
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, OCTOBER 4, 1879.	

TRANSFER OF GRAIN BY ELEVATORS TO OCEAN STEAMERS NEW YORK HARBOR.-[See page 208.]

Srientitic Smeriam.

MUNN \& CO., Editors and Proprietors.
published weekly at
NO. 3 'Y PARK ROW, NEW YORK.
O. D. MUNN.
A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included.
One copy, six months, postage included
${ }_{81} 20$

MUNN \& CO., 37 Park Row New York.

Scientific American Export Edition.

VOL. XLI., No. 14. [New Series.] Thirty-fifth Year.
NEW YORK, SATURDAY, OCTOBER 4, 1879.

TABLE OF CONTENTS OF
the scientific american supplement,
NO. 196.

For the Week ending october 4, 1879 .

Price 10 cents. For sale by all newsdeale

 ENGINEERING AND MECHANICC.-The Proposed Isthmus ShipRailroad. By J. M. Goodwin. Facts and figures showing the pit posed road feasible and economical. 1 figure.
The Steam Quieter. Invention for silencing the roar of discharging
steam. 12 figures.
II. TECHNOLOGY.-Notes on Strong Alkaline Developers. By H
Stuart Wortiey. Stuart Wortley
Action of Light on Batteries. ByH. Pellat.
Formation of Ozone by Hydrocarbons. By J. Schiec.
Notes on Tobaceo. By W. K. GLover
Botanical origin and deNotes on Tobacco. By W. K. GLo
scription. Cultivation. History, etc.
Artificial Fruit Essences. For
pear, cherry, black cherry, ete.
pear, cherry, black cherry, etc.
Jellies, Jams, and Preserves. How to make jelly of apple, crab apple, quince, raspberry, white currant, peach, red currant, cherry, goose-
berry. General notes, etc berry. General notes, etc
III. ELEC'IRICITY.-The Induction Balance and Sonometer. By GEora
M. Hopkins. How to make this most recent and most remarkable M. Hopkivs. How to make this most recent and most remarkable detail. Figs. 4 to 6 . A new arrangement of Hughes' induction balance,
in perspective and in detail. in perspective and in detail.
The Internal Current in a
The Internal Current in a Voltate Cell. By Conrad W. Cooke. A
British Association paper on a galvanometer for demonstrating the inteinal current transmitted to the liquids within a voltaic cell.
IV. CHEMISTRY.-Abstracts of Chemical Papers. Products of disti tion of alcohol. A A new alkaloid. Composition of wood. Phosphor-
escence of lobsters' flesh escence of lobsters' flesh.
Note on Characine. By
Note on Characine. By D. T. L. Pripson. A new and peculiar or
ganic substance found in fresh water alge. The Bleaching of sugar Sirups by Ozone. Effect of ozone on filtered syrup.
V. NATURAL HISTORY, ETC.-Some Curious Exotic Insects. Fig. 1 Schizodactylus monstruosus. Fig. 2. Bradypora cloporta. Fig. 3. Mygnimia aricula. Fig. 4. Atta barbarica (worker). Fig. 5. Eeoodoma-
cephalotes (worker). Fig. 6. Pachylis gigantea. Fig. cephalotes (worker). Fig. 6. Pachylis gigantea.
incarnata. Fig 8. Bell bearing bocylia (enlarged).
Prehistoric Man in Germany $\begin{aligned} & \text { Recent cave discoveries in Moravia, } \\ & \text { An Open Polar Sea }\end{aligned}$. An Open Polar Sea
VI. ASTRONOMY.-The Giant of the Worlds. A study of Jupiter. By Camille Flammarian, 1 figure
VIII. THE BRITISH ASSOCIATION FOR THE ADVANCEMENT OF
SCIENCE. (Continued from Supplement No. 197.) President allman's address continued.
VIII. SOCLAL SCIENCE.-A Way of Preventing Strikes. By James Par-
ToN. Practical plans for ameliorating the conditions of factory life IX. ARCHITECTURE.-Well's Cathedral. Excursion of the Royal Are æological Institute. Fig. 1. Full page illustration. Fig. 2. Ground
plan of Well's Cathedral. plan of Well's Cathedral
X MEDICINE AND HYGIENE.-The Prevention of Infantile Ophthal
mia. Emotional Prodigality. By C. FAYETTE TAYLor, M.D. mia. Emotional Prodigality. By C. FAyEtTE TAYLior, M.D.
Neuralgia. Opinion of Dr. J. W. HICEMAN. Curative powe morphia and atropia.

THE GRAIN TRADE OF NEW YORR

One cannot cross either of our river ferries, still less ci cumnavigate the city or take a few hours' sail up the Hud son, without being amazed at the movement of breadstuffs visible on all sides. On the Hudson River Railroad, and all the other iron thoroughfares converging upon this city, long trains of grain cars are almost constantly in sight, while on the river vast rafts of grain laden canal boats more than rival the railway trains in carrying capacity. It is no uncommon thing for one of the large towing steamers to bring down the river fifty, sixty, or more canal boats, each carry ing from eight to fourteen thousand bushels of wheat, corn, or other grain. In single file, one of these vast tows would
make a continuous line of canal boats more than a mile make a continuous line of canal boats more than a mile in
length: while an equivalent tonnage in cars would require twenty-five or thirty 40 -car trains, or from six to seven miles of cars, according to the nature of the grain.
Not unfrequently four or five ocean steamers, and a fleet of other shipping, may be seen about the great railroad elevators at 65th street, receiving cargoes of grain and cattle At each of the piers of the numerous European steamship lines, floating elevators are busy transferring grain from canal boats; others are at work in midstream alongside ocean steamers and sailing ships at anchor; and at the extensive warehouses along the shores, permanent or floating elevators are similarly engaged in the rapid handling of the staff of life, brought to their doors either in canal boats and barges, or in cars floated, on boats made for the purpose, from th piers of the Erie and other railways.
The magnitude of this grain trade of New York may be judged from a few statistics. During the week ending September 6, the receipts at this port were: Flour, 112,124 barrels; wheat, 2,271,492 bushels; corn, 1,327,014 bushels oats, 279,355 bushels; rye, 139,886 bushels; barley, 1,100 bushels-about as much as was received at all the other seaboard ports together. During the same week the exports of breadstuffs from New York included 113,224 barrels of flour, $2,519,409$ bushels of wheat, 914,623 bushels of corn, 2,996 bushels of oats, 103,701 bushels of rye. At the last date named, September 6, the amount of grain in our city gran aries and afloat in our harbor embraced in round numbers, $3,750,100$ bushels of wheat, $3,100,000$ bushels of corn, 810,000 bushels of oats, 160,000 bushels of rye, and 26,000 bushels of barley. The grain of all sorts in store at New York was $6,332,035$ bushels. The storage capacity of the port is about $12,000,000$ bushels, but the present active demand for grain for foreign shipment, due to the general deficiency of European crops, prevents any large accumulation here. Indeed, the bulk of shipping devoted to the transportation of grain from this to foreign ports is at this season something unpre cedented in the history of the world. During the week endfor steamships, 4 ships, 5 brigs, 1 schooner), carrying a grand total of 78,112 barrels of flour, $1,942,248$ bushels of wheat, and 1,249,092 bushels of corn. The promise for the current week is still greater.
During the year 1878 the receipts of grain alone at this port were, by canal; $63,663,049$ bushels; by vessels coastwise, $1,090,236$ bushels; by rail, $63,960,486$ bushels-a total of $128,613,771$ bushels. Changing flour and meal to their were, during the year, $152,862,170$ bushels. During the same period the export of cereals from New York amounted to $107,819,044$ bushels, the exports from all the other Atlantic ports together (including Montreal) being 104,678,187 bushels-evidence enough that our city still holds the lion's share of this trade. To describe in detail the manner in which the grain trade is conducted here would requir
volume. A rough outline of it will have to answer.
As already indicated, the vast stream of life-sustaining wealth flows to us through channels of two distinct sortsby water and by rail. The inflow coastwise is too small,
relatively speaking, to demand especial notice. The Eri canal, with the Hudson river on one side and the railways on the other-chiefly the New York Central and Hudson River Railroad, the Erie road and the Pennsylvania Cen tral-divide the traffic about equally. And the grain received by each route has, speaking generally, its particular treatment. That which comes by rail is graded according to rules agreed upon by the New York Produce Exchange, and is sold by grade, the identity of the grain being lost. The grain received by water, on the contrary, is chiefly handled without grading, the identity of lots being preserved. In the latter case the consignee receives the identical grain in the former, he receives not the grain billed to him, but a certificate for so many bushels of wheat, corn, or other grain of a specified grade, his particular shipment being, for economy in warehousing and handling, mixed with other receipts of the corresponding kind and grade after it has been officially inspected, graded, and weighed. The quan tity of grain represented by each certificate is limited to 8,000 bushels, except for oats, for which the certificates are not to exceed 10,000 bushels each. These certificates, which kind, grade and quantity of grain represented by them, and are furnished to the consignee before noon of the same day, at which time the business of the Produce Exchange begins. On the floor of the Exchange all ungraded grain is sold by sample, the various samples being exhibited on their proper tables, in small paper boxes duly labeled, the amount of the
lot, and the place where it is stored or alloat, being fully set
down. The graded grain is represented by type samples, so that dealers can see exactly what their certificates call for. A buyer purchases for exportation from various sellers, say, 100,000 bushels of No. 1 white winter wheat, or any other of the dozen different grades of winter wheat. He handles no grain, but receives instead certificates repre senting that amount of grain of the specified kind. On the presentation of such certificates to the railway company or companies issuing them, freight and accrued charges being paid, the companies deliver the grain out of their general tock of that grade, at such point in the harbor as may be designated.
A vast amount of loading is done at the elevators at 65th street and North River. A larger amount is transferred by floating elevators, which draw up alongside the great steam ers as they lie in their accustomed slips, receiving or dis charging their freight. Our illustration gives a general view of an elevator of this sort, of which a fleet of twenty or more are constantly employed in our harbor. There are besides numerous stationary elevators belonging to large grain dealing firms, at the lower end of New York island and long the Brooklyn shore; and the Erie Railroad Company are building at the Jersey City terminus of that road an ele vator which promises to more than rival those of the New York Central.
The speed at which grain is transferred at these elevators is amazing to one not familiar with their management. A shaft inclosing an endless chain of buckets is thrust into a laden car or canal boat, and instantly the grain begins to travel up the long incline to be delivered on the opposite side at a rate often exceeding fifty bushels of wheat a minute, or a larger quantity of lighter grain.
The report of the Produce Exchange for 1878 shows the uthorized charges for handling grain at this port to be, pe ushel: weighing, $1 / 2$ cent; elevating from canal boats, $1 / 2$ cent; for delivering on board single deck ocean vessels, in cluding trimming, $\$ 7$ a thousand bushels; ditto,double-decked cean vessels, $\$ 8$; on ocean vessels in bags, $\$ 6.25$; on coast wise vessels, $\$ 2.50$. The expenses on grain to shippers by rail from the interior are: for inspection, 25 cents a car; ele vation, $1 / 2$ cent a bushel; half weighing, $1 / 4$ cent a bushel; storage, $1 / 4$ cent a bushel. At the New York Central elevaor the charge for bulking grain with storage (10 days) is 1 ent a bushel. The Erie and the Pennsylvania Central Companies charge, for holding grain on storage in lighters, $1 / 4$ cent a bushel for each ten days. The charge for delivering afloa ungraded grain in railroad lighters, including elevation from boats, ranges from 3 cents to $11 / 2$ cents a bushel, according to the bulk of the lots handled. The authorized charge for owing laden canal boats about the harbor ranges from $\$ 5$ to $\$ 11$, according to distance. The freight tariff from the great grain distributing point of the West, Chicago, varies with the season, the style of carriage, the degree of competition between the railways, or between water and rail carriage In the winter, when the lakes, the Erie canal, and the Hud son River are closed, the rate rises as high as 25 cents a bushel. On the opening of the water routes the rates fall, dropping at midsummer as low as 8 or 9 cents by rail and cents by water. The average rate by water during 1878 wa $71 / 4$ cents; by all rail routes, 12 cents. As an important link in the water route, the Erie canal is of infinite importance The existing railways alone would be incompetent to do the carrying required at the time required (assuming the foreign demand unimpaired); besides, by having the mono poly, their rates would not only be made higher than now obtains, but possibly so high as either to destroy the possi bility of our competing in price with Russian wheat in Liver pool, or to make competition possible only at the sacrifice o all profit to our wheat growers. It is worth noting in thi connection that during the present year the average cost of transporting wheat from Northern Minnesota to New York -26 cents a bushel-is less than was the cost of the carriage of wheat by lake and canal from Chicago twelve years ago.

FORMER EXTENSION NORTHWARD OF SOUTH AMERICA

In his report to the Superintendent of the Coast Survey describing the past winter's dredging operations of the Coast Survey steamer Blake, Professor A. Agassiz shows that the oundings taken, together with those previously known, make possible to trace with tolerable accuracy the outline of the and masses which anciently united the West India Islands with the continents. After describing the geography of th 100 -fathom line, Prof. Agassiz says that, on examining th 00 -fathom line, Jamaica is found to be the northern spit of gigantic promontory which once extended toward Hayt rom the mainland, reaching from Costa Rica to the north ern part of the Mosquito coast, and leaving but a compara tively narrow passage between it and the 500 -fathom line en circling Hayti, Porto Rico, and the Virgin Islands, in on igantic island. The passage between Cuba and Jamaica as a depth of 3,000 fathoms, and that between Hayti and Cuba is not less than 873 fathoms, the latter being probably arm of the Atlantic.
The 500 -fathom line connects, as a gigantic island, the banks uniting Anguilla to St. Bartholomew, Saba Bank, the one connecting St. Eustatius to Nevis, Barbuda to Antigua and from thence extends south so as to include Guadeloupe Marie-Galante, and Dominica. This 500 -fathom line thus forms one gigantic island of the northern islands, extending from Saba Bank to Santa Cruz, and leaving but a narrow channel between it and the eastern end of the 500 -fathom channel bet ween it and the eastern end of the 500 -fathom
line running round Santa Cruz. As Santa Cruz is separated
from St. Thomas by a channel of 40 miles, with a maximum depth of over 2,400 fathoms, this plainly shows its connection with the northern islands of the Caribbean group, rather than with St. Thomas, as is also well shown by the geographical relations of its mollusca. The 500 -fathom line again unites, in one gigantic spit extending northerly from the mouth of the Orinoco, all the islands to the south of Mar tinique, leaving Barbadoes to the east, and a narrow passage between Martinique and the islands of Dominica and St. Lucia. At the time of this connection, therefore, the Carib bean Sea counected with the Atlantic only by a narrow passage of a few miles in width between St. Lucia and Martinique, and one somewhat wider and slightly deeper between Mar tinique and Dominica, another between Sombrero and the Virgin Islands, and a comparatively narrow passage between Jamaica and Hayti. The Caribbean Sea, therefore, must have been a gulf of the Pacific, or have connected with it through wide passages, of which we find the traces in the tertiary and cretaceous deposits of the Isthmus of Darien, of Panama, and of Nicaragua. Central America and northern South America at that time must have been a series of large islands with passages between them from the Pacific into the Caribbean
These results furnish an intelligible and at the same time trustworthy explanation of the peculiar geographical distribution of the fauna and flora of the West Indies. Instead of showing, as might naturally be assumed from their proximity to Florida, an affinity in their fauna and flora with that of the United States, the island of Cuba, the Bahamas, Hayti, and Porto Rico show unmistakable association with that of Mexico, Honduras, and Central America, while the Caribbean Islands show in part the same relationship, though the affinity to the Venezuelan and Brazilian flora is much more marked. The former geographical connections thus indicated are made certain by the Blake soundings.

THE FUTURE OF ORGANIC CHEMISTRY.

Berthelot has estimated the possible number of compounds of acids with alcohols at $1,400,000,000,000,000$. With such a future before them ambitious young chemists need not despair of finding new compounds for centuries to come. The number of new bodies prepared annually will probably not exceed 1,000 , but each year will see these numbers grow. Of all these new products less than 5 per cent have any socalled practical-i. e., commercial-value. A majority, in fact, are never seen again outside of the laboratory where they are discovered, are never heard of after the first description has gone the rounds of the chemical journals, and been finally registered in the big year book, or Jahresbericht, into which are annually posted abstracts of all the minor entries that have been made in the various daybooks and blotters throughout the world. Yet each little discovery, insignificant though it may appear, every new body, useless as it may seem, is valuable. They are the bricks and stones from which a grand and imposing edifice is to be built, and while hey may be allowed to lie for years in the rubbish heap, they will one day be sought out to fill their destined place in the tructure. It is one man's place to provide the material, another to arrange them in position. As yet the outlines of the building are scarcely discernible; here a tower and there a pinnačle, then an ugly gap. In one place an imperfect foundation is settling and threatening ruin to the stories above; portions of it will need rebuilding; new corner stones are needed here and there; the glittering pinnacles have'been misplaced, an overhanging turret threatens the passer-by. Future archiects will change the plans, attempt new designs, but complete success is possible only after all the material is on the ground. Let no investigator feel that his little contribution is of no value; it may yet occupy a far more important posi ${ }^{-}$ tion than those which for the present serve as capstones and cornice.
Aside from the theoretical value which attaches to these soon-to-be-forgotten compounds, it is worth while to prepare them and to study their properties carefully; it is impossible to prophesy what technical value they may possess or to what they may lead.
The question is of ten asked, Shall we ever be able to make the valuable alkaloids, particularly quinine? It is too soon to answer this question. A few years ago the synthese of coniine was announced, butit proved to be an isomeric body, a paraconiine. The next trial may give the real article, and then other alkaloids may follow. The recent success of an American in Paris, who prepared the glucosides synthetically, marks an important epoch in synthetical chemistry. The synthesis of cane sugar will probably follow, and who can say where this will lead to? Since the day when Woehler first made artificial urea, many useful forms of synthesis have been devised. Of these the most important commercially was the manufacture of artificial alizarine. Agriculture as well as technical industry was affected by it. Kolbe's synthesis of salicylic acid has proved a boon to suffering humanity. Tiemann's synthesis of vanilline, although much talked of, was necessarily of less importance from the relative small consumption of this flavor. Bäyer's recent synthesis of indigo is of no importance to the dyer at present, because his method is too circuitous and expensive, but it is no less the great achievement of a master mind nother may modify his method and make it profitable.
The first step in the successful imitation of a natural product is to ascertain with certainty its constitution, into what products it is most easily separated, and how these again break up intosimpler ones already known. Kolbe knew that salicylic acid could be readily converted into carbolic acid,
carbonic acid being liberated. He reasoned, then, that if he
could make carbonic acid act upon and combine with carbolic acid, salicylic acid would probably result. By the interven tion of metallic sodium the reaction was accomplished, bu sodium is too expensive a metal for such a purpose, hence he sought and found a cheaper one in caustic soda; what the latter lacked in energy was compensated for by simply rais ing the temperature.
The conversion of cane sugar into grape sugar (glucose) is a very simple affair, and has long been understood. The operation seems to consist in the abstraction of the elements of water. Could we not add the elements of water to grape sugar and convert it into cane sugar? As yet it has not been accomplished. The grape sugar has no desire to enter into a partnership with water on such terms as to form cane sugar. Carbon is a queer element, and we cannot always comprehend its idiosyncrasies. Anybody can convert a diamond into charcoal; no man has yet converted charcoal into diamonds. Yet why, we do not know
Bäyer's synthesis of indigo blue furnishes a most instruc tive example of reversed operations. It had long been known that when indigo is oxidized with nitric acid isatine is formed So Bäyer reasoned from this that he must be able to reduce isatine to indigo blue, and in this he succeeded by the aid of phosphorus and chloride of phosphorus. The next step was to prepare the isatine. Oxindole can be made from isatine, therefore Bäyer thought he could make isatine from oxin dole, and after a few unsuccessful efforts he finally succeeded in making isatine. This completed his research, for he had already made oxindole from phenylacetic acid, which in turn is made from some of the coal tar products. The syn thesis is complete, although tedious.
In addition to the wide field of pure synthetical chemistry where coal tar is converted into true imitations of nature' own products, a field as yet but little cultivated, there is another scarcely yet explored-the conversion of one natural product into another and more valuable one, through purely chemical means. The conversion of starch into sugar, and that again into alcohol, is one which nature suggested and in which she assists. Sawdust is converted into oxalic acid and old rags into sweet sirups; but there are still other problems awaiting solution. Stearic acid is much more valuable than oleic. Who will convert the latter into the former? Oil of turpentine is isomeric with oils of bergamot, lemon, and vender. Who will transpose the first into the others?
It cannot be denied that men have spent years-nay, a life time-on fruitless experiments; but the time is near at hand when intelligent work is sure to bring some reward, and although few secure great fame or wealth, still fewer go unowarded. He
o discoveries.

THE USE OF THE JEW'S EAR FUNGUS IN CHINA.
According to a paper recently read before the Philosophical Society of Wellington, New Zealand, it appears that a arge trade is carried on between that colony and China in the fungus known as "Jew's ear." This trade is practically restricted to a single species, Hirneola polytricha, Mont., which is very abundanton decaying timber in all the forest districts. Small quantities only of this fungus were exported before the year 1872; in that year, however, the amount declared at the various ports in the colony was 57 tons 14 cwt ., of the estimated value of $\$ 9,635$; in 1877 it had increased to 220 tons 5 cwt ., valued at $\$ 16,590$, the total amount exported during the seven years ending 1878, being 838 tons, of the value of $\$ 189,060$. The declared value of his fungus is about $\$ 220$ per ton, or more than four and a half times the nominal price of one penny per pound paid by the merchant to the collector. As no process is required to prepare the fungus for market, the only outlay connected with it is the cost of collection and spreading in the open air or in sheds for a few days to allow of the evaporation of the moisture, and even this is rarely necessary in the summer, so that in round numbers the sum of about $\$ 40,000$ represents the actual remuneration of the collectors, while the merchants' profit is represented by the disproportionate figure of $\$ 145,000$. China is the sole market for this fungus. The use to which the Chinese apply it is as a medicine for purifyng the blood, administered in the form of a decoction. It
is also used on fast days, with a mixture of vermicelli and bean curd, instead of animal food. It seems to be likewise argely used in soups as ordinary food, and is sold at retail at about 25 cents per pound. An allied species, the common Jew's ear (Hirneola Auricula-Judæ), which also occurs in the colony, is decidedly rare as compared with the preceding one. Another species of Hirneola is collected in Tahiti, for xport to China, and a larger species, found in northern China, is said to be extensively collected for home use. The paper above noted points out " the singular phenomenon of a product utterly useless in the country where it is found, being utilized by one of the least progressive condition in which the civilized race utilizes the products of others less favored." The fungi mentioned in this paper belong to a section of the order in which the whole plant is of a gelatinous nature, becoming horny when dry, but swelling out again to its original form on the application of moisure. One of the species, Hirneola Auricula-Judae, is widely distributed throughout Europe and the United States, and, a century ago, had much reputation in England as a strong purgative and topical astringent, and even now has some re pute abroad, inasmuch as it appeared among the medicinal

London from one of the French colonies. The faculty pos sessed by the fungus of absorbing and holding water like a
sponge has resulted in its use as a medium for applying eye water to weak or diseased eyes, and similar purposes. Medi cal writers many years ago declared its internal use to be dan gerous, and it was therefore rejected by the Edinburgh and London Colleges, and expunged from the pharmacopœias. The curious name that the plant bears is due to the ear-like form which it often assumes.

THE COST OF RAILWAY CARS

Under examination by the State Committee on Railway Affairs, a leading member of one of our largest car building companies, Mr. Gilbert, testified that the average price o box cars is from $\$ 400$ to $\$ 450$. In 1872 they were as high a $\$ 1,200$. A milk car costs about $\$ 100$ more than an ordi nary box freight car, that is, when the box is not changed A baggage car truck and a passenger car truck are about the same. The price of a baggage car varies from $\$ 2,000$ to $\$ 2,500$. The cheapest style of Wagner's drawing room car may be made for $\$ 8,000$; the usual price is $\$ 12,000$. Thi includes all the furnishing. The cheaper drawing room cars, four wheels, are made for $\$ 10,000$. The ordinary mai car costs from $\$ 2,000$ to $\$ 3,000$; distributing cars more Cars for the New York Elevated Road cost from $\$ 2,500$ to $\$ 3,000$. The last ordinary passenger cars built cost $\$ 4,200$ the last built for the Hudson River road cost $\$ 5,400$, in cluding a heater and some extra fixtures. Small cars fo carrying ore cost $\$ 200$. Mr. Gilbert had never made coal cars or tank cars for oil.

Oliver Sarony

Oliver Sarony, one of the pioneers in photography, and ithal a successful and distinguished artist, recently died in Scarborough, England, in his sixtieth year. Mr. Sarony was born in Quebec, in 1820, and at an early age was thrown upon his own resources by the death of his father. With his brother Napoleon, so widely and favorably known as a pho tographer in this city, Mr. Sarony came to New York soon after his father's death. Becoming interested in the work o a daguerreotypist the two boys learned the art. In 184 Oliver went to England, where he practiced photography with success and profit. In 1857 he settled in Scarborough stablishing branch offices in other large towns.
Professionally, Mr. Sarony's especial delight was to induce customer to order an oil painted enlarged picture when his original purpose was to sit for a dozen cards. We have seen him engaged in such an enterprise, remarks the London Photographic Neros, and watched his almost child-like deligh in the success of his efforts. Selecting the most pleasing of two or three negatives which had been taken, it was handed into a distinct department fitted up for rapidly producing transparencies. A transparency obtained, it was placed in a magic lantern kept ready, and a life-size image was thrown on the screen. Mr. Sarony had, in the meantime, invited the sitter and his wife into a gallery of life-size portraits well painted in oil, and handsomely framed. These, of course, elicited admiration, and eventually Mr. Sarony led his visitors into the room, where a fine portrait of the gentleman was presented life-size on the screen. The effect, as all photographers know, is very striking, and fully admits of a little eloquent talk on its fitness for painting. Mr. Sarony talked well and gracefully, with a frank candor that won belief and on the occasion in question he took an order for an "oil" at sixty guineas.

The American Institute Fair

The fair of the American Institute in this city opened September 17. As usual very few of the exhibits were completely ready. The number of exhibitors this year is large, many applicants having to be turned away for lack of space, and there is promised an unusually full and interesting exhibition. A notable feature is an elaborate display of American china ware, under the direction of the National Pottery Association. The large exhibition of Agricultural machinery includes several novelties. Wood-working machinery is also well represented. The elevated railways have naturally called out many inventions for reducing noise and preventing accidents. The safety steam motor for surface roads, lately adopted by the Third Avenue Railroad, is exhibited, with the method of producing and applying steam power, also the compressed air motor of the Winters Impomement Company. A display of fruits, flowers, and vegetables is promised during October.

The Suez Canal.

One thousand five hundred and fifty vessels passed hrough the Suez Canal in 1878. Of these 1,227 were British, 89 French, 71 Dutch, 44 Italian, 38 Austrian, 22 German, 21 Spanish, 8 Egyptian, 8 Japanese, 6 Danish, 5 Swedish and Norwegian, 4 Portuguese, 3 Turkish, 2 Belgian, 1 American, and 1 Zanzibar. The total tonnage was $2,178,316$ ons, of which $1,726,946$ tons were British.

Keep the Mouth Shut.-The influence of nasal respi ation on the ear is illustrated by Mr. George Catlin, in his history of "The North American Indians." Among two million Indians he found not one who was deaf or breathed hrough the mouth, except three or four deaf-mutes; and in he memory of the chiefs of 150 tribes, not one case of deafness could be remembered to have occurred. This is ex plained by the mother always closing the mouth of the child whenever it attempted to breathe through it.

VERTICAL CAR WHEEL BORER.

The vertical car wheel borer, shown in the accompanying engraving, is made by the Putnam Machine Company, of Fitchburg, Mass. It iș of heavy construction, combining with good proportions the proper strength for the work it has to perform, and its capacity includes all sizes of wheels from fifteen to forty-erght inches in diameter. The work is held by a four-jawed chuck, the jaws of which, while hav held by a four-jawed chuck, the jaws of wh
ing independent adjustments to an accurately ing independent adjustments to an accurately
graduated scale on the slide, are set up or tightened on the work by means of a wrench giving a simultaneous or universal move ment. The bearings upon which the chuck revolves are of the form of a double parabola with the concave faces turned in as the journal, while the seat or lower bearing is lined with Babbitt metal, producing an excellent bearing and distributing the pressure over a large area, thus, when properly lubricated preventing contact and wear of the metal and reducing the running friction to a very small amount. These journal bearings are sur rounded by and attached to a rigid c!rcula case, which admits of adjustment for boring either straight or tapering, without changing the vertical line of the boring spindle. The chuck spindle is hollow and allows chips to fall into the interior of the frame, from whence they may easily be removed. The boring spindle is of large proportions, is counterbalanced, and is rased or lowered by a rack and pinion in the back, giving a ver quick motion. The feed has four changes two by belt and two by gears, and the latter admits of being changed instantaneously, independently of the former, for roughing out and finishing operations, by means of a stop rod, while the machine is in motion. The cutter mandrel is of steel, three and one hal inches in diameter, and has a taper bearing in the spindle, twelve inches long. An inde pendent head for squaring the hubs of truck wheels is quickly adjusted to, or removed from the spindle as required. A powerfull. geared swing crane is attached to the side of the machine, and provided with chain and grappling irons for lifting and swinging wheels on and off the chuck. The driving cone is large and has three changes of speed, and by the arrangement of the countershaft pulleys, admit of two speeds for each cone shift without change of belt.

NEW HORSE CLIPPING MACHINE.

The engraving represents in several views an improved horse clipping machine, recently patented by Mr. Peter Casey, of Providence, R. I. This machine works without noise, and may therefore be used about the a horse without frightening him. The driving portion of the machine is connected with the clipper by a shaft having at one end a universal joint, and at the other a flexible portion, which permits of turn ing the clipper in any required direction. The flexible end of the shaft carries a bevel wheel, which meshes into another bevel wheel on the driving shaft of the clipper.

The construction of the clipper will be understood by reference to Figs. 2, 3, and 4. Fig. 2 shows the side that comes into contact with the skin of the horse; Fig. 3 shows the form of the knife; and Fig. 4 is a longitudinal section of the clipper, showing the connections between the driving shaft of the clipper and the knife spindle. These connections consist of two cranks, placed at right angles to each other, on each shaft, and connected by two links or connecting rods. Underneath the revolving knife there is a guard having radial arms, between which the hair is held and against which it is cut.

How India-Rubber is Obtained.

A correspondent of the Boston Commercial Bulletin, writing from the Amazon river, Brazil, gives the following account of the method of gathering rubber, as lately observed by him. The process, in many respects, resembles the method of obtaining sugar from the maple trees in Vermont:
"At last we arrived at the encampment, which seemed to be on an island in a vast archipelago. Though the Indians divided the water into river, creek, and lagoon, the latter formed by the overflow in the rainy season, I could not perceive the distinction. In some instances the lagoons appeared to have a current, while the rivers had none, but I accepted their names.
"There wereabundant groves of rubber

VERTICAL CAR WHEEL BORER.
"A small round-bladed paddle, like those used in th canoe, is dipped into the milk, and turned over once o twice. It is then drawn out, covered with the coating of th liquid gum, and held at once in the smoke of the fire, which hardens and also darkens the coating. It is again plunged into the milk and again smoked, and this process is kept up until the blade of the paddle is covered an inch to an inch and half in thickness. A knife is passed along one edge of th blade and the mass removed. It appears in shape like a shoemaker's lapstone with a sor of nozzle on one side. In this state it is shipped. From one of these lumps of com mercial gum the different coatings may be readily detached."
In this connection we may state that the New York Belting and Packing Company No. 38 Park Row, New York, have lately placed in their show window a large and splendid living specimen of the rubber tree. The plant is in vigorous condition and at tracts much attention.

MISCELLANEOUS INVENTIONS

An improvement in bottle stoppers, pat ented by Mr. William Beardsley, of Beacon, lowa, consists in combining a stopper provided with shoulders, a tubular extension, an orifice, a flanged plug with a bottle neck hav ing a straight bore, and a counterbore for receiving a packing ring and spiral spring.

An improved refrigerator, patented by Mr Cyrus B. Shaw, of Brooklyn, N. Y., is con structed so as to use less ice than refrigera tors made in the usual way, and it can be more easily kept clean and sweet, and may be more easily repaired.
Mr. William Roush, of Yates Center, Kan. has invented an improvement in lanterns which relates to the construction and arrange ment of a lamp chimney and frame in a lan tern. The object of the invention is to enable the parts to be put together or taken apart easily and quickly, so that the parts can be combined into a lantern adapted for immedi ate and general use, or the lamp can be taken out and used for ordinary domestic purposes
Mr. Allen Blewett, of Brookville, Miss., has patented an improved toy pistol, having the barrel and stock or handle made in one piece
catch the liquid. When it drips from the canc it is white a milk, but thicker or with more body.
"A trough dug out of a log is stationed in a central point and when the trees are all tapped, the man goes his rounds,

CASEY'S HORSE CLIPPING MACHINE.

解 ts whole length, to receive the slide, and the stock having recess in its under side to receive the trigger. In this pistol a rubber spring is used to propel the projectile.
Mr. Joseph H. Stratton, of Beloit, O., has patented an ad justable support for carriage bodies, coffins, and other simi lar articles while undergoing painting, varnishing. It is ar ranged so that they can be set in any desired position to ac commodate them to the position of the workman. The invention consists of table or stand provided with devices for holding the body, and pivoted to the end of a lever fulcrumed between two uprights or standards, and with arrangements fo securing it in different positions.
An improvement in stiff hat flanges has been patented by Messrs. Lewis L. Smith Frederick L. Knable, and Henry F. Smith of Orange, N. J. The flange is made in two parts, with the lines of division at the front and rear, and with the end edges of the one part convex and the end edges of the other part concave, to adapt the flange to be withdrawn from the hat without changing the shape of the hat brim.
Mr. Edmund Kuhn, of New Albany Ind., has invented an improved grate which consists of one or more cylindrical revolving grates pivoted horizontally in the lower part of the firebox, and made to shake out the ashes and agitate the fire by turning on their axes.
Mr. John G. Hess, of Guttenburg, N. J., has patented an improvement in spigots or faucets for drawing liquids from barrels. The invention consists in a packing ring f elastic material contained in an annula recess in the spigot around the plug, the aperture of which is concentric with t^{-}? axis of the plug.
An improved fish trap, patented by Mr William J. Henderson, of Valdosta, Ga., consists in combining a transparent bottle with a rat trap, so that the fish or anima may be caught without consuming the bait.
Mr. August Buermann, of Newark, N.J has invented an improvement in spurs, which consists of a stay plate in combina tion with the heel band of a spur made of two bars and having their rear ends pro jecting to the rearward, and parallel with each other, to serve as a rowel holder.

PRACTICAL EXPERIMENTS IN MAGNETISM, WITH SPECIAL REFERENCE TO THE DEMAGNETIZATION OF WATCHES.--No. 2.

y alfred m. mater.

Eaperiments which show Something about the Nature of a Magnet.-Take the piece of steel wire, six inches long and one sixteenth of an inch in diameter, mentioned among the articles required in our expe63. riments; score thís piece of wire at short distances apart, by filing it around with a sharp file. Now heat the wire to a cherry red, and then plunge it vertically into water. It will now be quite hard, and may be readily made into a magnet by drawing it over the pole of your rat tail file magnet. Paste a small piece of paper around one of the ends of the steel wire before you magnetize it, and then, if you draw the wire over the N . pole of the magnet, from the papered end to the unpapered end, the papered end of the wire will have north polarity, as may be shown by ap plying the wire to the magnet ometer. The magnetic condition of the wire having been found out, we begin by snapping the wire into small pieces, which is readily done, for the scores on the wire determine where it will break. Place each piece on the table as it is separated from the wire. and with its ends pointing in the same direction which they had whe it formed part of the wire Examine each of these pieces in succession. They will be found to be perfect magnets, with N . poles turned all on way, their south poles turned in the other direction. This examination may be made by means of the marnetome ter. The fact that each piece is a mag ter may also be readily shown by roll net may also be readily shown by roll ing it in iron flings, when it will be found that the filings adhere to the end of the piece of wire just as they did to the large magnet. See Fig. 11.
Fig. 23 gives a view of the pieces of wire placed end to end just in the posi tion they had when they formed part of the steel wire. We see that each piece is a perfect magnet, and that th north poles of these pieces all point to the right and their south poles all to the left. But each of these little fragment may be broken intotwo, and so on; and as far as the subdivision may be carried it has been found that each minut fragment is a perfect magnet, with on of its ends a south, and the other a north magnetic pole. In imagination we may conceive of this subdivision carried so far that one of the particles thus reached may be invisible to the unaided eye. Indeed, nothing prevents us from logically assuming that even if a mole cule of the steel should be reached it would be found to be a perfect magnet An Experiment with a Magnetformed of Steel Filings Packed in a Paper Cylin der, is interesting when studied in connection with the experiments just made, and will serve to give us further information as to the nature of a magnet
Take a piece of letter paper, and having wrapped it several times around a lead pencil, paste the free edge of the paper on to that wrapped around the pencil. After the paste has dried you may draw out the lead pencil, and you will then have a tube made of paper. Cork one end of this tube, or you may close it by doubling over the paper at its end and glu ing. Fill this tube with steel filings, and then close the other end of the tube. This tube, filled with steel particles, may be formed into a mag net by drawing it over the pole of your rat-tail file magnet. After you have performed this operation seve ral times, present the tube to the magnetometer, and you will find one of its ends is a north, while the other is a south pole. Having thus satisfied yourself that it is really a magnet, shake the tube so that the positions of the particles of stee filings are changed. On testing the tube at the magnetometer it will be found that much, probably all, of its magnetism has gone from it. If it has not all disappeared it can be

Fig. 26.-LINES FORMED OVER THE END OF BAR MAGNET PLACED PARALLEL WITH ITS PLATE.

board off its supports and place it to one side on the table Through a fine sieve sift soft iron filings evenly, and not too thickly, over the cardboard. Lift it up carefully and place it over the_magnet. A slight bristling of the filings is all that you will observe of the action of the magnet; but on vibrating the cardboard, by letting fall vertically on it a piece of copper wire, or by tapping it gently with a lead pencil, you will observe curious mo tions among the grains of filings. They will finally arrange themselves over the magnet in the curves shown in Fig. 24.
Fig. 25 shows the arrangement taken by the iron filings when they are placed on a card and vibrated over the end -o round magnet, the magnet being held in a vertical position under the cardboard.
Fig. 26 are the lines formed over the end of a magnet. Figs. 27 and 28 respec tively show the actions of magnets with their unlike and like poles opposite each ther.
Fig. 29 is interesting, showing the arrangement of the lines of filings pro duced on a surface when under it a magnet, 216 millimeters long and 12 millimeters in diameter, is acting in ductively on a cylinder of soft iron, 32 millimeters long and 10 millimeters in diameter. In April, 1871, I published in the American Journal of Science a method I had invented for permanently fixing these lines of iron filings (or magnetic spectra, as they are often called) on plates of glass. When thus permanently attached these plates were used as negatives from which a series of photographs were printed, exactly as a photo grapher prints from an ordinary photographic negative. The admirable engravings of magnetic spectra given in this article were made by a photo-engraving process directly from the glass plates made by me in 1871. These glass plates carrying the magnetic spectra I have also used for several years as slides in the lantern, in order to exhibit them before large audiences and college classes.
The following is the method of permanently attaching these magnetic figures to glass. A clean plate of thin glass is coated with a film of hard varnish by flowing over it the spirit varnish used by photographers in coating their negatives. If this is not handy, then a solution of shellac in alcohol will do nearly as well, only the latter requires more heating to cause the iron filings to adhere to it. The varnish is poured n one end of the plate, and then caused to cover the entire plate with an even fllm, by tilting and draining the plate just as a photographer does when he coats his plate with collodion. After the varnish has dried to a hard film the plate is placed, varnished side up, over the magnet or magnets, with its ends resting on slips of wood, so that the under surface of the plate just ouches the magnet. Fine iron filings obtained from Norway iron, which has been repeatedly annealed, are now sift mly over the plate and then d uniformly over the plate, and then he magnetic curves are developed by different points a piece of copper wire. different points a piece of copper wire. Incesting Experiments may be made with magnets acting The vibrations of the plate momentarily detach the filings inductively on a great number of iron grains spread on a sur- from its surface, and at these moments the magnet ar face placed over the magnet. We may thus form an idea of whis magnetic influence extends itself into space.

Take a piece of cardboard about one foot long and six nches broad. Support this at its corners on blocks of wood a little thicker than the diameter of your rat-tail file magnet	inches broad. Support this at its corners on blocks of wood	with its ends resting on
a little thicker than the diameter of your rat-tail file magnet.	ed over a gas stove. The	
Place the latter under the cardboard. Now lift the card-	the filings sinking into	

ranges them in obedience to its inductive action on them. The plate is now lifted from the magnet, being careful to hold it always in a horizontal position, and either placed with its ends resting on bricks over a hot stove, or it is heated over and are permanently fixed there after the varnish has cooled. If any filings should remain unattached, they are removed from the plate by letting its edge fall squarely on the table.
The lines forming these magnetic spectra were called "lines of magnetic force" by Faraday. He also devised the term "magnetic field." A magnetic field may be defined as any space at every point of which exists a finite magnetic force; while a line of magnetic force is a line drawn through a magnetic field in the direction of the force at each point through which it passes. Before the time of Faraday natural philosophers were satisfied with the mere statement that magnets acted at a distance, and followed generally the same law as ruled in the action
of gravitation throughout the celestial spaces, that is to say that the intensity of the magnetic action decreased inverse ly as the squares of the distances from the pole of the mag net; but Faraday, in the words of Professor Maxwell, "in his mind's eye saw lines of force traversing all space where the mathematicians saw centers of force attracting at a distance; Faraday saw a medium when they saw nothing but distance; Faraday sought the seat of the phenomena in real actions going on in the medium; they were satisfied tha they had found it in a power of action at a distance im pressed on the electric fluids." Faraday discovered the general laws which rule the behavior of bodies in the magnetic field. When the magnetic field i uniform-that is, when the lines of magnetic force are parallel-mag netic bodies place themselves in th direction of the lines of force; but when the magnetic field is not uni form, magnetic bodies (like iron nickel, cobalt, etc.) tend to go from weaker to stronger places of mag netic action, while diamagnetic bodies (like bismuth, borate of lead etc.) tend to go from stronger to weaker places in the magnetic field
The conception of the lines of force and the magnetic field, and the statement of the laws ruling th action of bodies in field of a mag net, 'formed," says Sir William Thomson, "one of the most bril liant steps made in philosophica exposition of which any instanc exists in the history of science. were content to investigate the general expression of the resultant force experienced by a globe of soft iron in all such cases; but Faraday, without mathematics, divined the result of the mathematical investigation, and, what has proved of infinite value to the mathematicians themselves, he has given them an articulate language in which to express their results. Indeed, the whole language of the magnetic field and lines of force is Faraday's. It must be said for the mathemati cians that they greedily accepted it, and have ever sinc been most zealous in using it to the best advantage. Indeed,
much of the scientific work of Thomson, and nearly all o Maxwell's celebrated 'Treatise on Electricity and Magnetism,' may. be regarded as translations of Fara day's conceptions into the language of mathematical analysis.'

Let us now make a few experi ments on these lines of magnetic force. We will thus be led to som remarkable results. Form a smal magnet of a piece of sewing needle about one quarter of an inch long Suspend this with a filament of the floss silk. Having formed a mag netic spectrum, and with the mag net remaining undisturbed unde the cardboard or glass, bring the little magnet over one of the lin traced outby the filings. Movethe suspended magnet over this line, and you will observe that the length of the needle always lies in the direc tion of the line, no matter where the needle may be placed over this line. Faraday, from this hand and avoid letting it fall or giving it a blow. Bring fact indeed, gave his definition of a line of magnetic force as "that line which is described by a very small magnetic needle, when it is so moved in either direction correspond ent to its length that the needle is constantly a tangent to the line of motion."
"The Earth itself is a Great Magnet." These are the words which may be said to form the text on which the illustrious William Gilbert wrote his work "De Magneto," or "On the Magnet," in 1600; and he certainly gave proofs of the truth of his statement, which, when viewed in the light of the knowledge which he himself discovered, forms an era in the history of the experimental sciences. If the earth be a great magnet, then it also must have.its lines of forc surrounding it and stretching out into space $4 t$ first sight it would seem difficult to prove this, for it proof seems to require the existence of some immensely extended, light movable and luminous matter sur rounding the earth, on which it magnetism can act, and by this action render manifest the direction of its lines of force. Now it so happens that such evidence is no wanting. All of our readers, I imagine, have seen those luminous and movable columns which form the aurora borealis. They appear to start from some level above the northern horizon, and stretching upward appear to converge at som point high up in the heavens Sometimes this point is higher,

FIG. 28.-MAGNETIC CURVES LIKE POLES OPPOSITE EACH OTHER.
because, even in this inclined position, it is symetrically placed in reference to the needle, and should not on this account cause the latter to turn. Evidently the iron rod ha become magnetic from this change of position. The mer tilting up of its end has made it a magnet. A temporary the it is true for on lowerar horizontal position the needle slowly turns into the magnetic meridian, and is then apparently indifferent to the presence meridian, and is
of the iron rod.

Now bring the unpapered end of the rod up to the magnetometer and repeat the above experiments. The needle again turns its sout end toward the rod when the latter is tilted upward. This shows that the magnetism of the rod depends alone on its position, and that end which is down is always of north magnetic polarity. It has also been found-and you can prove it for yourself-that when the rod is held inclined in the meridian, with its upper end leaning away from the north, so that it is at an angle of about 76° with the horizon, it has the most powerful magnet ism that can be given to it by this means.
All of the above curious facts are explained if we consider the earth itself as a great magnet, with its south magnetic pole situate somewhere near the north geographic ole, and with its north magnetic pole placed somewhere near the south geographic pole. If you carry your small suspended magnetic needle over the length of a magnet, you will oberve that the north end of the needle will point down ward when it is over the south pole of the magnet, and that the south end of the needle will point downward when it is ver the north pole of the magnet; while, when over the center of the magnetic bar, the needle takes up a horizontal position. In the same manner acts a freely suspended magnetic needle when carried over the surface of the earth along a meridian. In a far northerly latitude, on the western coast of Boothia, Sir James Ross, in 1831, found that the magnetic needle pointed directly downward, with its north pole toward the center of the earth. He inferred that he then stood on the termination of a line drawn from the earth's center through its mag netic pole to his feet. Subsequent ly this bold mariner undertook an other voyage of discovery in search of a similar point on the souther hemisphere, and in 1841 succeeded in reaching south latitude $76^{\circ} 12^{\prime}$, on Victoria Land, when the south end of the needle pointed downward and made an angle of $88^{\circ} 40^{\prime}$ with the horizon. He concluded from this and other observations that the position where the needle would be vertical was about 160 nautical miles distant. From these and other mag netic observations made in the Antarctic seas, it is supposed that the magnetic pole of the southern hemi sphere must be somewhere about south latitude 70° and near the meridian of 125° east of Greenwich. This would bring the position of the magnetic pole somewhere on the territory discovered by our country man Wilkes. The exact position of this point, however, is not known, for no explorer has ever reached it. Also, it has been well ascertained that along an irregular Jine, situ ated on the equatorial belt of the earth, the needle has a horizontal position, just as it has when placed midway between the poles of an artificial bar magnet. This irregula equatorial line is called the earth's magnetic equator.
These facts are all explained by conceiving the earth as a huge magnet, and if the earth be a magnet, it also follows that the soft iron rod, when held upright in the southern hemisphere, will have its lower end of south magnetism; while the same end in the northern hemi sphere, we have ourselves found, is always of north magnetic polarity. We cannot travel over the earth and test this conclusion for ourselves, but I once found in the Transactions of the Royal Society of London a paper headed " On the tendency of the Needle to a piece of Iron held per pendicular, in several climates. By a master of a ship, crossing the Equinoctial Line. Anno 1684." Let the mariner give his own account of his experiments, and we will see that his statements show that when you cross the magnetic equator the lower end of the upright iron rod changes from north to south magnetic polarity: "All the way from England to 10° north latitude, the
north end of the needle tended to the upper end of the iron, and the south point to the lower end, very strongly
In latitude $8^{\circ} 17^{\prime}$ south, and meridian distance from the Lizard $17^{\circ} 35^{\circ}$ west, the north point of the needle would not respect the upper end of the iron; but the south point would still somewhat respect the lower end. . . . In latitude $29^{\circ} 25^{\prime}$ south and $13^{\circ} 10^{\prime}$ west, from the meridian of the Lizard, the south point of the needle respected the upper Lizard, the south point of the needle respected the upper
end of the iron, and the north point the lower end strongly." end of the iron, and the north point the lower end strongly."
On the ". Magnetic Neutral Line."-There has recently apOn the ". Magnetic Neutral Line."-There has recently ap-
peared much discussion about the existence of a position of peared much discussion about the existence of a position of
neutrality near a magnet. That a region of that kind, where neutrality near a magnet. That a region of that kind, where
there appears a break in the continuity of the magnet's attractive and directive force, exists, I have no doubt; but I cannot agree with those who have declared for the exist ence of a line, or plane, of neutrality in the sense in which Mr. Gary and others have put it. Indeed one hundred and twenty years ago a neutral line was discovered by the celebrated John Robison, Professor of Natural Philosophy in the University of Edinburgh. He is the man of whom James Watt said, "He has the clearest head of any man I know." Having such good indorsement for clearness of head, I cannot do better than let him describe his own experiments:
"Amusing myself in the summer of 1758 with magnetic experiments, two large and strong magnets, \mathbf{A} and \mathbf{B} (Fig. 30), were placed with their dissimilar poles fronting each other and about three inches apart. A small needle, supported on a point, was placed between them at D, and it arranged itself in the same manner as the gre Happening to set it off to a good distance on the
table, as at F, I was surprised to see it immetable, as at $\mathrm{F}, 1$ was surprised to see it imme-
diately turn round on its pivot and arrange itself diately turn round on its pivot and arrange itself
nearly in the opposite direction. Bringing it back to D restored it to its former position. Car rying it gradually out along D F , perpendicular to NS, I observed it to become sensibly more feeble, vibrating more slowly; and when in a certain point, E, it had no polarity whatever towards A and B, but retained any position that was given it. Carrying it further out, it again acquired polarity to A and B , but in the opposite direction, for it now arranged itself in position that was parallel to N S , but its north pole was next to \mathbf{N} and its south pole to \mathbf{S}.

This singular appearance naturally excited my attention. The line on which the magnets, A and B, were placed had been marked on the table, as also the line, D F, perpendicular to the former. The point, E, was now marked as an important one. The experiments were interrupted by a friend coming in, to whom such things were no entertainment. Next day, wishing to repeat them to some friends, the magnets, A and B were again laid on the line on which they had been placed the day before, and the needle was placed at E , expecting it to be neutral. But it was found to have a considerable ver ticity, turning its north pole toward the magnet, B, and it required to be taken further out, toward F, before it became neutral. While standing there something chanced to joggle the magnets, A and B, and they instantly rushed together. At the same instant the little magnet, or needle, turned itself briskly, and arranged itself, as it had done the day before, at F , quivering very briskly, and thus showing great verticiy. This naturally surprised the beholders; and we now found that by gradually withdrawing the magnets, A and B , from each other, the needle became weaker, then became neutral, and then turned round on its pivot and took the contrary position. It was very amusing to observe how the simply separating the magnets, A and B, or bringing them together, made the needle assume such a variety of positions and degrees of vivacity in each.
"The needle was now put in various situations, in respect to the two great magnets; namely, off at a side, and not in the perpendicular, D F. In these situations it took an inconceivable variety of positions which could not be reduced to any rule; and in most of them, it required only a motion of one of the great magnets for an inch or two, to make the needle turn briskly round on its pivot, and assume a position nearly opposite to what it had before.
"But all this was very puzzling, and it was not till after several months that the writer of this article, having conceived the notion of the magnetic curves, was in a condition to explain the phenomena. With this assistance, however, they are very clear and very instructive
" Nothing hinders us from supposing the magnets, A and B, perfectly equal in every respect. Let N H M,N E L, be two magnetic curvesbelonging to A; that is, such that the needle arranges itself along the tangent of the curve. Then the magnet, B, has two curves, S G K, S E Q, perfectly equal and similar to the other two. Let the curves, NHM and S GK, intersect in C and F.
SE Q, touch each other in E.

- The needle being placed at C would arrange itself in the angent of the curve, K G S, by the action of B alone, hav ing its north pole turned toward the south pole, S of B . But by the action of \mathbf{A} alone it would be a tangent to the curve, NH M , having its north pole turned away from N . Therefore, by the combined actions of both magnets, it will take neither of these positions, but an intermediate one, nearly bisecting the angle formed by the two curves, having its north pole turned toward B.
"But remove the needle to F. Then, by the action of the
magnet, A, it would be tangent to the curve, FM, having its north pole toward M. By the action of B, it would be a tangent to the curve, K F G, having its north pole in the angle, M F G, or turned toward A. By this joint action, it takes a position nearly bisecting the angle, G F M, with its north pole toward A .
"Let the needle be placed in \mathbf{E}. Then, by the action of the magnet, A , it would be a tangent to the curve, N E L, with its north pole pointing to F. But, by the action of B, it will be a tangent to $\mathrm{S} E \mathrm{Q}$, with its north pole pointing to D. These actions being supposed equal and opposite, it will have no verticity, or will be neutral, and retain any position that is given to it.
" The curve, SE Q, intersects the curve, N H M, in P and Q. The same reasoning shows that when the needle is placed at P , it will arrange itself with its north pole in the angle, S P H; but, when taken to \mathbf{Q}, it will stand with its north pole in the angle, E Q M.
"From these facts and reasonings we must infer that, for every distance of the magnets, A and B, there will be a series of curves, to which the indefinitely short needle will always be a tangent. They will rise from the adjoining poles on both sides, crossing diagonally the lozenges formed by the primary or simple curves, as shown in Fig. 30. These may be called compound or secondary magnetic curves. Moreover, these secondary curves will be of two kinds, according as they pass through the first or second intersections of the primary curves, and the needle will have opposite positions when placed on them. These two sets of curves will be separated by a curve, G E H, in the circumference of which the needle

will be neutral. This curve passes through the points where the primary curves touch each other. We may call this the ine of neutrality or inactivity

We now see distinctly the effect of bringing the mag nets, A and B, nearer together, or separating them farther from each other. By bringing them nearer to each other, the point, E , which is now a point of neutrality, may be found in the second intersection (such as \mathbf{F}) of two magnetic curves, and the needle will take a subcontrary position. By drawing them farther from each other, E may be in the first intersection of two magnetic curves, and the needle will take a position similar to that of C .
"If the magnets, A and B, are not placed so as to form a straight line with their four poles, but have their axes making an angle with each other, the contacts and intersections of their attending curves may be very different from those now represented; and the positions of the needle will differ accordingly. But it is plain, from what has been said, that if we knew the law of action, and consequently the form of the primary curves, we should always be able to say what will be the position of the needle. Indeed, the consideration of the simple curves, although it was the means of suggesting to the writer of this article the explanation of those more complicated phenomena, is by no means necessary for this purpose. Having the law of magnetic action, we must know each of the eight forces by which the needle is affected, both in respect of direction and intensity, and therefore able ascertain the single force arising from their composition.

When the similar poles of A and B are opposed to each other, it is easy to see that the position of the needle must be extremely different from what we have been describing. When placed anywhere in the line, D F, between two mag. nets whose north poles front each other in N and S , its north pole will always point away from the middle point, D. There will be no neutral point, E. If the needle be placed at P or Q, its north pole will be within the angle, E P H, or F Q I. This position of the magnets gives another set of secondary curves, which also cross the primary curves, passing diagonally through the lozenges formed by their intersection. But it is the other diagonal of each lozenge which is a chord to those secondary curves. They will, therefore have a form totally different from the former species.
" The consideration of this compounded magnetism is important in the science, both for explaining complex phenom ena, and for advancing our knowledge of the great desider atum, the law of magnetic action.
(To be continued.)
The force of the Light-house Board of the Treasury Depart
The force of the Light-house Board of the Treasury Depa
nent has been reduced by the dismissal of eleven clerks.

Blectricity as a Motive Power

At a recent meeting of the British Association, Professor W. E. Ayrton delivered a lecture on "Electricity as a Mo tive Power," and interesting illustrations were given, including machinery in motion; driven by power derived from a distance.
The lecturer stated that in any generation of electricity there was a certain property called the electro-motive force which meant its tendency to send a current, and which was analogous with the head of water in a reservoir, inasmuch as the product of the quantity of electricity flowing pe second, multiplied by this electro-motive force, measure the amountof energy furnished by the generator per second, and which could be reproduced as motive power elsewhere if there were no friction. The loss of energy due to electri cal friction in the wires was equal to the square of the cur rent flowing per second multiplied by what was called the resistance of the wire-a number depending on the length, the diameter of the wire, the material of which it was made and the temperafure. The most efficient way to transfe energy electrically was to use a generator producing a high electro-motive force, and a motor producing a return ligh electro-motive force, and by so doing the waste of power in the transmission ought, he considered, to be able to be di minished with the best existing dynamo-electric machine to about 30 per cent. It would be impossible to increase in definitely the speed of revolution of the cylinder of an in duction machine, since, apart from mere mechanical friction the iron constituting the core of the revolving part had to be magnetized and demagnetized very rapidly as it revolved

Now, there was a physical limit to the speed with which this could be done, and, in addition this rapid change of magnetism heated the iron very much. But experiment showed that at the ordinary speed of revolution of dynamo-electro machines-700 turns per minute-the electromotive force was proportional to the speed They were, therefore, very far yet from the limit of speed. Consequently it would be wel for the transmission of power to attempt first, a considerable increase of speed in the generator combined with so light a load on the motor, that its speed would be also very high. When this began to fail as larger and larger amounts of pow er were transmitted, then they might begin increasing the amount of wire on the revolving coils of each; but this, of course, had the objec tion that the loss of power from a given curren would then become somewhat larger. As they had seen that by the use of electricity properly employed, the waste of power in transmission could be reduced for any distance to abou thirty per cent of the whole power absorbed at the generator, it followed that the employment of steam engines of vast size at points outside Sheffiel would be by far the most economical mode of extract ing the energy out of coal. For it was at least four times as expensive to produce power with a small steam en gine as with a large one; therefore, including the waste of power in electric transmission, the cost of production of power in small workshops would be little more than one third as dear as if small steam engines were used, and simi larly the waste of power in any large mill or factory in its transmission from the large steam engine at its base to all the floors and machines on each floor would be very much diminished. But they would say that in advocating the employment of electricity he was advocating a total change in our mode of producing and transmitting power. Was the probable gain worth the expense of the necessary change? To answer this question they must con sider what would be the probable minimum annual gain by the proposed change in Sheffield alone. In making this cal culation they must remember that not only could electricity produce motive power, but also heat and light, and electric heating and lighting had this great advantage that no chimneys were required. For example, with the electric current sent to that hall from Messrs. Walker \& Hall's works, he could heat a long coil of iron wire white hot, so that when put into a vessel of water, the water in a short time would begin to boil. Various calculations had been made as to the relative cost of lighting by burning coal to produce gas, or by burning coal to work dynamo machines for producing electric currents, and it seemed to be pretty certain that if a large amount of light be required in one place, the electric light was at least twenty times as cheap as coal. Sir William Thomson, the eminent elecrician, went so far as to say that it might be made 133 times as cheap. And certainly that there was a great saving in expense in electric lighting was seen from the actual result obtained at the Albert Hall, London, which was an example, and perhaps the only example, in connection with electric lighting, where the science of putting a brilliant light high up had been allowed to ride over the precedent of putting a number of feeble glimmers all over a building. The actual cost, including labor of men, allowance for wear and tear of machinery, etc., was only one-third of that of the former inferior gas lights, and thus a saving of about 30s. an hour had been effected. Lighting streets by electricity had not been so successful economically, for the simple reason that instead of giving a large bright light, at a considerable height, reflected downwards, as in the Albert Hall, London, English conservatism had prevented the authorities from grasping the possibility of using for street illumination anything dif-
fering from an ordinary iron lamp post. But there could be little doubt that if a few large electric lights, high up, were used for street illumination, the same sort of result as has been obtained at the Albert Hall would be arrived at. The cost of using gas in Sheffield for lighting large halls, such a the one they were now in, factories, and the streets, could be halved if electric currents, generated by water engines, worked by hill streams, as well as by very large steam engines, were substituted for gas. It was not necessary for him to tell them how he proposed to employ the electric light to illuminate private rooms, if only he could get people to throw away the notion that to light a room they must have something with a globe on it, like an oil lamp; nor was it necessary for him to remind them that by whitewashing the walls-yes, by whitewashing even the very machines them selves-in some of the Paris factories, the supposed strong shadows cast by the electric light had been less than the strong shadows casi by another bright light, one that we not only put up with, but one that from the force of habit we were tolerably contented with, namely, the sun. At present he was concerned with the pounds, shillings, and pence question, which had more than usual weight in these days of slack trade. Assuming that the cost of gas for lighting the large buildings, factories, and the streets of Sheffiel could be halved, also thatwhere it was used forheating pur poses the expense could also be halved, by substituting elec tric currents generated by very large steam engmes at cer tain points, and by turbines driven by falling water out of the town; then they would save per year about $£ 45,000$. Supposing, also, that the cost of producing motive power could in the same way also be halved, this represented an annual saving of something like $£ 60,000$. In reality, he believed this last economy would be larger, since not only could power be produced so much more economically than by small steam engines or even by a large engine, when a large proportion of its power was, as now, wasted in driving the shafting alone in their factories; but, n addition, much hand work could be economically replaced by machine work. And, lastly, supposing the consumption of coal in Sheffield for heating their metals and for heating their houses could also be halved, then there was another saving of about $£ 300,000$ a year; or, altogether, the annual saving that might be produced in this town alone, by substituting electricity for coal, would be something like the large sum of $£ 400,000$
Last year, two French engineers, MM. Chretien and Felix, at Sermaize (Marne), actually plowed fields by electricity, the electric current being roduced by two dynamo-electric machines of a form invented by M. Gramme. These machines were usually worked with a steam engine at some convenient place three or four hundred yards away in an adjoining road, and the electro-motors were also two Gramme machines, one on each side of the field, with their coils revolving of course backwards. Through one of these the electric current was sent alternately, so that motion was given to one or other of two large windlasses, one on each of the wagons containing the electro-motors. In this way the plow which could be used going in either direction, was first pulled across the field, making a furrow, and then back again, making another parallel furrow. If electricity were produced in large quantities at certain centers, then one difficulty hat would of course be met with would be that of distributing it properly, since, just as in the case of water or gas, if a large branch pipe in a main be suddenly opened then the supply going on to the other branch pipes in the same main would be diminished, a result causing serious inconvenience in the case of electric lighting. But just as automatic governors had been devised for wate and gas, to keep the supply constant, so automatic "elec tric current regulators" had been devised by M. Hospitalier and by Dr. Siemens, to keep the current constant. One of those invented by Dr. Siemens was on the table before him and the general principle of its construction was easily under stood. As the current passed through the regulator it heated a very thin ribbon of steel, which consequently expanded The effect of this expansion was to introduce coils of wir into the circuit, the extra resistance of which diminished the strength of the current. Consequently the stronger the current the more was it automatically resisted, and the weaker it became the less was it resisted, and so it remained practically constant at any desired strength for which the regulator was previously adjusted. In conclusion the lecturer said there was a time when " not only in the villages around old Sheffield," so said the historian of Hallamshire, "were the file makers' shops or the smithy to be seen, with the apprentices at work; but even on the hillside in the open country, at the end of the barn, would be the cutler's shed, while in the valley below, by the river, was the grinding stone ready to sharpen the tools that had been manufac tured." And why not now? Why should not that mountain air that had given the workmen of Hallamshire in past times their sinew, their independence, blow over their grindstone now? Why should not division of labor be carried to its end, and power brought to them instead of them
to the power? Let them hope, then, that in the next century electricity might undo whatever harm steam during the las century might have done, and that the future workman of Sheffield would, instead of breathing the necessarily impur air of crowded factories, find himself again at the hill side but with electric energy laid on at his commaud.

IMPROVED ENGINEER'S TRANSIT.

The two instruments shown in previous numbers, made by Fauth \& Co., were purely astronomical ones. We now illus rate an instrument familiar to most of our readers-an im proved engineering transit. This is the standard instrumen as furnished by Messrs. Fauth \& Co. to the governmen department that are using this class of apparatus, and it is apidly gaining favor with railroad engineers and surveyors. The instrument is constructed so as to give great strength with little metal. Instruments of this construction have not sustained serious injury by heavy falls. The telescope stand ards, which in the old form are merely held on the plate by means of screws, are in this instrument cast on a commo base and radiate out from the center, giving the superstruc ture a firmness which cannot be secured by any othe method. A glance at the engraving will give a clear idea of the construction and arrangement of the various parts, and we will only add that the graduations are on silver; the tele ompass nedle is 5 inches long and the whole is made with compass needle is 5 inches long, and the whole is made with

FAUTH \& CO.'S ENGINEERING TRANSIT.
a view to economy in first cost as well as to the quality of the instrument
For further particulars address Messrs. Fauth \& Co Washington, D. C.

mechanical inventions

Mr. Peter Cooper, of New York city, has recently patented n improvement in propulsion of railway cars, which con ists in a combination of well known mechanical powers by which trains of cars can be propelled at any desired speed by means of an endless chain or wire rope. The end ess chain or rope is to be borne up in its entire lengt by being fastened firmly to the outside and in the center of as many sets of cars as there are stopping places on the whole line of the road. The stopping places are to be all of qual distances apart, and there will be bearing truck between the different sets of passenger cars to prevent the hain from dragging or rubbing against anything in its pas age around the circuit. The endless chain or rope, with the attached cars, is made to pass around a large drum heel placed at each end of the line, which is to be of suffi cient strength and operated by sufficient power to move the whole line of cars. By having stopping places at equal disances apart the rails can be so elevated as to use up the momentum of the cars in their ascent of the elevation at each stopping place. The elevation will be sufficient to
bring the cars to rest and hold the power ready to be given out at once by all the cars going over the ascent the same time. This will give back all the power consumed by forcing the cars up the ascent, and will reduce the necessary propelling power to that required on a dead level.

Mr. William H. Ellis, of Brooklyn, N. Y., has patented an improved umbrella drip cup, which consists of two conical cups connected together at the base, the outer one joined at its smaller end to a tube, into which the lower end of the umbrella stick is entered and secured so that the cup is just under the umbrella; by this means, when the umbrella is folded up, the water runs down and is caught and retained in the chamber between the two cups, from which it slowly runs out through the perforations in the connected base of the cones when the umbrella is again lifted or reversed.
Charles E. Fox, of Mount Pleasant, Mich., has invented n improved washing machine, which consists of one or more rollers arranged transversely in relation to the corrurated face of the wash board, and having a crank and gear attachment, the parts being mounted in a suitable frame, which is attached to the wash board, and adapted to yield so that the rubbing rollers act on both small and large fabrics.

David L. Towslee, of West Salem, O., has invented an improved drag sawing machine, so constructed that it may be worked by the operator with both hands and feet, or with either his hands or his feet. It is simple in construction, easily operated, and apparently effective in operation.
Mr. Martin Williams, of St. Johnsville, N. Y. has invented an improved thrashing machine, that runs steadily and easily and effects a thorough separation of the grain from the straw.
An improved device for lighting a fire auto matically, at any given time, has been patented by Mr. Eibe H. Doescher, of Homestead, Ia. The invention consists in the combination of devices that cannot be readily described without an engraving.

A simple and effective device for automatically regulating the height of water in a steam boiler, has been patented by Mr. John Bridges, of Leon, Iowa. The invention consists of a novel construction and arrangement, in connection with a boiler, of a float, valve, and pipes, and their connections, with a feed pump.
Thaddeus C. Histed, of Junction City, Kan., has invented an improvement in that class of washing machines in which beaters are employed in connection with a rotated tub; and consists in the peculiar construction and arrangement of mechanism by which the work is thoroughly done.
Mr. Sylvanus A. Fisher, of Geneseo, Ill., has invented an improved wire stretcher, which consists in a lever fitted with a cam-acting holding jaw, by which the wire is securely held and from which it may be readily released.
An improved washing machine has been patented by Mr. Melvin A. Tinker, of Fairfield, Ill. The invention is an improvement in the class of washing machines composed of rolls held in yielding contact by means of springs, the bed rollers being arranged in the arc of a circle and inclosed or covered by an endless apron.
Mr. Soren Andersen, of Stronach, Mich., has patented an improved saw grinder for grinding saws down to as thin a gauge as they will work at, thereby rendering the waste in sawing as small as possible. It saves power; and by means of this combined grinder and gummer saws can be used until they are actually worn out or worn down too small for use. An improvement in smoke stacks has been patented by William F. Cosgrove, of Jersey City Heights, N. J. It consists in providing the stack with an inclosing jacket, in the double conical head of which is supported an inverted perforated cone and a screen for deflecting the products downward, where they fall upon an inclined collar surrounding the stack which leads them to a spout, whence they are conveyed by a pipe to a chamber formed in an extension of the boiler shell.
Messrs. George Coombs and Charles S. Blakeslee, of Chariton, Ia., have patented an improvement in car coupings. This is a simple and effective self coupler for cars, but it cannot be described without engravings.

Photographic Illustration of Mental operations

Professor Huxley illustrates his argument respecting com plex impressions which are more or less different from each other by reference to composite portraiture, thus: "This mental operation may be rendered comprehensible by considering what takes place in the formation of compound pho-tographs-when the images of the faces of six sitters, for example, are each received on the same photographic plate for one-sixth the time requisite to take one portrait. The final result is that all those points in which the six faces gree are brought out strongly, while all those in which they differ are left vague; and thus what may be termed a generic portrait of the six, in contradistinction to the specific portrait of any one, is produced."

THE HOLLOWAY SANATORIUM

We present herewith a view of the noble institution, the "Holloway Sanatorium," erected at Virginia Water, Egham,
at the sole expense of Mr. Thomas Holloway, the prince of at the sole expense of Mr. Thomas Holloway, the prince of English pill makers. It is intended for persons of the middle class afflicted with mental disease. It is designed for the accommodation of one hundred male and the same number of female patients. The building, of which Mr. W. H. Cross land was the architect, is constructed of red brick, with Portland stone dressings, and in the Gothic style, richly deco rated. It stands just facing the Virginia Water station of the Staines and Wokingham Railway, on an eminence, and presents a façade of 640 feet, with a depth of 250 feet. There is a central tower 150 feet high, also turrets 60 feet high at the back of each wing, and a portico, with two tiers of pillared arcades, at the chief entrance. In front is a terrace 45 feet wide. The whole exterior has a very stately aspect. The adjacent grounds extend about twenty-five acres, laid out for an agreeable promenade.
The interior is arranged with great care and skill for the use of the institution. The center block, which divides the male from the female side, contains the administrative department, including the rooms for the staff and the visiting rooms; also the general dining hall, 54 feet by 30 feet; a grand recreation hall, 84 feet by 38 feet, and 50 feet high, which is handsomely decorated; libraries and billiard room There are thirteen day rooms for each sex, all spacious and convenient, 30 feet long, 20 feet wide, and 12 feet high Twelve dormitories, of the same dimensions, are provided for the men, and as many on the other side for the women; besides fifty rooms, 12 feet by 10 feet, for single patients. The delay in opening the Holloway Sanatorium has been mainly caused by the length of time required to complete the decorations of the recreation hall and dining hall, and those of the principal entrance and staircase, as well as to finish the building. It will have cost Mr. Hollo way more than $£ 200,000$.
The London News, from which.we take these facts, also says the announcement has recently been made of another magnificent institution, a college for women, to be erected on the Mount Lee estate, at Egham, at a cost of more than a quarter of a million sterling, by the liberality of this munifi cent public benefactor. Mr. Holloway has further promised an endowment fund of $£ 100,000$ for the support of this college; and the building, designed by his architect, Mr. W. H. Crossland, of Leeds, under his personal direction, will be constructed within the next four years

Antidote to Poison Ivy

Dr. J. M. Ward, in the Medical Record, makes another addition to the already extensive list of remedies for poisoning by Rhus radicans, or "poison ivy." He recommends the profession to use, in all cases of poisoning by this plant, Labarraque's solution of chloride of soda. "The acid poison," he remarks, "requires an alkaline antidote, and this solution meets the indication fully. When the skin is unbroken it may be used clear three or four times a day; or in other cases diluted with from three to six parts of water. After giving this remedy a trial no one will be disposed to try anything else. It is one of the most valuable external $\begin{aligned} & \text { ing } \\ & \text { sugar }\end{aligned}$
agents known to the profession, and yet seldom appreciated and but rarely employed. It will sustain its reputation as local application in erysipelas, burns, and scalds."

THE TAMARIND.

This tree is indigenous in various parts of Africa and India, and if grows wild in several of the East Indian Islands. It is completely naturalized in the West Indies and in portions of Brazil and Mexico. It is a handsome tree, 60 to 80

TAMARIND.-Tamarindus tndica

feet in height. Its compound leaves of ten to twenty pairs of small oblong leaflets form a dense foliage. The flowers are white when they first open, but they soon turn yellow. The fruit is an indehiscent legume or pod, 3 to 6 inches long, straight or somewhat curved, and with a hard, brittle exterior shell. The seeds, from 4 to 12 in number, are each surrounded by a tough, papery membrane, outside of which, between it and the shell, there is a firm, juicy acid pulp, traversed by strong woody fibers, which start from the fruit stalk. The ripeness of the fruit is known by the britleness of the outer shell.
In the West Indies its fruit is picked, deprived of its shell, and packed in casks, and boiling sirup is poured over them until the vessel is full; when cool the package is headed up and is ready for market.
A better kind, rarely found on sale, is prepared by packing the shelled fruit in stone jars with alternate layers of

The pulp has a brisk acid taste, modified more or less by the amount of sugar used; it contains tartaric, citric, and other acids, and some principle not well ascertained, which gives it a laxative property. Tamarinds are used in tropical countries to prepare a refreshing drink by pouring boiling water over the fruit. This drink is also used as a laxative and refrigerant in fevers. The wood is useful for timber and makes a fine charcoal. The shell of the seed contains tannin, and the kernels are used as food in India in times of scarcity.

White willow Hedges.

J. W. Myers, of Hampton, Iowa, says, in the "Iowa Hor ticultural Transactions," that after many trials there are two trees which have endured the ordeal of northern hedging, and have not been found wanting in any particular. These are the honey locust and the white willow. The best management of the willow is to take none but good strong shoots of last year's growth, cut ten inches long and sharpened, assorted as to size, and tied in bundles of twenty-five each. Place them, sharp ends down, in a shallow pond or other water for ten or fifteen days, and if the points are stuck in the mud they will be held in position. Plow the ground deep and harrow well. With a buckskin glove on the right hand, thrust the cuttings, slanting, eight inches into the mellow soil, ten inches apart. Then keep the ground perfectly clear of weeds; cultivate two more years with the shovel plow, and the hedge may be " left alone in its glory," and it will make a good barrier. But if cut to the ground early in spring when two years old, it will be much better. It will be best of all by "laying" or bending the trees down in a horizontal position at three years, and tying them in a line with short pieces of wire. The strong outgrowing shoots may be cut back every few years for fire wood. The simplicity of this method and its perfect success are said to be " astonishing."
The honey locust is similarly treated after the hedge has been planted and has attained a height of eight feet. The plants, however, are set in the row two feet apart, to prevent killing one another out. In laying down, the thorns are avoided by using a plank to bend the trees down, one end against the tree and the other on the ground, the operator sitting on it while tying the trees. The honey locust is more easily kept within bounds than the willow.

The Chemical Reaction of Blossoms.

According to the reports of Frémy and Cloez all red and pink blossoms show an acid reaction, whereas all blue blossoms are neutral and occasionally show an alkaline reaction. In order to examine the validity of these statements, Mr. A. Vogel examined 100 blossoms, of which 39 were blue, 44 red, 6 violet, 8 yellow, and 3 white.
He states that the acid reaction was not equally intense in all cases, but, on the contrary, varied considerably. The bright red, white, and yellow blossoms showed the most intense acid reaction. The acid reaction of the blue and violet blossoms was much weaker than that of the red blossoms, but was nevertheless perceptible. Of the blue blossoms only 10 were neutral or of a slightly alkaline reaction, as 3 violet and red blossoms were likewise. Among the latter were the

Campanula sepunculoides (light violet), the Prismatocarpus speculum (crimson violet), and the bright red Pisum sativum There is no doubt that a great difference exists in the chemical reaction of red and blue blossoms, but from the above it appears to be erroneous to attribute an acid reaction to red and an alkaline reaction to blue blossoms. The ma jority of all blossoms show. an acid reaction.-Chemisches Centralblatt.

A New Coloring Matter.

Mr. T. L. Phipson, according to a note recently presented by him to the French Academy of Sciences, has succeeded in extracting from the little blood-red alga (Palmella cruenta) found at the base of damp wails, a new rose-red coloring matter, which exhibits very curious properties. Mr. Phipson proposes for it the name of Palmelline. Its color re sembles no known color except the coloring matter of the blood-the hæmoglobine of modern chemısts. Like the latter, palmelline is insoluble in alcobol, ether, benzine, bisulphide of carbon, etc., but dissolves in water. Like the coloring matter of blood, palmelline is dichromic, consisting of a red matter united with an albuminous substance, and being coagulated by alcohol, heat, and acetic acid added to its aqueous solution. Like hæmoglobine, too, palmelline gives rise to absorption bands in the yellow of the spectrum; but these bands did not seem to Mr. Phipson to occupy ex actly the same position as those given by blood. Palmelline in solution, like the coloring matter of blood in solution, readily undergoes putrefaction at summer heat, giving out a strong ammonacal odor and a smell of rotton cheese. Finally, like the coloring matter of blood, palmelline contains iron. This new coloring substance cannot be extracted from the moist plant, for the vitality of the latter is such that it will not part with its color by the action of water, it has to be first dried in a current of air At the end of from twenty-four to thirty-six hours the pellicles are usually pretty dry, for the plant and the matters upon which it grows dry quite rapidly in the air. It must not be dried on paper, for the cells would adhere thereto. On leaving the dried plant in a small quantity of water in a covered porcelain capsule, the coloring matter dissolves out, and, on the following day, the clear liquid may be decanted from it. The coloring matter is of a magnificent rose-red by transmitted light, and of an orangeyellow by reflected light.
From the properties above noted, it will be seen that pal melline appears to exhibit considerable analogy with the hæmoglobine of the blood; and, as Mr. Phipson says, it is the first time that a substance of this nature has been met with in the vegetable kingdom.

Colors of Plants

At the last meeting of the Philadelphia Academy of Sciences.

Mr. Martindale stated that in a collection of over twenty selected specimens of Habenaria from the vicinity of New field, N. J., he had found all shades of color, from the bright buff to the pure white. He had found no difficulty in assigning all the tinted specimens to the species Ciliaris, while the white ones were undoubtedly Blephariglottis, the petals in the former being linear, and in the latter spatulate, or widened toward the tip about one-sixth of their diameter. The tendency of certain flowers to albinism was considered. Dr. Hunt remarked that the causes of color variation in flowers was entirely unknown to botanists. It could not yet be explained why the same species in different localities were of different color, or why even the same flower presented varying tints at different parts of the twenty-four hours. He was firmly convinced after further studies of habenaria that the distinctions between the two forms men tioned were not specific, as he had actually found both forms on the same spike. Referring to the variation of color in plants, Mr. Meehan called attention to the case of Gilia aggregata of the Rocky Mountain region. Toward the north all these plants, which form a striking feature of the landscape, are white. As the traveler proceeds southward he observes that they assume a pink tint, which gradually deepens, until, when found three or four hundred miles farther south the same species is of a deep crimson color. He believed that the two forms of habenaria were probably of the same species.
Mr. Redfield was of opinion that, had it not been for the difference of color, the two species of habenaria would probably never have been defined. The distihguishing characters having been pointed out, however, he believed that they were sufficiently permanent to constitute valid species.
Thediscussion was continued by Mr. Martindale, who be lieved that the two forms were distinct, although the differ ences, apart from the color, were undoubtedly very slight.

The Proper Diet for Children.

Here is another case of disease of the cornea. This baby is twenty months old. There is a white spot over the center of this little girl's pupil. It is soft-looking, and I therefore know that it is recent. The child has nasal catarrh. It was weaned when six months old, and it is now just cutting its eye teeth. The mother says it is being fed with whatever there is upon the table; that it receives a little tea and coffee and that it it allowed to suck pieces of meat, all of which is wrong. Do not allow it among your patients, gentlemen. If the good Lord had wished us to eat meat at the age of twenty months, he would have given us a full set of teeth ready for use at that time.

Dr. Leaming, of this city, whom you should all know, has or some years had charge of an asylum in which large num bers of children are received and cared for, and he does not allow one of them to have anything except milk, and sub stances which can be dissolved in milk, until they are seven years of age. I think your professor of materia medica is equally emphatic upon this question, and now youp pro fessor of ophthalmology comes to you and beseeches of you to use all possible influence in the direction of having child ren reared upon milk alone. Not upon tea not upon coffe not upon meat, not upon sweet cake and puddings, but upon not upon meat, not upon sweet cake and puddings, but upon
mılk. Every physician will, under rare circumstances, premilk. Every physician will, under rare circumstances, pre
scribe beef juice for infants, very much as brandy is pre scribed upon rare occasions for small children, and I shall not quarrel with them upon that point. But I have a decided opinion that, under ordinary circumstances, no child should have anything except milk and farinaceous food until it has been provided with teeth with which to prepare other articles of diet for the stomach. Follow nature in your practice in ophthalmic as well as in every other kind of disease I will engage, if this mother, who is anxious for her child, will listen to what I say about feeding it hereafter with milk, barley, farina, corn starch, hominy, with perhaps a small quantity of sugar, that the teething will be easier, the bowels will be more regular, and diseases of the cornea will be less liable to occur.-Dr.D. B. St. John Roosa, in New York Medical Record.

$\mathfrak{C u x r e g}$

ROTARY MOTION.

To the Editor of the Scientific American:
We are taught in text books on physics that "rotating bodies preserve their planes of rotation, and will resist a con siderable force to change their planes," and Bohnenberger's apparatus is used to illustrate the same. The proposition holds good with Bohnenberger's apparatus, but the latter half of it will not hold in the case of the flywheel in the apparatus shown in the accompanying illustration.

APPARATUS FOR EXHIBITING ROTARY MOTION.

The flywheel, A, revolves with its axle, I, in journals in he ring, B. The latter revolves on bearings at right angles to the axle, I. A band, G, passes around the wheel, H, on the axle, I, over the pulleys journaled at the sides of the ring, B , and around the driving wheel, E. The driving wheel, E , is connected with the crank. When the band, G, is removed the ring, B , holding the flywheel is free to re volve on its pivots. If the band, G, is replaced and the crank is held stationary the ring, B , will revolve and cause the revolution of the flywheel; or if the ring, B , is held sta tionary, and the crank is turned, the flywheel will again be set in motion
If rotating bodies always resist a force to change thei planes of rotation, it will be seen that the fly wheel, A, would tend to hold the ring, B, stationary while the crank was turned, and the flywheel might thus be kept in motion, pro vided the overcoming of the resistance of a rotating body to change its plane of rotation does not retard the revolution of that body. But there is no resistance whatever in chang ing the plane of the revolving flywheel, A, as can be seenby disconnecting the band, G, leaving the flywheel in motion. The ring, B, can be turned on its pivots without the slight est resistance, and when set in motion, the ring will continue to revolve the same when the flywheel is rotating as when a rest. When the flywheel is in motion and the band, G, dis connected, if the whole apparatus is revolved on a pivot or any other (the plane of revolution being parallel with the plane of the base of the apparatus, for instance), the rotat ing flywheel will instantly assume a position in which th plane of its rotation will be parallel with the plane of the revolution of the apparatus, that is, parallel with the base Moreover, if the direction of the revolution of the entire apparatus on the pivot is a right hand motion, the flywhee will have a right hand motion parallel with it; and if the re volution of the apparatus is reversed so that the base has left hand motion, the flywheel, A, will cause the rim, B, to
make a semi-revolution so as to allow A to rotate parallel with the plane of D, and in the same direction, that is, a left hand motion.
As stated before, when the base is at rest and the flywheel in motion (the band, G, being disconnected) there is no re sistance against changing the plane of the rotating flywheel but if the base, D , is revolving at the same time, there is a very decided resistance offered against changing the plane of the flywheel. So strong is this resistance that if the band, G, is connected, the flywheel may be kept continually in motion by turning the crank, showing that the overcoming of the resistance of a revolving body against changing its plane frotation does not retard the motion of that revolving body.
I do not know that this fact has ever before been demo rated.
By oscillating the base upon a pivot while the flywheel is in motion the ring, B, can be made to revolve; and if the crank is fastened so that the driving wheel is held station ary, the velocity of the flywheel can be accelerated or rearded and kept in continuous rotation. Motion may thus be imparted to the flywheel still better by rotating the base on a pivot eccentric to its axis, no matter how slight the eccentricity, the base remaining comparatively still; or still better, by keeping a point at the center of the wheel sta tionary, and oscillating the pivots of the ring, B, in opposit directions, in both cases the crank remaining unmoved.
h. J. M. Mattis.

The Durion.

To the Editor of the Scientific American:
In the July, 1879, Export Edition of the Scientific American, I find, at page 49, the views of a writer in the Gardener's Chronicle on "A Tropical Fruit," the durion The article concludes thus: "It does not succeed well in India, and cannot be grown in the West Indies." This as sertion, as regards India, I am not in a position to disprove but it is decidedly erroneous in respect to the West Indies, as the durion grows most luxuriantly in this island, in proof of which I had purposed by this opportunity sending you one but have been disappointed in its receipt. You may, however, rely on my so doing at an early date.

George Levy.
Kingston, Jamaica, September 4, 1879.

Bitten by a Skunk, but Still Alive

To the Editor of the Scientific American
[notice in your issue of September 20 an article on skunk bites, in which the writer says that the bite is always fatal, sooner or later. Permit me to say that when a youth of 19 I was badly mangled by a skunk which I seized in the dark, believing it to be a rabbit. I am now 55, hale and hearty. I have personal knowledge of two similar cases, and have heard of others, and have yet to learn of the first case of death at tributable directly to the bite, or causes arising therefrom.
1 am incliued to think that the fatal cases are of the same order as those of the centenarians who die from the use of tobacco (?).

James L. Howson.
Washington, D. C., September 12, 1879.

The Spot on Jupiter.
 To the Editor of the Scientific American

In your issue of September 12 I noticed a communication from F. S. Davenport, describing a spotseen on the planet Jupiter; and on the same evening turned my instrument (a six inch achromatic) to the disk and had the pleasure of seeing the spot.
When first seen, at $63 / 4$ o'clock P.M., it was nearly central nd occupied nearly $1-3$ the breadth of disk from east to west, and with a width from north to south about the same as represented by Mr. D., and passed off to the right in line of the planet's rotation.
The above observation was made with a terrestrial eye piece. There seem to be some mighty changes going on on the planet, especially in the vicinity of the belts, the nature of which it is impossible to conjecture with any probability of accuracy.
R. L. Allen.

Providence, R. I.
Note on a Peculiar Case of Corrosion of the
by J. w. osborne, of washington, d. o
The writer exhibited before the American Association block tin tube, which had been used in the construction of a filter for household purposes, large quantities of water hav ing passed over it for 20 months.
The tube formed one leg of a siphon. It passed through a stratum of charcoal and one of pure sand, the water to be filtered rising high above the latter. The outside of the tube, in that part of it only which corresponded in position to that of the sand, was deeply pitted, oxide of tin having been formed. The difficulty was to explain in what manner the sand determined the oxidation.
An interesting discussion followed the reading of this paper, many members of the section taking part, but no sat isfactory solution of the problem was reached.

Action of Aqua Regia on Platinum

Mr. Edison findss that platinum, after it has been rendered homogeneous under the vacuum treatment, is dissolved with great difficulty in boiling aqua regia. He subjected a specimen of the vacuum-treated platinum to the action of boiling
aqua regia for five days without dissolving it.

JAPANESE BRONZE VASES.

We engrave on this page a group of bronze vases, which illustrate in an excellent manner the beauties and oddities of the peculiar artistic methods of the Japanese. As metal workers, these wonderful people surpass in certain respect their European brethren, and some of their processes are to this day inimitable.
The central piece of this group stands some four feet high It is composed entirely of bronze, save the panels between the dragon handles, which are damascened with silver and gold. The panel on this side represents a knight doing pen ance by standing under a cataract, and on the obverse he is seen, his sins washed away, having a quiet cup of tea with a couple of friends. So far the European can trace a meaning in the design; but when it comes to explaining the half human monsters, the dragons, sea serpents, and other ani mals, it is only possible to suppose that they may be the rep resentations of traditional creatures such as figure in the Arabian Nights, and the like of which learned scientists as sure us once walked or crawled upon the face of the earth and swam across the seas. The decoration of the smalle vases, saving the winged beasts that serve as handles, is mor easily understood. The panels in these have birds and but terflies copied with wonderful fidelity and spirit after nature and are really beautiful; and in these pieces, as in all the articles of Japanese manufacture, we see a minuteness of workmanship and finish such as no Christian people can afford the time to emulate.

The International Dairy Fair.
The executive committee of the International Dairy Fair Association announce that the proposition to hold a second fair at the city of New York, during the year 1879, has been so well received by the trade at large that its ultimate success is already assured, and it only now remains for the dairying interests throughout the country and the different dairy organizations to co-operate with the International Dairy Fair Association, and through their united efforts secure an exhibition worthy of the interests involved surpassing anything of the kind ever before pre sented. The experiences gained at the last fair enable the committee to more readily compre hend the necessities of this, and having this in view, the whole of the American Institute Building has been engaged this year, thereby enabling the management to devote a much larger space to the exhibition of goods, and at the same time give that attention to proper display of dairy im plements and tests of cream raising which wan of space prevented at the last exhibition. Machin ery Hall, a part of the Institute not used las year, will be devoted exclusively to this branch of industry, where, having ample steam power and connections, every facility will be afforded for the manufacture of butter and cheese upon a much larger scale than heretofore, and opportu nities for displaying dairy implements by hand or power greatly increased. A separate apart ment will be arranged with every require ment for making the fullest tests of the differen processes for raising cream, and the trial of in ventions claiming superiority. Accommodation for a large number of cattle will be provided, and the exhibition of herds, as well as specimen ani mals, made a feature. From promises already received from owners and breeders, it is confi dently believed that an unprecedented number of choice animals will be exhibited, comprising selections from display of foreign products will be far greater than last year, assurances having been received from the officers of the Association resident and traveling abroad, of extensive preparations being made to send specimens of every kind of dairy products manufactured, as well as some thoroughbred cattle.

Torpedo Boats.

The Admiralty have entered into a contract with Messrs. Yarrow \& Co., of Poplar, for the construction of some of their second-class torpedo boats. These little vessels are fitted with Yarrow's patent tubular boiler, by means of which steam can be raised from cold water, and the craft got under way, in six minutes from the time of lighting fires. The system of steering adopted is that introduced by the manufacturers, and which is now recognized as the most suitable for steering this class of vessel. It consists of a drop rudder forward, which is worked in conjunction with the usual rudder aft. These torpedo boats will be completed early next year, and the trials of them on the Thames and at Portsmouth are looked forward to with considerable interest.London Times.

Tape Worms in Eggs.

Various instances have been recorded of the discovery in hens' eggs of minute specimens of the distoma ovatum. They appear like a small speck, the size of a millet seed or a pin's head. It is believed by helminthologists that these will develop into one of the varieties of tape worm, and it is wise, therefore, to take eggs hard boiled or otherwise well cooked. A writer in one of the late numbers of Nature cites several instances where these parasitic bodies have been found.

JAPANESE BRONZE VASES.
tries should be contained in special conventions, independent both of treaties of commerce and of conventions for the mutual recognition of literary and artistic copyright.
Patent Office.-(6) A special department for patents, trade marks, and registered designs should be established in each country. A central depot of patents, etc., should be attached to it for the use of the public. Independently of any other publication the Administration of Patents, etc., should pub lish a periodical official journal.
Fees.-(7) The fees levied on patents should not be larger than is necessary to cover the expenses of the patent office, and should be levied by periodical payments.

What is Patentable, and by Whom.-(8) All inventions, whether of procedures or of products, should be patentable, except financial combinations or inventions contrary to public order or to morality. In particular, chemical, alimentary, and pharmaceutical preparations should be patentable. (9) In the absence of fraud, the first applicant should be deemed the inventor. ($9 a$) No person, except he be engaged in the patent office, should, by reason of his employment, be debarred from obtaining patents for his own inventions.
Provisions as to International Exhibitions.-(10) Provisional protection should be granted to patentable inventions ex hibited at international exhibitions, or such as are officially recognized. (11) The term during which inventions are thus protected should not be deducted from the term of the patent. (12) Such provisional protection should extend to all the countries represented at the exhibitions. (13) The fact that an article is an exhibit at an international or offici ally recognized exbibition should not interfere with the right of seizing it as an infringement.
Provisional Protection.-(14) Provisional protection for twelve months should be granted on the applicant for a pat-
ent filing a provisional specification containing an outline description of the nature of his invention, in which no details should be required.
Procedure on Application.-(15) No description of the in-vention-except its name-should be published before the issue of the patent, except as mentioned in paragraph 19. (16) Thedeposit of provisional specifications should, if desired by the inventor, be allowed to be made at the authorized local office, and at the consulates of the various nations, and on such deposit at a consulate, and the payment of the patent on such deposit at a consulate, and the payment of the patent
fees, provisional protection should commence as if the deposit had taken place in the patent office of the country represented. (17) Prior to the expiration of the term of provisional protection, if the applicant desires to complete his patent, he should be required to file a full specification. 18) Where a patent has been applied for in one country, subsequent publication of the invention should not during a period of twelve months prejudice the original applicant's right to patent in other countries.
Examination.-(19) On the filing of the complete specification, or the expiry of the term of provisional protection, if no complete specification has been filed, the provisional specification should be published. After the filing of the complete , and previously to its publication, the patent office should examine it, having regard exclusively to the following points: (a) Whether the specification is clear. (b) Whether the invention is contrary to public morals. (c) Whether the invention is wanting in novelty, regard being had solely to prior publications in the patent office of the country. (20) For the purposes of examination, an invention should not be deemed to be wanting in novelty, unless a prior publi. cation be found which comes strictly within one or other of the following conditions: (a) It should be not more than twenty-five years old, and be in the form of a full description, identical with the applicant's description. (b) If the prior description be more than twenty-five years old, it should be proved that the identical invention as claimed by the applicant has been openly used within twenty-one years last past. (21) Should some parts of the invention come within these objections the applicant should be allowed to amend his specification. (22) Subject to such amendment, the patent should be granted, except in cases of fraud, or when the invention is contrary to public morals. (23) Reports and opinions of examining authorities, as respects applications for patents, should not be open to the public.
Procedure on Grant of Patent.-(24) The complete specification should be published immediately on the granting of the patent. (25) The provisional protection should continue until the final grant or refusal of the patent.
Amendment.-(26) Should it appear, after a patent has been granted, that the claims are too extensive, or that the specification is otherwise open to objection, it should be competent to the patentee to disclaim or amend his specification. Term.-(27) All patents should be granted for a term of twenty-one years. There should be no prolongation. (28) A patent, whenever granted, should bear date from the deposit of the proshould bear date from
visional specification.
visional specification.
Effect of Patent.-(29) All patents should, Effect of Patent.-(29) All patents should,
throughout their whole term, insure to thè inventors or their legal representatives or assignees the exclusive right to the patented invention, and not a mere right of receiving royalties from third persons. (30) No one should be permitted, without the leave of the patentee, to produce, use, or sell thearticle which forms the subject of the invention, the patented machinery, process, or combination, or the article produced by such patented machinery, process, or combination. (31) A patent should have no effect on vehicles or ships, or appliances to vehicles or ships, which come buttemporarily within the boundaries of the country, and the owners of which do not carry on business within the country. (32) The patentee should not be prevented from introducing from abroad articles manufactured under his patent. (33) A patent should be held to confer an indefeasible title to the invention described in the complete specification, unless it be proved that there exists a prior patent covering an identical invention, or that the identical invention has been publicly used within twenty-one years prior to the date of the patent, or fully described in a publication bearing date or printed within twenty-five years prior to that date. (34) Where it is proved that the public interest requires that a patent should be worked, and that the holder of the patent is not attempting to meet the demand, and refuses licenses, the legislature should step in to prevent the public injury by a special law in each case. (35) The principle of expropriation for public utility is applicable to patents, but this should only be by virtue of a special law in each case, containing proper provisions for compensation. (36) Patents granted in different countries should be perfectly independent of each other in all respects.

An esteemed correspondent writes us from the province of São Paulo, Brazil, stating that severe frosts occurred there in August last during several nights, which had so seriously injured the coffee trees that the erop for 1880 will be reduced one half.

To Make Cloth, Paper, etc., Fireproof.
Several preparations for rendering textile and other inflammable fabrics incombustible and practically fireproof have been brought out by MM. Martin and Tessier, of Paris. The compositions are said to be of an inexpensive nature and capable of rendering incombustible all kinds of readily inflammable substances, such as woven and other fabrics of cotton and other fibrous materials, paper, printed or otherwise, including bills of exchange and other securities, woodwork, theatrical scenery, straw, etc. The first composition, which may be applied to all kinds of fabrics without deteriorating them in any way, consists of

It is simply necessary to steep the fabrics in a hot solution It is simply necessary to steep the fabrics in a hot solution
composed as above until they have become thoroughly impregnated, after which they are drained and dried sufficiently to enable them to be ironed or pressed like ordinary starched goods.
A second composition to be used for theatrical scenery (or the mounted but unpainted canvas to be used for this purpose), and also for woodwork, furniture, door and win dow frames, etc., is to be applied hot with a brush like ordi nary paint. It is composed of:

To which is added a sufficient quantity of a suitable calcare ous substance to give the composition sufficient body or consistency.

A third composition, to be used for coarse canvas or sail cloth, cordage, straw, and wood, is applied by immersing cloth, cordage, straw, and wood, is applied by imn
the articles therein or by imbibition, and consists of:

A fourth composition, applicable to all kinds of pap whether printed or not, including securities, books, etc., is formed of:

The solution is to be placed in a vat heated to $50^{\circ} \mathrm{C} .\left(122^{\circ}\right.$ Fah.) at the end of the paper-making machine, and the paper as it leaves the machine is passed through the solution in this vat, so as to be completely impregnated therewith, after which it is dried upon a warm cylinder and then wound on a reel. If the paper be in sheets or printed it is simply immersed in the above solution, heated to $50^{\circ} \mathrm{C}$., spread out to dry, and afterward pressed to restore the glaze destroyed by the moisture.
The above compositions are said to insure a degree of incombustibility without precedent as regards the preservation of the materials to which they are applied. The proportions of the several ingredients are given as examples only, and may be varied as found necessary in practice.

The Social Science Association.

The last day's session began with a paper by Frederick Douglass on the exodus of negroes from the South. Mr Douglass strongly opposed the movement, holding that the South was not only the best place for the negro as a field of labor, but best on the grounds of his political powers and possibilities. The position taken by Mr. Douglass was opposed by Professor T. R. Greener, of Howard University, and President Anderson, of Rochester.
William A. Hovey, of the Boston Transcript, read a striking paper on co-operative stores in England and America. Mr. James Samuelson, of Liverpool, England, presented certain schemes for the material advancement of the working classes, and Mr. Joseph D. Weeks, of the Iron Age, gave an address on industrial arbitration and conciliation. Debt making and debt paying in American cities was discussed by Mr. William F. Ford, of Philadelphia. In the department of social economy, Mr. F. B. Sanborn, secretary, presented his annual report; and there was read a paper sent by Charles L. Brace, of the Children's Aid Society, discussing the methods of dealing with poor and vicious children. Institution life for children was treated in a paper by Rev. T. K. Fessenden, of Connecticut, and debated by several members. The closing paper was by Mr. Robert P. Porter, of the Chicago Inter-Ocean, on the industrial, agricultural, and financial outlook of the West. It presented an array of facts and figures that astonished even those who had a general idea of the rapid industrial progress of theWest during recent years.

A Remarkable Pompano.

Mr. C. A. Lewis, at the Washington Fish Market of this city, has recently had on exhibition the largest pompano ever known. It was taken with Spanish mackerel off Norfolk, Va., and weighed twenty-three pounds. Usually these fish range between one and three pounds in weight. A four pounder is rare. Above that weight but one specimen has ever before been brought to this market, and that weighed nineteen pounds. Mr. Lewis' fish was perfect in every particular, though a monster in size. It was sent to the Smith sonian Institution at Washington.

RECENT DECISIONS RELATING TO PATENTS, TRADE MARKS, ETC.
By Judge Clifford.-U. S. Circuit Court-District of Massachusetts.
boot and shoe sewing machines. - Thomas et al. v. the
shoe machinery manufacturing company et al.

1. Reissued patents are presumed to be for the same inven tion as the original, and will only be adjudged to be void be cause for a different invention where it clearly appears tha the reissue contains some new feature of a material charac ter not described, suggested, nor substantially indicated in the specification, drawings, or Patent Office model.
2. The fact that a reissue patent has been granted is prima facie evidence that satisfactory proofs have been given to the Commissioner of such a state of facts as warrant the reissue, even though the patent may contain no recitals that the pre requisites to the grant have been fulfilled.
3. After reissue the Commissioner's decision in the prem ises in a suitfor infringement is final and decisive, and is neit re-examinable in such a suit in the circuit court, unless it is apparent on the face of the patent that he has exceeded his authority, and that there is such a repugnancy between the old and the new patent that it must be held as matter of legal construction that the new patent is not for the same inven tion as that embraced and secured in the original.
4. The applicant for reissue cannot interpolate new features not described, suggested, or substantially indicated in his original specification, drawings, or model. Such interpolations in a reissue patent, if material, show that the Com missioner exceeded his jurisdiction; and where that is don it clearly becomes the duty of the court to declare the patent it clea
5. The courts will in no case declare a reissue patent void if, by the true construction of the two instruments, the inven tion secured by the reissue is not substantially different from that embodied in the original patent. Inquiries in such a case are restricted to a comparison of the terms and import of the two patents in view of the drawings and models. I from these it results that the invention claimed in the reissu is not substantially different from that described, suggested, or indicated in the original specification, drawings, or model the reissued patent must be held valid, asallotheralterations
and amendments plainly fall within the intent and purpose and amendments plainly fall within the intent and
of the statute which allows a surrender and reissue.
6. Inventions secured by letters patent are presumed to be new and useful until the contrary is shown; and, in the ab sence of countervailing proof, that prima facie presumption is sufficient to entitle the complainant to a decree in a suit for infringement.

By the Commissioner of Patents.

anvil.-EX parte ducsh.
The combination of a drill, adjustable standard, and vise with an anvil, as such, is not a legitimate mechanical com bination, for the anvil, as such, can make no contribution to any distinct operation of the entire machine. But the com bination of a drill, adjustable standard, and vise, by means of a base to which the standard and vise are attached, is legitimate combination, embracing no supernumerary ele ments, and, if novel, is patentable
time lock.-EX PARTE KOOK \& HALL.
When the different forms referable to one genus are such that the substitution of one for another involves invention, the differences are patentable, and the several forms constitute different species of the genus, all subject to one generic patent, but each legally patentable in a distinct and specific patent. When, however, the substitution of one for the other involves no invention, but only mechanical skill, the differ ences are not patentable, and the forms do not constitute several species of the genus, but are all modifications of the same species.
vegetable life-destroyer and sprout-killer.-EX parte rodgers.
A decision of the Examiners-in-Chief, lawfully made in any case, constitutes a rule for the Primary Examiner in that case until the decision is overruled by the Commissioner. metallic lines or cords for suspending pictures, etc.-EX Parte hookham.
A claim for an improvement in metallic cords for suspend ing pictures and other articles may be united in one patent with a claim for an improvement in fastenings for connect ing pictures and other articles to corids; but these claims cannot be united with a claim for a reel for holding such cords in stock.

sCythes.-EX Parte roby.

The substitution of edge steel enveloped in soft steel, in lieu of edge steel enveloped in iron or other material, in the manufacture of scythes, is a patentable improvement if the scythes in which the soft steel is used have more elasticity, less weight, and take a better polish than those constructed in any other form.

trade mark.-EX parte coats.

1. Minor non-essential elements of a composite symbol of trade, when used in connection with other parts which constitute its main features, cannot be registered as a trade mark; but those parts, when so used as obviously to constitute the main features of the aggregate symbol, are registra be as a trade mark.
2. Two parallel scales of inches and fractional parts thereof, when so used as to be the main features of the entire
lawful trade mark; but when used as a mere border to inclose ornamental designs or other trade marks of the applicant cannot constitute a lawful trade mark.

By the Acting Commissioner of Patents. vent plugs.-ex parte hicks.

1. A claim for an article of manufacture cannot be changed by reissue into a claim for a process when the process was but a legitimate function of the particular article, and the article described was indispensable to the conduct of the
2. Where an application or a patent is restricted to a description and claim of a particular apparatus, neither the one nor the other can be subsequently enlerged to embrace a claim for a method that would include the same and all other means for producing the same result performed by that apparatus.

Part of One Day's Shipments of Food.

On Saturday, September 13, seven large steamers sailed rom this port for Europe laden with American produce.
The Helvetia, of the National Steamship Line, for Liver pool, had on board 1,200 bales of cotton, 84,000 bushels of grain, 800 boxes of bacon, 900 boxes of cheese, 150 packages of butter, 700 sacks of flour, 200 cases of canned meats, 200 packages of sundries, and 45 tons weight of fresh meat.
The Germanic, of the White Star Line, for Liverpool, took out 1,600 boxes of bacon, 31 tierces of pork, 100 barrels of pork, 700 barrels of sugar, 210 barrels of sirup, 2,800 sacks of flour, 1,300 bales of cotton, 48 hogsheads of tobacco, 18,000 bushels of corn, 500 barrels of flour, 450 bales of hops, 11,000 boxes of cheese, 3,000 boxes of butter, and 60 tons of fresh meat.
Among other articles of merchandise the Olympus, of the Cunard Line, for Liverpool, had on board 2,200 bales of cot ton, 13,000 bushels of wheat, 12,000 bushels of corn, 100 sacks of flour, 60 casks of skins, 30 tons of leather, 500 boxes of bacon, 400 cases of canned meats, and 500 dried hides.
The cargo of the steamship Oder, of the Imperial German Mail Line, for Bremen, was composed of 8,032 bushels of corn, 5,370 bushels of wheat, 340 hogsheads of tobacco, 550 cases of tobacco, 190 bales of tobacco, 2,200 packages of but cases of tobacco, 190 bales of tobacco, 2,200 packages of but-
ter, 1,500 sides of leather, 350 tierces of lard, 50 tierces of ter, 1,500 sides of leather, 350 tierces of lard, 50 tierces of
grease, 200 barrels of flour, 100 barrels of peas, 75 boxes of grease, 200 barrels of flour, 100 barrels of peas, 75 boxes of
bacon, 300 boxes of corned beef, 180 boxes of sausages, and bacon, 300 boxes of corne
50 barrels of corned beef.

The Ethiopia, of the Anchor Line, for Glasgow, carried 40,000 bushels of corn, 1,700 barrels of flour, 6,000 sacks of flour, 4,000 boxes of cheese, 20 hogsheads of tallow, 150 tierces of beef, 900 boxes of bacon, 7,000 packages of butter 900 quarters of fresh beef, and 200 carcasses of sheep.

The Australia, of the Anchor Line, for London, had on board 5,800 sacks of flour, 550 sacks of oatmeal, 4,035 pack ages of canned goods, 230 boxes of bacon, 125 boxes of hams 50 tierces of beef, 470 barrels of tongues, 7,800 boxes of cheese, 450 barrels of lard oil, 450 barrels of flour, 8,000 bushels of wheat, 790 quarters of beef, 300 carcasses of sheep, and 125 live bullocks.
The Assyria, of the Anchor Line, for Bristol, took out 32,000 bushels of wheat, 2,000 barrels of flour, 3,000 boxes of cheese, 400 boxes of bacon, 100 tons of tallow, 400 barrels of lard oil, 900 packages of lard, 140 tons of oil cake, and 1,400 bags of flour.
This, it must be borne in mind, includes only the more important shipments by steamers. A vast amount of produce, particularly grain, is exported in sailing vessels.
Ship owners report a rapidly increasing demand for Ameri an products in Europe-a demand so urgent that the carrying rates for grain have been raised from thirty to forty per cent above those that obtained three months ago.

A Lady Patent Lawyer.

For the first time in the federal courts of this district a lady practitioner appeared the other day in this city before Judge Blatchford, in the United States Circuit Court, and argued in person a motion for an injunction in a paten suit for the alleged infringement of a patent of her own The lady is Miss Helen Marie MacDonald, of Boston.
It will be remembered that for the last ten or fifteen years a considerable number of ladies have been employed in the Patent Office at Washington, some of whom have occupied the positions of examiners. In general they have shown activity and ability in the discharge of their official duties, and the experience gained ought to qualify them to serve ac ceptably as attorneys.

Our Trade with England.

The British Bureau of Statistics report that America is exporting to Great Britain three times as much as Grea Britain sends to this country, and that with the rapid in crease in American exports there is a correspondingly rapid decrease in British exports. In round numbers, the exports from the United States to Great Britain for the last fiscal year amounted to $\$ 333,000,000$, while the exports from Great Britain to this country in the same period amounted to about $\$ 111,000,000$.

American Gynecological Society.

The fourth annual convention of the American Gyneco logical Society met at Johns Hopkins University, Baltimore Md., Sept. 17, for a three days' session. Dr. T. G. Thomas, of New York, presided. There was a good attendance, embracing many of the most eminent physicians in the United States.

dexintse and extumat.

The Charge for Insertion under this head is one Dollar a line for each insertion n
Adee about eight words to a Advertisements must be rececived at pubbication office

The best results are obtained by the Imp. Eureka Tur bine Wheel and Barber's Pat.Pulverizing Mills. Send for descriptive pamphlets to Barber $\&$ Son, Allentown. Pa Portable Railroad Sugar Mills, Engines and Boilers Brass or Iron Gears; Models. G. B. Grant, Bo Self-Balanced Slide Valve. Wanted, a party to build and introduce engines with self-balanced valve. Mono-
poly to party. For particulars, address K. G. Bishop poly to party.
Chetopa,
Kan.
Draw'g Insts. \& Mat. Woolman, 116 Fulton St., N.Y. Wanted-to correspond with parties who will make ndess. Whinery, Wheeler. Ala.
The Best Invention for Butter Shippers. "Byram's Patent Refrigerating Butter Carrier." Send for circuar. S. D. Byram, Liberty, Ind.
For Sale.-48 in. x 12 ft . Planer, in good order, price 8700. E. P. Bullard, 14 Dey St., New York.

Gear Cutlery Attachment for Lathes, Fine Tools, Lace
The greatest success ever attained/in the productio of materials for structural purposes has been achieved by the H. W. Johns Manufacturing Co., 87 Maiden Lane,
New York, in the production of their Asbestos Liquid Paints, which are not only in use upon the finest largest structures in this country, among others the
Metropolitan Elevated Rairoad, the U. S. Capitol at Metropolitan Elevated Railroad, the U. S. Capitol a Washington, etc., but are also rapidly taking the place
of all others for dwellings, on account of their superior durability and beauty, which render them the best and most economical paints in use
Wanted for cash.-A 2d hand Engine Lathe, 36 in
swing, to turn 16 ft . Moltz \& Bro., Williamsport, Pa.
Wanted-The Agency for a good Washing Machin also other patented articles. Address Bragdon Bros., Federal St., Allegheny, Pa

For Sale.-Sole right, patterns, engravings, and tool all sizes, ready to manuf. Steam Heating Apparatus.
Send for illustrations. Kafer \& De Lacy, Trenton, N.J.

For Sale Cheap.-Two Amatear Sham Engines. D. Gilbert \& Son., 212 Chester St., Philadelphia, Pa.
Patent For Sale.-Solid Die Rivet Making Machin
ray, Johnston Building, Cincinnati, o.
Experimental Machinery and Patent Office Model
Cheap at W. Gardam \& Son, 112 John St., New York.
Nickel Plating.-Sole manufacturers cast nickel
odes, pure nickel salts, importers Vienna lime, crocus ${ }_{92}$ and 94 Liberty St., New York
Steam Excavators. J. Souther \& Co., 12 P.O. Sq. Boston
All makes and sizes of Steam Hammers bored out The Secret Key to Health.-The Science of Life, o The Secret Key to Health. - Mre science Coly $\$$ Contains
Self-Preservation, 300 pages. Price, only
fifty valuable prescriptions, either one of which is worth fifty valuable prescriptions, either one of which is worth
more than ten times the price of the book. Hlustrated sample sent on receipt of 6 e ents for postage.
Dr. W. H. Parker. 4 Bulfnch St., Boston, Mass.
The Baker Blower runs the largest sand blast in th Magnets, Insulated Wire etc. Catalogue free, Goo now \& Wightman, 176 Washington St., Boston, Mass.
Forsaith \& Co., Manchester, N. H., \& 213 Center St., N, Y. Bolt Forging Machines, Power Hammers, Comb'
Hand Fire Eng. \& Hose Carriages, New \& 2 d hand Machin ery. Send stamp for illus. cat. State just what you want Wright's Patent Steam Engine, with automatic cut off. The best engine made. For prices,
Wright, Manufacturer, Newburgh, N. \mathbf{Y}
For Solid Wrought Iron Beams, etc., see advertise
ment. Address Union Iron Mills, Pitsburgh, Pa., fo ment. Address
H. Prentiss \& Co., 14 Dey St., New York, Manufs. , Diss, Dies, Screw Plates, Reamers, etc. Send for list. The Horton Lathe Chucks; prices reduced 30 per cent. Presses, Dies, and Tools for working Sheet Metal, et uit \& ther can diss Williams, B'klyn, N. Y. Linen Hose.-Sizes: $11 / 2 \mathrm{in}$., $20 \mathrm{c} . ; 2$ in., $25 \mathrm{c} ; 21 / 2 \mathrm{in} .$, of all sizes, also rubber lined linen hose, address Eurek Fire Hose Company, No. 13 Barclay St., New York.
Hydraulic Presses and Jacks, new and second hand Lathes and Machinery for Polishin
Eclipse Portable Engine. See illustrated adv.,p. 189 Bradley's cushioned helve hammers. See illus. ad. p. 206. Sheet Metal Presses, Ferracute Co., Bridgeton, N. J. Band Saws a specialty. F. H. Clement, Rochester, N.Y
Diamond Engineer, J. Dickinson, 64 Nassau St., N.Y
Yacht Engines. F. C. \& A. E. Rowland, N. Haven, Ct, Split Pulleys at low prices, and of same strength and Works, Drinker St., Philadelphia, Pa.
Noise-Quieting Nozzles for Locomotives and Steamboats. 50 different varieties, adapted to every class of
engine. T. Shaw, 915 Ridge Avenue, Philadelphia, Pa Stave, Barrel, Keg, and Hogshead Machinery a spe alty,
Solid Emery Vulcanite Wheels-The Solid Origina Cmery Wheel - other kinds imitations and inferior. tandard Belting. Packing, and Hose. Buy that only. 'The best is the cheapest. New York Belting and Packig Company, 37 and 33 Park Row. N. Y
New 81/2 foot Boring and Turning Mill for sale cheap
A frst class tool. Hilles \& Jones, Wilmington, Del. A well equipped Machine Shop desire to manufactu Box 532, New York.
The New Economizer, the only Agricultural Engine To., page 206 .
Walrus Leather and Bull Neck for Polishing all Me
als. Greene, Tweed \& Co., 18 Park Place, New York.

Oak Tanned Leather Belting, Rubber Belting, Cotton
Belting, Polishing Belts. Greene. Tweed \& Co., N. York. Pays well on small investments; Magic Lanterm an Stereopticons of all kinds and prices; views illustrating very subject for pubic exhibition and parlor entertain ments. Send stamp for 80 page Illustrated Catalogue Cooper Manufacturing Company, Mt. Vernon, Ohi Saw Mills Grist Murls, Portable, and Traction Engine and Contractors. Circular free.
The Improved Hydraulic Jacks, Punches, and Tube
Expanders. R. Dudgeon, 24 Columbia St., New York.
Elevators, Froight and Passenger, Shafting Puley nd Hangers. L. S. Graves \& Son, Rochester, N. Y.
Cut Gears for Models, etc. (list free). Models, work ing machinery, experimental work, tools, etc., to ord
D. Gilbert \& Son, 212 Chester St., Philadelphia, Pa.
Holly System of Water Supply and Fire Protectio or Cities and Villages. See advertisement in ScIEN
Self-feeding Upright Hand Drilling Machines of sur erior construction. Pratt \& Whitney Co.. Hartford, C Deoxidized Bronze. Patent for machine and engin Improved Steel Castings; stiff and durable; as so as wrought iron; tensile strength no Steel Casting Company, Pittsburg, Pa.
Steam and Gas Fitters' Tools a specialty. Send for Wm . Sellers \& Co., Phila., have introduced a new For For Shafts, Pulleys, or Hangers, call and see stock

NEW BOOKS AND PUBLICATIONS

 On the Use of the Barometer on Sur veys and Reconnoissances. By LieutCol. R . S. Williamson. Washington Government Printing Office.
A compendium (without plates) of Lieut. Col. Wilof the Corps of Engineers, No. 15, which puts this useful anual in a form convenient for field use.
A Practical Treatise on Lightining Con.
ductors. By H. W. Spang. Philadel.
phia. 12 mo, paper, pp. 44.
Advocates Mr. Spang's system of non-insulated
ghtning conductors inslead of the ordinary insulate lightning rods
The Illustrated Sydney News.
The Illustrated Sydney News has sent out a special in national Exhibition at Sydney It is an the Inte creditable bit of enterprise, the numerous and excellen liustrations making a particularly good impressio There are given besides a four column leader on the Ex hibition, descriptions of the buildings and grounds, and large amount of information as to the climate, geogr Spons' Encyclopedia of the Industria Arts. Manufactures, and Commercial
Products. Edited by G. G. Andre. Products. Edited by G. G. Andre
F.G.S. New York: E. \& F. N. Spon, F.G.S. New York:
30 parts, each 75 cents.
dia complete the article n potash, and add soda, alloys, alum, alumina, arsenic asbestos, asphalt, assaying, atomic weights, baryta, and
beverages, the last including aerated waters and beer.

 HINTS TO CORRESPONDENTS.

No attention will be paid to communications unless writer.
Names and addresses of correspondents will not given to inquirers.
forme that correspondents, in referring ame the date of the paper and the page, or the number of the question.

Correspondents whose inquiries do

reasonable time should repeat them
Persons desiring special information which is purely a personal character, and not of general interes, hould remit from $\$ 1$ to $\$ 5$, according to the subjec
s we cannot be expected to spend time and labor to obtain such information without remuneration. Any numbers of the Scientific American Supple IENT referred to in these columns may be had at this ffice. Price 10 cents each.
(1) W. E. M. writes: I am proprietor of a meat market at this place, also a subscriber for you that a quarter of beef killed the day before pave fort a phosphorescent light, also blood that had dropped to the fioor when spread over quite a surface lit the room
o that I could distinguish objects for five feet. Ca so that I could distinguish objects for five feet. Ca
you explain thisphenomenon? A. Many organic as wel a inorganic substances exhibit the phenomenon o hosphorescence under certain circumstances. Th Phosphorescence in Minerals, Plants, and Animals;" also Becquerel's "La Lumiere, ses Causes et ses
Effets." See article on p. 199, Vol. 40, Scientific
(2) A W. P. asks: 1. Is there an instru n can use to find gold or si ver coin that has been hidden underground? If so, please iform me where one can be obtained. A. A pick and shovel answer a good purpose. 2. T have a small engine ylinder 5×10, makes 200 revolutions per minute: ho ull stroke? I use 60 lb . of steam and the engine wild pound. The pump piston is made fhe engine wid A. You should give the cut off valve at least $1-16$ inch ead, and you may increase it, provided it does not
(3) E. R. asks: 1. How does a vacuum $\begin{array}{ll}\text { ate as an insulator of electricity? A. Electricity cannot } \\ \text { pass through a perfect vacuum. } & \text { 2. What is the best }\end{array}$ metal to use for $1 / 2$ inch pipe to contain cold drinking water, as cheap as is consistent with regard to health A. Iron. 3. Are the contributions that you weekly all printed in the AMERICAN, or are part printed in the Supplement? A. Some are published in the
Scientific American, some in the SUPplement, some not at all.
(4) E. S. asks for the surest method of sil ver plating large quantities of steel knives. The silver tion deposits beautifully, but in metals. My solu tion deposits beautifuly, but in burnishing comes up
very blue. What is the cause? A. Your trouble is doubtless due to imperfectly cleansing the work or put ting it in the bath before closing the circuit. Clean with hot potash or soda, and with dilute sulphuric acid and pumice stone or fine clean sand if necessary The whitenng bath should not be toostrong, and shoula be worked
(5) E. S. N. asks whether the black oxide manganese will answer to mix with copper and tin make the manganese bronze, mention of which was find the metallic manganese is too expensive (costing some $\$ 290$ per lb.) I find manganese classed among the metals difficult to fuse. Will the oxide melt at the temperature of molten copper? A. Yes; reduce the oxide to an impalpable powder (120 mesh), mix it with an excess of powderea charcoal, and add the mixture gradually to the copper. Under these circumstances the latter will take up the small
ganese reduced by the carbon.
(6) E. A. E. asks: 1. In the freezing of 25 ib. of water at 60° Fah., how much heat must be given off? A. Sufficient to raise about 22 lb . of water from
the freezing to the boiling point. 2. What quantity of crushed ice and salt, mixed in the proportion to produce the greatest cold, will, in passing to the fiuid condition, absorb this quantity of heat? A. In practice rom 50 to 70 lb . of a mixture of 2 parts ice and one of salt would ordinarily suffice to cool the water to the reezing point.
(7) B. A. asks: Which is strongest or pre ferable for general work, a pulley (from 18 to 60 or
more inches diameter) with curved or straight arms and why? A. Formerly pulleys were cast with curved rms, with the idea that they would produce less shrink ge strain, as upon cooling they would yield or spring
o the pressure, but the art of proportioning and casting pulleys has been so improved that we think the curved ave little or no advantage over the straight arms.
(8) E. F. M. would like to know (1) if ships medium size are propelled with screw propellers of four blades. A. Yes, from 8 to 14 feet diameter. 2.
What size and how long are the blades? A. The length of the blades is the radius of the propeller, less the radius of the hub. 3. What wiath? A From 20 to 30 inches. At Ahat angle do they strike the water? A. Gener would be displaced if turned without any forward or backward movement of the vessel? A. They are assumed to displace a column equal to their own diameter
(9) O. T. G. writes: 1. In steam engine with 7 inch cylinder, 10 inch stroke, what should be pronches? A. $\%$ inch $\mathrm{x} 41 / 2$ inches. 2. Area of eduction ports in square inches? A. 1 inch $\times 41 / 2$ inches. 3 . nside diameter of steam pipes? A. $21 / 4$ inches diameter. What number of revolutions should such engines pon the amount of work it has; the speed of an engin is generally determined by the character of the work nachinery to be driven. 5. Please give rules for calc ating the above. A. The above will give about the usual proportions for engines of this class. There are no 10) D. C. ask: 1 Can you tell us of (10) D, \& C. ask: 1. Can you tell us of the, than the sand relt? A. No. 2. We have trouble getting the ground glass to adhere to the ducking elts. If there is no better way than to use the belt is there a better cement than common glue for fastening hick coating of good tough glue to your belt, heat the and to 200° and press the belt into it. This metho allows the sand to become deeply embedded in the glue . How can we season oak hubs without their cracking nd the quickest way? We want to season them in thre onths, if possible. A. They are sometimes seasone mickded. Dry the ends superficially, and apply a coat o mended. Dry the oil.
Minerals, etc.-Specimens have been re eived from the following correspondents, and xamined, with the results stated:
T. L. F. \& Co.- No. 1. A compact limestone resem ling that from lhe celebric a soles mine used extensively for lithographic purposes. No. 2. Quartz
No. 3. Impure crystallized lime carbonate. No. 4. variety of calcite. No. 5. A fine marble. No 6. Semi rystalline impure limestone.-C. A. B. - The clay wil probably make excellent bricks, but contains too much ron oxide, lime carbonates, silica, etc., to be useful for pottery.-J. W. K.-It is a rich magnetite-magneti xide of iron. A valuable ore of iron if free from pho phorus.-S. B. M.-The sample of resinous substance
appears to be of vegetable origin. A larger sample -Galena-sulphide of lead. It probably carries traces of silver. To ascertain the value would require an assay. A. L. F.-1. Flint containing crystals of feldspar. 2 hornblende. 4. Similar to No. 1. 5. Conglomerate. T. B. M.-Feldspar, of lititle commercial value.

COMMUNICATIONS RECEIVED.

 On the Aurora. By C. P. L.On the Amia Calva. By J. S. On the Columbus Clock. By N. C. R.
Crank Motion. By W. A. D.
[OFFICIAL.]
index of inventions for which

Letters Patent of the United States were

ranted in the Week Ending
September 2, 1879
AN EA EACH BEARING THAT DATE.
[Those marked (r) are reissued patents.]
Alloy for jewelry, W. W Hubbell................. 219,097 W w Hubbell................. Alumina, making sulp
$\begin{array}{ll}\text { Axle, carriage, } \mathrm{H} \\ \text { Axles, } \text { Killam } & 8,882 \\ 21,160\end{array}$
metallic wagon, $\mathbf{C} \mathbf{S}$. Adam screw threading
man............ 219,193
Bail ears to sheet metal vessels, attaching, G. W
Knapp
Barrel trussing machine, M. L Deering........... 2
Bed bottom, spring. J. I. Wheeler........... 2
Bed, cushion, and like stuffings and carpet linings,
treating W. M. Blakeman, Jr.................
treating W. M. Blakeman, Jr...................
Bed stuffing composition, W. M. Blakeman, Jr.
Bedstead, adjustable cot, Howe \& Perry Bedstead, wardrobe,
Beehive, M. Wright
Bell, electri.
Bell, electric call, G. L. Ander
Billiard cuema. Fitzgerald...
Boiler furnace, J C McNeil
Bolting screen or sieve, Forney \& Bange219,9106
Boot and shoe shank stiffener, G. L. Talbot........ 219,184
Boot and shoe uppers, lasting, G. W. Copeland
Bottle stopper, A. F Parkhurst.....................
Bretzel machine, $\mathbf{~ C . ~ H . ~}$
Brick, E. L. Schieffelin
Bronzing machine, D. Hestock...
Bung bushing, W Johnso
Butter, tempering, Bac
Butter tub, R. R Jones
Butter worker and printer, w. Weaver 219,1968
Button, sleeeve and collar, R. M. Tripp219,325
Calendar, J. E Healer..
Calendar, J. E. Heath
Car coupling, N. F. Bre

Car, postal, C R. Harrison 219,155
Cars, continuous brake for railway, R. D. Sanders 219,177
Cars, manufacture of king bolt plates for railway
J T Wilson ...
Carbureter, W M Jackso
Carpet lining, H, A. stearn
Caster, I L. Leonard..
Caster, L. Morgan
Castings, device for cooling, H. Wiard et al.
Celluloid, drying, J B Edson...... Le..... W B Carpenter..... 219,218
Chain, detachable link for drive, L. W Stockwel Chain links, die for welding, J F Busey.......... 219,125 Chain, ornamental, C F. Heekmann.........19,091, Check book, bank, H H Norringto
Chmmey, fireproof, H. Schreier Churn, Minot \& Rhoades

Clamp, S Konz ${ }^{219,0619} 1$
locks, back action for striking movements of
W D Davies
Cloth register, A. Harrison
Clothes frame, A. Moore
Coop and and and deliverer, J. W. Meaker.
Corn recerver, N. Edwards.
Corn sheller w.
Cotton and hay press, G Coope
Cribbage board, , \mathbf{W}. Le Count...
Cultivating machine, C E. Sackett
Cultivating machine, C
Cultivator J J Deal.....
Cultiva
Cultivator, C. E. Sac
Curtain fixture, C A Kellogg
Curtain flxture, A. F Temple219,270 219185
Dead centers, device for overcoming the, J. W.
Mullins
Dental engine, E. T. Starr219,320
Dental plugger, A M Denham...... 290,075
Desk and sewing machine cabinet, combinatio
writing, J W Hosford
Draught equalizer, D. P. Hershberger 219,260
Drill sharpener, T. J. Williamson.
rrying apparatus, E. Henderson
Eave trough hanger, J. R. Baker
Egg package. folding, w. E. King
Electric light apparatus, C. F. Brush
Electric lighting device, C. F. Brush
Electric machine, dynamo, Houston \& Thom...... Faucet, D. A. Dyer
Faucet and corkscrew; bottle, w. E. Lant
aucet holder, safety; H Hunziker
Feathers, imitation, M. Grodzensky...
Fence, barbed, J. \& W. M. Brinkerhotr
Fence, barbed, H. \mathbf{R} Burroughs..
Fence, farm. A. R. Sprout
Fender, H. C. Kring
File, bill, J Bell.
Firearm chamber former, c. o. Wood
Fishing line reel, E. C. Vom Hofe
Fuel, liquid, Smith \& Munsell.
Furnace bridge wall, J Mailer
Gas apparatus, T G Springer
Gas retorts, etc., furnace for, G. Liegel
Gate, A. H Allison...
Gate, W. E Deu Pree

219.333 219.158 2
 219.158 219,118

219,182 219,102 219,101

8,878 219,130

${ }_{219,279}^{219,235}$ 219,218

219,126 | 219,126 |
| :--- |
| 219,125 |
| 21921 | 219,299

Grain binder, W. H. Payne..... .-............... 219.304	Stone drill, J. s. swartiey........................ ${ }^{219,128}$	Butcerworth \& Son's Drying Machine. 1 engraving.
n binder knot tying device, C. L. Travis...... 219,187		
in binder knot tyin		A New Metallic Thermometer. 1 engraving.
ding mill, feed, L		
row, A. Deieis		
ester, J.		
ester reel		g.
nd cap sweat band		
Hat tip lining, F. G. Hanson..................... 219,257		
, stiffening, H. Partric		
Hatchway, w. H. Kelly. 29,10		
and cloak, B. F		
detacher, A. B		mendment of the New Soutt Wales Patent Law.
e power, Smith \& Ra		tions in
eshoe blank maker		
eshoe pad, \mathbf{G}		
boring machi		
Ice, preserving, etc., Slee \& Goss 219,221		
Jeweler's settings, die for making, C. Blancard... 219,202 Journal cooling attachment for railway cars,	Truc	Marks,
C. E Austio		
ob alarm,		
elgar,		ECHANICS
mp , elect ic, C. F. Br		Tubular Piles. 8 engra
carbon for electric		The Effect of Great Pressure upon Powdered Sub-
	Ves	
${ }^{\text {h, }}$, Smith $\&$ French	305	
her, stuffing,	Vessels, device for preventing the shifting of	
h pin holder, B.		Eastern.
Lock face platere T. L. L-		Springs. ${ }^{\text {Sanufacture of the Harris-Coriss Engine. }} 4$ engrav-
gs into strips, sliciein	w	
Loom shuttle, J. Johnston................		${ }_{4}$
Mail bag, T. A. Dennis.......................... 219,230		
saf		
Meat,	Watch chain bar and pencil, L. w. Fairchild -.... 219,81	
	48	Water Supply Pipes.
	Window cleaning chair, A. Dormitzer............. 219.234	Traction Enfines on Common Roads.
era		
Mines, apparatus for cooling, J.		ss Railway Sleepers.
apparatus, hy		The
	ARK	
	88	Te
ing machine, J. H. Green 219,2951		
${ }^{\text {c e fur }}$	Cigars, cigarettes, smoking and chewing tobacco,	Transmission of Power.
E. P. Neeah	Earth wor	and metalutrgy.
zzle, sp		
		The Bodie Mining Distr
press plate	L. Candee \& Co................................. 7,642	
		Hollway's Process. The Use of Sulphides as Fuel
	Clins Company.........643, 7,645	
32	Medicinal preparation tor the cure of drunkenness, R. D'Unger. \qquad	Babbitt M
99	Mineral waters, 0. zwietusch 7,637	Artiticial Formation of Felspars.
50	O1	
	Pills, T. Holloway.. 7,646	$\begin{gathered} \mathrm{Pla} \\ \hline 1 \end{gathered}$
Paper boarr iner, H. L. Paimer (r)............. 8,880	Pills and ointment, T. Holloway 7,651	
		in Vacua by the Electri
ck,	\%641	
dur	Sarsaparilla beer, Cronk \& Kurtz 7,65	s
dil holder		
Pencil sharpener and pencil point protector, M. C. Stone .	cheviots, J. S. Woodward's Sons 7,636 Umbrellas and parasols, Macy \& Molloy \square 7,653	Engraving of Copper Roller To Blacken Iron Castings.
Penetrable coupling to permit the ropes, etc., V. Frazee. \qquad		Paint for Iron. Plating with Nickel.
	DES	
	Can for teas, etco. A. schilling..................... 11,922	IV.-C
	Furniture coverings, B. Weiand...................11,393	Reading at Seven and a Half Miles Distance from the
der	Oil cloth, C.T. \& \& V.E. Meyer11,39, 11,390	Canal
\%w, W. W. speer 219,317		Improved Rheostat. 1 engraving.
Plow,	Toy fulminate exploder, G. W. Eddy 11,394	An An Explosiosion of Starch.
(ew attachment. C. E. Brown................... 219.194		
Plow, reversibile sulks, L. Chapman 219,2:9		${ }_{\text {A Papen }}$
Portable	Ide soldoluti amblibal	Remarkabe E
essur		The Phosphorescence of the sea.
ders inking roller, R. Lanham 219,102		The
Printing machine. H. G. Canfeld 219,068	1	
dadiling furnace, J. Lukens 2192822		
	PUBETSEED MONTHIY	Electric B
Punc	UBLISHED MONIHUY.	
Rail Joint, w. R. Hardcastle ${ }^{29} 19,01088$		The Dis
	Scientific American Export Edition is a large	Spontaneous Ignition. Remable Sisk of
2192989 2989	CAL, issued once a month,	Astronomical Note
Refrigerator and ventilator, G. G. Fryer............ 219,085		Impurities Conta
Refr	of all Progress in Science and the Useful Arts through-	New Form of Transit Instrument. 1 engraving. Photography of the Spectra of Geissler's Tubes.
	ont the World. Each number contains about ONE	graphy of the Spectra of Geissler's Tubes. tic Temperatures.
${ }_{\text {Rofll }}$	HUNDRED LARGE QUARTO	Black Lead for ratteries.
Rota	Most	
	ceding weekly issues of the Scirintific Amprican,	
	with its Splendid engraving and valu-	Reference to the Demagnetization of Watches.-No. 1.
Sand washing machine, T. R. williams et al....... 219,332	able information.	
Saw liling machine, C. R. Huff...... 219,266	${ }^{(2 .)}$ Prices Current, Commercial, Trade, and Mar-	
saming machine, E. F. Bar	ufacturing Announcements of Leading Ho	Combina
	connection with these Announcements many of the	Metals. ${ }_{\text {Laws }}$ of Atmospheric Ele
scoop and sieve, L. Lotz	Principal Articles of American Manufacture are exhibited to the eye of the reader by means of SPLENDID	Terrestrial Magnetism and Electricity.
reens,		
19,183	This is by far the most satisfactory and superior Ex	
Sewing and embroidering machine, E. Cornely.... $219,2,25$	port Journal ever brought before the public.	Four Hours in the
- ${ }_{219,08}^{219,12}$	Terms for Export Edition, FIV EDOLLARS A YEAR,	The Oldest. Scientific Lecturer.
219,172 210,058	sent prepaid to any part of the world. Single copies, 50 cents. For sale at this office. To be had at all	The
eet metal pipe elbow, C. F. Henis (r)........ ${ }_{\text {r }}^{8,885}$	News and Book Stores throughout the country.	
Sheet metal shearing machine, C. E. Kennedy... 219,971		Olives in Califo Largest Tree in
irte. I. H. Mambert 219,9844		The Missouri To
vest, M. M. E. Burris.... and other lacing, fast	Now ready.	${ }^{\text {The }}$ The Swelled Trank Pray. 1 engraving.
oe lace fastener, H. C. Klein	THE SCIENTIFIC AMERICAN EXPORT	
oe nail, J. M. . Estabrook.	N For SEPTEMBER, 1879, IL-	Sir Rowland Hill.
		Killing Flies with
Sieve, E. F. O'Toole................... 219,1	USTRATED WITH SEVENTY.	
Silver from mixed amalgam ing out, C. Wiegand.......	AV	Winding up Horse Should City Horses be Turn
ligh bar, A. and G. Bic	general table of contents	The Greenland Whale an
igh, Vandervo	Of the Scientific Amprican Export Edition for	The Grap
eigh runner, T. E. Price......................... 29,174		New Theory of Sea Level Changes. The Juice of the Tomato Plant as an Insecticide
othing and polishing fron, R. Reia............. 219,112		The Sand Box Tree. ${ }_{\text {an }}^{\text {Ascent of the }}$ Olcano of Agua, Central Am
	atents.	Wheat Raising in the South.
${ }_{219,199}^{219}$	ent for Ringirg Si.	Krupp of
Steam boilier. . W. Mooreil.................... 219,292	achine.	${ }^{\text {Mar }}$
		Cumberand Mountain Caves.
team feed and hoisting apparatus, Ansorge \& Sommer \qquad	1 mproved Boiler Feed Pump. 1 engraving. Mechanical Inventions. Engineering Inventions.	The General Wool Monument. Invisible Spines of the Cactus. The Catskill Mountains.

Poisonous Fishes.
Giant Insects. 1 . ${ }^{\text {engraving. }}$
Ailantus Wood.
Late Views of the Age of the World.
VI.-MEDICINE AND HYGIENE.

Hydrophobia successfally Treated with Curare.
A Singular Memory.
Antidote to Poison.
Nervousness Altributable to $T e a$ and Coffee.
Blushing and Blanching.
Antisentict and Blanching.
Antion of Acids.
Yellow Fever.
Catching Cold.
Poisoned
Disinfectants and how to Uspe
Dse
Them
Relation of Religioun Belief to Epidemics.
Todine as a Substitute for Quinine
Iodine as a substitute for Quinine.
Memorand a for Disinfection of Yellow Fever.
A New Way to Treat Diphtheria.
Re Remove Freckles.
Recent Investigation into the Action of Anæsthetic
Chloral in Whooping Cough.
Tay Fever.
Typhoid Fever from Diseased Meat.
A Caation a bout Shot in Game.
Moral and Mental Effects Produced by Foods.
A New Theory of Sea Sickness.
VII.-SCIENTIFIC MEETINGS, EXHIBITIONS, ETC.

American Dental Convention.
Sydney Exhibition.
American Institute Exhibition.
The International Dairy Fair.
The Mississippi River Commi
The Mississippi River Commission.
The American Science Association.
The Entomological Club.
The American Association.
Proceedings of the American Association.
A Novel Exhibition.
The Cincinnati Exhibition.
The Social Science Association.
VIII.-INDUSTRY AND COMMERCE.

Belgian System of Canal Towing. 6 ejgravings.
Intelligent Workmen Needed.

Cutting Packing Company. One of the Largest Es-
Sishments of the kind in the Country.
Secretary Evarts on American Industries.
The Jelly Product of Petroleum.
The American vs. the British Miler.
Sawmills Wanted in Brazil.
Sawmills Wanted in Brazil.
Useful Hints on Sewerage.
Farm Wa
Farm Wages and the Cost of Living
Wages and Prices in France.
Wages and Prices in Belgium
Wrages and Prices in Belg
The Adiron-operataion.
Turvey.
Lace Fan. 1 engraving.
Flour Mixed with Mineral Substances.
The Manufacture of Lenses. 5 engraving
The American Way.
The Proposed Panama Ship Railway.
Recent Industrial Progress,
Recent Industrial Progress.
Lift Locks and Locking Time.
Curing Beef by Injecting Brine
Iring Bei by injecting.
Immigration Statistics.
irginia's Osster Trade.
irginia's Oyster Trade.
Progres of Shipbuilding.
Tobacco Pipes in Germany.
The Nicaracua Canall
Russian Fairs at Nijni-Novgorod.
Manufacture of Vinegar.
The Northwest Passage Successfully Made
Bog oak ornaments.
A New Industry-Frog Farming New Jersey.
Proopsed Engly - Frog Farming.
Prosperity in ithe Lumber Dridge.
Proposed New Britishber Polar Eistrict. Exition, 1 engraving.
Threen Rules for Abbreviating Multiplication.
Bearing Fruit.
Running Expess of Narrow Gauge Railroads.
Kothic Oak Press. 1 engraving.
conomy of the Electric Light.
Conomy of the Electric Light.
The Fourth of July under the Midnight Sun.
Technical Science in New Zealand.
The Bessemer Steel Interest.
A Notable Feature in the IIron Trade.
A Strange Collision at Sea.
A Strange Collision at Sea.
Reaping 20 Square Miles of Wheat.
Steel.
Refrigerated Storehouses.
Firie Screen. 1 engraving.
Argan Oil.
X.-PRACTICAL RECIPES AND MISCELLANEOUS. Notes and Querie
Rat and Mouse Exterminator.
Use of Cutch in Boilers.
Composition for Ornament.
Filters
Filters. Slee Steel.
Sugar from Corn.
The Boomerang.
The Objects of Study.
Scientific Education.
Scientific Education.
Huxley on Pluck and Endurance.
Staining Pine.
Books on Assaying.
Cement to Resist Kerosene.
Compressed Air
Tonic for Hair
To kill Insects
New Books.
To Make Sandpaper.
To Lacquer Brass.
Mustard.
To Harden Lard,
Simple Binder for the Scientific American. 1 en-
graving.
Answers to Correspondents, embodying a large quantity of valuable information, practical recipes, and in-
the Scientific American Export Edition, 50 cents. To be had at this office and at all news stores. Subscriptions, Five Dollars a Year; sent postpaid to all parts of the word.

MUNN \& CO., PUBlishers,
37 Park Row, New York.
To Advertisers: Manufacturers and others who desire to secure foreign trade may have large and handomely displayed announcements published in this edi-
uaranteed circulation in all cport Edition bas a large out the world. Regular Files of the Export Edition
are also carried on ALL STEAMSHIPS, coastwise, leaving the port of New York. Address MUNN \& CO., 37 Park Row, New York.
 RUBBER BACK SQUARE PACKING

STEAM PUMPS. HENRY R. WORTHINGTON,
gharritimenti.

ROSE'S MACHINIST.

$$
\overline{\mathbf{e} .} \text { 意 }
$$

creathis Packing is made in lengths of about 20 feet, and of all sizes from 14 to 2 inches square.
JOHN H. CHEEVER, Treas. NEW YORK BELTING \& PACKING CO., 37 \& 38 Park Row, New York.

R

UPTURE BAND.

60
 WESTON DYNAMD ELECTRIC MACHINE CD

LOSS OF HAIR BY JNO. V . SHEE.

Baker Rotary Pressure Blower.

(Q)
WILBRAHAM BROS 2318 Frankford Arie.

STE EL NAMME STAMPS.

AN INTENTOR, IN CONEEQUENCE OF protractes sickness wishest to sell the patent ingh on

Pond's Tools, Eanine Lathes, Planers, Drills, sc.
DAVID W. POND, Worcester, Mass.

Bookwalter Engine.

 Pat
Ha
rini Corporation of Nottingham, England. Gas Department Exhibition of Cas Enyines, Cooking
Burners, and other A pparatus.

M OLECULAR PHYSICS IN. HIGH

 meter and an explanation of its movement. Descrip
tion the the new
periments. Explanan of on of of the der used

 SCENTIFIC AMERICAN SUPPLEMENT, No. 189 Price
dealents. To behad at this office, and from ail news-
deal

|INVENTORS' INSTITUTE.

 Information furnished regarding Patent Rights, Trade
Mards, Copyrights etc. Inventors interests protected
ance to all. Museum and Library open at all times,
free the Inventors, and those wishing to purchase Pa.
tent Rights, are invited to cant, or to SEND FOLR CIRCULAR.

 gines, with Water's Governor,
equal to any made in simpliciT'wenty H. P. Horizontal, \$250.
Twenty-fve H.P.Vertical, \$300. ress illustrated circular, ad-
HEALD, SISCO Baldwinsville, N. Y. VENUS, THE EVENING STAR. A

A. J. WILKINSON \& CO.,

PATENTS at AUCTION.

 economy. contained inch method and comparative
PLEMENT No. $119 .{ }^{\text {in }}$.
office and of all newsdealers.

THE NEW OTTO SILENT GAS ENGINE.

Price list issued Jan. 1, 1879, with a reduction exceeding 30 per cent.

PATSFINTSS SOLDM

 PATENT CHURN-FOR SALE OR

ฐrientific Americam FOR 1879 .

Nost Popular Scientic Paper in the World.

 VOLUME XL,-NEW SERIES. The publishers of the SCIENTIFIC AMERICAN begto announce that on the Fourth day of January, 1899, a new volume will be commenced. It will continue to be
the aim of the publishers to render the contents of the new volume as, or more, attractive and useful than any Only \$3.20 a Year including Posta
This widely circulated and splendidly illustrated paper is published weekly. Every number contains six-
teen pages of useful information, and a large number of original engravings of new inventions and discoveries, New Inventions, Novelties in Mechanics, Manufactures, Chem istry, Electricity, Telegraphy, Photography, ArchiAll Classes of Readers find in The Scientific formation of the day; and it is the aim best scientificinto present it in an attractive form, avoiding as much as this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in
every community where it circulates. Terms of Subscription.--One copy of The Scienpostage prepaid, to any sent for one yeariber in the United States
or Canada, on receipt of three dollars or Canada, on receipt of three dollars and twenty
cents by the publishers; six months, $\$ 1.60$; thre cents by the
months, $\$ 1.00$.
Clubs.-One extra copy of The ScIentific Amerian will be supplied gratis foreveryclub of fivesubscribers

One copy of THE ScIEvtiptic American and one copy
of THE SCIENTIFIC AMERICAN SUPREMENT willbe sent for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dolars by The safest way to remit is by Postal Order, Draft, or
Express. Money carefully placed inside of envelopes Cxpress. Money carefuly placed inside of envelopes,
securely sealed, and correctly addressed, seldom ooes
astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to

To.Foreign Subscribers.-Under the facilities of the Postal Union, the Scientific American is now sent by post direct from New York,with regularity, to subscribere in Great Britain. India, Australia, and all other British colonies; to France, Austria, Belgium, Germany, Russia, and all other European States; Japan, Brazil, Mexico, and all States of Central and South America. Terms, when sent to foreign countries. Canada excepted, $\$ 4$, gold, for Scientific American, 1 year ; $\$ 8$, gold, for both Scientific American and Suppiement for 1 year. This includes postage, which we pay. Remit by postal order or draft to order of Munn \& Co., 37 Pars Row, New York.		

Park Beujamin's Scientific Expert Office, Examing Park Row inew vork

 Adaress Jo N.
ers, Trenton, N.
Senh oels and $\begin{aligned} & \text { Nop } \\ & \text { Sircular }\end{aligned}$

HARTFORD

STEAM BOILER
Inspection \& Insurance COMPANY.
W. B. FRaNhLIN,V. Pres't. J. M. ALLEN, Pres't. J. b. Pierce, See'y.

M

 THE TREATMENT OF IRON TO PRE-

Lathes, Planers, Shapers

The I. L. MOOt ITron Works,
 WATER CLOSETS.

Wood-Working Machinery,

ARCHEOLOGICAL EXPLORATIONS I

Columbia Bicycle.

The George Place Machinery Agency
CHAFTING, PULLEYS, HANGERS, etc

Wheder's Patert Wood Filler

 ${ }^{2}$ TMsions Printing Press

MACHINISTS' TOOLS.

Lathes, Planers, Drills, \&ic.

Rare Chance to Advertise.

Next to the SCIentific American, the Scientific
American Supplement has the largest cireletion any newspaper devoted to science and the mechanical industries published in this country. The publishers have now decided to admit a few advertisements to the column of the SUPFLEMENT at very low rates.
Contractors, dealers in Railroad Supplies, Builders, Engine and Pump Manufacturers, Agricultura mplement Makers, and those engaged in all kinds of engineering enterprises, will find the SCIENTIFIC AMERI-
CAN SUPPLEMENT specially adapted for advertising their business. Terms $2 \overline{5}$ cents a line each insertion. For further particulars, address
$\underset{\text { Mublishers Scientific American, }}{\text { MUN }}$ g Park Row, New York

PERFECT

NEWSPAPER FILE

 sock in

THE TANTTE CO.,
STROUDSBURG, PA. EMERY WHEELS AND CRINDERS.

ROCK DRILLING MACHINES
AIR COMPRESSORS

Driven or Tube Wells
 PLOW SA OFFICIAL TRIAL OF, AT

 Adaress BAXTER free \subset Co,

THE DRIVEN WELL.

 MAAPMNG PULLEPS, and HANGERS

F FATENTS

CAVEATS, COPYIIGHES, TRADE

Messrs. Munn \& Co., in connection with the publicaImprove Scientific American, continue to examine Inventors.
In this line of business they have had oves years' experience, and now have unequaled facilities and the Prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats, Trade Mark Regulations, Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business intrusted to them is done
with special care and promptness, on very moderate

We send free of charge, on application, a pamphle containing further information about Patents and how to procure them; directions concerning Trade Marks, Copyrights, Designs, Patents, Appeals, Reissues, In-
fringements, Assignments, Rejected Cases, Hints on the Sale of Tatents, etc.
Fhe Sale of Patents, etc.
Foreign Patents.-We also send, free of charge, a Fyopetis of Foreign l'atent Laws, showing the cost and method of securing patents in all the principal counmethod of securing patents in all the principal coun-
tries of the world. American inventors should bear in mind that, as a general rule, any invention that is valuable to the patentee in this country is worth equally as much in England and some other foreign councres, French, and Belgian-will secure to an inventor the exclusive monopoly to his discovery among about ons Hundred and fifty milions of the most intelligent
people in the worid. The facilities of business and steam communicat on are such that patents can be obtained abroad by our citizens almost as easily as at ome. The expense to apply for an English patent is dian, $\$ 50$. Copies of Patents.-Persons desiring any patent with official copies at reasonable cost, the price de pending upon the extent of drawings and length of specifications. Any patent issued since November 27,1867 , at which ings and specifications, may be bad by remitting to
this office $\$ 1$.
will be furnished for $\$ 1$.
When ordering copies, please to remit for the same as above, and state name of patentee, title of inven tion, and date of patent
A pamphlet, containing full directions for obtaining Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every pat entee and mechanic, and is a useful hand book of refer ence for everybody. Price 25 cents, mailed free.

MONN \& CO.,
SI Park
37 Park Row, New York.
BRANOH officE-Corner of F and 7th Streets,
Waskington, D. C.

