a reissue covering all porous substances, Whether explosive or inexplosive, which would form with nitro-glycerine a compound equally safe for handling, is void as for a different invention.
11. Case of Russell vs. Dodge (3 Otto, 463) commented on and approved.
The complainant is the holder of a patent bearing date March 17, 1874, for an alleged new explosive compound known as "dynamite or giant powder." For some time since its issue the defendants have been engaged in makiug, selling, and using an explosive compornd averred to be substantially the same as the compound described in the patent. This suit is brought for the alleged infringement, with a prayer that the defendants may be required to account and pay over to the complainant the income and profits obtained by them from this violation of its rights, and be restrained from further infringement.
The compound patented is claimed to be the invention of Alfred Nobel, a distinguished engineer of Sweden. His into one Bandmann an the 1868 and in May following patent for the same was issued to him for the term of seventeen years. Soon afterward Bandmann assigned his interest to the complainant, the Giant Powder Company, a corporation created under the laws of California, and in October, tion created under the laws of California, and in October,
1873, this company surrendered the patent and obtained reissued letters for the residue of the term. In March, 1874, this reissue was also surrendered and new letters patent were issued, for the infringement of which the present suit is brought.
The bill alleges that the surrender of the original letters, the first reissue, its surrender, and the second reissue were each made for "good and lawful cause," but it does not pecify what that cause was. The allegation will, ho wever, be taken to be that the cause was one for which the statute authorized a surrender and a reissue. The bill also alleges that each reissue was for the same invention described in
the original patent. The auswer denies both of these allegations and avers that the original letters and the first reissue were not surrendered because they were invalid by reasou of a defective and insufficient specification arising from inadverteuce, accident, or mistake, wilhout any fraudulent intention on the part of the patentees, and charges that they were surrendered upon false representations with the intent to interpolate and obtain in reissued letters claims and grants for more than was embraced by the invention of Nobel described in the original patent, and that the reissued letters were not for the same invention, but for anotber and different one. And the defendants insist that for this and other reasons the reissued letters are invalid.
The Commissioner is an officer of limited authority, and whenever it is apparent upon inspection of the patents that he has acled witbout authority or has exceeded it his judgment must necessarily be regarded as invalid. His action must be restricted to the particular cases mentioned in the statute that only authorizes a reissue when from an unintentional error in the description of the invention the patent is invalid or inoperative, or when the claim of the patentee exceeds his invention. It is not sufficient that the patent
does not cover all that the patentee could have claimed if his specifications had come up to his invention. If he has invented or discovered something beyond his original specifications and claim, his course is not to endeavor to cover it by a reissue, but to seek a separate patent for it.

The statute authorizing a reissue was intended to protect against accidents and mistakes, and it is only when thus restricted that it can be regarded as a beneficial statute. If a patentee does not embrace by his specifications ancl claim all that he might have done, and there has been no clear mistake, inadvertence, or accident in their preparation, the presumption of law is that he has abandoned to the use of the public everything outside of them, or at least has postponed any additional claim for further consideration.
Looking at the original patent and the reissued patent and the specifications annexed to them, we find that the material difference between them is as to the extent of the invention. The original patent covers a compound of nitro-glycerine and an mexplosive porous absorbent which will take up the nitro-glycerine and render it safe for transportation, storage, and uss without loss of its explosive power. The reissued patent enlarges the scope of the invention so as to embrace a compound of nitro-glycerine with any porous substance, explosive or inexpiosive, which will be equally safe for use, ransportation, or storage.
The specifications annexed to the original patent were clear and sufficiently explicit for the compound composed of nitro-glycerine and the inexplosive porous substarce mentioned, and the claim was only for a composition of matter made of the ingredients, in the manner, and for the purposes described in them. There was therefore nothing to correct in a reissue, according to the decision in Russel vs. Dodge (3 Otto, 463). The clalm was as extensive as the invention specified, and there is no pretense that this was not sufficient to cover a compound of nitro-glycerine with nexplosive porous absorbents.
Now, reading the history of the labors of Alfred Nobel to utilize the explosive power of nitro-glycerine and render it safe to transport, handle, and use-the experiments he tried, first, to explode the nitro-glycerine in mass; then, in consequence of the dangers attending its use, to prevent its explosion when handled; the patents he obtained in Europe; his experience in the use of gunpowder and other explosives with nitro-glycerine-it is impossible to believe that he intended anything different from the natural meaning of the term he used. He knew well the danger attending the use of nitro-glycerine with explosive absorbents, and in limiting his claim to its use with inexplosive absorbents we must presume that he at that time intended to abandon all claim to compounds of a different character, or at least to leave such claim open for further consideration. If we read his own language in an application made three years afterward for a new patent for a compound with explosive absorbents presented to the Commissioner of Patents by the complainant, and therefore adopted and approved by it, there can be but little doubt on the subject. Soon after the new patent was obtained the application for a reissue was made, evidently that it might reach back to the date of the original patent and cover inventions of other parties during the intermediate period, or that which had gone into public use.
It nowhere appears that he had any knowledge or belief when the first patent was issued that the admixture of nitroslycerine with explosive substances would produce a safety powder. That was a discovery which he did not make or claim to have made. So when in his specifications he menions charcoal as an absorbent, he observes that it has the defect of being itself a combustible material."
To our miud, looking at the history of the invention and reading the specification of the patent in its light, it is clear that the inventor used the word "inexplosive" in its natural and ordinary sense, and that the attempt to limit that meaning is an afterthought of his assignees, desiring to bring within the reach of the patent, compounds in no respect within his contemplation. In other words, the reissued leters cover a compound not claimed by Nobel and not embraced in the original patent.
It follows that, in our judgment, the complainant has no just cause of complaint agaunst the defendants, and its suit must be dismissed with costs; and it is so ordered.

agricultural inventions.

Mr. Abram H. Smith, of Wauseon, O., has patented an mproved hay elevator, so constructed that it may be easily operated, and will not allow the loaded fork to settle down or sag while being carried from the barn fioor to the mow. An improved plow truck has been patented by Mr. Henry C. Strong, of Mauston, Wis. The object of this invention is to furnish trucks for moving plows from place to place in manufactories, warehouses, salesrooms, and upon farms. It is so constructed that the plows can be easily moved without danger of breaking, marring, or wearing them.
An improved corn planter has been patented by Mr. Theodore T. Daniels, of Morrison, Ill. This invention relates to an apparatus which may be attached to corn planters of various descriptions for the purpose of opening furrows for the reception of the corn dropped from the seed box.
An improved plow attachment for cultivators has been patented by Mr. Homer J Potter, of Centralia, Kan. This invention consists in a novel construction, arrangement, and combination of devices connected with a plow beam. whereby provision is made for attacling the plow beam to a cultivator after the cultivator beams have been detached. A combined cultivator and cotton-chopper, so constructed as to scrape, chop, and dirt a row of plants at each passage across the field, has been patented by Mr. James W. Gilbert, of Hoboken, Ala. This machine can be easily controlled by the plowman.

An Improved Glue Dressing tor Wounds.

Cabinet makers and wood workers generally are familiar with the uses of glue in dressing tonl cuts and other sligh wounds incident to their calling. The glue pot is always bandy in their shops, and a glued rag answers as well as the best adhesive plaster.
In a recent paper before the Philadelphia A cademy of Surgery, Dr. Hewson recommends the addition of acetic acid to the glue, and a little attar of roses to cover the odor of the glue and the acid. This compound spread on paper or muslin makes, he says, a good substitute for adhesive plaster for surgical use. It is easily and quickly prepared simply by putting into a vessel of boiling water a bottle containing one part of glue to four, by measure, of the acid, and letting the bottle remain in this bath until the glue is fully dissolved and mixed with the acid. Common glue may be used and officinal acetic acid, to be had at any drug store. The mixture should be kept in a wide-mouthed bottle, well stoppered by a long cork, which can always be removed by heating the neck of the bottle. Care should be taken to keep the mouth of the bottle clean by wiping it well with a cloth dipped in hot water. A bottle of this cheap and easily pre pared dressing would be a good thing to have at home as well as at the workshop.

New Cure for Malaria.

There is at least poetic justice in a story that comes from Brilish India, tending to show the power of locomotives when properly approached) to drive away the malaria which railways, or rather railway construction operations, have so long been charged with causing.
A poor villager of Kattywar had been afflicted for a long time with remittent fever, and no amount of idol worship and penance availed to arrest the malady. At length a friendly neighbor advised him to approach the "Bhoot" in the newest shape in which the former had seen him recently taking his daily run in that part of the province, chafing and fuming. The fever-stricken villager consequently traveled a distance from home, and at sight of a railway loco motive, fell on his knees, tendered an offering of corn and sweets, and extolled its might The devil was appeased the worshipper found himself rid of the malaria.

novel road engine.

We have on several occasions illustrated steam road wagons which promised well, but for one reason or another have failed to come into anything like general use. We now give an engraving of a carriage using neither steam nor solid fuel, cousequently avoiding the necessity of carrying water and coal. The fuel, which is at the same time the motive agent, is common illuminating gas, which is mixed with a certain common inuminating gas, which is mixed with a certain
proportion of air, and exploded in the cylinder in the manner common to well known as engines. The engine is secured to a frame, which is supported at the rear by the axle, and in front by a caster wheel, whose frame is provided with a ever moved by a rack and pinion, the shaft of the inion being provided with a hand wheel, which is turned one way or the other in the operation of guiding the carriage.
The box upon which the passengers sit contains a weighted bellows filled with gas, which is admitad to the cylinder through a valve working across its forward end. The vehicle provided with a brake which is within easy reach of the driver.
The engine can be in stantly stopped and started, and its speed may be varied by varying the amount of gas admítted to the cylinder. A skilled engineer is not required to operate it, as the management of it is very simple. The inventor prefers o use high wheels similar to velocipede wheels, and to connect the piston of the engine directly with crank formed in the axt in the axle, but he is not confined to this onstruction.
This novel vehicle was recently patented by Mr. C H Warrington, of West Chester, Pa

International Exhibition of Electricity

The Jıurnal O.jliciel, oí October 26, publishes a letter from the Minister of Post Offices and Telegraphs to the President of the Republic of France, asking that dignitary's co-operation in organizing an International Electrical Congress, which give the enterprise that character of independence which in the shem of the pulp that they are drawn off with one motion of gather of the axles.
shall be under the auspices of the government in ordor containing hot lye, and there shaken. It is then removed justable axles can be raised and lowered to regulate the dept ive the

WARRINGTON'S ROAD ENGINE
the hand. This saves much time, labor, and expense. The new process causes the fruit to dry more readily, and a very slight loss in weight results.

RECENT INVENTIONS

Mr. John L. Volkel, of Sulphur Springs, Mo., has pa tented an improvement in breech-loading firearms adapted for rapid firing. The inventor dispenses with a separate device for extracting the shells, and uses a swinging lever carrying the breech block, that is formed to receive the cartridge and retain it while being fired. The cartridge is thrown out by the act of opening the breech.
A churning apparatus, so constructed as to give a very rapid motion to the dasher by a slow movement of the driving power, has been patented by Mr. Charles B. Davidson, of St. Joseph, Mo.
Mr. Lewis A. Fish, of Faribault, Minn., has patented a simple and convenient device especially adapted for use in flouring mills and feed stores and granaries for holding bags open for filling and conveying them, open or closed, from place to anotber
A plow so constructed that the share or point will have a rocking movement while drawn through the ground, to cause it to more thoroughly loosen the soil, has been patented by Mr. Henry F. Edey, of Bridgetown, Island of Bar badoes.
A razor, which is provided with detachable blades, which can be easily removed and replaced, has been patented by Messrs. C. J. J. Sadler, of Milford, Pa., and P. C. Sadler, of New York city.
An improved adjustable wrist-pin, which is simple, convenient, and effective, and prevents woise and irregular motion, has been patented by Mr. Lafayette Thomas, of Marshall, Mo. The invention consists in a wrist-pin formed of a cylinder attached to the pitman and fitting into the capshaped head of a pin that passes longitudinally through the cylinder, the pin being held in the desired position by a screw nut provided with teeth in which a sliding spring catch takes and prevents the nut from rotating
A machine for flattening and sharpening plow colters has been patented by Mr. John T. Duff, of Allegheny, Pa. This invention consists in a novel arrangement of flanges for clamping the colter, and rollers for beveling its edge.
Mr. George H. Williams, of Fort Smith, Ark., Las patented a machine for making bricks, so constructed as to mould the bricks, press them, and deliver the pressed bricks upon offbearing belts automatically. It is simple in construction and rapid in operation.
A cheap automatic cut-off, to regulate the flow of water from the roof of a building into a cistern, for the purpose of directing the first washings of the roof from the cistern, has been patented by Mr . Dennis Brady, of New Orleans, La.
A shank support and protector for boots and shoes has been patented by Messrs. Edson P. Hadley, of Sbelburne Falls, and Thomas Joyce, of Buckland, Mass. The object of his invention is to prevent the boot or shoe from ripping at the shank, and by protecting the shank to prevent it from being cut or worn by shoveling, spading, or any pedal abor, or from being burned when the wearer rests his foot on the cope of the grate or stove for warming.
Mr. Ira E. Davenport of Mechanicsville, Vt., has patented a brake for bob sleighs which consists in a novel arrangement of levers and devices connected therewith, whereby the brakes are applied to the front sled by the momentum of the rear led when the speed of the team is checked or when holding back in going down hill.
Mr. Charles G. James, of Petaluma, Cal., has pa ich is simp piann covers, writing desks, and cabinet furniture. This tented an improved stock car can be housed and fed conve invention was lately patented by Mr. John T. Morgan, of tion, and particulars.

New Process of Peeling Peaches.

In certain California peach drying establishments the work f peeling the peaches has been much simplified by the folFrank W. Wardwell, of Cambridge, and Charles E. Let Fraver, of West Lamerville, Mass., have patented an im proved book cover protector, which is simple, cheap, and easily applied.
Messrs. Charlton Patterson and Herman L. Abrahams, of Russell, Kans., have patented a sulky plow in which the ad-

An improved machine for covering telegraph cables and wires with insulating material and with a leaden protecting envelope, has been patented by Edouard E. Berthoud, of Cortaillod, and Arnold F. Borel, of Boudry, Neuchatel, Switzerland.
An ellipsograph, so constructed that it may be adjusted to describe ovals of different sizes with parallel curves without disturbing the guide pivots, and to cut ovals with their edges straight or beveled in either direction, as desired, has been patented by Mr. Edward L. Gaylord, of Bridgeport, Conn.
An improved ash sifter, which is simple in construction, and which operates without permitting the dust of the ashes to spread as with the ordinary ash sieve, has been patented by Messrs. Augustus F. Morse and George F. McIntosh, of Hallowell, Me. The invention consists in a box provided with a hinged sieve lid provided with a spring bar for holding the ash pan in the box when the lid is closed. The box is provided with a shaft mounted in a larger box provided with a suitable lid, and with an opening in the bottom through which the ashes can drop into a barrel or other receptacle upon which the large box is placed.
An improved suspended or swinging cradle has been patented by Mr. Robert S. Marshall, of Allegheny, Pa. It consists in combining with a cradle a table and two curved connecting rods.
An improved gag runner for harness has been patented by Mr. William H. Chapman, of Middletown, Conn. The invention consists of an elbow stud projecting at right angles from near the tip of the gag runner loop, and having its free end extended above the loop tip.
An improvement in suspenders has been patented by Mr. M. G. Gunning, of Amesbury, Mass. The invention consists of a pair of suspenders formed of the shoulder straps passing through and crossing each other in a slide made of two diamond shaped pieces of material united at the angles. The slide moves up and down and adjusts itself according to the position of the body.
An improved receipt book holder, which is especially designed for the use of weighers or other persons that must have the receipt book in a handy and convenient place, has been patented by Mr. Robert B. Dickey, of Waco, Texas.
Mr. Henry Dunphy, of New York city, has patented an improved wash board, whose frame is provided with a soap shelf, a series of polygonal rollers, and a series of brushes alternating with the rollers, so that the dirt may be quickly removed from the clothes, and the clothes made to move easily over the wash board.
An improved churn dasher staff, which is simple and convenient, has been patented by Mr. Lloyd T. Reid, of Rockport, Ky. The invention consists in a dasher staff which is flattened so as to be elastic or flexible at or near the middle of its length or is provided with an elastic piece at the point.
An improved ironing machine has been patented by Mr. John Vandercar, of West Troy, N. Y. This machine is designed especially for use in laundries for smoothing and drying collars, cuffs, and other articles. It is so constructed that the articles to be operated upon will be fed automatically into and through the machines.
A simple and automatic apparatus for leaching ores and other substances on a large scale, has been patented by Mcssrs. Rudolph Schulder and Edward H. Russell, of West Jordan, Utah Territory. The invention consists of a circular frame supporting the filter and moving on a circular track above an inclined circular table, and of three stationary rollers designed to elevate and depress the filter at certain points as it revolves, of a device for feeding the substance to be leached upon the filter; there is a device for applying the leaching solvent, and a precipitating tank for containing the solution passing through the filter.
An improved lantern hanger for carriages and wagons, which is both simple and convenient, has been patented by Mr. Edwin Lufkin, of Monroe, Me. The invention cousists in a wire frame held to the dashboard by a spring arm, and provided with hooks for supporting a lantern and reflector.
Mr. Francis J. Crowley, of Gloucester City, N. J., has patented an improved apparatus for stretching, smoothing, and drying printed cloth, so that crimps, wrinkles, or creases are prevented from being formed in the fabric before it passes to the drying cylinders.
A combined wrench and screwdriver, which is simple in its construction and can be conveniently folded to be carried in a pocket, has been patented by Mr. John K. Collins, of Le banon, N. H.
An improved gate has been patented by Mr. King A. Scott, of New Douglas, Ill. The invention consists in a novel arrangement of levers and devices connected therewith, whereby the gate may be opened and closed by a person on horseback or in a carriage by the manipulation of handles attached to the levers.
Mr. Juan F. N. Macay, of Charapoto, Ecuador, has patented a process of producing at one operation modified hydrated ferric oxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3} \mathrm{OH}_{2}\right)$ and cupric chloride $\left(\mathrm{CuCl}_{2}\right)$ by the mutual reaction, in the presence of the air, of cupric oxychloride and solution of ferrous chloride.

Fig. 1 -SCALLOPS DANCING.
and eel pots), and consists of the strong muscle that holds the shells together. This is shown in Fig. 2 in its natural position, the rest of the animal being removed. This muscle corresponds with the eye of the oyster, but is much larger in proportion to the size of the animal, it having a similar fibrous structure. It has a remarkably sweet taste, much like that of the flesh of crabs, and is highly relished by many, though not considered as particularly digestible. The scallop is found in abundance in many localities on our coast from Cape Cod to Florida, particularly in shelour coast from Cap
tered muddy places.

Astronomical Notes.

Observatory of Vassar College.
The computations in the following notes are by students of Vassar College. Although merely approximate, they are sufficiently accurate to enable the observer to recognize the planets.

positions of planets for danuary, 1881.

Fig 3.-Animal in Shell, displaying Eyes and Tentacles.
beauty it should be placed in an aquarium or other vessel of sea water. When all is quiet it will open its shells as far as the connecting "mantle" will allow, and this will be seen to be studded with brilliant blue spots which glow like opals. Whether these brilliant spots are really eyes or not has not been clearly ascertained.
The scallop is capable of changing its position, and does o by the forcible ejection of water from a given point.

Fig. 2.-Showing Edible Muscle.

This mode of progress is analogous to that employed by the larva of the dragon fly. In Fig. 1 a number of scailops are shown moving about in the water, the drawing of which was taken from a tank at the Aquarium, which was labeled the "dancing scallops," as the scallops were constantly dancing up and down in the water in their peculiar zigzag motions. At one time the scallop shell was worn as a token that the wearers had performed a pilgrimage and paid their devotions to the shrine of St. James of Compostella. The story which connects the scallop shell with St. James is very curious, but too long to be repeated here.
The scallop as seen in the New York market consists of a sbort creamy white cylinder, and it is a great mystery to many how this can be a shell-fish. This cylinder is the only part of the scallop that can be eaten (the "mantle" or "rims" being very bitter and pungent when cooked, and as far as I know have no other use than that of baiting lobster

Mercury.
On January 1 Mercury rises at 6 h .34 m . A.M. On Janu-
ary 31 Mercury sets at 5 h . 25 m . P.M.
Mercury will approach the sum until the morning of the Mercury will approach the sun until the morning of the 26th, when it will reach superior conjunction.
venus.
Venus sets on the 1 st about 8 o'clock P.M. Early on the evening of the 3d Venus wiil be not far from the moon. On January 31 Venus sets soon after 9 P.M.
On January 1 Mars rises at 6 h .4 m . A.M. On the 31st Mars rises at 5 h .43 m . A.M.
On January 1 Jupiter crosses the meridian about 6 P.M. On January 6, between 9 and $9: 30$ P.M., the moon passes north of Jupiter about 7° in declination.
On Jauuary 31 Jupiter sets at 10h. 29m. P.M.
Making our observing hour between 8 and 10 P.M., we find from the "American Nautic: 1 Almanac" that on January 1 the first satellite will be invisible, having disappeared in occultation. On January 2, about 10 P.M., the second satellite will disappear in occultation.
On January 8, at a little before 10 P.M., the first satellite cisappears in occultation; on the 9th, between 9 and $9: 30$ P.M., the first satellite comes off from the face of the planet. On January 10 the third reappears from eclipse about 9 P.M.

On January 11 the second satellite, having disappeared in transit before 8 P.M., is invisible.
On January 16, about 9 P.M., the first will pass on to the face of Jupiter.
On January 17, about 8 P.M., the third satellite reappears from occultation; and a little before 10 P.M. the first reappears from eclipse.
On January 20 the second satellite will be hidden in eclipse until nearly 10 P.M.
On January 24, between 8 and 8:30 P.M., the first satellite disappears in occultation, and at about 9:30 P.M. the third also is occulted.
On January 27 the second satellite is invisible, being behind the planet.

Saturn.

On January 1 Saturn will pass the meridian at about 6:30 P.M. On the 31st Saturn will set at 11 h . 10 m . P.M.

On the evening of January 7 Saturn will be seen near the moon in right ascension, but nearly 8° south of it in declination.

Uranus.

Uranus rises on January 1 at 9 h. 47 m . P. M., and on the 31 st at 7 h .45 m . P.M.

Neptune.
Neptune passes the meridian on January 1 at about 7 h . 52 m . P.M., and on January 31 at about 5 h .54 m . P. M.

onous Fly Bite

John Story, a warehouse laborer in this city, recently died of malignant pustule caused by the bite of an insect which looked like a fly.
Story was at work in a tobacco warehouse, and, while handling a bale of Havana tobacco, he felt a sharp pain in the left side of bis neck. Instantly he clapped his hand on the spot, and a winged insect, which he took to be a gnat, flew away.
The pain was but temporary, and he paid no attention to it until the following day, when an inflamed pimple had formed on the spot where he had been bitten. This pimple annoyed him considerably, and he tore it open.
The next day the spot was very much inflamed, the inflammation extending in a circle as large as a silver quarter about the wound. The circle quickly enlarged, the inflammation increased, and Story became frigttened and called in a physician, who recognized the wound as a malignant pustule, which would uudoubiedly prove fatal.
The skin about the wound burst, and the inflammation extended along the veck toward the head, and the lower portion of Story's face was swelled to twice its natural size. Symptoms of blood-poisoning showed themselves, and the patient lingered in great agony for two or three days, when death ended his sufferings.

The Chargefor Insertion under this head is One Dollar a line for each insertion; about eight words to a line Advertiseme ts must be rec ived at publication office Advertiseme ts must be rec ived at publicalion morning to appear in next issue.

The genuine Asbestos Steam Pipe and Boiler Cover ings are the most durable, effective, and economica applied by any one at a cost of from 25 to 50 per cent less than is usually charged for inferior coverings. H
W. Johns M'f'g Co.,87 Maiden Iane patentees and sol W. Johns M'f'g

Blake's Belt Studs. The strongest fastening for RubSee Bentel, Margedant \& Co, 's adve \& Co., New See Bentel, M The circulation of the blood has been demonstrate by the microscope. and the proof of the c.rculation of
Esterbrook's Pens is that they are found everywhere. The American Electric Co., Proprietors and Manufacturers of the Thomas Houston System of Electric Lacturers
Lighting of
number

Hotchkiss' Mechanical Boilcr Cleaner, 84 John St N. Y., prevents foaming, burning, scaling; removes all
mud; saves repairs, fuel, and labor. Engineers make mud; saves repairs, fuel, and labor. Engineers make
ten pir cent selling other parties than employers. Send for circular
special Tools for Railway Repair Shops. L. B. Flan-
ders Machine Works, Philadelphia, Pa. The Cider Press manufactured and sold by Messrs. Boomer \& Boschert, No. 15 Park Row, New York, is ac knowledged far superior to any other in use. It has re-
ceived the Gold Medal at a number of State Fairs. ceived the Gold Medal at a number
Farmers and others interested will illustrated circular with prices.
Jenkins' Patent Valves and Packing "The Standard." Jenkins Bros., Proprietors, 11 Dey St., New York. A Practical Dyer of Turkey Red, and Preparing the Cotton Belting for Elevators; Carrying and Driving Belts. Greene ' 6 in. $\mathbf{x} 6$ in. Yacht Engine, in perfect order, for sale Ward, Stanton
Meredith, N. II.
Steel and Iron Drop Forgings manufactured of every description. Estimates given upon app
ard Ecles, Mechanic St., Auburn, N. Y.
Astronomical Telescopes, first quality \& low prices,Eye Pieces, Micrometers, etc. W. T. Gregg, 75 Fulton St., N.Y Notice - Alden Crushers \& Pulverizers manufactured Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J.
A perfect Mowing Machine is an absolute necessity
a farmer. The best made is the Eureka. It has the lightest draught, and will cut at least one.third more grass per hour than any other mower. Simple in con-
struction and durable. Prices reasonable. Send for struction and durable. Prices reasonable. Send for
illustrated catalogue to Eureka Mower Co., Towanda, Pa.

Wren's Patent Grate Bar. See adv. page 397.
Exporters of Machinery for Plantations. Sugar Machinery, Coffee Huller and Cleaners. Information and
estimates on all classes of American machinery and patented devices. Agricultural Implements and Hard The The Mackinnon Pen or Fluid Pencil. The commer-
cial pen of the age. The only successfül reservoir pen in the market. The only pen in the world with a pen mond circle around the point. The only reservoir pen mopplied with a gravitating valve ; others substitute a spring, which soon getts out of order. The only pen ac-
companied by a writen guarantee from the manufacturars. The only pen that will stand the test of time turers. The only pen that will stand the test of time.
A hisory of the Mackinnon Pen; its uses, prices, etc.,
free. Mackinnon Pen Co 200 Broad way, New पark. Fragrant Vanity Fair Tobacco and Cigarettes ? First Prize Medals--Vienna, 1873; Philadelphia. 1870°. Paris, 1878; Sydney, 1879
Rochester, N. Y.
Superior Malleable Castings at
Richard P. Pim. Wilmington, Del
Wood Working Machinery of Improved Design and Workmanship. Cordesman, Egan \& Co., Cincinnati, 0 . The " 1880 " Lace Cutter by mall for 50 cts.; discount
to the trade. Sterling Elliott,262Dover St.. Boston, Mass. The Tools, Fistures, and Patterns of the Taunton Foundry and Machine Company for sale, by the George Improved Rock Drills and Air Compressors. Illustrated catalogues and information gladly furnished.
Address Ingersoll Rock Drill Co.. 11/3 Park Place, N. Y. Experts in Patent Causes and Mechantcal Coun Experts in Patent Causes and Mechantcal Co
l'ark Benjanin \& Bro., 50 A stor IIouse. New York Corrugated Wrought Iron for Tires on Traction Engines, etc. Sole mfrs., H. Lloyd, Son \& Co., Pittsb'g. Pa. Malle.ble and Gray Iron Castings, all descriptions,
Erie Malleable Iron Company, limited. Erte, I'a. Power, Foot, and Hand Presses for Metal Workers.
Lowest prices. Peerless Punch \& Shear Co. 52 Dey St.,N.Y, Recipes and Information on all Industra, Procese, Recipes and Information on all Industrfat Processes. For the best Stave, Barrel, Keg, and Hogshead Mahinery, adaress H. A. Crish Kind, Ohi, National steel Tube Cleaner for boiler tubes. Adjust-
able, durable. Chalmers-Spence Co., 40 John st, N able, durable. Chalmers-Spence Co., 40 John St., N. Y.
The Brown Automatic Cut-off Engine; unexcelled for workmanship. economy, and durability. Write for inGun Powder Pile Drivers. Thos. Shaw, 915 Ridge Best Oak Tanned Leather Belting Wm F. Forepaugh.Jr \& \&ros., 531 Jefferson §t., Phi: $\mathrm{adelphia}, \mathrm{Pa}$. Stave, Barrel. Keg, and Hogsheud M.
cial y, by.E. \& B. Holmes, Buffalo, N .
Downer's Cleaning and Polishing Oil for bright metals, is the oldest and best in the market. Highly recom-
mended by the New Vork, Boston, and other Fire Departments throushout the cou:itry. For quickness of cleanng and luster produced it has no equal. Sample
five gallon can be sent C. O. D. for $\$ 8$. A. H. Downer. 17 Peck Slip, New York.
Clark Rubber Wheels adv. See page 381.

National Institute of Steam and Mechanical Engineer Management. The metallurgy of iron and steel. Prac tical Instruction In Steam Engineering, and a good situa ,
Split Pulleys at low prices, and of same strength ani Works, Drinker St., 'hiladelphia. P'a
Presses. Dies, and Tools for working Sheet Metal. et Eclipse Portable Engine. See illustrutel adr, p. 38 Nickel Plating. Sole manufacturers cast nicke: an des pure nickel salts, importers Vienna lime, crocus
tc. Condit. Ha son \& Van Wintle, Newark, N. J., an 2 and 94 Liberty St., New York
For Yale Mills and Engines, see page 38
Wright's Patent steam Engine, with automatic Cut off. The best engine made. For prices,
Wright, Manufacturer, Newburgh. N. \mathbf{Y}
Rollstone Mac. Co.'s Wood Working Mach'y ad. p. 366 Blake "Lion and Eagle " Imp'd Crusher. See p. 397.
4 to 40 H P. Steam Engines. See adv. p. 381.
Bracket Woods.-Wm. E. Uptegrove, Saw Mills, 463 ast 10th St.. New York, offers to the trade a choic Saw Mill Machinery. Stearns Mfg. Co. See p. 397. Peck's Patent Drop Press. See adv., page 413. ilent Injector, Blower, and Exhauster. See adv. p. 413. Fire Brick, Tile, and Clay Retorts, all shapes. Bor O'Brien, M'f'rs, 23才 St., above Race, Phila., Pa. Steam Hammers, Improved Hydraulic Jacks. and Tub
Expanders. R. Dudgeon, 24 Columbia St.. New York. Millsto D. Duageon, M Columbia st., New Yor
50,000 Sawyers wanted. Your full address for Emer n's Hand Book of Saws (free). Over 100 illustrations and pages of valuable information. How to straight
saws, etc. Emerson, Smith \& Co., Beaver Falls, Pa.
Frank's Wood Working Mach'y. See illus. adv., p. 413 Peerless Colors-For coloring mortar. French, Rich-

For Pat. Safety Elevators, Hoisting Engines. Friction
Clutch Pulleys, Cut-off Coupling, see Frisbie's ad. p. 412.
or Separators, Farm \& Vertical Engines, see adv p. 413 For Patent Sbapers and Planers, see ills. adv. p. 412. Tight and Slack Barrel machinery a specialty. John
Greenwood \& Co., Rochester, N. Y. See illus. adv. p. 412 . Elevators, Freight and Passenger, Shafting, Pulley d Hangers. Ls, Srave For Heavy Punches, etc., see illustrated advertise Obd Pa U U
Comb'd Punch \& Shears; Universal Lathe Chucks. LamReed's Sectional Covering for steam surfaces; any one can apply it; can be removed and replaced withou
injury. J. A. Locke, Agt., 32 Cortlandt St. N. Y. For Mill Macb'y \& Mill Furnishing, see illus. adv. p.413. A profitable business for a person with a small capi-
tal. Buy a Stereopticon or Magic Lantern, and an in teresting a stereopticon or Magic Lantern, and an in
trent of views. Travel, and give public exhibitions. For particulars, send stamp for 116 page
catalogue, to McAllister, Mfg Optician, 49 Nassau St.,N.Y Mineral Lands Trospected, Artesian Wells Bored, by Catechism of the Locomotive 625 pages 250 p. 413 ings. The most accurate, complete. and easily under-
stood book on the Locomotive. Price $\$ 2.50$. Send for a catalogue of railroad books. The Railroad Gazette, 7 roadway, New York
C. B. Rogers \& Co., Norwich, Conn., Wood Working For best low price Plee adv., page 43
For best low price Planer and Matcher, and latest
mproved Sash, Door, and Blin 1 Machinery, Send for improved Sash, Door, and Blin 1 Machinery, Send
catalogue to Rowley \& Hermance. Williamsport, Pa.
The only economical and practical Gas Engine in the market is the new "Otto" Silent, built by Schleicher.
Schumm \& Co., Philadelphia. Pa. Send for circular. Pentield (Pulley) Blocks, Lockport, N Y. See ad. p. 412 Tyson Vase Engine, small motor. 1-33 H. P.; efficient and non-explosive; price 850 : See illus. adv., page 113. Use Vacuum Oil Co.'s Lubricating ©il. Rochester,N.Y

NEW BOOKS AND PUBLICATIONS

Science and Revelation. By. Dr. Philip Millett \& Hudson.
Dr. Hocker has given in a very small pamphlet what
he considers "a short and concise solution of some of the problems which have, of late years, attracted the attention of our most profound scholars in Europe and America." In other words, he sets right the "mistakes
of Darwin and infidel scientists " in the nsual style of of Darwin and infidel scientists " in the usual style of
those who have but a remote hearsay knowledge of scientific facts and theories.
Examples of Household Taste. By Walter Smith,
State Director of Mass.
School of
Design. New York: R. Worthington. 4to pp. 521. \$6.
Mr. Worthington has lard students of industrial art (and all who wish a permanent remembrance of the (ant wealth displayed at Philadelphia four years ago) under deep obligation by bringing out so handsome an edition of Mr. Smith's "Industrial Art at the International Exhibrtion." Five or six hundred fine engrav ings, many of them full page, exhibit as many objects
seiected for their conspicnous beauty or the technical skill displayed in their construction. The text is a valuable contribution to the literature of industrial art.
Household Sanitation
I. Health and Healthy Homes: A GUide to Domestic Hyaiene. By George
II. Dwelling Houses, Their Sanitary

By W. H. Corfield, M.A., M.D. 12mo, pp. 112
III. OUR
A.M., M.D. 16 mo . pp. 149. 50 cents.

These three volumes from the press of Presley Blakis-
on, Philadelphia, cover in a more or less popular way the
$\mathrm{i}_{\text {mportant field of domestic sanitation, the necessity of }}^{\text {maintaining healthy conditions in the homes of the }}$ maintaining healthy conditions in the homes of the peo
ple, and the simpler methods of securing such desirable results. The first on the list discusses the fundamental conditions of healthy living in a manner so admirable in every respect that we should be glad to see it made a
text book in every school in the land. There is no branch of vitally useful knowledge so commonly neglected in schools and other institutions of learning, no ny that the community can so ill afford to neglect. M before the London Society of Arts. It aims to furnish short and practical exposition of the means by whic dwelling houses may be made and kept wholesome Though addressed particularly to sanitary engineers and house furnishers, and drawsits illustrations of sanitary appliances altogether from British sources, it contain much of direct and suggestive value to America
readers. The third book on the list is one of the serie of American Healih Primers, of whose general excel lence we have had occasion to speak in recent issue of this paper. Dr. Hartshorne discusses in a sensible
and easily comprehended style the teachinge of science and easily comprehended style the teachinge of science and experience with regard to the sanitary influences
of situation of houses, theirconstruction, light, warmth of situation of houses, their construction, light, warmth,
ventilation, water supply, drainage, disinfection, and vindiation, water supply, drainage, disinfection, an healthy homes. The pubtication of works of this na ture is an encouraging circumstance. If they could only reach and interest every householder the nationa sick list and death rate might be cut down to half their present dimensions.
Maguire's Code of Ciphers: A Compre hensive System of Cryptography De SIGNED For General Use. By Charles
H. J. Maguire, of the Union Bank of
Lower Canada, Quebec For sale by the author. Price $\$ 2$.
A system of secret writing based on a combination of any three letters of the alphabet, the keys to be ar ranged by the correspondents according to mutual agreement to change one or more of the letters. The
system has been arranged in conformity with the regulations respecting secret in conformity wing telegrams adopted by the International Convention of Telegraph Compa nies. The vocabulary contains upwards of 18,000 words
There is given besides a large collection of banking There is given besides a large collection of banking,
mercantile, and other words and phrases and sentences in common use, geographical names, etc.
The Student's Illustrated Guide to Practical Draughting.
Pemberton. 12me, pp. 112 . $\$ 1$. For
For Pembert
Sale by
York.
The author, a draughtsman of long experience, has sought to lay down the elements of the art of draughting in a manner so clear that any young mechanic or
student of mechanics can easily master them. The instudent of mechanics can easily master them. The
struction is practical throughout, and plainly put.
Modern Architectural Designs and De Tails. Part 2. New York: Bicknel
\& Comstock. $\$ 1$.
Plates 9 to 16 show details of store finish, store counters and sections, brackets, gates, and fences, window caps and hoods, architraves, bases and wainscot
ing, balconies, and two designs for cottages, with front ing, balconies, and two designs
and side elevations, plans, etc.

 HINTS TO CORRESPONDENTS.

No attention will be paid to communications unles writer.
Names and addre
We renew our request that correspondents, in referring
to former answers or articles, will be kind enough to name the date of
Correspondents whose inquiries do not appear after reasonable time should repeat them. If not then pub
lished, they may conclude that, for good reasons, Editor declines them.
Persons desiring special information which is purely of a personal character, and not of general interest should remit from $\$ 1$ to $\$ 5$, according to the subject,
as we cannou be expectel to spend time and labor to as we cannol be expectel to spend time and
obtain such information without remuneration obtain such information without remuneration.
Any numbers of the Scentific American Supple MENT referred to in these columns may be had at thi ice. Price 10 cents each
(1) M. T. asks: What is best to use in a wooden cylinder for smoothing up small turned wood
work ? A. It is generally sufficient to tumble the artiwork ? A. It is generally sufficient to tumble the arti-
cles together without the addition of anything. You cles together without the addition of anything. You
might. however. add hardwood turnings or planer chips
(2) J. M. asks: 1. What is the best ar rangement to get the greatest amount of heat from a
small battery or pile? A. By passing the current mall battery or pile? A. By passing the current
through a fine platinum wire 2. What is the bes waterproofing process for cotton cloth, outside of caoutchouc and oil? A. See Scientific American Vol. 41, p. 251 (5).
(3) W. R. D. asks whether there is any way 0 or 40 biling forcing out escape steam rising from The room is about $75 \times 120 \times 35$ feet high. with four com mon ventilators about $4 \times 4 \times 8$ feet high. A. It would re lieve your trouble to increase the height of your venti lators to 18 or 20 feet, but if this is not sufficient, a
fan blower will do it. 2 . Is such steam necessarily in. fan blower will do it. 2. Is such steam necessarily in
jurious to health ? A. The vapor of water at the pres sure of the atmosphere is not injurious to health.
(4) A. H. G. asks: What proportion should the heating surface of a boiler be to the radiating surinch pipe in my building. How many square feet of heating surface should my boiler have to do the work
easily? A. In your climate, a borizontal multitubula
boiler of about 600 square feet of surface, properly set oiler of about 600 square feet of surface, properly set
and fired, will be enough, say, 16 feet long by 48 inche diameter with from 40 to 50 three inch tubes.
(5) P. B. asks: 1. How many one gallon cauterizing? A. Use the Grenet or Byrne battery fo cauterizing. The gravity is not suited to this worl 2. Can sulphate of copper and bichromate of pota: h
cells, be united in one battery ? A. Different kinds of batteries cannot be worked well together
(6) J. C. H. asks: 1. Can a room 180 . 40×11 be heated quicker and more uniformly by placius ay 1,290 feet of one inch steam p pe around the roon ext to the wall (the wall being brick), than by placing diators, to be placed at equal distances apart, eithe xt to the wall or in the center of the room? A. Yes How much one inch pipe ought it to take to heat pro perly a room 180x40x11 feet, by either method, for sides, built of brick. The room is in third story, unde tin roof, the room being ceiled overhead, window our feet apart all round the room. The lower part of is 60 lb . Nept warm. Steam prosure of the boile ot say correctly, but would think from the description of your building 2,000 to 2,500 feet of one inch pipe dis ributed around the walls of the building should be suf ficient. If you place th: me amount of pipe in fou radiators, place them where you will, you cannot warm such a room properly; any one sitting in front of (7)
(7) J. S. and others ask how to make tele phone connections for an open circuit line A. The annexed diagram shows all of the connections for on re shown in condition to call or receive a call whe

acall is received the current passes from the line through the switch, E, button 1, key, top contact of the key,
bell-magnet, and ground wire, A, to the ground. When the key is depressed to call a distant station, the ke touches the lower contact, on the battery wire, B, send ing the current through the button 1 , switch, \mathbf{E}, and
line to the bell and ground of the distant station. The line to the bell and ground of the distant station. The
current returns by the ground and wires, A, C, to the battery. After calling, the switch, \mathbf{E}, is moved to but ton 2 , and the switch, F, being connected with the time moved to button 4 , the line connection is through the switch, E, button 2 wire, \mathbf{G}, receiver, the secondary wire of the induction coil to the ground. The switch, F, when turned as defrom one cell of the battery through the wire, D, switch, F , button 4 , transmitter, primary of the induction coil ground wire, A , and wire, C . The connections are now correct for talking. Should the transmitter be of the class capable of withstanding a heavy current, the wire , will be connected so as to include all of the element of the battery, and the wire, B, instead of being con-
nected with the battery will be connected with the but ton 3. The diagram shows the connections adapted to the class of transmitters employing but a single battery element, and to a line requiring several cells of battery to
call. If a single cell of battery is sufficient to call, the call. If a single cell of battery is sufficient to call, the
(8) E. F. F. writes: I want to know the veiocity of the "electric telegraph." I have consulted many prominent books, but have never been able to
ascertain the ascertain the fact. A. If you mean velocity of the electric current, it varies according to
from 13,500 to 62,000 miles per second.
(9) A. E. R. asks: 1. Is it best to keep a boiler that is not used but a day or two every three
months, full of water or empty? No danger of frecz. ing, as it stands beside others in use. A. Keep it full. 2. Do you consider try cocks in a water column as safe
(10) M. S. writes: I have a portable 10 (10) M. S. writes: I have a portable 10
orse power return flue boiler, in which I cannot ase water containing organic matter, as it causes foaming, Why is this? A. We think either you have too little steam room, or the circulation is bad. 2. What is the
best way to loosen a pump (suction pump) in which the best way to loosen a pump (suction pump) in which the piston is frozen fast. and what is the best preventive of
freezing? A. Thaw by the use of hot water. To pre vent the freezing open the bottom valve with a hook or er means to let the water out of the pump.
(11) J. A. Y. asks: Where does ice form during the freezing process-upon the surface or the bottom of the stream or vessel ?
face. Anchor ice is an exception.
(12) F. E. K. asks: Will the strings or wires in a well made piano, when tuned ready to send nut of factory, stretch enough to lower the pitch, sup-
posing the tuning pin is securely fastened ? A. When piano strings are of the best quality of steel, and have been put on a good pianoforte, they are tuned (in first
class establishments) somewhat above concert pitch, and are kept there by repeated tunings, until the piano-
forte has settled and the strings have fully stretched, forte has settled and the strings have fully stretched
which is known by the instrument remaining at pre which is known by the instrument remaining at pre-
cisely the same pitch for some time. After this the strings will not stretch except by an increase of the temperature, which will lengthen the iron frame on which the strings are stretched, or hy hard use, when under the constant concussion of the hammers upon the
s srings, the latter will stretch more or less and get out
(13) G. R. B. asks: 1. Can you inform me if an induction coil is required with the pan telephone described on page 162, No. 11, current series of the
Scientific American ? A. Yes. 2. Should the inducScientific American ? A. Yes. 2. Should the induc
tion coil used in Blake transmitter be the same resist ance as coils in each telephone ? A. It should have (14) R. R. R. writes: In the Faradic battery operated by an open Smee's cell, I believe the layers of No. 16 or No. 14 cotton covered copper wire I wish to make an induction coil with the core of the meter to be operated with a small Greset cell. 1. Should the primary wire be constructed as in the former case ? Or if modified, in what respect ? A. Use three layers of No. 18 wire for the
primary. 2. With the same sized core how should the primary. 2. With the same sized core how should the primary be constructed to give the best result with a Bun-
sen and with a large Leclanche respectively? A. The same construction will answer. 3. With core same size as above, and with secondary coil composed of, say, 10 layers of No. 40 telephone wire, what cell should be used, and how should the primary coil be constructed to get the best results? A. Make the prin
described, and use a single cell of Grenet.
(15) "Honolulu" writes: I saw a notice in Scientific American some time ago of the applica tion of electricity to growing crops. Will you let me
know the best method of applying it? A. It could not be profitably applied. It is an interesting experiment. droughts here, and would feel obliged to yon if you droughts here, and would feel obliged to yon if you Your only remedy is artiflcial irrigation. We know of no way of inducing rain.
(16) A. G. N. asks: What style and size battery would be the most economical to run one elec-
tric light on the incandescent principle? A. It depends upon the kind of incandescent lamp and on the time you wish to run it. To run a Werdermann or Regnier
lamp for a few hours, probably 20 to 25 one quart cells lamp for a few hours, probably 20 to 25 one quart cells
of Bunsen battery, or one of its modifications, would be of Bunsen battery, or one of its modincations, would be
the best. To run a single Edison lamp would require more battery elements.
(17) W. A. McA. writes: I have a speci men which I think contains lead and silver. Will you
give in the Notes and Queries of the Scientific AmericAN the most simple tests by which these two metals may be made to tell their presence? A. Powder the ore and boil in pure nitric acid mixed with half its weight of water for some time; dilute somewhat with
water, and filter. Add to the filtrate a small quantity of water, and filter. Add to the filtrate a small quantity of
sulphuric acid. A precipitate indicates lead. Filter sulphuric acid. A precipitate indicates lead. Filter
this solution and add to the concentrated filtrate a few drops of pure hydrochloric acid. A white precipitate, insoluble in boiling water, and which changes in color by the action of sunlight, indicates silver. When only very small quantities of the metals are present. unless are apt to escape notice altogether. In ores where the silver is in the state of chloride, bromide, etc., this test does not give indications, especially if the silver is
present as chloride. The best test for silver in an is the fire assay (scorification assay)
(18) F. D. C. asks (1) how to saw petrified wood or other finty material for sleeve buttons. A.
Apply diamond dust moistened with brick oilt to of a thin iron disk revolved in the lathe. For full particulars as to stone cutting consult Byrne's "Hand book for the Artisan." 2. How can I make an acid ink to
write on oil paper for a stencil to print from ? A. Try write on oil paper
(19) "Subscriber" asks how to make black ink suitable for staining leather. A. Use a moderately strong aqueous solution of copperas. The tannin
(20) V. B. H. asks for a good black paint or something else that will answer to black small cast-
ings by dipping them in something that will varnish. A. Dissolve asphaltum in oil of turpentine and add a
ittle lampblack or fine bone black
(21) L. C. C. asks: 1. Can you inform me where to purchase the ammonia used by the ice machines (not the common aqua-ammonia), think it is
called gaseous ammonia, which is liquefied by prescalled gaseous ammonia, which is liquefied by presmerce. It is only prepared as required for use. 2
What is known as a 20 ton ice machine? A. Onethat What is known as a 20 ton i
produces 20 tons of ice a day
(22) G. W. L. asks what the difference is between tin crystals and tin salts, as used in dyeing. A. B.
tin.
(23) E. A. J. asks how to remove the scale from brass castings, to give a surface on which solder
may be flowed with a hot copper. A. Dissolve 6 oz. may be flowed with a hot copper. A. Dissolve 6 oz . b:chromate of potash in three pints of warm water,
when cool, add 6 fluid oz. of sulphuric acid. Rinse the castings well after pickling in this solution.
(24) F. R. G. asks how to paint a smoke stack on a small portable engine. It requires something that will resist the action of heat. I have been advised to use asphaltum dissolv.d in turpentine. A.
Good asphaltum dissolved in oil of turpentine is one of Good asphaltum dissolve parnishes for this purpos
(25) H. M. A. asks: What is the best "stickum" for labels on boxes, also labels on casks:
something to make them stick and not cockle or wash off easily? A. Soften glue in cold water and dissolve it in strong vinegar. Mix with it a quantity of dry
starch about equal to the glue taken, first having boiled
it with water sufficient to form a paste. It works better
(2) W.
(26) W. J. H. asks if there is any prepara tion for polishing or staining India-rubber. A. We
know of no satisfactory way of staining rubber. Hard rubber may be polished with a little pumice stone and oil.
(27) H. F. P. asks how to make gold ink or writing and printing. A. Triturate gold leaf with a
little honey in a mortar until the metal is reduced to a little honey in a mortar until the metal is reduced to a
fine state of subdivision; dissolve out the honey with fine state of subdivision; dissolve out the honey with
warm water, and mix the gold with a little gum water, is usually applied subsequent to the printing.
(28) H. L. S. asks: 1. Is there any known paper, window glass, or tin, were placed between a per paper, window glass, or in , were eflaced between a per-
manent magnet and piece of soft iron would prevent the magnet from attracting the iron ? A. No. 2. I would like you to give me a simple illustrative explana-
tion of the theory of how electricity is generated by a dynamo-electric machine. A. You will find this in-
dy theory of formation in an article on dynamo electric machines, in UPPLement No. 161.
(29) W. E. M. asks: Can you inform me fin of metal or alloy that will dissolve by the application of some of the acids (such as sulphuric, hydro-
chloric, or nitric), and at the same time the acid used to able of any action on fatty substances (such as oils)? A. Metallic zinc is attacked and dissolved oy
dilute sulphuric acid. The dilute acid has little effect on most oils when used cold.
(30) J. E. S. writes: I wish to make a hol low prism to hold carbon bisulphide, but have not found a cement that will resist it. Can you tell mo
what to cement the glass with? A. The composition what to cement the glass with? A. The composition
of glue and glycerine used in printing ink rollers
(31) J. E. S. asks: Is there any rapid and pactical purpose ky which bright copper can be made oacquire the dark rich color that is seen on copper coins unused for many years? The oxide formed by
heating scales off easily. A. Clean and dip them in strong aqueous solution of cupric chloride
(32) T. R. W. asks: What will take aniline violet and aniline black ink stains out of linen and
bleached cotton fabrics? The salts of lemon acid seem to have but little influence on it. A. Try solution of bleaching powder or javelle water
(33) A. L. H. asks: What effect does gal vanized iron pipes have on drinking water-good or
bad? !A. Bad, with certain kinds of water, and especialy if allowed to stand in the pipes for any length of time very bad.
(34) J. C. asks: 1. How can I harden plaster of Paris after making a mortar out of it with water? A. After the plaster becomes thoroughly dry
you may soak it in glue size. When this becomes dry the plaster will be quite hard. 2. What chemical or acid is used in taking a transfer from a printed cut and transferring on a plain block of boxwood? A Caustic potash dissolved in alcohol. 3. Can tern, mix the plaster quickly into a thick smooth cream with cold water, and pour into the mould at onc? When lardened set aside in a warm place to dry. Is
there a book in the market that a;ives instruction in there a book in the market that sives instruction in
sculpture: if so, where can it be obtained? A. Address booksellers who advertise in this pape
(35) M. C. S. asks: What substances are best to absorb the moisture in a refrigerator? Is crude
chloride of calcium (bittern) good ? Is lime good? A. chloride of calcium (bittern) good \& Is lime good ? thing. Chloride of calcium is an excellent absorbent of

Minerals, etc.-Specimens have been re-

 cived from the following correspondents, and examined, with the results stated:. S. C. -It consists principally of sulphides of copper, and possibly carries a trace of gold.-J. W. M.-A silicious liaolin.

INDEX OF INVENTIONS

 for whichLetters Patent of the United States
Granted in the Week Ending
November 30, 1880 ,
AND EACH BexARING ThAT DATE.
['Those marked (r) are reissued patents.]
A printed copy of the speciflcation and drawing of any patent in the annexed list, also of any patent issued since 1866 , will be furnished from this office for one dolar. In ordering please state the number and date of the New Yested and remit to Nunn \& Co., si rark Row. granted prior to 1866; but at increased cost, as the speci fications not being printed, must be copied by hand.

Aeriform fluids, a paratus for mixing.............. 234, Album, etc., clasp. C. Posen J.F.Barker 234.90 Annunciator. electrical. T. W.
Axle box. car, W. P. Wylly
Bale tie, J. G. Battelle
Barrel heater, Cook, Chase \& Beard................. 234.908
Bath box for chemical and photographic pur
poses, vettlated
poses, ventilated, J. C. Macurdy...............
234,879
234,900

Belt, driving, E. \& C. Poullain
Binder for papers, etc.., M. King
Binter
Blotting pad, C. M. Lothrop.....
Boiler and other furnaces, W. Ennis..........
Boot and shoe sole edge trimmer. C. H. Helms
Boot jack and stand combined, D. w.
Boot jack and stand, combined, D. W. Gatrell.. Bracelet, H. Carlisle, Jr.
Bracelet, W. P. Dolloff...
Bran. machine for cleaning and treating, J. A shutz.
Buckle, G. G. Bugbee.
Buckle, C. W. Polen
Buckle, harness, R. D. Whittemore.
Buckle, trace, J. Lally....................
Bull wheel for oil wells, W. R. Edelen
 utton, I. Smith
Button and stua, collar............. Gliat
Button, separable W
Button , separabable, W. P. Dollofft...
Button, separable, F. E. Williams.
Button, separable, F. E. Williams.
Buttons, machine for manufacturing, Aston
Buttons, etc., manufacture of, II. o. Koschwitz
Can making machine, W. D. Brooks......
Cans, apparatus for handling, H. Miller.
Cans, apparatus for handling, H. Mil
Car coupling, w. Scott,
Car, sleeping, F. B. Whipple
Car, sptock, Br,
Car, street, Tucker \& Williams..........
Cars. device for unloading, G. P. Merrill
Carbureting apparatus, G. H. Burrows..
Carriage curtain loop, F. A. Neider..
Castrating instrument, C. B. Halstead
Chandelier, E. M. Smith
Cigar mould press, W., A., \& A. Osenbrick
Clock lock work attachment. H. W. Barnes.
Clock, marine. I. Farnsworth.
Clock, marines drier, I. Farnswort Palmer
Clutch, friction, O. s. Presbrey.
Coffeeroaster, M. T. Brown.....
Cooker, steam, W. G. Flanders
Copying process, ary, w. A. Spen, machine for picking and husking, w. Spe
Corn,
Corpse cooling board, Gregg, Shaw \& Felton
Corpse cooling board, Gregg, Sha
Cover for vessels, V. V. Andrew
Crank attachment, F. F. Adams
Crank attachment, F. F. Adams
Crank, compound J.
Croquet wickets, socket for, C. Pease.
Cuff, C. H. Denison...
Cultivator, L. G. Fath
Cultivator, L. G. Fath............
Cultivator, wheel, J. T. Payne
Damper regulator for furnaces, W. D. Dicke.....
Dams, canals, etc., device for regulating the head
of water in mill, Lick \& Dateman........
Distillation of wood, apparatus for puriticition of
Doorways, etc., means for tightly closing, G. B. Thompson.
Dress shield, M. Dewey.......
Drying machine, A. Edwards
Ear piercer, J. McAlpine
Eggs, apparatus for desiccating, C. E. Stoddard
Electrical alarm attachment for pressure gauges
J. R. Arnoldi... J. R. Arnoldi..

Electrotype and stereotype plates, uniting, C. N
Elevator, Castle...........
Elevator, o. Tufts...
Elevator, O. Turts..
Elevator indicator,
Excavator, J. Clark........al, H. C. Bliss
Feed water heater, e. Baines.
Fence barbs, device for forming, A. Henley..
Fence rods. blank for barbed metallic, T. V.
Fence wire, machine for making barbed, Al W. W
Fireplace heater, Morgan \& Morrison.
Fluid meter, J. P. Weir.
Flyid meter, J. P. Weir........
Fly machine, C. A. Sullivan
Furnace for roasting quicksilver ores, H.
Garment supporter, s. H. Whitcomb.
Gas lighting burner, electric, D. Rouss
Glove, N. Parker...........
Gold, silver, and copper from lead, apparatus for Grain and cockle separator, E. C. Gage
Grain drill and cultivator, combined, J. C. Baker. Grain meter, J. C. Brooks....
Grocer's fork, A. J. Daniels.
Grocer's fork, A. J. Daniels.
Grate, fire, Connor \& Wadswo

Harrow, L. T. \& C. II. Smith....................
Hats and bonnets, manufacture of, w . Comey.
Hats, ventilating straw
Hatch way fire attachment, G. J. Crikela
Hatchway đre attachment, G. J. Crikelai Hatchway guard, W. Walker.
Horse power, J. R. Patterson
Horse power, J. R. Patterso
Horse rake, F. E. Kohler
Horseshoe blanks, roll for, H. J. Batchelder.
Hub, wheel, G. J. Overshiner
Hydropneumatic elevator G..........
Insect trap, S. S. Gibble.
Insulator, telegraph, J. N. Finn (r)....
Lamp shell, mechanical, R. Hitchcock
Lantern, R. B. Perkins..
Lasting Jack, C. E. Clark.
Lasting machine, H. P. Fairfleld.
Lasts, me'alic socket bushing for, w. Miller
Latch, P. Forg
matic attachment to. J. T. Ridgway.
Leather articles, manufacture of sew
Leather articles,
Wardwell, Jr
Level rod, engineer's, M. L. L. Lynch
Mail bag, B. Strauss..
Measure and register, grain, D.
Meats, compound for curing and pesorvs. Archdeacon.
Mechanical movement, W. F. Cochrane
Microscopic objects, turn table for mounting, J.
w. Sidle.
Middlings dressing machi
Milk can, H. Thompson..
Millstone dressing machine, J...............
Millstone driver, P. Sladkey
Nosering, animal, A. iv. Ehle.
Nursery pin, W. R. Clough.
Nut lock, J. A. Sammu
Nut lock, J. A. Sammis...
Nut, screw, W. Courten.
Oller. T. C. Chalk

Oin. I.C. Chalk ...
Pails, safes, etc.., non-conducting flling for din-
ner, O. M. Spiller (r).................

Parafine wax, refining, Sloane \& Bell
Pigments, manufacture
Pigments. manufacture of white, H. Knight (r)......... $\begin{array}{r}233,057 \\ 9,481 \\ \hline\end{array}$
Planter, hand, G. L. Hudson.......................... 234,984
Platform ppring, L. M. Fitch........... 234,974
Plow, J. T. Kennedy......
Plow, T. Meikle..............
Plow, steam, IT. H. McCray.
Plugs, machine for forming, E. Conroy 2
Poke, animal, G. E. W. Herbert.................
Portable engine boiler, D. M Swain....................
Post hole borer, H. Landin
Pottery, preparation of clay for the manufacture
of, S. G. P'hillips 235,014
of, S. G. P'hillips.
Pruning implement, D. M. Bailey
Pulley, expansion, C. E. Jones....
Pulley, expansion, C. E. Jones.
Pump, A.s. Paricating, E. G. F. Felthousen
Pump, steam, A. Snyder....
Railway signal, electric, A. L. Russell
Railway switch, , S. Goodhue.......................
Reed book and picking comb, combined, Harris \&

Reel. H. Prichard.....................
for, S. Gray... 234,979
Road engine, C. H. Warrington......... 235,051
Rotary engine, C. Chamberlin.
Rotary engine, J. H. Newell...
Rotary engine, J. H. N
Rowlock, W. E. Bond
saddle bags, blank for, R. T. Pett
Sash fastener, w. w. Sweetland.
Sawing machine, A. T. Morris.
Scoops, manufacture of steel,
Scraper, earth, W. Haslup.
Screw conveyer, N. Hawkins
Seed drill and rolling cutter. comb',............. 234, 2368
Seed separating machine, J. M. Blocker
Seed separating machine, J. M. Blocker
Sewing machine needle blanks, machine for swag-
ing, .. Thompson.........
ing, R. Thompson...
led, bob, c. Coggswell. ….............................231,862
syuice box for saving gold, M. M. Murray............ 234,887
Smokestack, locomotive, J. W. Evans.......... 234,911
Soldering machine, can, w. D. Brooks......234.948, 234,949
Soldering mackine, can. J. O'Lough inn......... 235,004
Spinning frame
ing, etc., ring, J. w. Wattles 234.89
Spoke tenons, machine for trimming, A. P. A'm-
quist.............

Steam boiler, G. Kelly.............
Steam generator, F. E. Hosmer.
Stove, cooking, I. De Haven.
Stove oven. kerosene, V. Fountain.
Stoves, reservoir for vapor, J. A
Straw cutters, D. V. Cash.
Suspenders, J. B. Sharp.
Tacking machine, Copeland \& Broc................ 24...... 24502
Telegraph lines, call apparatus for, J. P. Stab.er.
Telephone, J. Goodman
Telephone, acoustic, Walters \& Voorhis.
Telephone exchange apparatus, J. W
Telephone receiver, C. A. Randall...
Telephone receiver, C. A. Randall
Telephone system, C. A. Randall.
Telephone system and apparatus, C. A. Randail.
Tent slip, H. I. Thompson.
Thrashing machine, J. H. Elward.
Thread and pin holder, S. C. Nash
Tire upsetting device, J. Loftin
Tool handle, G. Telfer
Trunk, bed, etc., combined, L. Singe
Tube machine, w. H. Patte-son
Tube machine, w. H. Patte-son...
Vehicle spring, W. Cole.
Velocipede, H. B. Burin
Vises, taper jaw for, B. F. Stephens
Wagon body corner iron, C. Comstock
Wagon standard, J. Paulu.......
Wagon wheels. machine for repairing, R. T. Hunn
Washing machine, R. H. Botts..................... Watch case, Parker \& Dumont, Jr
Water and steam wheel, T. R. Simm
Water closet, A. G. A lexander
Well casing, oil, E. J. Little...
Well casing, oil, E. J. Little
Windmill, J. F. Garatt....
Windmill, J. F. Garat
Window, G. Smith.
Wood bending machine, G. F. Almy
Wrench, W. H. Lightcap...
Yoke, neck, J. W. Barton.
334,994
234,940

DESIGNS

Bell, box, H. Thau
Carpet, H. Horan
12.047

Carpet, H. Horan.
arpet, H. Hunt
Carpet, , T. J. Stearns
Corset. M. D. Bray
Fire iron, etc., stand, R. Christesen 12,04
Furniture seat and bacik, G. W. Rich.......... 12,01
Furniture seat and bacis, G. W. Rich................. 12,04
Slit, S. Schoenhof............................... 12,04
Toy money box, Kyser \& Rex................ 12,04

TRADE MARKS.
Crackers, E. W. Albee................................. 8,108
Medical compound for dysmenorrhœea, M. J. Fuz-
zard 8,10 vitch .. 8,10 ments G. Knecht. scissors, and surgical instru

English Patents Issued to Americans.
From November 23 to November 30,1880 , inclusive
Beverage, A. W. Armstrong New York city.
Celluloid decorating A. Hart et al. New Yo
Celluloid, decorating, A. IIart et al... New York city.
Crayon holder, J. Reckendorfer, New York city Crayon holder, J. Reckendorfer, New York city.
Electric light apparatus, H. S. Maxim, Brooklyn, N. y.
Flax breaker, G. Milliken, Philadelphia, ra.
Furnace, J. Wolstenholme Buffilo, N. Y.
Gurnace, J. Woistenholme Buffilo, N. Y.
Heel stiffeners, S. L. Bailey, New York city.
Hoisting michine. T. McCabe, Philadelphia, Lamp, W. B. Robins. Cincinnati, Ohio. Loom. J. Lyall, New York eity.
Oil extracting apparatus, J. E. Borne, Brooklyn,
Packing. metalic, E. P. Monroe. New York city. Packing. metallic, E. P. Monroe. New Yo
Pliers, J. F. Cranston. Springfiel, Mass.
Pumps, ship, J. Edson, Boston, Mass. Slicing machine, J. Herts, Brooklyn. N. Y.
Telephone switch, C. D. Haskins, New York city.
Ventilating and

MAGHINISTS' TOOLS. Lathes, Planers, Drills, Gear Cutters, Shaping Machines, and Special machinery. GOULD \& EBERHARDT,
Valuable Water Front ON EAST RIVER
Eetween Eighth and Twenty-third Ste.,
 chas. s. brown, 77 Liberty st, n. y.

NOMDREUSEFOROL ONMMCIINETY

 or all manas of macinery.

STUDENTTS ILLUSTRATED GUIDE

Practical Draughting.

 By T. P. PEMBERTON. Sent free by mall on receipt of price, $\$ 1.00$.
Address
T. P. PEMBERTON,
5 Dey St., New York.
 WANTED,
person, with the best of
patents for a combined SULKY ROAD SCRAPER AND PLOW. Address G. S. A., Box 773, New York. Dayton, O., Dealer in Scroll SIDWUH, Saws, Wood, Design, and
Amateur Supplies. Send for catalogue. ICE AND ICE HOUSES-HOW TO MAKL ice ponds, amount of ice required, etc., and full direc
tions for building ice-house, with illustrated plan. Con tained in ScIENTIFIC AMERICAN SUPPLEMENT, No. SJ.
Pricelocents. To be had at this office and of all news-
dealers.
 ICE-BOATS - THEIR CONSTRUCTION and management. With working drawings, details and
directions in full. Four engravings.
Fhowin mode of

 (6)

TOOPE'S PATENT FELT and ASBESTOS. Non-Conducting, Removable Covering, Non-CNAuCligg, Removable Covering,
for Hot or Cold Surfaces. Fasily applied by any one
Samples free. Toope's Patent Grate Bar, best and
cheopest in th world CHARLES TOOPE, M fg. Agt.,

- 160, New Haven, conn.

ARITHMETIC BY MACHINERY,

ICE-HOUSE AND COLD ROOM.-BY R.

Inside Pase, each insertion -.- 75 cents n line (About elight worst to a Iline.) a line.
 as Tuursaay morning to oppear in next tisus.
CET THE BEST AND CHEAPEST.
Silver Finish.
 T. A Bin Ahoro PERIN BAND SAW BLADES,
 MACHINISTS AND STEAM FITTERS.

WANTED PARTNER
With from twenty-five to fifty thousand dollars, in the
manufacture and sale of the Improved United States Scales, Stook, Grain, Wagon, Railroad Truck and others.
TheY have been manifactured about tre fers, taking
the fead in every locality where they have been intro

Mequents

CAVEATS, GOPYRIGHTS, LABEL
Messrs. Munn \& Co., in connection with the publica-
tion of the Scientific American, continue to examine tion of the Scientific American, continue to examine
Improvements and to act as Solicitors of Patents for Improvemen
Inventors.

Inventors. In this line

Years line of business they have had over thirty Years experience, and now have unequaled facilities and the Prosecution of Applications for Patents in the United States Canada, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats, Registration of Labels, Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements
of Patents. All business intrusted to them is done of Patents. All business intrusted to them is done
with special care and promptness, on very moderate

We send, free of charge, on application, a pamphlet We send, free of charge, on application, a pamphlet
containing further information about Patents, and how to procure them; directions concerning Labels, Copy righte, Designs, Patents. Appeals, Reissues, Infringements, Assignments, Rejected Cases, Hints on the Sale aver,
Foreign Patpnts. - We also send, free of charge, a Synopsis of Foreighi Patent Laws, showing the costand
method of securing patents in all the principal countries of the world. American inventors should bear in mind that, as a general rule, any invention that is valuable to the patentee, in this country is worth equally as much in England and some other foreign countries. Five patents-embracing Canadian, English, German,
French, and Belgian-will secure to an inventor the exFrench, and Belgian-will secure to an inventor the exclusive monopoly to his discovery among about one
HUNDRED AND FIFTY MiLLION of the most intelligent Hendred AND FIFTY miluions of the most inteligent
people in the world. The facilities of business and steam communication are such that patents can be ob tained abroad by oar citizens almost as easily as at home. The expe..se to apply for an English patent is $\$ 75 ;$ German, $\$ 100$; French, $\$ 100$; Belgian, $\$ 100$; Cana-
dian, $\$ 50$. dian, $\$ 50$.
Cupies of Patents.-Persons desiring any patent
issued from 1836 to issued from 1836 to November 20 , 1866, can be supplied with official copies at reasonable cost, the price de-
pending upon the extent of drawings and length of pending upon
specifications.
Any patent issued since November 20, 1866, at which
time the Patent Office commenced printing the ings and specificatice commenced printing the draw this office $\$ 1$.
A copy of the claims of any patent issued since 1836 wlit be furrished for $\$ 1$
as above. and state name of to remit for the same as above. and state nam A pamphlet, containing full directions for obtaining United States patents, sent free. A handsomely bound Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every pat entee and mechanic, and is a ence for everybod.

Mdaress MUNN \& CO.
re SCIENTIFIC AMERICAN
37 Park Row, New York. BRANCH OFFICE-Corner of F and 7 th Street ${ }_{3}$

THE PERFECTED STYLOCRAFIC.

 READERS' AND WRITERS' ECONOMY CO.

Two New and 1mportant Books.
SOAP AND CANDLES, STARCH, DEXTRINE, and GLUCOSE.

someschirtions
able orrapivery

Sunbscriptions.
able
andenery

${ }^{0}$DO YOUR OWN PRINTING
 H. HOOVER, Philaos Pa IINVITATIOIN
Patent and Trade Mark Exhibition in frankfort-on-the-miln, 1881.

PATENT AND TRADE MARK EXHIBITION, Which will take place in Frankfort-on-the-Main in the

 of study and atter
ments

 allifit numerous applications, already received repuire
the erection of very extensive builidings, the completion
 31st of January, 1881

 DER AUSSTELLUNGS-VORSTAND:

MACIGHAMHWN
 THE AUTOGRAPHIC PRESS.

THE COPYGRAM COMPANY,
$102 \& 104$ Duane St., New
Cris Capitalists, Take Notice.
 petitor. Reasons, testimonials, references, and promp
answers

Exceptional Business Opportunity,"

$\$ 72$ A WEEK. 812 day at home easily made contly WANTED--A PRACTICAL, MACHINIST
 SCIENTIFIC AMERICAN SUPPLE-

 ${ }^{1880}{ }^{180}$
 124 and $\mathbf{1 2 6} \mathbf{~ N a s s a n ~ S t , ~ N e w ~ Y o r k . ~}$

WALLACE DIAMOND CARBO N S\& \& ERLECTRIC LIGH MANF'.FOR THE ELEGTRICAL SUPFLY' CO, 109 LIBERTY STREET,NEW YORK.

ROCK BREAKERS \& ORE CRUSHERS

RUBBER BACK SQUARE PACKING.

 JOHN H.

Forster's Rook \& Ore Breaker and Combined Crasher and Palverizer.

BEST BAND SOR THE BLADE

The George Place Machinery Agency 121 Chambers and 103 Reare Streets, New York. $\$ 5$ to $\$ 20 \begin{gathered}\text { per day at home. Samples worth Shfree } \\ \text { Address STINsos }\end{gathered}$

 shippers disocouns.
Mason's Frviction AND PARIS MEDALS: VOLNEX W. Newand Mamored Paterns,"

 No.

 CRUSHHUG ANO CRINOMG

"RELIABLE"

 ernor, fump, and Heater.
sisco dic.
Baldwilliville, THE BIGGEST THINGG oUT. In ustrated Just issied TRA TVTWINES CIVIL EVGINERNS

Slafts, Pulleys, Fangers, Eitc.
Full assortmentinstore for mimediat delivery.
WM. SELLERS Liberty Sireet, New York.

Roots' New Iron Blower.

POSITIVE BLAST IRON REVOLVERS, PERFECTLY BALANCED Is SIMPLER, AND HAS fewer parts than any other blower.
P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND.
s. s. Townsend, Gen. Agt., $\left\{\begin{array}{l}6 \text { cortlandt St., } \\ 8 \\ \text { Den Stret, }\end{array}\right\}$ NEW WM. Cooke, Selling Agt, 6 cortiand Street,
JAS. BEGGS $\&$ Cl., selling Agts., 8 Dey Stret,, YORK. a- send for priced catalogue.

Steel Castings

WITHERBT, RUGG \& RICHARDSON, Manufacturers

ROOFING.

\$55.66 $\begin{gathered}\text { Agents' profit per weelk. Will prove } \\ \text { it or forfeit } \$ 8500.00 \text {. Outfit and Sam }\end{gathered}$

"The 1876 Injector." Simple, Durable, and Reliable. Requires no specia)
valves. Send for ilustrated circlar.
V.II. SE LIELRS $\&$ Co., Phila.
STEAM PUMPS. SOUTH NORWALK, CONN

WOOD WORKING

 Driven or Tube Wells

Sturetitumemts. Insidid Pane, each hingrioness cems line

 \rightarrow SCROLLSAWYER.

Mill Stones and Corn Mills.

Pond's Tools, Eneine Lathes, Planers, oriils, se.
DAVID W POND, Worcester, Mass.空 COIUNBBIA BICYCLE.

 PERKINS,
High Pressure Engine and Boiler, Etc.

UPRIGHT DRILLS \& sixime H.BICKFORD Cincinnalio. ERICSSON'S NEW MOTOR. ERICSSON'S

New Caloilc Pumping Engine
DWELLINGS AND COUNTRY SEATS.
DOLest cheapest, and most economical pumping engin

DELAMATER IRON WORIS No. 10 Cortlandt Stret, New York, N. \mathbf{y}

4SHEPARD'S CELIEBRATED

Machinists' ToOLs.

Lathes, Planers, Drills, \&c. NEW HAVEN MANUPACHUHNG, CO: TELEPHONE And fleof

HWUOHIS

H. W. Johns mpa co. 87 MADOEN LANE, N. .r.

WANTED,
 FOUR SIDED MOULDER, WITH OUT-

The BELMONTYLE OIL

Before ordevins "ngraving of any hind, send to
for estimates and samples. We have "the largest
ongraunerg estabishment in the word, and the best facilities for choing work of the best quality, quickly and cheaply.

PHOTO-ENGRA VING CO.
A NEW TREATMNT To Coniquition, Asthmat

 HARTFORD
STEAM BOILER Inspection \& Insurance COMPANY
W. b. frankin.v. Pres't. J. M. ALLEN. Pres't.

The Asbestos Packing Co.
$\mathbf{B I I}$
OFFER FOR SALE:
PATENTED ASBESTOS ROPE PACKING,
$\bullet /$ LOOSE WICK MILL BOARD, SHEATHING PAPER, FLLOORING FELT.
CLOTH. boller coverings. Patent "AIR SPACE"' Method ASBESTOS MATERIALS.

Pyrometers, For shmwin hat of

HARRIS-CORLINS ENGINE
SHAFTS PULLEYS MANGERS

The Oldest Yasker vorion hotse in the Forld. HOWARD BROTHERS \& READ,

PATENTED NOVELTIES. the only Real Pocket Scale M THE Market. MÁde of Metay, Heavily Nickel Plated, COMPACT, STRONG, DURABLE. Can be carried in the Vest Each one warranted abso-
lutely accurate. Weighs up to 8 lbs.

PRICE 25 CENTS.
Sample by mail on receipt A liberal discount to the

No. 1-" Post Office," weighs 2-" $\begin{gathered}\text { to } 0 \text { ocetets," } \\ \text { 8ibs. }\end{gathered}$ weighs to

Pictet Artificial Ice Co., Limited,

New York Ice Machine Company, 21 Courtland St., New York, Rooms 54, 55. LOW PRESSURE BINARY ABSORDTUN SYSTEM

ICE AND COLD AR.

 chines guaranteed by C. H. Delamater \& Co. NON-CONDUCTOR COVEKINGS,

0
 Manufacturing opticians, Philadelpha, Pa. DOUBLE PITMAN PRESSES.
 Established 1844. JOSEPM C. TOOD SIccessor to TODD \& RAFPERTI, PATERSON, N. J., Engineer and Madiinist

 Baxter Patent Portable Steam Fncine. These englines are admirably adapted to all H ds ot
ught power for driving yrintug presses. pumping water

 Send for descriptive circular. Address
J. O. TPQTERSON,N. J.

Or No. 10 Barclay St., New York.

§cientific American

FOR 1881.

The Most Popnlar Scientific Paper in the World VOLUME XLIV. NEW SERIES. COMMENCES JAN. 1st. This widely Numbers a Year
This widely circulated and splendidily illustrated teen pages or useful information, and a large number of
original engravings of new inventions and discor original engravings of new inventions and discoveries
representing Engineering Works, Steam Machinery New Inventions, Novelties in Mechanics, Manufacture Chemistry, Electricity, Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc All Classes of Readers find in The: Scientifi AMERICAN a popular resume of the best scientific in formation of the day; and it isthe aim of the publisher
to present it in an attractive form, avoiding as much a possible abstruse terms. To every intelligent mind this jouvnal affords a censtant supply of instructive reading. It is promotive of knowledge and progress in
every community where it circulates. Terms of Subscription.-One copy of The Scien Ttric Americar will be sent for one year- 52 numbers-
postage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and tweuty cents by the
months, $\$ 1.00$.
Clubs.-One extra copy of The Scientific Ameriat $\$ 3.20$ ee suppliet gratis for every club of five subscribers rate.
One copy of The Scievtipic ampican and of The Scifentific American Supplement will be est for one year, postage prepaid, to any subscriber in the
United Stal Une publites or canada, on receipt of seven dollars by the publishers.
The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envel Express. Money carefully placed inside of envelopes
securely sealed, and correctly addressed, seldom poes astray, but is at the sender's risk. Address all letter and make all orders, drafts, etc., payable to

MUNN \& CO.
To Foreign Subscribers.-Under New York the Postal TIninn, the Scientific American is nowsent by post direct from New York, with regularity,to su bscrib Britin Great Brtain, India, Australia, and all other Russia,and ali to ther Russia, and ali other European States; Japan, Brazil,
Mexico, and all stie $e s$ of Central and South America Terms, when seut foreign countries, Canada excepted \$4, gold, for ScIL CIFIC AMERICAN, 1 year; \$ $\$$, gold, for
both SCIENTIFIC AMERICAN and SLCPPIEMENT for 1 year. This includes postage, which we pay. Remit by
postal order or draft to order of Munn $\&$ Co.,37 Pars posta, order or
Row, New York
THE "Scientific American", is printed with CHAAS.
bard ETEU JOHNSON \& CO., Shiladelphia, and 50 Gold St. Tenth and Lom

