
a Weekly journal 0f practical inforuation, art, science, mechanics, chemistry, and manufactures. vol. XXXVI.-No. 23.] NEW YORK, JUNE 9, 1877.
$\left[\begin{array}{c}\text { \$3.20 per Annum. } \\ \text { [POstace } \\ \text { PREPAAD.] }\end{array}\right]$

The Speaking Telephone in New York.

Professor A. Graham Bell has recently completed a series of three lectures, in which he introduced his speaking telephone to New York audiences. There can be no question but that the instrument is a most wonderful invention. Without the aid of any battery, using only the current induced in the circuit by its permanent magnet, the telephone on the occasion of the last lecture transmitted musical sounds and speech from Yonkers to New York, a distance of 26 miles. With the battery attached, melodies and chords played on a small organ at Yonkers were distinguishable throughout the large hall where the lecture took place. It is a most bewildering sensation to hear a song faintly emitted first from a box on the stage, then from another suspended overhead, and finally from a third across the room, as the operator switches the current from one telephone to another.
Professor Bell prefaced the exhibition of his instrument with a brief account of the principles on which it is based, and gave an interesting statement of the investigations leading to its invention.

WIGGINS' IMPROVED RELIEF AND SAFETY STOP VALVE.

The improved stop valve illustrated herewith is designed to prevent the accidents due to the careless closing of the feed pipe while the pump is in motion. It is so constructed as always to leave an open discharge. In the annexed en graving, A is the opening leading to the pump. B is the conduit to the boiler, and C opens into the atmosphere. There are two valve seats, one on each side of the opening, A. D is a double valve which may be adjusted to rest upon the lower seat, and so close the passage to the boiler, or upon the upper seat, and so shut off the discharge. It can never close both openings at once; so that there is always a free discharge for the water. In the shell above the upper seat, there is a chamber through which the water passes to

the discharge opening. The stem is screw-threaded, so that the valve may be easily adjusted to either seat. It will be
stopped while the pump is at work, the water will escape through the passage, C ; and there will be no danger of bursting the pipes or breaking the pump.
This valve is used exclusively on the Atlas farm engine made at the Atlas Works, 700 North Second street, St. Louis, Mo.
Patented through the Scientific American Patent Agency March 20, 1877. For further information, address the in ventor, Mr. Charles P. Wiggins, 1940 O'Fallon street, St Louis, Mo

THE SOUTH STREET BRIDGE, PHILADELPHIA, PA.
The large and handsome engraving on this page is a per spective view of the South Street Bridge, Philadelphia, Pa. We select the engraving from the pages of Engineering, which journal published the following description, from the pen of Mr. W. Barnet Le Van, a well known engineer of Philadelphia
The bridge commences at the intersection of Chippewa and South streets upon the eastern side, to the high ground of the Almshouse property beyond the Junction and West Chester Railroads on the west side of the river, connecting with Spruce street. The entire length of the structure is 1,934 feet 7 inches, consisting of two fixed spans 195 feet 8 inches each, and a draw 198 feet 2 inches in length, sup ported by a pier at each end of the draw and one in the cen ter to receive the pivot. Each end pier is formed by two columns of cast iron 8 feet in diameter, cast in sections 10 feet in length, $1 \frac{3}{4}$ inches thick, with inside flanges $2 \frac{3}{4}$ inches wide by $1 \frac{3}{4}$ inches thick at top and bottom of each section The flanges are pierced with holes 5 inches apart, from cen ter to center, to receive $1 \frac{1}{4}$ inch bolts. The bottom flange is omitted in the section forming the bottom of the column when in position, for greater facility in penetrating the soil [Continued on page 354.]

SOUTH STREET BRIDGE, PHILADELPHIA, PA.

Srientific Ampritan.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.

published weekly at
NO. B' PARK ROW, NEW YORK.
A. e. beach.

The Scientific American Supplemen

 for SUPPL FWhNT, w5.00a year, postage paid, to subscribers.
 The safest way to remit is by draft, postal
Address MUNN $\&$ CO., 37 Park Row, N. \mathbf{Y}
Address MUNN \&CO., 37 Park Row, N. Y.
ther Subseriptions reeived and single copies of either paper sold by all
Publishers' Notice to Mail Subscribers.

VOL. XXXVI., No. 23. [New Series.] Thirty-second Year NEW YORK, SATURDAY, JUNE 9, 1877

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT, NO. 75,

sewage irrigation on a small scale

It is now generally conceded that the application of sewag to purposes of irrigation is the only process which fully meets all the requirements attaching to the disposal of that material. It is the only one which, while it purifies the sewage, efficiently realizes the highest profits, and may be carried on without creating any nuisance or detriment to the health of the neighboring inhabitants. This is the opinion expressed by Dr. Wilson in his recent admirable work on "Hygiene," and it is fully corroborated by the very extensive review of the whole subject of the disposal of sewage which is em bodied in that model official document, the Report of the State Board of Health of Massachusetts for 1876. The con ditions under which the sewage of a village may thus be turned to agricultural profit, and at the same time the pollution of streams be prevented and a public source of disease removed, are by no means complicated; while the advantages which actual experiment has shown to be secured are so great as to render the matter one which may be strongly commended to the careful attention of village authorities and farmers throughout the country.
The simpler the details of the work, the better; and in this view it is recommended that for villages the application should be by surface carriers, in lieu of under ground piping. Land which has been worked in ridge and furrow will requir leveling, that is, the soil should be stripped and the ground be broken up, so as to bury the surface even. The English
Rivers' Pollution Committee state that main carriers should be laid in nearly level lines, so as to command the area be low; and secondary carriers, from half a chain to a chain apart, should contour the entire surface. The main carriers may be covered in, having valves or sluice boards, of an in expensive and simple kind, to retain or let out sewage as re quired. These carriers should be of brick or earthenware pipes, in size proportioned to the volume of sewage to be distributed. Conduits below 18 inches in diameter may be made most cheaply of earthenware pipes; brickwork may be cheaper for conduits of larger cross sections. Small car riers may be formed of small agricultural tiles, but jointed and laid only three parts in the soil, so that one tile or more can be removed temporarily at any point to allow of surface over flowing. All ordinary conduits may be open trenches readily formed by hand labor or by the plow.
In the first place, the land must be prepared so that the beds shall have a slope varying from 1 in 50 to 1 in 150 . If not loose and porous, the ground must be underdrained The sewage must be delivered (by pumping if necessary) a the highest point on the irrigated area, whence it is distrib uted by gravitation. The annexed diagram exhibits th

arrangement usually adopted where only the main carrier is of brickwork or pipe and the branching carriers mere trenches. A is the main conduit, dammed at various point by gates, as shown at F . By opening the gates, G, any trench, B, C, etc., may be made to distribute the sewage over any part of the field; and the flow is limited by placing the dam, D, at any desired point. The sewage flows uni formly over the surface of the land, each plot being irrigated for a few hours at a time, and once in every three to twelv days, as is necessary: grass, for instance, may be treated much oftener than vegetables.
The amount of land necessary depends somewhat upon the character of the soil and the climate. The English Rivers Pollution Committee prefer one acre for the sewage of every 150 people. The Earl of Warwick, however, who has one of the most successful sewage farms in England, has one acre of land for every 50 people. In England, Scotland, and France no difficulty has been found in irrigating through the winter In our northern climate, where the ground often freezes to considerable depth, the results, it might be expected, would not be so uniformly successful; but judging from experi ments made at Berlin, where the soil sometimes freezes to a depth of three feet, there is reason to believe that irrigation is well accomplished the year round.
The effluent water from sewage farms is often so pure as not to reveal any evidence of contamination to the chemist; and it has been freely used for drinking purposes withou bad effects. The following data relative to the utilization of the sewage of the Augusta (Maine) State Asylum will serv to show how the system may be put in practice on a smal scale, and the results it secures. In this case, the sewage passes by gravitation into large tanks where it is mixed with a quantity of absorbents (straw, leaves, muck, etc.). The solid parts are from time to time carted on to the land, and the liquid passes off, often quite clear and sparkling, to be used on the land for irrigation. A portion flows over a few acres, from which three crops of fine hay were cut in 1875 Another part is used for hose irrigation of the vegetable gar den, care being taken not to sprinkle the leaves. A third prt is carried to different sections of the farm and di tributed from a vehicle which acts on the principle of a ordinary street watering cart, though different in principle.

Seven thousand gallons of sewage are disposed of in this way daily, and the results are as follows: What was form erly a nuisance las become inoffensive. The hay crop on the land irrigated by gravitation had increased sixfold, and increase is also noted in other crops. The system pays for itself through the greater value of the crops raised (labor however, being that of patients, costs nothing); and irriga tion was efficiently carried on during the coldest weather. In such cases as the above, and generally in all where the sewage of a comparatively small number of people is to be disposed of, the subsoil method of irrigation may likewise be advantageously used. By this system the sewage is carried to a safe distance from the houses in tight pipes, and is then distributed in open jointed pipes about one foot be low the surface of the ground. Subsoil drains are placed a a depth of four feet to carry off the purified liquids. Colone G. E. Waring some time ago described in the Atlantic Monthly his application of this system to the removal and utilization of a country house as follows: "The house drain age is discharged into a tightly connected and thoroughly ventilated tank. Its outlet pipe, starting from a point one foot below the surface of the water, and about two feet be low the capstone, passes out near the surface of the ground and is continued by a cemented vitrified pipe to a point abou 25 feet further away. Here it connects with a system of open jointed drain tiles, consisting of one main 50 feet long and eight lateral drains, six feet (the writer has since stated hat half this distance is better) apart, and each about 20 fee ong. These drains underlie a part of the lawn and are only bout 10 inches below the surface." The slope from one ex reme of the system to the other is only 15 inches. The pipes equire cleaning about once a year.

PREVALENT MANIAS

The blue glass mania has had its day. The bar rooms are emoving their signs of "cocktails in blue glass," and the erulean goblets, wherein those seductive and presumably un-strengthened beverages were dispensed, may be pur chased for small sums from the cheap china vendors on ou idewalks. We notice a diminution in the sheets of blue lass hung in windows of private dwellings, "signs," som one calls them, "to inform the public of the gullibility of the inmates;" and in fact the only evidence at hand which exhibits any vitality of the now rapidly collapsing blue glass mania is the production of a cheap variety of note paper alled the "Pleasonton," because the pasteboard box in which it is contained has a blue glass lid. The General can doubtless explain the efficacy of the glass in this connection Blue glass, therefore, has had its run, its inventor has earned his notoriety, and also the thanks of the glass dealers, who have reaped a fine pecuniary harvest.
Two new manias are at hand, to wit, the celery cure and metallo-therapy. "Celery is the greatest food in the world for the nerves," says one of our contemporaries: and the information is traveling the length and breadth of the land It is fashionable nowadays to call every ailment that flesh is heir to a nervous disease; and where our ancestors would have resorted to such homely remedies as a hot drink and imple cathartics, the present practice demands chloral, and bromides, and quinine, and strychnine, and phosphates, and are chemicals without number. Of course celery is pleas nter to take than most drugs; and now that it is brought forward as a new nervine, plenty of people will use it. As it can do no harm, and, indeed, may actually work good by checking the too prevalent consumption of "nervous spe cifics," the mania is rather a benefit than otherwise, and should be encouraged. Wild celery or smallage is known o possess some narcotic effect, and is reputed as unhealthy s regards the medicinal properties of cultivated celery here are no utilizations of them in the United States Phar acopœia; but as celery (apium graveolens) belongs to the ame family as the parsley (apium petroselinum), it is probable that it would yield apiin and apiol, as such substances are obtained from the latter. Apiol acts as a tonic, similar in its effects upon the system to quinia.
The other mania, metallo-therapy, to which we have al ready briefly alluded, is perfectly harmless, and at present is confined to France. Les Mondes, of recent date, reports an ther "astonishing cure "-a child four years old this time, lmost dead with meningitis. The metallo-therapy inventor nveloped the infant-there is no Children's Protective So iety in France-in plates of iron and copper from head to foot. Half of the body was covered with one metal, half with the other, in order "that both metals might have an qual chance of doing good." In eight hours, the child re ived; in six days, it was out of danger; in a month, it was vell. Manufacturers of iron and copper plate may no consult with blue glass makers as to how to advertise this.

SAFETY VALVE TESTS

In September, 1875, a Special Committee of the United States Board of Supervising Inspectors of Steam Vessels made a series of experiments to determine the proper proportions for safety valves and to test the relative merits of uch valves as were furnished by manufacturers. Their report has just been published by the Government; and as it contains considerable information that will not be generally accessible, we propose to furnish a synopsis to our readers that shall embody the most important points determined by the Committee. As nearly all the prominent safety valves in he market were submitted to test, this report is useful in howing what is still required to produce the ideal safety valve. It is scarcely necessary to say that a perfect safety
valve is one which will rise as soon as the pressure at which it is set is attained, will prevent the pressure increasing if the boiler is forced to its utmost extent, and will close promptly as soon as the pressure commences to fall. It may well be doubted, in the light of experience, whether it is possible to design a valve possessing all the above features but they can be closely approximated, as will appear.
The boiler which was used for making the experiment was cylindrical, with internal furnaces, of the modern marine form, and was capable of evaporating about $1,900 \mathrm{lbs}$. of water an hour on an average, at a pressure of 20 lbs . by gauge. Before experimenting with the competing valves, the committee made a number of experiments with common safety valves of different sizes, the valves being carefully constructed, with knife-edge points of support for the lever and valve stem, as shown in Fig. 1. These experiments fully confirm the opinion, held by many experienced engineers, that the common safety valve, when made of sufficient size, is about as effective in relieving a boiler and closing promptly as the best special forms that have been devised. It is a matter of regret that the Committee's experiments did not include a test of what is sometimes called the "positive safety valve," in which the weight is suspended directly from the valve stem and acts without the aid of levers or springs, the valve being spherical and thus exposing a greatly increased area when opened, as these features are very meritorious, at least in a theoretical point of view. The experiments with these ordinary safety valves enabled the Committee to give rules for general practice which agree well with those determined by other experimenters. The Committee recommend the following rules for determining the evaporation in lbs. per hour of stationary and marine boil ers: $112 \times$ square feet of grate surface, for natural draught; $168 \times$ square feet of grate surface, for forced draught
It was found, when experimenting with the common safety valves, that the lift decreased as the pressure at which the valve was set was increased; and by observing the areas of openings, the Committee derive the following rule for calculating the area of opening, in square inches, required to discharge a given weight of steam per hour: Multiply the number of lbs. of water evaporated per hour by 0.0011 , if the valve is set to blow off at 10 lbs .; by 0.0010 , if at 20 lbs . by 0.0009 , for 30 lbs ; by 0.0008 , for 40 lbs ; by 0.0007 , for 50 lbs. ; by 0.0006 , for 60 lbs. ; by 0.0005 , for 70 lbs. ; by 0.0004 , for 80 lbs ; by 0.0003 , for 90 lbs ; by 0.0002 , for 100 lbs .
By observing the lifts of the ordinary valves when discharging at different pressures, the Committee obtain the following rule for calculating the area of valve that will give the required area of opening for any particular case Multiply the number of lbs. of water evaporated per hour by 0.005 ; the product will be the area of the valve in square inches. This rule gives a smaller area than the similar for mula proposed by the late Professor Rankine, in which the multiplier is 0.006 . It is to be remembered that the valves used by the Committee were constructed especially for the experiments, and may have acted more effectively than the average; so that the multiplier given by Professor Rankine will probably be safer for general use. It may be added that rules of this form are the only safe ones for general use, the ordinary formulas giving very discrepant results, as shown by the following example in the report: The area of safety valve required for the boiler on which the experiments were made, at a pressure of 70 lbs ., would be: For the ule of U. S. Board of Supervisors, 37 square inches; for that of the English Board of Trade, $11 \cdot 8$; for that of the French Government, 6.75 ; for that given by Molesworth, 18.88 ; for the 1 st rule given by Professor Thurston, 8.3 ; for the 2 d , 29 ; for that given by Rankine, 12; for that proposed by Committee, 10. Attention has been directed to the discrepancies of these rules on several occasions; and in spite of the distinguished authority on which they rest, it is reasonable to hope that all but the last two will speedily find the oblivion they so justly deserve.
The Committee observe that, when very large valves of the common form is used, their action is not satisfactory, as at high pressure the lift is scarcely noticeable, the pressure being relieved by a kind of tilting of the valve; and they fix the limit at valves having an area of 10 square inches, recmmending that two or more valves be used, when a greater area than 10 inches is required.
tests of competing valves.
Valves of special form were sent by 27 makers, and tested

by the Committee. The general object of all of these valves was to give an increased lift as soon as the valve was opened. The valves are divided by the Committee into 6 classes, acording to their construction:

1. Reactionary safety valves, in which the escape of the steam is opposed by a lip or stricture with the idea that the reaction will force the valve further from its seat. One form of this class is shown in Fig. 2.
2. Disk safety valves, in which a disk is secured to the valve having a greater area than the valve, so as to force the

valve further from its seat, when it opens. Fig. 3 is an ex ample of this class.

3. Annular safety valves, with two seats upon an annular opening (as shown in Fig. 4), with a view of obtaining a greater area of opening for a given lift.

4. Dauble seated safety valves, of the same general form as the double puppet valve, the upper and lower parts being of different areas, so that they move easily and expose large areas of opening. The practical difficulties of construction, however, will probably prevent the adoption of this plan The Committee report that they "can say nothing favorable of any of this construction that were tested.'
5. Combination safety valves, which are assisted in their operation by small auxiliary valves or a combination of levers. One of this class is shown in Fig. 5, the valve being held down by a spring balance attached to the lever, and beheld down by a spring balance attached to the lever, and be-
ing assisted to rise, when opened, by the action of the rod

It will be observed that some of the special forms of , with considerably larger areas of openings than the mmon valves, allowed the pressure to increase as much or

mure. This is probably due to the fact that the very form by which the greater lift was obtained made it more difficult for the steam to escape, and thus rendered a larger open ing necessary to discharge the same quantity of steam. In

the case of several experiments with the same valve, where the table shows considerable differences in the results, these were generally due to lack of adjustment, so that the best results represent the action of the valve when properly adjusted. This remark applies both to the common and special forms of valves. There is one peculiarity, quite an important one, which the table does not show, but is noted in the records given in the case of each experiment.
With the common valves, when the valve opened, the pressure gradually increased to the maximum, when the boiler was forced, and, when the pressure was allowed to fall, it closed at the points indicated. With nearly all the ther valves, however, after the valve opened, the pressure ell below the opening point, the valve sometimes closing several times, and the pressure falling below the opening point several times, in the course of a 10 minutes' trial,
and bell-crank lever, the other end of the spring balance be ing attached to the long arm of the latter
6. Piston safety valves (see Fig. 6 for an example of this class), in which a piston connected with the valve assists it to rise. A uniform method of test was adopted for all these valves. Each was attached, in turn, to the boiler, was set to blow off at 30 lbs ., and was allowed to operate for 10 min utes, with a strong fire in the boiler, was then set to 70 lbs. pressure, and the experiment was repeated. The following table gives a summary of the results obtained with 12 of the competing valves, and 2 of the common valves constructed by order of the Committee. The table in the report contain results of the list of 22 valves, but the data were only complete in the case of 12 , as the area of opening was not ob served for the others, or they were tested at different press ures. The different valves are distinguished by numbers in the table given below. Several of the valves tested gave such unsatisfactory results that they were not included in the Committee's table.
and sometimes the pressure fell at once and the valve blew off at a less pressure than that at which it was set, during the whole trial. It is evident that this is not a desirable feature in a safety valve, if safety can be secured without his loss; and the records of the trial seem fully to confirm the opinion previously stated that the common valve, repre sented in Fig. 1, is not excelled in any important particula by its competitors-at least for stationary purposes. For use upon locomotives, and steamers in rough water, some of the special forms may be advantageously employed, and the Committee especially recommend three, constructed on the reactionary principle viz: Ashcroft's, Crosby's, and Richard son's (Nos. 1, 2, and 6 in the preceding table). It is believed that these recommendations are justified by experience. The Committee state that there are objectionable features in the other forms of valves presented to their consideration, which may possibly be removed, and think the instruments should be further perfected before their adoption for steame use can be recommended.
[Continued from first page.]
This end is not beveled, as is generally done, but left square, so as to retain the full value of the thickness of the column for a bearing surface on the rock, each section weighing about $14,600 \mathrm{lbs}$., averaging seven sections to each column.
The pivot, or center pier, is formed by a cluster of nin columns, a 6 foot column in the center supporting the pivo of the draw, and a surrounding circle of eight columns 4 feet in diameter, carrying the track on which the draw revolves. This circle is 36 feet in diameter from out to out while the pier columns are placed with their centers directly under the main chords of the bridge, making them 36 feet apart from center to center, and at right angles to the center line of the bridge, giving an opening of 77 feet on each side in the clear. The section of 6 foot columns average 10,800 lbs., and the 4 foot columns 6,800 lbs. each. These columns were cast from government cannon, originally made from cold blast charcoal pig, being an exceptionable material for this purpose. The columns were placed in position by the use of compressed air, by the plenum pneumatic process. In sinking these pneumatic cylinders, the late Mr. Murphy, the engineer who erected the bridge, introduced a more economical air lock than was heretofore used, which enabled the workmen to pass from the normal atmosphere outside the column to the denser atmosphere of the interior, and to prevent the escape of the compressed air while so doing. He also adopted, for the first time, brackets in sections, and extending clear round the whole inner circumference of the bottom of the column, and secured to its side by four $1 \frac{1}{4}$ inch tap bolts, and to the rock by four bolts 18 inches long, with fox wedges at the lower end, and thread and nut on top, thereby adding much to the stability of the work. This was necessary on account of the small amount of holding ground for the cylinders, overlying the bed rock.
The bed of the Schuylkill, at the site of the bridge, is a micaceous gneissic rock, undulating in surface, with overlying strata of sand and tough, compact mud, intermingled with gravel and small boulders. Lying directly on the rock, considerable quantities of driftwood were found, its appear ance evincing great age and a long occupation of its present position. The average depth of this bottom material is about 30 feet at the western pier columns, diminishing to only 5 feet at the eastern pier. At the draw the thickness is about 18 feet. The draw span of this bridge is 198 feet 2 inches long from end to end of chords, and 23 feet wide between centers of trusses, with two outside footways of 6 feet 8 inches in the clear, making the total width from out to out 39 feet 4 inches, equal to the outside diameter of the pivot
cluster of columns supporting the span at its center, leav ing two water ways of 77 feet each, as required by the specification. The decrease in the width of the bridge at this point from 55 feet (the width of permanent span) to 39 feet 4 nches is unfortunate, but to have maintained the width of 55 feet would have made not only a wider span, but also a much longer draw span (necessary because of the require ments of navigation) adding enormously to the weight, al ready very great (being now nearly 400 tons), and involving increased dimensions throughout, and as a consequence increased cost of pivot, curb, and supporting columns. The russ of the draw span is similar in design to the two perma ent spans, but modified in section and position of mem bers so as to meet the duties of a bridge supported on a pivot at its center, and as a permanent span, which it practically becomes when closed.
The pivot on which Mr. Murphy originally proposed to rest the draw span was one of his own design, and consisted of two smooth lubricated surfaces 6 feet in diameter, made of gun metal with spiral grooves, being arranged so as to equally spread the lubricating material. From the large area of the working surfaces the distributed load would have been only about 200 lbs . to the square inch. This was feasible plan, and perhaps the most economical way of solving the problem. But this was changed to a pivot cen er of two sets of small conical rollers running on stee pates, which is now working satisfactorily. The entire raw is carried directly by the stone filling of the central 6 foot cylinder; an arrangement of radial arms with wheels under the circular curb (which is 32 feet in diameter) which prevents any undue tipping of the span when open or during the opening or closing of the span. The width of the approaches is 55 feet, consisting of carriage way 35 feet wide, and two footways 10 feet wide on each side. The eastern approach is 518 feet 10 inches in length, consisting of 363 feet 6 inches of broken range ashlar retaining wall of sand stone, and 114 feet 6 inches, being three conoidal or flue arches of original design, composed of brick with stone ring and a granite abutment of 40 feet 10 inches, with pilasters and Doric capitals.
The western approach is 826 feet 6 inches in length, con sisting of 87 feet 4 inches of regular range ashlar retaining wall of granite, and three trussed spans 244 feet 9 inches in length, supported by eight wrought iron columns over the Junction and West Chester Railroads, to an abutment of 62 feet 4 inches in length, and thence by nine brick arches 43
feet 6 inches span, from center to center, with stone rings, feet 6 inches span, from center to center, with stone rings,
391 feet 3 inches long, with granite piers, to a granite abut-
ment of 40 feet 10 inches, same character as eastern abut ment.
The

The contract price for the bridge was $\$ 770,000$, but the ice breakers or fenders for the center pivot pier of the draw span formed an extra contract, for which Mr. Murphy received $\$ 65,000$ additional.

Improved Whaling Gun.

Durin. last year, Captain Eben Pierce, the weli known manufacturer of bomblances, and Selmar Eggers, after much planning and experimenting, perfected an invention which is destined to prove vastly beneficial to our community in swelling the revenue accruing from the whale fishery. This is a breech-loading whaling gun, varying from the ordinary weapon as much as a modern sixteen-shooting rifle does from the flint-lock shot gun of our ancestors.
The weight of the gun is 18 lbs ., or nearly the same as the old style, while it is much better balanced and proportioned, reducing the comparative weight of the barrel that renders it so difficult to steady and aim the ordinary guns. The ength and base of the barrel is the same, admitting the use of the usual size bombs. The great superiority of this weapon lies in the manner of loading. The old guns were oaded with loose powder, and were more dangerous to handle when charged; the powder would also become dampened with flying spray when in a boat that was going through the water at a lively rate, and it has often occurred that, when the pursuers had arrived within easy range of heir prey, they would find the charge moistened and the weapon consequently useless. Mr. Eggert's gun is so contructed that, by touching a spring in the butt, a chamber in which the barrel terminates is opened; in this a cartridge with a seven-eighths inch copper shell is inserted, charged with $2 \frac{1}{2}$ drachms of powder, or about half the quantity required to load the ordinary guns. The chamber is then closed upon pulling the trigger, the hammer strikes a sharp blow upon a cap in the end of the cartridge, and the piece is discharged. The whole operation of loading, fixing, and reloading can be accomplished in two minutes' time. It will be seen at once that the gun is much surer and safer, as these cartridges can be kept in the pocket until needed; and no water can lessen their power after they are placed in the chamber. With the breech-loader a lance can be sent with estructive effect over 750 feet when fired at slight elevation. The weapon is constructed of gun metal, and thus is almost mpervious to wet, another weakness to which the old style gun was susceptible.-Neo Bedford Mercury.

IMPROVED MACHINE FOR STAMPING LEATHER GOODS.
In the accompaning engraving is illustrated a novel machine for stamping ornamental designs on the leather work of hide tree saddles and of carriages. It may also be used for producing the embossed leather employed for furniture covering, bookbinding, etc. The upper revolving shaft, C, in the side elevation, Fig. 1, works the stamp rod, D, which moves in a guide in the arm, B, and is acted upon by a band spring, E. Said spring may be adjusted by the clamp screw, E^{\prime}. The shaft, C raises the stamp rod by means of a cam, a, which engages with a friction roller, b, on the rod, as shown in Fig. 2; on being released from the cam, the rod is brought down forcibly by the spring. Fig. 4 shows the various shaped stamping bits, which are clamped into the lower portion of the stamp rod, D . The leather is fed by a vibrating feed mechanism, F, and retained by a presser wheel, G, which is attached an arm on a presser rod, G^{2}, which is pushed down by a coiled spring, and raised or lowered by the lever, e. Fig. 3 repre sents a piece of leather, as marked by the machine, the uniformity of the impressions being secured by the regular movement of the feeding device. The mechanism is operated by the belt wheel and gearing on the right in the usual manner.
Patented through the Scientific American Patent Agency, April 3, 1877, by Mr. Lewis H. Urner, Nevada, Mo.

Sleep.

Sleep, Dr. W. A. Hammond says, may be defined as general repose. Almost all the organs rest during sleep. The heart, popularly supposed to be in perpetual motion, is at rest 6 hours out of the 24 , the respiratory organs 8 , and the other organs more or less. The brain alone is constantly employed during wakefulness, and for it sleep was formed and made needful to its preservation. It is true that sleep does not give the brain a total recess from labor; imagination and memory are often vividly active during sleep, and unconscious cerebration likewise takes place, but enough rest is obtained for the renovation of the brain, and that which has been torn down during wakefulness is to a certain extent rebuilt. Sleep is a most wonderful power-often stronger than the will, as in the case of the sleeping soldier-and more mighty than pain, as when sick persons and tortured prisoners sleep in the midst of their suffering. No torture, it is said, has been found equal to the prevention of sleep. The amount of sleep needed differs according to the constitution and habits. Big brains and persons who perform much brain labor need a large amount of sleep. Children need more sleep than grown people because construc tion is more active than decay in their brains.

A NEW INJECTOR FOR STEAM BOILERS.

We illustrate herewith an improved water injector for steam boilers, which is claimed to be so constructed as not to

require any internal packing, as to prevent locking or bursting and side leakage, and as to work equally well at any pressure of steam. It may be detached, examined, and again attached in a few minutes without interfering with the working of the boiler.
A is the outer part of the injector, through a stuffing box in the outer end of which passes the spindle, B. The spin-
dle has a hand wheel, C , and a screw thread formed upon its middle part, which fits into a female screw, D, in the part, A, at the outer side of the steam inlet, E. The forward part of the spindle, B , passes into the nozzle, F , the base of which is screwed into the inner end of the part, A. Around the base of the nozzle, F , is formed a flange, $f^{\prime \prime}$, which abuts against the end of the part, A, and is rabbeted upon its outer side to form a ring groove to receive an inwardly projecting flange, g^{\prime}, formed upon the outer part of the inner sur-

URNER'S LEATHER-STAMPING MACHINE.
face of the ring or wheel, G. The wheel, G, is provided with handles, H , for convenience in turning it, and has a screw thread formed upon the inner surface of its inner part, to receive the screw thread formed upon the outer end of the part, I; with which, near its outer end, is connected the water inlet, J. With the part, I, near its inner end, is connected the overflow, K. With this construction, by turning the ring or hand wheel, G, the water supply can be regulated according as the steam pressure in the boiler may require. This device was patented through the Scientific American Patent Agency, March 20, 1877, by Mr. James Westley, of Manchester, England.

Soiree of the Louisville Microscopical Society.

A large audience assembled in the Hall of the Louisville Library to attend the annual soirée of the Louisville Microscopical Society. Arranged on tables were nineteen instruments representing the most famous makers of this country and Europe, from a small old fashioned Bascule to a large and magnificent Ross. The objects selected for exhibition were selected from the various departments of Nature.
Professor Brach, with a Zentmayer "Grand American," with the paraboloid, exhibited a series of beautiful picked diatoms. On a second instrument he showed the effect of polarized light on crystals and various animal and vegetable tissues. Mr. W. R. Belknap exhibited fine specimens of gorgonia and spicules of sponge. Dr. Clapp showed various animal parasites, trichince spiralis, tape worms, etc. Dr. Hol land showed the various ferments in different stages of de velopment. Dr. Jenkins, with the micro-spectroscope, showed the spectra of blood and various colored liquids. Dr. Keohler exhibited a number of handsome slides of fossil woods. Mr. A. L. McDonald, with a beautiful binocular, gave both eyes a chance to see crystals of arsenious acid cinnabar, and polycystince. Dr. J. B. Marvin had under an instrument a frog so arranged as to show the circulation of the blood. He also showed beautifully injected specimens of animal livers, kidneys, tongues, etc. Professor C. Leo Mees showed, with a magnificent Ross instrument, Moeller's phototype plate, Deutzia gracilis, etc. Mr. I. Pettus exhibited the lower forms of vegetable life, diatoms and protococcuis, also rotifer vulgaris, who seemed especially voracious on this occasion, and vinegar eels. Professor Lawrence Smith illustrated the formation and growth of crystals under polarized light. He also showed a series of micro-photographs, under his peculiar inverted microscope. Dr. Sloan, with a handsome Grunow instrument, showed blood of various animals, magnified 2,000 diameters. Mr. Pack Thomas exhibited tracheal vessels of silkworms, tongue of fly, eye of beetle, etc. Mr. David Lane, with the oxyhydrogen microscope; projected a number of objects on a screen, the circulation of blood in a frog's foot, many common insects, and plants, drosera rotundifolia, etc., were shown.
The exhibition was a decided success, and the society will give another soirée in the first week in June.

A Good Portable Printing Press.

A small portable printing press is a convenient and use ful article in almost any business house. It will serve to print letter heads, envelope advertisements, cards, and small circulars, notices, etc., and thus will save printers' bills. It a capital present for boys, as it induces them to acquire the rudiments of an important trade, which in after life may be turned to practical account. An excellent little machine of this description is known as the Excelsior Press, and is made by Messrs. W. A. Kelsey \& Co., of Meriden, Conn. The advertisement of this firm will be found in our advertising columns.

Composition for Covering Boilers and Steam

 Piping.The process has been employed for some time with great success for preventing the loss of heat from steam pipes, domes of generators, cylinders of steam engines, etc. It consists in covering the same with a mixture of sawdust (no matter from what wood) and ordinary flour paste in a very liquid state. The sawdust being added to make a thick paste, and applied according to the following direc tions, will form a compact mass, the adherence of which is very great when applied on clean surfaces of wrought or cast iron; but on copper pipes it is more difficult to apply the first coat: in which case it is necessary to wash the copper pipe to be covered with a clay wash made with potter's clay until it forms a thin coating, after which the sawdust and paste will adhere firmly. It is very simple to ap ply; any ordinary mason with a small trowel is al that is necessary. Lay on five successive coats one fifth of an inch thick, each layer making, whe finished, one inch thick. Let the pipes or other ob jects to be covered be kept warm by the aid of a little steam, and let one coat be perfectly dry before applying a second. Should the pipes be out side, exposed to the open air, give them three or fou coats of coal tar to make them waterproof, but if inside a building it is not necessary. It is well to inside build it well to the coarse fragments of wood which are always to be found among sawdust. There is no contraction in drying the composition, therefore no leakage. Steam pipes so covered, the correspondent believes, lose less heat than when covered by any other pat ented process sold for that purpose. It is much les expensive, and much more efficient. The sawdust is to be found in most factories, scarcely of any value. With 1 cwt. of flour (about $\$ 3.75$ worth), he says he can cover as much surface as formerly with $\$ 200$ worth of the composi tion he was then using, which cost him at the rate of 75 cents or $\$ 1$ per cwt. Its lightness renders it still more valu able for such purposes. There is very little expansion or contraction in the pipes, being well protected; therefore no leaky joints.-Textile Manufacturer.

A NEW AXE.

Mr. John O. Rollins; of T'ruckee, Cal., has patented through the Scientific American Patent Agency an improved axe, hav ing detachable bits that may be readily interchanged and se curely attached, so as to admit the use of one axe with hick or thin bits, for different purposes, and the replacing f dull bits by sharp ones.
The body, A, may be made of cast iron if desired, which admits of cheaper manufacture. The ends of the body ar provided with tapering grooves, or with beveled edges, to which the corresponding beveled bits are fitted, both meth ods being shown in the illustration. The middle part of the axe body is centrally recessed back of or extended beyond the slightly inclined side parts, the bits being in the same man ner made with a central extension or recess, so as to be con ected to the axe, and thereby protected against lateral dis

placement. When the bits are placed in position, they are ocked against displacement in the longitudinal direction of the axe by rivets, C , of soft metal, that are driven in tightly to retain the bits securely on the axe. The rivets may be easily removed by a steel punch for the purpose of replacing ull or broken bits, or inserting bits of different size for dif erent vork, as required.

Spurious Flowers of Sulphur

Mr. Hanks recently exhibited to the San Francisco Microscopical Society specimens of the spurious and the genuine flowers of sulphur for comparison. The real article is obtained by subliming sulphur; and except that there is with it usually a little sulphurous acid, the product is almost chemically pure. But a great deal of what is sold as the sublimate now turns out, under the microscupe, to be merely crude brimstone, ground to a powder. Instead of '"flowers" it should be called flour of sulphur. The spurious article contains many impurities.

Commaniratan

Our Washington correspondence

To the Editor of the Scientific American:
Since my last, there have been several changes in the examining corps of the Patent Office. Dr. Jayne has been removed from the class of "metal working" to that of "agricultural products," to fill the position made vacant by the reduction of Mr. Connolly to first assistant, and Dr. Jayne's old place is filled by Mr. Church, who was formerly law clerk. Mr. Tasker, who had charge of the class of "woodworking," has resigned, and Mr. Bartlett has taken his posi-" tion. This left the classes of " navigation" and " firearms" without a head; and Dr. Antisell, who many years since had charge of the class of "chemistry," but resigned during the war, has been appointed to fill this place. It is sard that Dr. Antisell, in addition to the class of firearms, is to examine patent medicines, which is considered by some as rather a curious combination; but others are of opinion that the two classes will go very well together, as many of the medicines are thought to be as dangerous as the firearms, and as a parallel instance to this cite the sub-classes in charge of Dr. Wilkinson, who not only has "surgical instruments" to kill people with, but "coffins" to bury them.
In continuation of the system of surveys carried on by the government, the Wheeler expedition is about to take the field for 1877. It will be divided into three sections, one of which, to be known as the Coloradosection, will rendezvous at Fort Lyon, Colorado, on the Arkansas river; a second one, the Utah section, at Ogden, Utah; and a third at Carson City, Nevada, to be called the California section. There will be six regularly organized parties prosecuting systematic surveys, the work of each one of which will finally appear in a complete atlas sheet. An additional base-measuring and triangulation party will operate in connection with the Utah section, and another special party will survey certain points in the Sierras, south of Lake Tahoe, a most interesting section in a topographical view. A distinct party will continue the survey of the Washoe mining district, while a special observer will prosecute underground inquiries relating to the disposition of bodies of ore; temperature at different levels; presence or absence of water and its temperature; the treatment of ores; and the ventilation of mines.
The official returns to the Bureau of Statistics show that, during the last month, the exports of fresh beef from the United States were $8,416,829 \mathrm{lbs}$., of a value of $\$ 821,431$, and that 169,043 lbs. of mutton, valued at $\$ 17,648$, were exported from New York alone. During the four months ending March 31,1877 , over $2,000,000 \mathrm{lbs}$. fresh beef and $339,002 \mathrm{lbs}$. of mutton produced in Canada were exported from Portland to England. That we may not lose this addition to our exports, nor be deprived of our own supply of this food, the State Department has addressed a communication to our consular officers in Europe calling for all the information that can be obtained in reference to the foot and mouth disease and rinderpest, and whether these diseases are likely to be communicated by the importation of dried and salted hides.
An official notification has been received by the State Department from the Chinese Government, that it has opened to American trade four more ports, namely, Tchang, Wuhu, Wenchow, and Pakhoi.
The same department has received information that the emigration from Hamburg, Bremen, and Stettin, during 1876, was 50,577 , all of which, except about 5,000 , sailed for this country. This, however, is a falling off from last year of about 6,000 , which is attributed to the hard times.
The bids for supplying postal cards for the next four years have just been opened, There were twenty bidders, and the bids ranged from $69 \frac{56}{100}$ cents to $\$ 1.15 \frac{3}{4}$ forsingle tinted cards, and from $73 \frac{43}{100}$ cents to $\$ 1.25$ per thousand for double tints Phototype Company of your city. The price paid the present contractors is $\$ 1.39 \frac{7}{8}$ per thousand, and their bid for the ent contractors is $\$ 1.39_{8}^{7}$ per thousand, and their bid for the
next four years was 75 cents. It is estimated that over one next four years was 75 cents. It is estimated that over one
billion cards will be required during the ensuing term, which will take 3,125 tons of cardboard, and if spread out would cover 250 acres of ground. The difference between the prices on the two contracts on the whole number of cards required will amount to $\$ 701,900$.
Washington, D. C.
Occasional.

Compressed Air vs. S f the Scientific American:
 To the Editor of the Scientific Arrican:

In a recent number of the Iron Age, it is stated that air compressors, now at work in some of our Western mines, yield ninety per cent of the compressing power. In other words, a one hundred horse power steam engine compresses sufficient air to run a ninety horse power air engine. If this is so, it would seem that a system of locomotives might be worked quite as cheaply with compressed air as with steam; for the reason that a stationary engine has at least from ten to twenty per cent the advantage of a locomotive in the consumption of fuel, owing to the great radiation to which a locomotive is exposed. The air locomotive has also another important economic advantage in its less costly and more durable air tank, as compared with a locomotive boiler.
A plain cylinder of boiler plate with hemispherical ends is a very simple affair, requiring no staying, and containing about three times the capacity of a locomotive boiler of equal weight and strength. A single charge of compressed air in such a tank, at a pressure of 250 to 300 lbs. to a square
inch, would probably run a car load of passengers several miles on a level line. To present the case in a practical for instance, locate a one hundred horse power air com pressor and an ample reservoir at a central position between the termini of their line. The reservoir may consist of a number of cylindrical tanks with hemispherical ends, 4 feet in diameter and 40 to 50 feet long, made of the best boiler plate, so as to be perfectly safe and tight at a pressure of 300 lbs. to the square inch. Let the tanks be so placed that every part of their external surface may be easily got at for an occasional coat of paint to prevent corrosion. The expense for current repairs and for fuel for such an apparatus would be very light, it would seem, as compared with that of their present system of locomotive boilers. If the length of their line or other exigency şould require the locomotive tanks to be charged at other than the central point, a three inch pipe may be laid from the central reservoir to any other point of the line desired for that purpose. The valve gear of the locomotives should be so arranged that the cylinders may be used as compressors when making stops and when going down grade.
I can see no reason why the air locomotive, in connection with the elevated railway, shall not eventually give us the most desirable and perfect system of city transit possible. No other system embraces so many excellent features as this, especially for passenger transit, namely, pure air and sunlight and a fine outlook, freedom from mud and snow, and non-interference with other travel. The reader will find an interesting and finely illustrated article upon air locomotion in the Scientific American Supplement of Januar 1, 1876.

Worcester, Mass.
F. G. Woodward.

The Flight of Birds.

To the Editor of the Scientific American:
In regard to the flight of birds, I think that there is no necessity to resort to such theories as the figure of 8 motion to understand how a bird flies when it beats the air with its wings. I think that the formation of the feathers, and their imbrication in the wing, ought at once explain that kind of flight. When the bird makes the down stroke, the wing of fers a solid resistance to the air, and the motion imparted to the body of the bird must be upward. The wing must then be raised to come into position for another stroke. In so doing, each feather lets the wind pass through in an oblique manner, which causes them to act as sails on a windmill or on a ship, thereby propelling the bird forward. The bird instinctively knows how to direct these strokes, as it wishes to ascend, descend, or move straight forward. The effect of the down stroke can be seen when a large bird such as a turkey buzzard begins to fly in a place where there is not
room for rapid headway. Each down stroke is more violent than the up one, and the body is jerked up each time.
A flying machine might be made so that the wings would have a sufficient resistance to the air to keep it up, and the propelling part could be arranged independently. But there is another mode of flight that has puzzled the minds of men. It is a remarkable thing that man has seen beyond the Milky Way, and is now studying the constituents of the sun, yet he cannot understand the sailing of birds. I have seen many attempts, but they all fall short of the mark. I have seen buzzards with outstretched wings rise in a spiral course when it was so calm that a leaf on a tree was not moved. I
have seen the frigate bird wheel in graceful curves upward when the sea was as smooth as a mirror. I have seen the buzzard sail nearly in the eye of a strong wind without any
other motion being perceptible than a little balancing. I have looked down hundreds of feet on them as they sailed beneath me, and never could detect any motion of the wings. The theory of inclined planes will not explain it. I have also noticed large butterflies float about in a most heavenlike enjoyment, in some cozy opening among trees, on a fine summer evening, when there was not a breath of air, with out once moving their wings, as if they were some disembodied spirits that had neither attraction or gravitation, bu only will. I have seen a motion very similar to the sailing of birds in fishes. I saw a number of porpoises sailing im mediately in front of the prow of the steamer. They were packed quite close together, and moved exactly as fast as the steamer. As it was necessary that they should breathe to come to the surface. Sometimes half the fish would be out of the water, yet the uniform motion was kept up, and out of the water, yet the uniform motion was kept up, and
no one on board could detect any motions of fins or body to no one on board could detect any motions of fins or body to
warrant such speed. There are other modes of flight such as by bats and insects, the dragon fly as an instance; but the sailing of birds is a most interesting study for philosophers, and it will be safe to say that man will never be able to put
it in practice. But the knowledge may come in play in exit in practice. But the knowledge may come in play in ex Hagerstown, Md.

John H. Heyser.

Reclamation of the Sahara.

To the Editor of the Scientific American:
Your article, in the Scientific American of May 12, entitled "Lands below the Ocean Level," presents a statistical
discussion of present and future results of converting the great Sahara Desert into an inland sea, by connecting it with the ocean. The conclusion that the expiration of 100 years
would be sufficient to convert the great desert of sand into a desert of salt is doubtless correct, on the supposition of
that of the German Rhine. But the construction of such channel is practically impossible. A channel conveying, say, ten times the volume of the Rhine might, however, be possible; and from it entirely different results would probably ensue. The quantity of water delivered by such a channel would cover $\frac{10}{525}$ of the area of the desert, or about 76,000 quare miles. Almost immediately upon the admission of vater to the arid plain climatic changes would ensue, reducing he temperature and the rate of evaporation. As the forma ion of the new sea progressed, its surface and shores would become the recipients of the gentle shower and the driving storm. These causes would continue to operate with in creasing force as the sea augmented in size. If we suppose evaporation to be reduced onefourth by the new conditions, and that another fourth is returned by rainfall, it will follow that a body of water would ultimately result, having an area of $152 ; 000$ square miles-that is, the area will have been doubled from these two causes-ian area one half larger than that of the Caspian Sea. The presence of such an enormous body of water in the Great Desert would, we may well con ceive, establish a tributary river system of its own and main tain an independent meteorological area of vast extent. Tak ing 15 feet as the annual evaporation (since we have supposed it to be diminished one fourth), and allowing 2 feet rainfal vearly as sufficient to insure productiveness of the surround ng desert, we shall have an area $7 \frac{1}{2}$ times that of this new sea, or $1,160,000$ square miles of reclaimed territory, to say nothing of the incidental benefits accruing to Morocco Algeria, and Tripoli, and possibly to Egypt and Nubia also As to the stability of the new condition of things, no pres nt fear need be entertained. For, since 525 times the flow of the Rhine would require 100 years in which to fill th great Sahara with a deposit of salt, the proposed 10-Rhine channel would occupy 5,250 years in accomplishing the same end. Indeed, it is doubtful if a much longer period would ccomplish it. For it must not be forgotten that a sea fauna and flora would be developed, capable of converting a very large amount of salt into organic compounds, thereby elimi nating it. Moreover, the consumption by humanity and the urrounding animal life would effect a not insignificant post ponement of the supposed final result
Platte City, Mo.
R. T. Ellifrit.

A Fira Escape Invention Wanted

To the Editor of the Scientific American
Cannot some ingenious Yankee invent a wire bed bottom that will form a spring bottom when on the bed, and which an, when necessary, be unfolded to form a ladder of any required length, say for one, two, three, or four stories of a house? It would be of little use unless it was so simple as to require no skill to operate it; and it should have one end attached to the bedstead, so that the occupant could throw ff the bed clothes, throw the wire ladder out of the window, and go to the ground.
Beaver Falls, Pa.
J. E. Emerson.

Sheep Farming in California

It is estimated that from one half to two thirds of the sheep in the State have perished from starvation. The loss of cattle is not so large, as they were taken to the mountains in time. Dr. Swain, of Watsonville, recently started for the mountains from Fresno, with over three thousand sheep, and the lifeless carcasses of over twenty-five hundred of them now mark the route taken. The doctor says that unclaimed dead and dying sheep cover the plains, and hundreds of sheep and lambs fall into line behind the wagon of the traveler, and follow, in the hope of getting a morsel of hay. One man from the San Joaquin Valley lost every sheep he hadeleven thousand-during a storm, and went home a penniless man. Another, an Italian, thought he could save the cost of ferrying his sheep across the Tuolumne River by swimming them, and eight hundred were drowned in the attempt. Another man east of Visalia, despairing of ever getting his sheep to where there was feed, turned twelve thousand out to starve. If he undertook to drive them to the mountains many of them must die of starvation before reaching here, because there is no feed on the way; and then, when the mountains are reached, all the good feed is already takcn up by men who hold possession, shot gun in hand, and who are desperate enough to fight to the death. There will probably be a good many cases of bloodshed and death in the mountains this summer, and many stock men will mysteriously disappear to return no more.-Watsonville (Cal.) Tranescript.

Patent Office Publications in England.
The English patent office authorities have determincd 10 discontinue the publication of the abridgments of specifica tions, in many senses, the English Mechanic thinks, the mos valuable productions of the office. Having introduced : "cheap and nasty" style of printing specifications and drawings, they are anxious to save a few more pounds to add to their clear income of $\$ 500,000$ per year. To remedy the difficulty pointed out by the judges, namely, the impor. sibility of deciphering the drawings now produced, fuil sized copies will now be supplied.

Laying Water Pipes.
When water pipes are laid at an inclination either abover below the horizon, a correction will have to be made in (timating the supply, by adding or deducting $\frac{1}{100}$ of an ip to or from the initial pressure for every foot of fall or risc

PRACTICAL MECHANISM.
 by Joshua rose.
 New Series-No. XXVII.

pattern making.-Gear wheels.
We now approach a class of work in which the fullest amount of care and attention on the part of the pattern maker, for the attainment of accuracy, is exceedingly desirable. Patterns for wheel work, clumsily constructed, may be positively worthless, or may at least give rise to great loss of time in the fitting shop, in correcting the defects in the castings taken from them. It is not our purpose to enter into the various methods of arriving at the proper form or curvature that is to be given to the teeth, as that is a subject quite extensive and a study in itself. What more particularly concerns us is the general construction of the patterns from designs furnished.
Gear wheels are of two kinds, spur and bevel, the former for transmitting motion when the shafts are parallel, and the latter to be used when the shafts are inclined to each other. When the teeth of a bevel wheel are inclined at an angle of 45° with the axis, that wheel is called a miter. Skew bevels are wheels suitable for shafts that are inclined to each other and are not in the same plane. Pinion is a distinctive term, applied to the smaller of a pair of gear wheels when there is a great disparity between them; or it may mean generally a small gear wheel.

Fig. 200 is a plan and section of the pattern of a spur Fig. 200 is a plan and section of the pattern of a spur The plan exhibits the form of the teeth and pitch, with the size and number of arms. The sectional view shows the breadth of face, depth of hub, and ribs on the arms. In the construction of gear wheel and pinion patterns, the particular method to be adopted, as also the material to be used, will depend upon size and the service expected to be got out of the patterns. Mahogany, dry and straight grained, is an excel lent material for wheel patterns; but for large work it is too costly. In some cases the teeth are worked in mahogany, and fixed to a pine body; in the majority of cases, however, pine is the only material used. The pinion may be carved out of one piece, or it may have the teeth attached to a hub; and if the latter, then the teeth may be held by dovetails, or they may be simply glued or nailed. If the pinion is so deep in proportion to its diameter as to be strong enough, and not more than 5 or 6 inches diameter over all, it may be cut from the solid; in this case, the grain of the wood must lie in the direction of the teeth. For turning the piece, we must use a chuck or face plate smaller than the pinion is at the bottom of the spaces, so as to be able to trace circles on both sides by the motion of the lathe; if such a face plate is not at our disposal, we may bore a hole in the piece to be turned, and fit to it an arbor of hard wood. Having turned the pattern, trace upon it very fine circles to indicate the pitch line, the line for the roots of the teeth, and (if required) circles for the centers used in tracing certain peculiar forms of teeth. All these circles are to be traced on both sides of the pattern, and draft is to be allowed by making the circle the other, and also by turning the piece slightly taper. The pinion is now to be pitched out, on one side, very accurately; this is sometimes a matter of no small difficulty, for, having passed round with the compasses a few times, the points are liable to slide into previous impressions, giving rise to error. For this reason the pattern maker does not allow the points of his compasses to fall where he intends the center of the teeth to be, until he has obtained the correct
division, which is known by the compass point, after having
made the tour of the circle, falling exactly into the starting point. He now proceeds to lay down the centers of the teeth, and to delineate their size and form; then, by squaring across the face, the points of the teeth are transferred to th other side; the teeth are then outlined on that side and the intervening spaces cut away exactly to the lines.
For a large-sized pinion, the usual method is to build up a hub or body with quadrants breaking joint at each course or layer; the body is then turned, and the circumference pitched off to the required number of teeth. Blocks of hard or soft wood, planed nearly to the size of the teeth and hollowed on the side that goes next the body, are to be glued on and set to the lines made on the surface of the body when it was pitched off (see tooth marked A, lFig. 200). When the glue has properly set, the whole is replaced in the lathe, and turned off, the same as for a solid pinion; the lining-in will also be a repetition of the process above explained. Another method is to fix the teeth on dovetails, as at B, Fig. 200 ; but as this is very seldom adopted for spur pinions, it will be more in place to describe it when dealing with beve gear.
We now proceed to the construction of the wheel, which in our illustration has six spokes or arms, marked S; the rim, R , must of course be built up in segments; and when we have reached to the height of the top of the flat arms, we should turn the inside to the finished size, and cut in the arms, as shown in Fig. 200, the rest of the building can then be proceeded with. To avoid here useless repetition as to the details observed in building or in preparing the arms, the reader is referred to the Scientific American of January 20, 1877. Having turned the body of the wheel both inside and out, we proceed to attach, on each side of the arms, a hub, so as to form the whole hub as in Fig. 200; the ribs, C, are then fitted, and lastly we complete the body by filleting the corners. For the teeth there is but one method that is usual ly adopted, and that is to form them in a box as follows: Plane a piece of hard wood, as in Fig. 201, some five or six

inches longer than the teeth, and about three inches wider the thickness is not to be less than that of the tooth at it thickest part. The ends of this piece must also be planed from the edge, B C, gauge the line, A D, the required depth of tooth. Lay off, about in the center of the piece, the distance, B C, equal to breadth of face of the wheel, and make two saw cuts, B A and C D, Let this piece be now let into a piece of planed board, Fig. 202, which is an inch or so longer than the radius of the wheel at the tops of the teeth This piece is to fit tightly in to the mortise, which is made equally on each side of a cen ter line on the board. Take now in a trammel the radius of the wheel at the top of the teeth, and mark off, from the outer edge of the hard wood box, the distance, E F on the center line of the board. The point, F, repre sents the center of the whec Take the radius of the whee at the pitch line, and also at the roots and points of the teeth; and with these dis tances describe the arcs, E G H I, J K, and such other arcs as may be necessary, on which to take the centers for describing the correct form of the tooth. Complete the delineation of three teeth, or a least the center one, which will be upon the hard wood box; reverse now this box, and draw the outline of the tooth upon the other end of it; remove the piece from the mortise, and plane off to the shape of the tooth as drawn remove the portion, B A D C and the box is ready for shaping teeth in. Such teeth during the process are held

Select for the teeth lumber very straight in the grain, and rip off a number of strips about two or two and a half fee long, of a width and thickness, when planed, slightly fuller than the required teeth, and hollow one edge to fit the curva ure of the rim of the wheel. Saw the strips into pieces trifle longer than the teeth, and plane the ends so that, when finished, the length of the pieces is exactly equal to the breadth of the rim; this latter process is most rapidly per formed by placing some eight or ten side by side in a frame, and, if necessary, tightening them by a wedge and nipping in the vise (see Fig. 203). The frame must be equal in width to the length it is required to make the pieces, and caremust
be taken not to diminish this width, as is sometimes done In planing a number of teeth, it perhaps is as well to black lead the frame where it is apt to be planed; this will at least

Fig. 203.

show when damage has been done. The blocks are now severally shaped to the proper contour in the box, Fig. 201 particular attention being paid not to shave away the box in shaping the teeth; for this reason it is well to have an extra plane, very finely set, to finish with. The rim of the wheel having been divided according to the number of teeth re quired, and lines squared across its face, at a, Fig. 204, the finished teeth are glued on ex-
ctly to the lines. Only a few spots of glue should be applied, so that little or none may exude and hide the line that we pose the teeth by; when the glue has perfectly set, the teeth should be additionally secured by nails. If the above processes are followed up with proper care the teeth will all be found evenly set will and the whee ; enerly set it is only right to verify their it is only right to verify their position with a pair of callipers while the glue is yet soft
Very large wheels, or even those of moderate size when difficulties of transportation are anticipated, are made by bolting together a number of sections. A section usually consists of an arm and two equal portions of the rim, one on each side of it, so as to have a joint midway between each pair of arms. However, this may be one thing that must be observed, namely, to have the joints always in the center of spaces; therefore it is sometimes necessary to employ
 unequal segments or sections, in which case the pattern is made to the longer segment and when these are cast, the flange is moved to suit the shorter one, and the superfluous teeth are stopped off in the sand. This saves cutting the pattern, which remains good for other wheels when required. The extremities of the arms, which are to be screwed to the hub, are provided with flange for this purpose, the hub being flattened to accommodate them. A great deal of nicety is required in constructing wheels on this principle, as the spaces between the teeth at the joints must be neither wider nor narrower than at other parts.

Killed by Lightning.

Recently, during a severe lightning and thunder storm, at Newberne, N. C., three young persons, Isaac Richardson aged 20, Eliza Collins, 20, and Laura Williams, 19, were struck by a heavy discharge of electricity, and instantly killed. Richardson was escorting the two girls, arm in arm from church to their homes; and as they neared Queen street a gentleman, who was but a few feet behind, saw them fal as the flash struck them. The coroner found the lifeless bodies lying side by side, with arms still locked. At the time of the accideut they were walking under a steel-handled umbrella, which was found lying upon the ground near the bodies (the cover partially burned), and which, undoubtedly, was what attracted the electric discharge.

strange Electric Phenomena.

The city was interested, last evening, by the appearance on \mathbf{C} street of a strange phenomenon. At first it had the appearance of sparks of fire coming up through the pools of water beside the street. These sparks seemed to explode on reaching the surface, in many instances producing re ports loud enough to be heard across the street, and being accompanied by a little cloud of smoke, and emitting a de cidedly sulphurous smell. It was noticed that the phenom ena occurred only on one side, under the telegraph wires. The sparks seemed to be caused by drops of water falling from the wires of the telegraph, which exploded when strik ing the pools of water. This solution was seemingly confirmed by the fact that when the wires became dry the phenomena ceased. It still remains to be explained, however, why, under the circumstances, such results should follow the falling of the water drops from the wires.- Virginia City Enterprise.

IMPROVED RAILROAD JOINT AND NUT LOCK

 We illustrate herewith a novel railroad joint and nut lock The object of the device is to support the ends of the rail, keeping them from spreading or turning over, and at the same time furnishing abundant material opposite the joint to compensate for separation of the rails. As the appliance is made to fit closely, two bolts are done away with. The inventor states that the joint would be safe without any bolts on the same section of rail. The nut lock provided is cheap and simple, and may be either a wooden or iron key, or a spring, placed as described further on.The shape of the device is clearly shown in Fig. 1. As the sectional view, Fig. 2, indicates, it is especially well adapted to the old pear-head rail, a form which has gone almost entirely out of use from the fact of its being too low to admit of fis' plates and bolts, as commonly employed. The inventor considers that there is no better shaped rail than this, both for durability and strength; and he claims that, in connection with the joint here described, the pear-head rail will be as smooth to ride over as any of the fished rails. The engraving shows that the pear-head rail, being nearly an inch lower tnan the ordinary T rail, the leverage will be much less. The inventor further adds that a mile and a half of track, provided with his joint, has been laid, and that the riding thereon is exceptionally smooth. It is not deemed necessary to minutely describe the form of the invention, as it is plainly apparent from the engravings. It is moulded and matched to the rail. It requires no spikes in the flange of the rail, which, with the ordinary fish joint, are very necessary to keep the rail from creeping. In this way the full strength of the flange is retained. The nuts are locked by driving under them a wooden or iron key, as shown at A, Fig. 1, the same fitting down into a channel in the brace, or by adapting a steel bent spring, as shown at B. This device is applicable to ordinary fish joints by having a small projection rolled on the outside plate to hold wooden plugs or keys.
Patents for both brace and nut lock pending through the Scientific American Patent Agency. For further particu-

lars, address the inventor, Mr. T. J. Nicholl, chief engineer, Gilman, Clinton, and Springfield Railroad, Springfield, Ill.

The Telephone

New facts are discovered in the practical use of Professor Bell's speaking telephone much faster than theories can be framed to meet them. At present he uses only permanent magnets in operating the instrument; there is no battery used at all to give the current, it being obtained solely from ordinary and not very large horseshoe magnets wrapped with fine wire near each of the poles. Strangely enough, the magnets work equally well, no matter which pole of either magnet faces the other in the circuit. Instead of the usual arrangement of poles,,+-+- , these may be placed -+ . +- , and yet serve the purpose of the telephone completely. Great electrical resistance, such as that caused by the interposition of 16 persons holding each others' hands as part of the circuit, interferes little with transmission. As the resistance is in such a case nearly twenty times that of the Atlantic cable, there seems to be reason for the hope that the sound of the human voice may be readily transmitted between Europe and America. The Bell telephone is strangely oblivious to some kinds of defective conduction and sensitive to others. Thus wet weather, which interferes with ordinary telegraphy, has no perceptible effect on the telephone; but imperfect joints uniting the lengths of wire are grave impediment to the working of the new instrument. Three curious sounds are heard in the telephone when used with the ordinary wires between cities; these sounds are fainter than those which the instrument specially transmits, and make a sort of undertone of sound. The most distinct of the three is the ticking of Morse signals and the like. These can sometimes be distinguished as the signals of separate letters and words, but in general they are confusing by their number. They are produced by the vibrations of the telegraph poles from all the other wires that may be fastened to the poles that carry the telephone wire. There is a low crackling sound which is believed to be produced by the rubbing of imperfect or rusty joints of the telegraph wire. There is also a faint, continuous, bubbling sound, for which no satisfactory explanation has yet been offered. The

Mechanics' Institute of San Francisco sent a gentleman to Professor Bell to induce the latter to apply the telephone in mines, so as to give prompt and complete communication throughout the mine and with the surface. The ordinary telegraph does not at present work well in the majority of mines, for various reasons. But to that, and many similar applications for the use of the telephone, though backed by most liberal offers, Professor Bell has invariably replied that he has not yet finished his experiments nor ascertained all the conditions necessary to the faithful service of the instru ment. Nevertheless, he has one in constant use, connecting

Fig. 1

NICHOLL'S RAILROAD JOINT AND NUT LOCK.
ried upwards by the roller; and as the arm clamps the drill rod on being raised, it carries the latter with it, compressing the spring, and at the same time turning the rod through a part of a revolution. When the roller comes directly ove the shaft, the arm is released, and the drill rod and arm fal ogether. As the ring of the arm strikes the block, C, the drill rod is entirely released, and is thus allowed to make full blow upon the rock, the effect of which is increased by the expansion of the spring. Each time that the drill is raised, it is automatically turned, so that its cutting edge is constantly being shifted to new points in the rock.

Patented May 1, 1877, through the Sci entific American Patent Agency. For fur ther particulars, address the inventor, Mr A. J. Mershon, Warsaw, Ind.

California Timber

The sugar pine of California occupies the same place that white pine or cork pine does here, and is about equal to it as fin ishing lumber. It is used almost exclu sively for sash, doors, and inside blinds. For all uses where a soft, white, straigh grain is required, there is no wood on the slope equal to it. 'The heart is durable for shingles, crossties, and the like. Shingle made from heart sugar pine are free from some of the objections attaching to those made from redwood.
Yellow pine is used in the place of the sugar for some purposes; it has a soft white and even grain, but works harder and is a firmer wood. Much of it re sembles sugar pine so closely as to be barely distinguishable. Some of it is a handsome as many of the ornamenta woods. For building lumber and fencing
the workshop of some makers of electrical instruments with his own laboratory, and "chin-music" travels over the

MERSHON'S IMPROVED ROCK DRILL

In the accompanying engraving is represented a novel method of operating rock drills, enabling the same to be driven more rapidly and with greater facility than is possible with the usual sledge hammers. It also saves the labor of the man ordinarily required to hold the drill upright. The mechanism consists in a strong frame, through boxes in the cross beams of which the drill slides. One end of a short shaft is journaled into the frame, and the other in brackets. Upon the inner end of the shaft is a disk, A, in which there is an arc-shaped slot. In the slot is journaled a roller, which is concave in the direction of its length. B is an arm that projects from a ring which encircles the drill, and passes through the slot in disk, A. The brackets that support the through the slot in disk, A. The brackets that support the
inner end of the shaft are of such size as to come wholly inner end of the shaft are of such size as to come wholly
within the slot, so as to allow of the rotary motion of the arm. A block, C, is secured to the lower cross timber to re ceive the ring of the arm, B , at the lower portion of its stroke. The drill point is enlarged and made V-shaped, so that the sharp edges of the V trim the sides of the hole. A spiral spring surrounds the drill bar, and is suspended directly under the upper crosspiece. This spring is compressed by the fixed collar, D on the bar when the latter is raised.

The disk shaft is turned by an ordinary crank, or it may be connected with any convenient motor. The mode of opera-
tion is as follows: As the disk is rotated, the arm, B, is car-
it is preferred to sugar pine.
Spruce, which is sometimes called red fir, is a strong tim ber adapted for joists and scantling, and all work requiring strength and durability. It stands exposure to the earth and weather very well and resembles Puget Sound lumber quit closely; it makes good plank for sidewalks, platforms, ship closely; it makes good plank for sidewalks, plat
plank, car floors and frames, and similar work.
The fir is a white, close-grained wood, free from pitch or odor, useful for ceiling, scantling, and wainscoting, and makes good box lumber.-Northwoestern Lumberman.

A NEW FUMIGATOR.

Mr. George T. Blanchard, of Plymouth, Me., has patented hrough the Scientific American Patent Agency, April 24,

1877, the improved fumigator herewith illustrated, which is mainly designed for use in killing lice and ticks on sheep and other animals, and also in destroying insects that infest shrubs and plants.
A is a bellows of ordinary construction, having the valve $a b$. B is a chamber containing a central perforated tube, C, in the bottom of which is placed a perforated grate, c which is supported by the curved strips, d. A pipe, D , con nects the lower end of the tube, C, and the bellows, A. The upper end of the tube, C, extends above the top of the chamber, B, and is stopped by a cork, e. An aperture is made in the bottom of the chamber, B, which is closed by cork, f. A nipple, E, projects from the side of the chamber B , for receiving the flexible tube, F , which terminates in the nozzle.

The manner of using the fumigator is as follows: A burning coal is placed on the grate, c, and the tube, C , is wholly or partly filled with fumigating material, such as tobacco or sulphur, and is stopped by the cork, e. The bellows is worked, and the smoke issues through the perforations of the tube, C , into the chamber, B , where it is cooled, and whence it passes, through the flexible tube and the nozzle, to attack the insects.
Ashes and dust that accumulate in the chamber, B, may be blown out through the aperture in the bottom by remov ing the cork, f, and working the bellows.

Foresite.

A new silicious mineral, found at San Cero, in Italy, has received the name of foresite in honor of the mineralogist Rafael Fores. It occurs in granite, along with tourmaline felspar, stilbite, and desmin, and crystallizes like the latter Its composition is as follows: Silica, 49.96 per cent; alumina $27 \cdot 40$; lime, $5 \cdot 47$; magnesia, 0.40 ; potash, 0.77 ; soda, 1.38 ; water, $15 \cdot 07$.

A SNAKE-EATING FROG

Mr. C. F. Seiss, of Philadelphia, Pa., writes as follows "It is a well known fact that many serpents subsist almost entirely upon frogs, but I never knew of frogs attempting to devour their common enemy, the snake, until I my self witnessed it. Last autumn I had in my vivarium a fe male shad frog (rana halecina, Kalm), a young bullfrog (rana Catesbiana, Shaw), and also two male marsh frogs (rana pal ustris, Le Conte). One morning I introduced to them a De Kay's brown snake (Storeria Dekayi, Holbrook). The bull and marsh frogs were much terrified at the appearance of the marsh frogs were much terrified at the appearance of the in corners as far removed from the snake as possible. Not so, however, with halecina. She did not, if I may use slang, ' scare worth a cent,' but looked upon the sudden appearance of the snake as a matter of course. The snake, happy at being released from the small dark box in which it had been confined, began moving about quite briskly. It at length crawled too near halecina, who with her tongue instantaneously seized it by the head, and began swallowing it with rapid gulps, until six inches of the snake had disappeared in her now distended abdomen. At this moment the snake had the appearance of an immense tongue, which the was frog slashing about most energetically. Not wishing to lose the snake, it being the most valuable of the two reptiles, I endeavored to force the frog to part with the snake, by tapping her smartly with my lead pencil. This had not, however, the desired effect, but I was forced to grasp the frog in one hand, and the snake in the other, and thus draw the snake from its unpleasant situation. The snake acted as if partially blind or bewildered after its removal, but otherwise seemed none the worse for its five minute trip around the frog's stomach. Halecina made two more attempts to swallow her fellow prisoner the snake; both times she was caught in the act and frustrated, and it is without doubt, she would at length have succeeded, had I not adopted precautionary measures. The above-mentioned snake was twelve inches in length, and the frog, from nose to vent, two and a half inches. Previously, this same frog had swallowed a live brown Triton (desmognathus fusca, Rafinesque), over three inches long. I will presume the frog mused thus: 'I will be compassionate toward you, poor Triton, and end your sorrowful longing for liberty'-and swallowed him!"

A BEAUTIFUL FERN

The Gleichenia dicarpa, which we illustrate herewith, is an exquisite fern of the natural order polypodacece. It is, we believe, a native of New Zealand; and it is a highly ornamental addition to the shrubbery and the fern house. It is of a rich, dark green color, the spores being brownish yellow. It grows well and flourishes in a peaty or loamy soil. It can be easily propagated by divisions of the roots.
Botanists recognize as many as eight sub-orders of ferns, the polypodacee being known as the true ferns. This class includes the great majority of those with which we are familiar in the wild state or under cultivation. As many as 3,000 different species of ferns have been enumerated. In the earlier geological ages, ferns formed an important part of the vegetation, as may be seen by studying the coal formations; and they are found in our days in all parts of the world. One peculiarity of the genus is that many species flourish best when secluded from the air; and for this reason the Wardian case was designed especially for their cultivation, and has become one of the most popular and beautiful of household ornaments.

Purification and Uses of Petroleum.

M. Masson, druggist, of Lyons, France, has succeeded in removing the disagreeable odor of petroleum by the following process: Into a vessel containing 225 lbs . of petroleum are separately introduced, by means of a long funnel, 2 ozs. each of sulphuric and nitric acid, and $1 \cdot 1$ lbs. of stronger alcohol are carefully poured upon the surface of the petroleum. The alcohol gradually sinks to the bottom, and when coming into contact with the acids heat is developed and some effervescence takes place, but not in proportion to the quantity of the liquids. Ethereal products of a very agreeable odor are formed, and the substances thus treated acquire an analogous odor, at the same time becoming yellowish in color. The operation lasts about an hour, after which the liquids are thoroughly agitated for some minutes with water, and after resting for eight or ten hours the purified petroleum is drawn off. The lower stratum, which is a mixture of the acids, water, and alcohol, may be used for deodorizing the heavy oils of petroleum, by agitating them well for twenty minutes, and, after twelve hours' washing the oil twice with milk of lime, to remove the free acids. It will then have the same, but a weaker odor, as the light petroleum first treated, and answers well for lubricating purposes
Petroleum thus purified may be used in pharmacy for
many purposes. All the tinctures for external use may be repared with it, like the tincture of arnica, alkanet and camphor; it may be used for dissolving ether and chloroform, like alcohol, and, combined with fats or glycerin promises to be of great utility in the treatment of skin dis ases, etc. The alcohol used in pharmacy might be replaced by this purified petroleum.-Répertoire de Pharmacie.

Woodpeckers.

N. O. says, regarding a statement that woodpeckers never N. O. sas make incisions in the bark of trees for the purpose of suck
ing the sap, that woodpeckers proper, as well as a specie

THE SNAKE-EATING FROG.

A Museum for Working Men

Mr. Ruskin has opened near Sheffield, England, a museum or working men. It is the first school established under the St. George's Company for the working men and laborers of England, to whom the Fors Clavigera is inscribed; and as soon as he had selected the site Mr. Ruskin called some of the Sheffield men together and explained to them the reason of his choice. He was well pleased with the workmen, spoke them in the most familiar and friendlystrain and re arked that he had come to learn and not to teach. Havin found they appreciated the boon he was about to confe pon them, he has sent to the museum many rare and in teresting objects. On his paying a second visit to Sheffield, several working men who had embraced the doctrine of Robert Owen were anxious to obtain an interview with him, especially as he was reputed to be of an exceedingly amiable and affable disposition, and to hear his opinion as to the feasibility of establishing a co-operative village, consisting of houses, works, din ing and lecture hall, library, etc., and sur rounded with plenty of fresh air and pure water. Out of the funds of St. George' Company he has now purchased at Abbey dale, Sheffield, a beautiful estate of thir teen acres, at a cost of altogether $\$ 11,000$ and has expressed his willingness to ac cept his co-operative friends as tenant until the annual interest they may contrib ute shall have cleared off the capital that the estate is to be known as Equality Country, that twelve families have unite in the undertaking and that all their ings will be thrown ind a all their ear re matters of is a common stock, takn a lea taken a leading part in the movement. A til anit is known that the scheme is a sue cess, the object of its promoters being sim
lled sapsuckers, tap beech, cherry, wild cherry, suga maple, and almost all smooth-barked trees. They bore holes or $\frac{3}{4}$ inch apart, horizontally, round the tree or its limbs these holes are an inch deep sometimes, as many as 50 having been seen in a row.

A Disastrous Launching.

A disaster which resulted in the killing of six men and he wounding of several others occurred during the launch of the iron steamship Saratoga, at Mr. John Roach's ship yard, in Chester, Pa. The men were engaged in knocking the blocks from under the keel of the vessel, and failed to hear the warning to come out, when the ship began to move Before they could escape, they were caught among the tim ers and terribly mangled as the vessel passed over them Mr. Roach has launched some forty ships, and hitherto without accident.

GLEICHENIA DICARPA
y to carry on the boot and shoe making trade on co-operat ing principles, in antagonism to the modern system of pro ucing, by means of machinery, cheap and nasty goods; and if in this they succeed, they may gradually increase th number of their dwellings and form the whole into a co-opera tive village. The garden produce will be simply to mee heir own requirements; but in whatever direction they ma extend their present programme, Mr. Ruskin has not been asked to furnish them with the requisite means to carry ou the movement.

Professor Bell's Talking Telephone.

A correspondent asks: "Do you think that the telephone will take the place of the telegraph now in use?" As thi question is one which a great many are now asking, we would say that we do not. It may perhaps supersede the Mors system to some extent for private lines and the like, and, possibly, may be utilized somewhat in forwarding press reports; but for regular commercial telegraph ing, it does not appear to us to possess, as it now stands any advantages. In the first place, messages would require to be taken down in short hand by the receir ng operator, and afterward copied in long hand; and we all know the liability to error, not to speak of the great delay of such a system. Then, again, while "Auld Lang Syne," " Home Sweet Home," or any thing with which we are perfectly familiar, could b very easily recognized, it is questionable if regula messages could be "telegraphed" without seriou errors occurring. It is very much like talking through he little toy " lovers' telegraph," or an ordinary speak ing tube. If great care is taken to speak slowly and distinctly, and you have an idea of what is coming, you can generally make out enough to understand what a person is talking about. But it seems to us that no body would care to trust important messages, some times involving life and death, or thousands of dollars, to being sent in this manner. We chronicled, issue be fore last, a ludicrous mistake made in just this way A reporter telegraphed over the police wires to he editor of a Brooklyn paper that he was at the luna tic asylum, where he had gone on business, and could not get back in time for the afternoon edition. Th sergeant told a policeman to step around to the news paper office and inform the editor that Koselowski(the eporter) was at the lunatic asylum. The policeman misunderstood the message, and reported to the edito hat Cardinal McCloskey was insane, and had been r moved to the lunatic asylum. It is not too much to expect that just such mistakes would constantly occu were the telephone in use for commercial telegraphy For the above reasons we do not think that telegrapher need have any fears about the telephone usurping, t any great extent, the place of the system handed down to them by Professor Morse.-The Operator.

On Dyeing with Aloes.

To prepare the coloring matter of aloes we introduce gradually 10 parts of this resin in 60 parts of nitric acid heated in a water bath. When the disengagement of gas is slackened, we evaporate the yellow solution at first in the sand bath, then in a water bath, and we re dissolve the residue in water, which precipitates the
major part of the matter; we wash it to carry off all the scapes. This series ended with the introduction of man, the nitric acid, then we dry it. The yellow, bitter matter crowning glory of all. The lecture was well received andat thus obtained is entirely soluble in water, alcohol, and ether its yield is from 66 per cent of the aloes employed. Aloes dye wool without a mordant, in shades which go up to a deep brown. We obtain mode shades very varied with mixtures of orchil and aloes; we grind up, for example, 20 parts of orchil with 1 of aloes, and we dissolve them in soda. We obtain the same varied shades by the employment of aniline colors. Λ mixture of aloes and soda ash dissolves in water with a bcautiful purple color, which gives in dyeing fast bluish grays, analogous to those which are obtained with fustic on an indigo blue ground. We dissolve $1 \frac{1}{2}$ parts of aloes in water, and we add 2 parts of soda ash; after 12 or 24 hours we dye. If before dyeing we neutralize the bath and add to it afterwards chalk, we obtain green olive shades -M. Victor Preston, in Muster Zeitung.

NEW YORK ACADEMY OF SCIENCES.

A regular monthly mecting of the section on "Geology and Mineralogy" was held at the School of Mines, on Monday evening, May 21, 1877, Dr. J. S. Newberry, President,
in the chair. Dr. Martin offered a series of resolutions in in the chair. Dr. Martin offered a series of resolutions in
regard to the scientitic use of the public parks, praying that they may be guarded from encroachment and misuse, that they be made schools for taste and scientific instruction, and that they be stoc
onomic value
Dr. Newberry exhihited a photograph of the restoration of a mammoth from siberia. It is 26 feet long, 16 fect high, and represents an animal eight times as large as an elephant. The president also showed a new fossil from the Catskills, which seems to connect our red sandstones with the old red sandstone made famous by Hugh Miller; also a plaster cast of the new crustacean found in the upper silurian and named cosarcus.
The first paper of the evening, by Mr. B. B. Chamberlin, was on
some choice minerals at the centennial,
and was illustrated by a large number of beautifully ex ecuted water-color drawings. Among the minerals referred to were the native copper and silver of Lake Superior. Drawings were shown of calcite crystals of a delicate wine color, also of stalactites and stalagmites from the lead mines of Iowa. Arizona sent a metcor weighing $1,400 \mathrm{lbs}$., and Mexico another. Among the beautiful things there were emeralds, rubics, and crystals of corundum from North Carolina. Mr. Chamberlin also spoke of the amazon stone from Pike's Peak, Cal., and exhibited beautiful drawings of this green mineral, some specimens of which have sold for $\$ 150$. He described the diamond exhibit from South Africa as excecdingly interesting, embracing both white and colored stones. In the collection sent by the School of Mines, St. Petersburgh, was a topaz 5 inches in diameter, also emerald in rock, crocoite, and other beautiful and rare minerals. In other portions of the Russian exhibit, the magnificent display of polished stones and gems, lapis lazuli, malachite, labradorite, rhodonite, etc., made a splendid display.
the evolution of the nortil american continent was the subject of a paper by Dr. J. S. Newberry. The speaker said that the oldest rocks we know are themselves formed from sediment deposited by the disintegration of still older rocks of which we have no trace, and which may have likewise been the sediment from a still earlier continent. Of this older continent, we know not where it was or what it was; we only know that it was large enough to form continent from its own ruins. Its history has been obliterated. Beginning with the old metamorphic rocks, known as the Laurentian and Huronian, which extend from Labrador to the Lakes of the Woods and as far north as the Arctic Ocean, we have the oldest known form of the American continent. Since that time it has been changing form by the formation of newer rocks. Owing to the cooling and contracting of the earth, there is a continual tendency to raise the high lands higher and depress the valleys lower; while at the same time other influences are at work, grinding off the elevations and filling up the depressions. In many places we dig or bore down to the old metamorphic shales and slates, surrounded by newer rocks. There are islands of these old slates in Texas, and the Black Hills were found by Messrs. Jenney and Newton to be an island of these old rocks very much disturbed, with the slates turned up on edge. They contain characteristic shells which connect them with the Potsdam of New York. The Pacific coast is a rock-bound shore that seems totally invulnerable; but the big rollers come in and pound away at the rocks perpetually, until the rocks are undermined and fall. Finally the rocks are pulverized and carried off to be deposited in the far distant sea. This sea has taken possession at different times of different parts of the continent. Wherever there was a depression, there has been a deposit of the remains of sea fish, spines, teeth, etc., on the bed of the sea. When the sea became shallow, another series of deposits, shells, etc., was made. Thus each period left a record of the physical con ditions and the kind of life that existed in the sea at that time.

By the aid of the magic lantern, Mr. Russell threw upon the screen a series of pictures showing the shape of the continent in the Silurian, Devonian, carboniferous, tertiary, and and other ages; also pictures of the crustaceans, fish, reptiles, birds, and mammals that existed at each of these periods, together with ingeniondy resto:cd imaininary land-
tentively listened to throughout.

What Liquor is Doing.

R. F. Mushet writes to the English press that Liquordom is killing trade, and, after mentioning the amounts spent an nually, he remarks: "Now I say to manufacturers that it is all very well to reduce wages, and to economize their processes of manufacture, but unless they unite manfully, and put down the liquor fiend, he will crush them all. Besides the nine hundred and forty millions actually paid in the past itself years, the effect of swallowing the Satanic solution the days' works lost the last seven years were reckoned up, the amount of wages thus sacrificed would appear incredible. If manufacturers were to unite, as one body, and refuse to employ any man or woman who frequented drink shops, and would set the example hy themselves abstaining, prosperity would soon return; for a sober England could compete successfully against all other na tions."

We are most forcibly reminded of the truth of all this by an item in the Labor Tribune of Pittsburgh, which gives an account of the number of drinking shops in Allegheny City the editor procceds to use the stirring words: "When wil men rise above this serfdom to a soul-enslaving appetite? Reform is impossible while saloons abound. Good wages camot be long preserved where men encourage such vices. The working classes will be compelled sooner or later to acknowledge that abstinence must be practised before there can be any permanent amelioration in their condition." Coal Trade Journal.

Paper Calender Rolls.

Paper calender rolls are almost as hard as iron, but are used in preference to iron because, while they will preserve their roundness, truth, and smoothness, they possess a certain amount of elasticity, and are therefore less liable to damage from the strain due to any foreign substance passing through them. The method of fixing the paper to the rolls is as follows: Disks of thin common brown paper, of a diam eter large enough to turn up to the required diameter of roll and with a hole in the center of each large enough for them to pass frecly over the roller shaft, are first cut out; then a number of similar disks, with the central hole made about four or six inches larger, are made. In putting these disks upon roll shaft, four having the smaller holes are put on, and then one with the large hole, the object being to insure that the paper shall press together at and towards the outer diamete of the roll, and not bind so tightly towards the center; thus the outer part of the roll is sure to be the most compact, and therefore the most durable
To avoid bending the roll shaft by reason of any unevenness in the thickness of one side of the shect of paper from which the disks are cut, every other disk is turned halfway around when placed upon the shaft. When the shaft is filled with tthese disks, it is placed under a very powerful hydraulic press, giving a pressure of about 200 tons, which compresses the disks solid together without the aid of glue or other ad hesive substance. The disks are allowed to stand until they are compressed sufficiently to give room for additional disks, which are added in the same manner as before, the whole being again compressed. This process is continued until the intended length of the roller is filled with compound paper when the latter is fastened as follows: Upon each end of the roll shaft a recess is turned, and a flange, made in two halves, is bored, smaller than the recess referred to by the amount allowed for shrinkage. The outer diameter of the flange is then turned, larger than the recess cut in the iron disks or flanges forming the end of the roll by the amount allowed for shrinkage; which flange is made slightly smaller in diameter than the intended size of the paper roll. The two half flanges are put in place upon the recess in the shaft, and the end flange or disk is shrunk on over the diameter of the two half flanges, thus firmly locking the whole to the shaft through the medium of the recesses on the shaft. This locking de-
vice is placed on one end of the roll before the paper disks are placed in position; then, after the disks are compressed and while the roll is in the hydraulic press, the flanges or disks at the other end are shrunk on. This plan is the one generally adopted in this country, that employed in England being considered deficient in that it gives the paper oppor tunity to expand $\frac{3}{8}$ inch in the locking process. The rolls speed being but little greater than that employed to turn iron of equal diameter. The finishing is done by an emery wheel the same as for an iron roll.

Dyeing Straw

The season approaches when dyers have to take in hand articles of straw, and especially hats. As a rule, straw good should be well stecped, and then treated with alum, orchil, and extract of indigo, and yellowed with turmeric. The shades most in demand are black, brown, and gray. Black (for 25 hats): Logwood, 4 lbs. 6 ozs.; bruised galls, $17 \frac{1}{4}$ ozs. turmeric or fustic, $4 \frac{1}{4}$ ozs. Boil for two hours, and then stecp in a beck of black liquor (crude acetate of iron) at 4° or 5° B., and rinse in several waters, dry, and rub with a brush of dog's grass, to bring up the polish.
Gray.-This shade can be obtained only on very white traws. Steep in a bath of soda crystals to which a little lime water has been added, to causticise the alkali. The pur-
pose of this washing is to remove all traces of sulphur from cid, straw. For 25 hats, take: Alum, 4 lbs. 6 ozs.; tartaric digo, according to the shade cochineal and extract of indigo, according to the shade desired. By making the one
or the other of these wares predominate, we obtain a reflecor the other of these wares predominate, we obtain a reflec-
tion more bluish or reddish. A little sulphuric acid is added to the beck, to neutralize the alkalinity of the ammoniacal cochincal. The hats are boiled in the dye for about an hour, and rinsed in water slightly acidified.
Maroon (25 hats): Ground sanders, $1 \mathrm{lb}: 10$ ozs. ; turmeric, ground, 2 llbs. 3 ozs.; bruised galls, 7 ozs.; rasped logwood, $24 \frac{1}{4}$ ozs. Boil in a kettle so roomy that the hats may not be ruised. Rinse. Steep over night in black liquor at 3 B. and rinse in several waters. To produce a deeper black, return to the first beck, which is strengthened by an addition of sanders and logwood. Polish as for black.
Havana.-This shade, being a degradation of maroon, may be obtained by the same process, reducing the propor tions by one half or one third, and omitting steeping in black liquor. The hats may be soaked for a night before dyeing in 4 lbs .6 ozs. or 6 lbs 9 ozs . of alum.-Moniteur de Teinture

NEW BOOKS AND PUBLICATIONS.

Fires: their Causes, Prevention, and Extinction, combining Published for the Continental Insurance Company of New York city.
Although this work is primarily a manual of instruction for insurance
gents, and is especially intended for the employees of the above-named orporation, it embodies much that is new and valuable on the subject of areprevention. There is of course no one class in the community who underwriters, and consequently it is to them we may look for thoroughl practical suggestions, based on the best experience and not combined with
doubtful speculations. As a means of information of what is danger as likely to cause tres in workshops, factories, and buildings of all kind how much the rate of insurance risks are enhanced by the presence of such perilous material, how to prevent fires, how to deal with them, and lastly, as a full exponent of the rights and duties of both insurer and in
sured, we can cordially commend this book. It contains much that we not think has ever been published elsewhere, and it is written clearly and
not well.
Steam Injectors: their Theory and Use. From the French
of M. Leon Pochet. Price 50 cents. New York city
D. Van Nostrand, 23 Murray and 27 Warren streets. As the injector is now coming into use for other purposes than the feedno
and action; and this M Pochet has done much to supply. The mathematics of the subject are exhausted in his little treatise.
Evglish Science Lectures.-Messrs. Macmillan \& Co., of Astor
Place, New York city, are now issuing series of the lectures addressed to Place, New York city, are now issuing series of the lectures addressed to popular audiences which are delivered in London, Manchester, and othe
cities in England. We have now before us one on "the Earth's Chemistry, by J. Norman Lockyer, one on "Technical Chemistry," by Professor Roscoe, and one on "the Succession of Life on the Earth," by Professor w C. Williamson. The names of the lecturers guarantee the accuracy and Value of the information contained in the discourses; and we are glad to
find that the language employed in them is singularly clear and precise, and in every way adapted to the purposes of popular instruction.

Inventions Patented in England by Americans. From May 2 to May 7,1877 , inclusive.
rriage Light--A. H. Phillippi, Reading, Pa.
Fringing Machine.-J. B. Lincoln, Providence, R. I.
Liquoling Sugar.-O. H. Krause, Jersey City, N. J.
Pfa, eraser, mic.-S. C. Thompson. New York city.
hoto-relief Plate.-W. H. Mumler, Boston, Mass.
,
Reed Organ.-L. K. Fuller, Brattleboro', Vt.
sheet Metal Can.-L. V. Sone, New York city
Varnish, fic.-G Wolf, Philadelphia
T. W. Bracher, New York city.

decisions of the courts.

United States Circuit Court-District of Minnesota. [In equity.-Before Nelson, J-Decided Februar, 187~] The patents granted to David C. Price for improvements in portable
how and circus seats are not infringed by the use of chair seats placed how and circus seats are not infringed by the use of
pon every alternate board of the ordinary circus seats.

Davis O^{\prime} Brien Wizson, for com Palmer \& $B e l l$, for defendant.

United States Cireuit Court-Eastern District of Pennsylvania.
[In equity.-Before McKennan, C. J.-Deciled February 24, 1877.] Charles Seidler's reissued patent of October $\mathbf{~}-1.1876$, construed to em-
brace the impressment of a hard or metallic label upon either the inner or
outer face of a plug of tobacco. outer face of a plyg of tobacco.
An inventor and anpoed to describe in his patent the best mode of prac-
tising his invention, but is not neceessarily limited to the precise constructising his invention, utit is not neecessarily limited to the precise construc-
tion hown ho as ox cectude a methor differing from it only in a single
detail, but producing the same result. A reissued patent is not void simply because it contains an expanded
claim. The inadvertence on the part of the inventor in not making such
claim in his orignal patentis conclusively deternined by the Conmissioner
of Patents in inanting the reissuce. Patents in ing granting
McKennan, Cir. J.
This is a motion for an interlocutory injunction, to restrain infringenent
of the patent set up in the complainant's bill. An original patent was
 described
Ihbe discovered and suce cssfully developed in practice a means of
marking and distinguishinitg tobacco in plugs. I prepare labels, or distin-

 The invention is therefore claimed under five heads, the first and third

1. Which are:
A plug of tobacco having a hard label pressed into one of its faces, as pecified.
2. A plig of tobacco having letters or other decorative and distinguis
marks produced on a hard metallic surface, and pressed as specified. marks produced on a hard metallic surface, and pressed as specified.
These claims the repsondents are allegedto have infringen, and constru
ing them, as Ithink they must be contrued, to indicate the impressment
of a hard or metallic label upon either the inner or outer face of a plug of of acard or metalice label upon either the inner or outer face of a plug of
tobacco in theport of infringement is clearly made outt, both by the affldavits
factured and told be motion, and by an inspection of the tobacco manuread in support of the motion, and by
factured and sold by the reppondents.
This construction of the patent has
 patentee must be understood as merely describing what he regards as the
boest mode of practising his invention, as the law requires him to do, and
not as excludrg a metho different from it only in a single detail which
produces the same result and is distinct it within its object. He claims produces the same result, and is distinctly within its object. He claims to
have discovered a new method of identifying tobaco, which consists in
the attachment of a hard label to each pluq by presing it into the points
or prongs which project from the under surface of the label, and thus the
 It is obvious then that to dispense with this additional enfeguard, and to
apply the label outside of the wraper, does not differentiate the devices,
nor does it vary the method of attaching them to the plug in any essential
degrec degreer.
this stag objections to the validity of the patent but little need be said at
ors es e. The first of thesec is to the novelty of the invention, or rather that it is a
double rese of hal old device. But it is not shown to have been used for any
purposeanalogous to that contemplated by the patentec, or even remotely suggestive of such use.
It was the revalt of considerable thought, and of careful and repeated
experiments, and supplied a perfect means of distinguishing the quality

 by the respondents, strongly attests its patentable merit.
The remainingobection, that the reissue is void, as ony being for the
same invention described in the original patent, is clearly untenable. The same invention described in the original patent, is clearly untenable. The
drawings in both are the same, and the "pecifications of both are substan-
tially the same. They both describe, as the invention, a hard or metallic
label applied to a pluc of tobac label applied to a plug of tobacco before it is subected to its sinal pressure,
with characters impresed upon it indicating its quality, origin,
mark; $\begin{aligned} & \text { trade- } \\ & \text { mhile in the original patent the claim is limited to tobacco, to which }\end{aligned}$ mark; whine in the original patent the claim is limited to tobacco, to which
the label is apliendunderneath the wrapper. To remedy this restriction,
nadvertently imposed, as the Commissioner of Patents has conclusively inadvertently imposed, as the Commissioner of Patents has conclusively
found, the recssue was properly grantel with an expanded claimm, so secure
to the patente the full benefit of the invention described, but not claimed
in the original. The motion for a preliminary injunction must, therefore, be allowed.
George IIarding, for plaintiff. George Harding, for plaintiff.
Leonard Meyers, for defendant.

Supreme Court of the United States.
 [Appeal from the Circuit Court of the United States for the Northern District of Illinois.]

zerent Gmerican amd foreign z̀atents.

Notice to Patentees.

Inventors who are desirous of disposing of their patents would find greatly to their advantage to have them illustrated in the Scientific Amentins. We are prepared to get up first-class wood engravings of inven-
tions of merit, and publish them in the Scientific American on ver reasonable term
We shall be pleased to make estimates as to cost of engravings on receip of photographs, sketches, or copies of patents. After publication, the
cuts become the property of the person ordering them, and will be foun valume the propery

NEW MECHANTCAL AND ENGINEERING INVENTIONS

mproved draft regulator
Thomas Baker, Albany. N. Y.-The object of this invention is to enable
the fireman to control lis fire, so that the heat, after the fire is fully burnthe fireman to control his fire, so that the heat, after the fire is fully burning, may be prevented from passing off with the produsts of combustion
to so great an extent as it otherwive would. The invention consists in th to so great an extent as it otherwise would. The in vention consists in the
combination of the open-bottomed case, the damper, bar, and chain, the weight and chain, the pulleys and shaft, and the chain, guard, and point with each other and with the flue of a furnace. By pulling upon the chain the damper can be raised to any desired extent, and can be secured in place, when adjusted, by passing a link of the said chain over a pin at tached to the forward end of the guard. By counting the links of the chain drawn from the forward end of the guard, the fireman can ad just the dam per in any desired position without leaving the front of the furnace. A
steam gage is attached to the front of the boiler, so that the fireman can aiways see what the steam pressure is, and can regulate the damper as re quired.
impiroved device for converting motion
Edwin Long and Louis E.Lyon, Iowa City, Iowa.-This invention relates and is more particularly applicable to treadles for driving light running machinery in which a number of revolutions for the flywheel are desired for each movement of the treadle. The improvement consists in a snatch block loosely connected with a reciprocating lever or bar, and having a hole or throat through the same through which one side of a band passes;
which band is stretched about a driving and a tension pulley, and which natch block has such shape of opening on throat as to seize the band other, back to its former position preparatory to taking a new hold.

IMPROVED ANCHOR.

Fisher A. Buck, Eastport, Me.-This invention is a novel modification of the mushroom anchor, in which the arms that branch out radially theretapering fluke, of circular shape, that is riveted or otherwise securely fastened to the ends of the arms. The circular fluke may be made of suit able width, so as to impart to the anchor a greater holding surface and power of resistance. The main advantage of the circular fluke consists in the fact that it will prevent the fouling of the anchor

NEW MISCELLANEOUS INVENTIONS

improved aerostat
William S. Hull, Jackson, Miss.--This aerostat is designed to be used either in miniature form as a toy (being driven by a torsional rubber spring in this case) or upon a larger scale with steam, or other suitable motive
power, as a flying machine. The improvement consists in the construction and arrangement of two propellers at opposite ends of a tubular frame containing the driving mechanism, the said propellers being arranged to rotate in opposite directions, and constructed each of a series of right-angled tri and their largeracute angles deflected away from the shaft and supported upon independent projecting arms or bars.

improved ore wasier.

Dexter A. Hendrick, Calumet, Mich.-This invention relates to an improved "vanning" process mineral dresser, which process proceeds upon the principle of separating the rich ore from the lighter earthy matter by reason of their different specific gravities when the putom, while the lighte carthy matter is thrown off at the top. The machine consists in a receiving pan which by a tilting motion imparts to its contents a rotary motion without revolving upon its own axis, which panis provided with means for regulating its degree of inclination or tilt, and is supported upon or stepped in a jigger lever which is alternately lifted and allowed to drop by mean of a cam or wiper wheel, so as to further agitate the contents of the pan:
revolving rake being employed in connection with the pan, which rake is always upon the high side of said pan.

IMPROVED TEETHING NIPPLE.
which the E. Rogers, La Crosse, Wis.-This invention relates to means in which the teet hing of children may be facilitated, and consists in an in adapt it to be manipulated by the child, and a nipple of such sbape and length that the gums may be brought

NEW WOODWORKING AND HOUSE AND CARRIAGE BUILDING INVENTIONS.

improved device for setring, fointing, and gaging saw teeti
Levi H. Bigelow, Fremont Centre, Mich.-In order that saws may form their function properly their tecth occasionally require to be set, ,
give them a uniform inclination or angle, also to be jointed, to make the uniform in length; and when clearers are used, they require to be cut uniform in length; and when clearers are used, hey requeen which the
down or made shorter than the fleam or cutting teeth, between are located. The object of this invention is to provide a cheap, simply constructed, but ϵ flicient device, for use in performing these operations. improved box scraper.
John P. Tierney, Sacramento, Cal.-The knife box is made hoppe shaped. The knife or cutter fits against the inner surface of the box, so
that its edge may project through the slot in the bottom; said knife is easily adjustable. A roller is added which prevents the instrument from belng clogged with ohavings.

IMPROVED WHEEL TIRE.
Isaac N. Pyle, Decatur, Ind.-This construction is such that the oute tire may hug the inner tire snugly when shrunk upon it, and may draw eaid inner tire more firmly down upon the fellies, ma.king the entire wheel firm and strong.

IMPROVED SASII HOLDER.
Luther Jones and James Stroud, New York city.-This consists in t : arrangement of two rollers at right angles to each other, in a suitable fran for attachment to the upper corners of the window sashes of cars to r
lieve them of friction caused by the swelling of the sash or casings whe damp, or by the warping of the sash or window frame improved method of attaching handles to crosscut Charles A. Sands, Burlington, Kan.-This invention consists of a saw with a detachable spring guard, that serves to stiffen the back of the same and also to cover the teeth or the same after use. It consists, fnrther, of

improved metal wagon body

Simon Peter Graham, London, Ontario, Canada.-The body of the car riage is made of sheet metal, and constructed with a flange around th bolts. The top of the body is also flanged and attached to a wooden piec which forms the support for the seat proper. The sides and back of th are united by a lap seam or joint which performs the function of brace.
structed.
improved wagon end gate
Stephen D. Davis, Malvern, Iowa.-This end gate forms a box-like ex vertically as well as horizontally, It may be readily detached from th wagon body, and is so constructed as to support the ends of the sides of the latter.

IMPROVED LATCH FOR DOORS, ETC
Augustus C. Woolman, Bellefontaine, \mathbf{O}.-This latch has the form of a It also has a bandle which hangs vertical, so that the latch maintains horizontal position, except when the gate is being opened or closed. A beveled catch plate is attached to the post, so that when the gate is close the catch will strike the same and be turned on its pivot till it passes the
catch, when it at once resumes the horizontal position and engages with the catch.
improved skylight
Joseph Henry, Chicago, Ill.-This invention is an improvement upon that for which the same party received letters patent dated March 27, 1877 It relates to constructing in one piece the head of the bar or rafter, upon
which the glass rests, and in supporting the head by means of flat bolt provided with shoulders for that purpose. The invention also relates to double gutter joint for use between the rafters, the same being constructed with a bent flange that is inserted between the panes or plates of glass.
improved maciine for grinding shavings.
Isaac Tompkins and Abram G. Tompkins, Brooklyn, N. Y.-This inven ing cylinder, having a cutting surface and exit perforations, the inclosin cylinder forming a apare the the inco inclosin ally in width. The small pieces into which the shavings are cut pas through the perforations of the outer cutting cylinder to an exterior casing from which they are conducted to a suitable receptacle.
improved oscillating cutter head for finishing SPOKES.
Joseph R. Locke, Amesbury, Mass.-This machine is so constructed that the cutter heads may be oscillated to bring their cutters into prope position for finishing spokes

IMPROVED bOARD LATH.
Andrew A. Smith, Boulder, Col.-The object is to furnish a lath so con structed that it will not be necessary to break joints in putting it on, whic will strengthen the building, and will require less studding and less labo
to put it on than ordinary laths. The invention consists in a board lath formed by slotting boards of the proper thickness with sets of slots, alter nating or breaking joints with each other.

IMPROVED PLATFORM WAGON
Ebenezer H. Booth, West Colesville, N. Y.-This improvement in the construction of platform wagons enables the draft to be applied directly box against swaying, and may be used either with or without a reach.
improved sawing machine.
George J. Kautz, Emporium, Pa.-This is an improved sawing machine, designed for use in a sawmill for cutting off slabs, edgings, and other lum
ber into lengthe for wood, laths, pickets, etc. It is so constructed as to feed the lumber forward to the saw, and feed the saw forward to the lum ber automatically. It may be adjusted to cut off the lumber in longer of lengths, as required
improved setting, jointing, and gauging the teete of saws.
Levi H. Bigelow, Fremont Center, Mich.-By this device the cutting or few teeth of a saw can be set at a uniforin angle and jointed to make them of uniform length, and the clearers or clearer teeth can be gauged to uniform length (but less than that of the cutting teeth, between which they
are iocated). The device is extremely cheap, simple in construction, comare iocated). The device is extremely cheap, simple in co
pact in form, and apparently adapted to operate efliciently
improved method of making wooden boxes. William Huey, Cambriage, Md.-This invention relates to certain im designed more particularly for that class of wooden boxes which are stif and rigid in shape, such as are employed for holding hats, caps, boot vhoes, thread, cotton, cigars, and all fancy articles, but which improve of fruit baskets, crates, etc. The improvement consists in the manner of forming the bend or joint at the corners, whereby a single piece of board is made to form the several sides of the box without the trouble of meas uring and fitting, and without the use of nails, screws, or dovetails ferthis purpose. The manner of forming the joint is to cut, by means of revolvin
 stcaming thits the to cessful bending of the board without breaking con stitutes the main feature of novelty, which channel has straight angula sides that form a miter when the board is bent, with a curved groove a the bottom of the angular groove which affords bending room to preven cracking.

Improved stop hinge for carriage doors.
Charles W. Butler, New York city.-This is an improved hinge for car-
riage doors, trunks, etc., which stops the doors, covers, and cther objects when the latter have been opened to about right angles. The inventio consists in two bars hinged to each other at their inner ends, and at their outer
hinge.

Susimess and eersonal.

 The Charge for Insertion under this head is One Dollar a line for each insertion. If the Notice exceeds fourlines, One Dollar and a Half perline will be charged. Spy Glasses and Telescopes of all kinds and prices. Lenses for making the same, with full directions for
nounting. Mllustrated priced circular free. McAllister, Ianufacturing 19 Nassau St., New York. Wanted-To purchase a Manufacturing concern, o Address, with full particulars, A. T. S., New York P.O Blank Book Back Shaping Machine. Illustrated cir Electric Gas Lighting Apparatus, applied to public and private buildings. The latest improvements.
Bogart's patent. Address 702 Broadway, N . \mathbf{Y}.
Patent Taper Sleeve Fastening and Wooden Pulley Works are now in full operation. Orders solicited. Sat Small Fine Gray Iron Castings a speciat soft and true to patterrn
Witt St., Albany, N. Y.
Painters, etc., get circular, prices, etc., of New Metal
lic " Wiping out ", Graining Touls ic "Wiping out "Grain
. Callow, Cleveland, 0 .
Removal.-Fitch \& Meserole, Manufacturers of Elec trical Apparatus, and Bradley's Patent Naked Wire He lices, have rem
mental work.
Silk, Cotton, and Flax Strength Testers, from 1 lb . to Paterson, N. J.
Territory, on a Useful Household Article, given awa Lura F. Landis, Lancaster, Pa
More than twelve See advertisement, page 36.5. Chester Steel Castings Co. now running; $\mathbb{8}$ years' constan use prove them stronger and more
iron. See advertisement, page 366 .
The best Burglar Alarm in the world. Agents wan
For sale.-Large lot of Tools in Sewing Mechis
For sact. Send for list. W. Shearman, 132 N. 3d Stree Philadelphia, Pa.
Split-Pulleys and Split-Collars of same price, strength and appearance as Whole-Pulleys and Whole-Collars,
Yocum \& Son, Drinker st., below 147 North Second st hiladelphia, \mathbf{P}
Fower \& Foot Presses, Ferracute Co., Bridgeton, N. J. Superior Lace Leather, all sizes, cheap. Hooks and Couplings for flat and round Belts. Send for
C. W. Arny, 148 North 3 d St., Philadelphia, Pa.
For Best Presses, Dies, and Fruit Can Tools, Bliss
Lead Pipe, Shect Lead, Bar Lead, and Gas Pipe Ser Lead Pipe, Sheet Lead. Bar Lead, and Gas Pipe.
for prices. Bailey, Farrell \& Co., Pittsburgh, Pa.
Hydraulic Presses and Jacks, new and second hand
Lathes and Machinery for Polishing and Buffing metals athes and Machinery for Polishing and Buming metals Solid Emery Vulcanite Wheels-The Solid Original
Emery Wheel - other kinds imitations and inferior. Caution.--Our name is stamped in full on all our bes
Btandard Belting, Packing, and Hose. Buy that only. the best, is the cheapest. New York Belting and Pack ag Company, 37 and 38 Park Row, \mathbf{N}. \mathbf{Y}
Steel Castings from one lb. to five thousand lbs. In-
valuable for strength and durability. Circulars free valuable for strength and durability. Circ
Pittsburgh Steel Casting Co.. Pittsburgh, Pa.
For Solid Wrought iron Beams, etc., see advertise
ment. Address Union Iron Mills, Pittsburgh, Pa., fo ment. Adares
Skinner Portable Engine Improved, 2 1-2 to 10 H. P. sinner \& Wood, Erie, Pa
Yacht and Stationary Engines, 2 to 20 H . P. The best All nervous, exhausting, and painful diseases speedily
ield to the curative influences of Pulvermacher's Ele ric Belts and Bands They are safe and effective. Book with full particulars,mailed free. Address P P
Galvanic Co, 292 vine st., Cincinnati, Ohio.
To Clean Boiler Tubes-Use National Steel Tube Machine Diamonds. J. Dickinson, 64 Nassau St, N. D. Frisbie \& Co. manufacture the Friction PulleyEmery Grinders, Emery Wheels, Best and Cheapest Hardened surfaces planed or turned to order. Awarded
Medal and Diploma by Centennial Commission. Address Medal and Diploma by Centennial Commission. Address
American 'Twist Drill Co., Woonsocket, R. I.

(6) AIt has been our considerable space to the answering of questions by the Scientific American office has become the factotum, or headquarters. to which everybody sends, who wants
special information upon any particular subject. So large special information upon any particular subject. So large
is the number of our correspondents, so wide the range of their inquiries, so desirous are we to meet their wants and supply correct information, that we are obliged to experienced writers, who have the requisite knowledge or access to the latest and best sources of information. For example, questions relating to steam engines, boil-
ers, boats, locomotives, railways, etc., are considered and ers, boats, locomotives, railways, etc., are considered and
answered by a professional engineer of distinguished ability and extensive practical experience. Inquiries elating to electricity are answered by one of the mos Astronomical queries by a practical astronomer. Chemical inquiries by one of our most eminent and experienced professors of chemistry; and so on through all the various departments. In this way we are enabled
to answer the thousands of questions and furnish the large mass of information which these correspondence they pour in upon us from all parts of the world-renders it impossibleforus to publish all. The editorselects from the mass those that he thinks most likely to be of
general interest to the readers of the ScIENTIFic Ameri-

CAN. These, with the replies, are printed; the remain-
der go into the waste basket. Many of the rejected er go into the waste basket. Many of the rejected
 respondents desire a special reply by post, but very few of them are thoughtful enough to inclose so much as a
postage stamp. We could in many cases send a brief postage stamp. We could in many cases send a brief reply by mail if the writer were to inclose a small fee, a
dollar or more, according to the nature or importance of the case. When we cannot furnish the information, the oney is promptly returned to the sender
N. A. R. will find directions for browning gun barrels on p. 11, vol. 32. This also answers G. D. I., who can clean brass shells by the process describe
on p. 102 , vol, 25.-M. L. is informed that a recipe for root beer is given ou p. 138, vol, 31.-A. D. B. is informed that there is no simple rule for the proportions of a screw propeller. He should read the subject up in the
special treatises devoted to it.-O. B. S. does not give sufficient data as to his boiler.-L. T. F. and man others will find rules for calculating the horse power of
engines on p . 33, vol. 33.-H. will find directions for engines on p. 33, vol. 13 .-H.
whitening ivory on p. 10 vol. 32 .-M. W. will find direc tions for making hard plaster of Paris on p. 43, vol. 34. on p. 144, vol. 31.-H. W.s. will find directions for mak ing printers' rollers on p. 283, vol. 31.-M. A. A. will Ind something on cancelling postage stamps on pp. 83,
$13.5,266$, vol. 36 .-M. F. F. will find directions for re 3.5, 266, vol. 36.-M. F. F. will find directions for re moving freckles on p. 347, vol. 32.-E. R. C. will find
directions for mounting chromos on p. 154, vol. $27 .-$ E. J. L. will find a description of a galvanic battery suitJ.J. Q., C. A. S.. J. D. H., I. P., W. . S., I. K. B., W. L G. N. T., N. T., and others, who ask us to recommend
books on industrial and scientific subjects, should address the booksellers who advertise in our columns
(1) G. A. asks: 1. How thick must a tube of cast steel be to hold $1,000 \mathrm{lbs}$. pressure per squar inch? A. These questions are too indefinite. The
thickness of the tube will depend upon its size. Through $3 / 4$ inch hole, how many gallons water wou per forced out per mi. The discharge through the orific will depend upon its shape and location.

(2) A. J. C. asks: How can I make a pattern | by which to cast a cam wheel having upon its outer edge |
| :--- |
| three equal eccentrics? Motion is given by two levers | one above and the other below, the levers having upo ach one a roller which presses upon the outer face the wheel. thus giving three strokes of the levers fo

each revolution of the wheel. A. Make the outline o the cam such that all lines drawn through the center will be equal.
(3) B. I. L. asks: How many lenses, and of what sizes and foci, are required to make a camera obscura for copying pictures? A. It requires but one
and it is not material about its size and focus. One and it is not material about its size and focus. One ery well.
(4) J. B. H. asks: 1. On. p. 186, vol. 36, in reply to J. N. A., you say that a horse power to 1^{\prime}, lass of boiler will accomplish this result? A. The fig ure represents exceptional results with marine engine having very efficient boilers, and giving a horse powe
with the consumption of 14 or 15 lbs. of steam an hour I suppose that the heat given up by the condensatio of any given amount of steam would, if all used, evapo And, if true in theory about how much result in evapo ation can be gotten from the con quantity of steam? A. You will find this matter dis cussed in nearly any modern treatise on the steam en
(5) H. H. F. asks: Is the usc of alum i bread and cakes, at the rate of a teaspoonful to loaf o oderate size, injurious? A. Yes. The presence o (6) E. L. W. asks: 1. Can you inform me ow metal stencil plates are prepared? A. Stencil plates re usually made of hard brass. The letters and char dies: but wan, are thanly stan ont with sulab cutting 2. Are they treated with hydrochloric acid A. Not that we know of
(7) J. D. E. asks: What are the curves and Thereare two plano-convex lenses with their plane sides wards the eye. Their aperture is $1 /$ their pal ength The fleld lens is of 2 or 3 times longer focus than the ey lens. Their distance apart is one half of the sum of
their focal lengths: that is, if the focus of one is 1 inch, of the other 2 inches, the distance apart is $11 / 2$ inches eye lens is placed between the lenses at the focus of the cye lens. For a medium power,
be 1 inch, of the other $1 / 3$ inch, etc.
(8) W. J. G. asks: How many lenses and of era to take pictures 4×6 inches? A. It requires achromatic combination of fint and crown glass. The diameter is not material, say 1 inch, with a focal length
of about 8 inches. The smaller the lens, the sharper (9) F. W. G. says: In a very severe thunderstorm last summer, a large brick house here was truck by lightning. An "American District" tele the house Parties at the house claim that the wire brought the lightning to the house. I say that the house would have been struck anyway, and that the wire was a protertion. Who is right? A. It is most probable
that the wire had nothing to do with the matter. A discharge which would damage the house would, in all
(10) P. M. S. asks: Can you give me some information abcut rosin oils A. When rosin is distilled, portions are mobile, yellow, and strong smelling first are known as essence of resin (colophonone). Later in the distillation the viscid fluorescent rosin oil (or pino-
lin) passes over. This body is used in paints, for the

manufacture of cheap lubricant.

(11) W. E. B. says, in answer to G. S. W., wh asked if there is any rule for dividing a circle into 3 , or more equal parts by parallel lines: He will not pro ably find any general rule for this purpose; but I find
by calculation that the chord of an arc of $149^{\circ} 16^{\prime} 30^{\prime}$ cuts off a segment whose area is about one third the area of the circle, and the chord of an arc of $132^{\circ} 21^{\prime}$ cuts off a segment whose area is about ${ }_{\text {gib }}{ }^{2} \bar{o}$ in excess of one fourth the area c the circle. These
values are probably sufficiently accurate for all practical oblems
(12) A. E. F.-A good recipe for silver riting fluid is the following: Mix 1 oz . finest block tin in shavings with 2 ozs. mercury till they become perbottle with enough gum water to give proper consist nce. The writing, when dry, will have the appearance of silver
(13) H. S. asks: How is manganese obaained from the ore? A. Metallic manganese may be -by smelting at the highest heat of the blast furnace. It is, when free from carbon and silicon, a soft, easily tarnishable metal, resembling iron somewhat in appear-
ance; and it has a speciflc gravity of about $7 \cdot 2$. It sells in small quantities for about $\$ 1$ per lb . Manganese has six oxides, of which the dioxide is the most important. mineral pyrolusite, which, broken into lumps or powder is commercially known as black oxide of manganese or simply manganese, the latter name being incorrect.
The black oxide is worth from $\$ 10$ to $\$ 20$ a ton in New The black oxide is worth
York. See p. 226 , vol. 35 .
(14) L. G. asks: 1. What is the greatest force, as expressed in horse power, which has as yet
been obtained by means of electricity, and please tell me what is the name of the inventor? A. Professor Page, as long ago as 1850, constructed electro-magnetic engines of between 4 and 5 horse power. 2. As thi
power is very feeble, could I , by means of severa engines working separateiy and giving the maximum power each is capable of, and working together on the same driving beam, obtain as great a power as desired, costing less and wilh less weight than from a steam en
gine of same force? A. No system of magnetic engine yet been found A economical ss the steam engine.
(15) J. E. S.-Your relay for submarine tel graphy might be used on lines of moderate length; bu
(16) F. S. says: 1. I wish to construct a tel hone. Can I be prevented from making and using he instrument by patent or other cause? A. You can nake one for experiment, but could be prevented from
using it after its successful working. 2. What number and length of wire should be used in the coils? A. Alswer for short circuits. 3. How and of what material should the sounding plate be made? A. It can be made of thin iron. A very good description of the apparatus
is to be found in Prescott's "Electricity and the Elecric Telegraph." 4. Do you think a good mechanic rections? A. Yes
(17) J. F. says: For gumming envelopes I use mucilage composed of 2 ozs. dextrin, 1 oz. acetic
acic, 1 oz . alcohol, 5 ozs. water. I am not satisfed with it. The adhesiveness is not sufficient. It is more adhe sive without the alcohol. A. A strong aqueous solution dhesive and cheap mucilage (British gum) forms a most ed wine spirit, is usually employed as the solvent whe the mucilage is to be used for gumming envelopes, post age stamps, etc., in order to facilitate the drying, and The strong aqueous solution is more adhesive than that prepared with alcohol, for thc reason that it contains a greater proportion of the gum. To prepare this, add an excess of powdered dextrin to boiling water. stir for a moment or two, allow to cool and settle, and strain the liquid through a fine cloth. The addition of a little gum, without interfering greatly with its adhesiveness The sugar should be dissolved in the water before the
(18) F. B. says: On p. 187, vol. 36, C. V. W
ays that $\frac{1 / 2 \text { chord}^{2}}{2 \text { heights }^{2}+\text { height }^{2}}=$ radius of the circle Can this be true? I have tried it several times with raduated beam compass, but cannot make it so. A. The rule is correct. Probably, you have made some mistak n applying it.
(19) J. H. F. says:I bought a small engine, nominally of $41 / 2$ horse power. The dimensions are as fol lows: Steam chest 4×5 inches, cylinder $81 / 2 \times 41 /$ inches, stroke 7 inches, upright boiler is about 6 feet high, with made several attempts to run a corn mill, and have tried 12,16 and 18 inch burss; it will pull them if they are ed sparingly, but if fed in the ordinary manner they stop the engine. If running fast, pulling the mill, the piston rod or the rod running from eccentric to slide alve bends and quivers from top to bottom. This rod has no knuckle joint, but is made thin in one place to give it the right motion. I notice that running at good searing his weight against the pulley. Please tell me what power the dimensions indicate, and give me your opinion in regard to the unsatisfactory manner in which it works. A. From your account the engine does not seem to be very well constructed. We advise you to est it with a friction brake, and see how much power it
(20) F. L. says: 1. How should I treat eak in a flue of an upright boiler? When I let the waer out, by the blow-off cock, I can hear the air escape out of the flue. When I have a fire under the boiler
the flue does not leak at all; but as soon as the fre is out the leak begins again. A. Such a leak cas doubtless be made tight by caulking, if a slight expansion is sufficient to stop it. 2. What is the best way to refft a pair of
closely, and stick somewhat, after being opened by a high head of steam? A. You can grind them in with
oil and brickdust or emery. 3. To have two safety valves on the boiler, is it proper to have both valves set at the same weight, or should one be a little heavier than the other, say one for 60 lbs . and the other for $70 \mathrm{lbs} . ?$
A. If each is large enough to relieve the boiler, they A. If each is large enough to relieve the boiler, they nocking in steam pipes? A. It is caused by water in the pipe, or condensation and sudden changes of temhoies in the outside shell of the boiler at the level of the crown sheet, so as to be able to clean the crown and adopted.
Will the rubber waterproof garments that ladies wear on damp days do to make a balloon? A. It might be made to answer very well if there was a demand for it.
2. How is this rubber material mades A. If you wish to experiment, it would be better to obtain samples from manufacturers than to attempt to make it.
(21) J. K. W. asks: What is the trouble with a double acting pump, which, in pumping from the about 20 revolutions per minute) will work; but when the speed is increased to 100 revolutions, it seems to drop the water and the speed increases to 500 or 600 revtrouble is probably caused by the collection of air in the pipe. If so, it can be remedied by the use of a cock or How
How can I burn naphtha in a boiler furnace? A. We this purpose. Insert a notice in our Business and Personal column.
(22) J. E. asks: Can you inform me of any varnish for insulating No. 36 copper wire. I have used shellac dissolved in alcohol, but it would not answer. A. You cannot hope to thoroughly insulate helices of
such fine wire by merely varnishing it. The wire must such fine wire by merely varnishing it. The wire must
be covered with silk, cotton, or some other similar inbe covered with silk, cotton, or some other similar in-
sulator. On cotton or silk covered wire, a strong soluulator. On cotton or silk covered wire, a strong solu-
tion of shellac gives very good results, and is very commonly employed. Fused paraffin wax is sometimes used,
(23) C. G. L. says: You advise the use of a trap to return the water of condensation from the radi-
ators to the steam-heating boilers. A trap of any kind is worse than useless, if the apparatus is for heating only, and all the radiators are above the water line of the boiler. It is only necessary that the pipes be of suitable size, and that all pipes and radiators shall incline

the water line. The water must stand at the same level in the boiler and return pipes, returning as fast as the
steam condensed. Ihave known a boiler to be run for steam condensed. Ihave known a boiler to be run for in well constructed apparatus, the loss would be but a few gallons per month. The cracking and thumping often complained of is probably caused by water remaining in the plpes. This can frequently be remedied by raising any depressions in the pipe, where the water is trapped, or by taking the wa
to the return pipe by a drip.
(24) J. N. says: 1. I wish to make a boiler 14 inches diameter will be exactly 30 inches high by 14 inches diameter. I intend making it of $1 / 8$ inch wrought iron, and the boiler heads of $1 / 2$ inch cast iron.
Will the cast iron heads stand enough pressure to run a mall engine, size 3×15 inches, to do light work? A We advise you to make the heads of wrought iron. 2. How much steam can I carry? A. You can carry about
30 lbs. per square inch. 30 lbs. per square inch.
What is the best way to clean the rust off iron and polish it afterward? A. If the work is very rusty, you
can use olland brickdust or emery, and finish with a
(25) J. P. G. says: 1. I would like to know he difference between phosphorus and amorphons phos-
phorus? A. Red or anorphous phosphorus is only modifed form-an allotropic condition-of the ordinary vitreous variety. Their chemical nature is identical, though they differ greatly in their physical prop-
erties. This difference is believed to be due to an alteration in the molecular grouping. This property is known as allotropism, a word which means simply "dif-
ferent states." The phenomenon of allotropism is not conflined to phosphorus alone, but is more or less a prop erty of all the elements. Carbon in one condition gives 18 the brilliant, transparent, and nearly incombustible, diamond; in another, the black, opaque, easily inflammable charcoal or coke, while in another we have the metal-like graphite. The red phosphorus is usually obor nearly to its point of raporization in an atmosphere of carbonic acid or hydrogen. It is more passive or inert than-white phosphorus; it is heavier, of a brick-red color, and is not phosphorescent. It does not oxidize at ordinary temperatures, and requires a much greater degeety. into whichit may be directly converted by heating 500° Fah. 2. Which is used on the common matches? . Boparation of matches; but the latter, although more costly, is coming into more general use in parlor or safety matches and the like, in which it is mixed with safety matches and the like, in which it is mixed with
chlorate of potash to cause it to ignite readily by fric
tion. When once ignited, it burns as readily as the vit
reous variety.
(26) W. P. C. asks: Can you tell me of any substance soluble in water, for which sulphuric acia (diluted) has a stronger affinity than for iron, lead,
and zincy A. Your questions are rather indefinite. and zincy A. Your questions are rather indefinite.
of the alkalies-soda, potassa, ammonia, etc.-also so of the alkaline earths, as lime, baryta or strontia, are for sulphuric acid than iron. 2. Also any substances soluble in water for which sulphuric acid has less affin ity than for copper? A. If we understand you, most o the metallic sulphates are soluble in water, and are no decomposed by strong oil of vitriol. If you mean me allic bodies, there are none that we know of that diswith one of its elements to form bases, Platinum, sil ver, gold, lead, mercury, etc., are not attacked by sulphuric acid in the cold, the former not even by the hot
acid. 3. Can you tell me where I can find a table showing the relative affinities of the principal metals, acids and alkalies? A. You will find such tables in most good
(27) M. E. says: You once published a \mathbf{r} cipe for milk paint which contains considerable lime.
have used it on my walls and find it very satisfactor have used it on my walls and find it very satisfactory,
but knowing nothing of the effect that lime has on different coloring, I have been unable to obtain the colors wished. Will you tell me how to produce a light mixed with a little umber for the brown. A mixture of Spanish brown with a little chrome yellow gives a good
(28) W. H. R. asks: How can I make and use a quick bleaching liquor, for bleaching cotton oods which have become yellow from long service $\boldsymbol{P}^{\text {. A. A. }}$.
Make a strong solution of chloride of lime (hypochlorite of lime-bleaching powder) in water, allow to settle, and draw off the clear liquid. Rinse the goods in clean water containing about 5 per cent of sulphuric acid, and They should the be well rinsed in waing a little carbonate of soda. If the cloth is much colored it may be घecessary to allow it to remain for a short time
in the bath. This is the usual method of bleaching in undries.
(29) H. M. S. says: I shook some pieces of litmus in a bottle partly filled with water, until the latter became of a deep blue color. Corking it up tight, I placed it on a shelf with other chemicals, among which
were several acids. About a fortnight afterwards I ob served that it had turned to a yellowish brown color, quite transparent compared to what it was before radually to a deep red or carmine on top, and this extended upon shaking until the whole liquid was so; and it became opaque again, though of a different color. Can you explain this? A. Litmus is very often adulterated with lime, plaster, Prussian blue, etc. The action you
noted may have been due to these other adulterants, or oted may have been due to these other adulterants, or making the solution.
(30) F. S. \& S. ask: What is the best ce ment for filling white metal signs with $\%$ A. Try the fol-
lowing: Melt together in a clean iro best asphaltum and g :tta percha; stir well together, and then add 1 part of gum shellac in fine powder. It may be used hot, and mix
(31) B. P. asks: Please give a recipe for making paste to stick bills which are exposed to the
weather? A. Takeflour 25 lbs ., alum in powder $1 / 2 \mathrm{~b}$., boiling water sufficient quantity. Paste will not very ongresist theaction of wet weather, but may be made o do so by giving the bill, after sticking with it, a wash of soap water, sugar of
crude lac in naphtha.
(32) F. S. C. asks: What will restore faded black walnut doors? They have been covered with shelcessary to first remove the shellac. Much of it may be removed with alittle a mmonia water and alcohol; but it best to scrape off the last portions, and sandpaper the
wood. If the wood is genuine walnut, a little oil will then bring out the color, and it may be finished with ood coat of copal varnish. If the doors are of imita in a boiling solution of 11% ozs. washing soda in 1 quart water, and add to it about $1 / 402$. of powdered bichromate of potassa. Stir well together, and when cool strain
through a cloth for use. This will give you an excellent mitation of dark walnut; and when dry, it takes ood coat of varnish.
(33) A. F. H. asks: How can I make a new white coating stick effectually on an old ceiling? A. It
is necessary to take all the old white coat off complete, is necessary to take all the old white coat off complete,
to thoroughly wet the brown coatlefton, and then finish with a new white coat.
(34) W. A. H. says: I wear a small compass attached to my watch chain; and in casually look-
ng at it I noticed that it deviated about 90° from north. I also noticed that, when I stood alongside of our safe, the compass pointed directly to the safe. I walked to
the stove, and my compass again swerved; but instead the stove, and my compass again swerved; but instead
of vointing directly to the stove, it pointed diametricalof vointing directly to the stove, it pointed diametrical-
ly from it. The safe and stove are not near enough to ly from it. The safe and stove are not near enough to difference between the situations is that one lump of iron was hot and the other cold. Please give your ex-
planation of this remarkable effect of caloric over the magnetic needle. A. The data given are not explicit enough to enable us to give a satisfactory explanation;
but it will probably be found that the pole of the needle but it will probably be found that the pole of the needle
which points towards the safe varies as the former is which points towards the safe varies as the former is
nearthe top or bottom of the latter; possibly, also, the same will be the case as regards the stove. The safe or the inductive action of the earth.
(35) W. S. says, as to the welding of the point of a spindle to the plate on which it rested, while running: We had a parallel case in our mill some years
ago. The burrs were 4 feet diameter, spindle was 10
feet long. 4 inches diameter, of cast iron, with a taper
steel point inserted in the spindle. The point was about 11/3 inches in diameter. flat: it ran on a steel plate, above in the was a collar, about 1 inch thick, fastened securely in the oil pot, which was square and always full of on.
The motion was observed to be getting slower, and
something was unusual about the running of the burrs. something was unusual about the running of the burrs.
The engine was stopped to examine, and it was found The engine was stopped to examine, and it was found
that the end of the steel point was perfectly welded to that the end of the steel point was perfectly welded to
the plate and collar in which it worked. Before it could be got out, it had to be heated to a red heat in a blacksmith's fire and driven out by punching a hole through the steel plate. The tapering end, however, was loose, and allowed the spindle to revolve when the point
stopped. The pot was full of oil in which the point was stopped. The pot was full of oil in which the point was
running. Had we not seen this, we could hardly have credited it. If the supply of oil were insufficient, and the heating had been caused by want of it, the wonder would depth of 2 inches, it is difficult to account for the phe-
(36) I. B. C. asks: 1. In making a core for an electromagnet is soft fron the best? A. Yes.
Which makes the best armature, soft iron or steel? soft iro
(37) J. M. H. and several others write as follows: Your answer to query of W. D. S. in regard to carrying the bar of iron is incorrect. The truc answer
being 2 feet 3 inches instead of 3 feet, as published in No. 8, p. 299, vol 36 I presume the error was due to an versight. A. As our correspondent correctly surmises, the answer was due to an oversight, or perhaps some-
thing of the same character, as Mr. Richard Grant White hing of the same character, as Mr. Michard Grant Whit answer applies are those in which a weight is shifted on he bar for proper distribution, the bar being supported merous corrections that wave disregarded. The nu interest with which this column is regarded; and as our only desire is to furnish correct and useful information we are always grateful to our readers for calli
ion to any corrections that may be necessary.
(38) F. G. W. asks: In making a small engine, cylinder $11 / 2$ inches in diameter and of 3 inches must I have a slide valve? A. If the cocks were nicely fitted, they might answer very well.
(39) M. O. S. asks: Do you consider a ro a cylinder engine? If not what is the differe We understand you to ask whether the rotary engin will give out as much power with the consumption of a deffnite amount of steam as a reciprocating engine. In
special cases it may; but on the average, we think not.
(40) S. B. W. asks: What does a first-class nd engineer get a year? When do you think that the me will come when they will stop putting on so much heap help to run engines, and have every engineer ex-
mined? A. In large establisinments buildings and hotels, where the engineer hash as public ble machinery, pipe connections, etc, to look after the compensation is proportionately large. We imagine that, including all classes of establishments, the pay of the engineer varies from $\$ 30$ to $\$ 300$ a month, perhaps,
in exceptional cases, being higher. Laws regulating the appointment of engineers may be good in theory; in their practical application, however, they are not always suc
(41) S. \& K. say: 1. We are pumping oil ing the oil from the tank. K. claims that the oil comes to the pump by the atmospheric pressure upon the oil in the tank. Is there any such thing as suction in the true
meaning of the word? A. What is called suction is due to atmospheric pressure. Sec p. 352, vol. 31. 2. Can you pump as well out of a tank which stands on a leve with the pump as you would out of a tank standing
some distance higher? A. When the tank stands above the level of the pump, the pressure forcing the oil into the pump is increased by the weight of the column of
(42) F. W. asks: 1. Will a boiler 4 feet ng, 1 foot in diameter, with five 2 inch flues through it, put in an arch horizontally, make steam suf-
ficient to run an engine, $21 / 2 \times 5$ inches, at 300 revolutions per minute? A. The boiler will scarcely be large enough. What power will such an engine give with st
lbs. to the square inch? A. Sec p. 33, yol 33
(43) H. J. D. says: I inclose a specimen of cale from my boiler. I have used potatoes, petroleum,
ennate of soda, and sal soda. The sal soda seems to tannate of soda, and sal soda. The sal soda seems to the iron from sal soda in large quantities? A. With frequent blowing, you can use considerable amounts of soda safely. 2. Do you consider such scale, in places nearly $1 / 4$ inch thick, dangerous? A. Scale should no
be allowed to collect to the thickness mentioned. 3 be allowed to collect to the thickness mentioned.
Could I keep the boiler clear by using soft water, sa or 5 months in the year? A. If you can use soft water an inspection of the sample, we think you can prevent the greater part from entering the boiler by using a feedwater heater with sediment collector.
(44) J. N. P. says: I fitted up two barome the other. Would boiling 3.4 of an inch higher than the tube drive all the air out? A friend says it would not, but that I must boil it in the tube after filling. Can Ido that successfully without bursting or warping the
tube? A. It is desirable, to insure a tubee A. It is desirable, to insure a good vacuum, to
boil the mercury in the tube, and in a vacuum. If you ter for you to have the tubes filled by a philosophical in strument maker.
(45) T. J. M. asks: In floating down a river will a flat-bottomed boat go at the same speed as the
current if no power is used to push it or increase its mo tions A. Yes.
(46) A. S. T. says: We have laid a pipe unsurface in one place for the purpose of tapping. Will the water continue to be discharged in an unbroken
stream, thatis, over the crook? A. Air may collect at
the highest point, and should be removed by opening a
(47) P. W. asks: If a weight be suspended by a wire in water, one inch below the surface, weighs
1,000 lbs., would it weigh the same if lowered in the water half a mile deeper? O : course the weight of the suspending wire is to be dedncted. A. The weight of a body immersed in water is reduced by the weight of the
water which it displaces. As water is slightly comwater which it displaces. As water is slightly com-
pressible, the body will weigh a little less at a conside pressible, the body will weigh a lit
able depth than near the surface.
(48) E. W. P. says: We have an artesian well which does not overflow. The water is elevated by steam pump, the suction pipe of which passes down inside of the well tubing, leaving a small space between
the two pipes. If the well tubing was attached to the the two pipes. If the well tubing was attached to the
pump and made airtight, leaving out the inner suction pump and made airtight, leaving out the inner suction
pipe, would the pump work? Would it not be on the same principle as trying to draw
without an air vent? A. Exactly.
(49) S. D. Y. asks: If I make a model of a res to a scale of 1 inch to the foot, will its buoyancy be mean by buoyancy the volume of water displaced, and if you use in the model materials of the same specific (50) H.
(50) H. M. says: I am about making a water velocipede, but do not know of what size and
weight the wheel should be. How deep should the wheel be in the water? The length of platform is 31 ret, length of floats 8 feet, width of platform 2 feet 8 inches, height of seat 1 foot 4 nches, floats are to be 10 nches in diameter, platform 3 inches above the floats, from upsetting, and make it safer. How long should the crank or treadle and the posts on stands for the wheel be? A. As we have had no practical experience with these devices, we are not sure that we can aid you much.
Your proportions seem to be judiciously chosen. The Your proportions seem to be judiciously chosen. The
crank, treadle, etc., may be arranged with the same dicrank, treadle, etc., may be arranged with the same di-
mensions as in ordinary velocipedes, suited to the proportions of the rid. If any or our readers have ex glad to know the results.
(51) A. B. says: I am building a steamboat, the diameter of my paddle wheel is 8 feet, and is 6 feet 8 inches across. I use an 8 to 10 horse power engine Boat draws from 8 to 12 inches water. How many buckets should I have, so as to have the least amount of
slippage? A. Make it so as to have 3 or 4 buckets in water, with ordinary draft.
(52) E. O. M. asks: 1 . Which is the best way to learn the exact amount of priming when a boiler is tested? If the method is expensive, and requires the skill of an expert, what is a tolerably good way which
is inexpensive and adapted to the capacity of an ordinary boiler tender? A. Some form of calorimeter should be employed, and we know of none that can be is the peculiarity about a boiler which inclines it to en culiarity is claimed for some boilers. A. You should in quire of the patentecs. 3. Robert Wilson in his work nseam boilers under the heading of "Incrustation," says that the light carbonates, when entrained, are liable the engine. Did you ever hear of such damage, and what are the particulars? A. If any of our readers can furnish information on this subject we would be glad to hear from them. No such occurrence has ever been
brought to our notice. 4. Is it possible for any boiler to brought to our noticc. 4. Is it possible for any boiler to
entrain all the scalc-forming impurities of salt water? entrain all the scale-forming impurities of salt water?
A. We think not. 5. What can be done to zelieve the cylinder of the engine from its trials when so much solid m
valves.
(53) C. H. H. asks: How are electric bells constructed so that they may be made to ring for five or
ten minutes? A. Attach one end of the line circuit to a spring against which the armature rests when it is not attracted; also, connect the armature to one end of the magnet coil. The other end of the coil is to be con-
nected to the battery, and the circuit completed; this will cause an attraction of the armature; and after trav eling together for a very short distance, the latter leave the spring anil breaks circuit. The armature, being now
no longer attracted, returns to completes the circuit again, when another attraction re
(54) B. N. G. says: 1. I want to build a boiler for an engine 2×2 inches, to run a boat 15 feet
long with a screw 18 inches in diamcter, of 3 feet pitch. I intend to build the boiler by placing the heads on the end of the shell, bolted on with sevcral of the tubes
with nuts on the ends. Do I need shoulders on the inwith nuts on the ends. Do I need shoulders on the in side of tubes? How large should the shell be? A. No 2. How large an oscillating engine should I want to run
a boat 15 feet long, of 4 feet beam, and how large a a boat 15 feet long, of 4 feet beam, and how large a
boiler would it take? A. You can make the engine 2 x Make the boiler 20 to 22 inches in diameter, and 3 feet high. 3. Should an oscillating engine be larger than a slide valve engine, of the same power? A. An oscil
lating engine, if properly constructed, will not take any more than the other, under the same conditions. 4
Shall I need a license to run my boat on the Merrimac Shall I need a license to run my boat on the Merrimac?
A. According to the United States law a license is re A. According to the Cnited States law a license is re-
quired. Whether the law is strictly enforced in your
(55$) \mathrm{H} . \mathrm{M} . \mathrm{C}$. asks: If the sides of a triangle, $\mathrm{B}=a . \mathrm{AC}=b, \mathrm{BC}=c$, are known quantities, how can
find the area A B C of the triangle, in terms of a, b, and c? Perpendicular, A D, is supposed to be unknown. A
The following is the formula, the demonstration of which may be found in any good treatise on plane trig onometry: $\mathrm{S}=\frac{a+b+c}{2}$. Then
(56) G. J. R. says: I have been thinking of
building a smallsteamer: I do not think the water wil $\begin{aligned} & \text { verage over two feet deep. I have an engine of } 2 \text { inch } \\ & \text { bore with a } 3 \text { inch stroke. Please tell me its capacity }\end{aligned}$ ore with a 3 inch stroke. Please tell me its capacity
Will thisengine do to drive a boat 26 feet long and about

5 feet wide, to carry 8 or 10 persons? A. The engine is
(57) E. C. W. asks: 1. Which is the better, cypress or cedar, for light boat building? A. Cedar is
generally considered preferable. 2. How ought boats to be treated, after finishing, to protect from the wate and weather? A. The joints can be made tight with putty or white lead, and the boat should be well
(58) M. F. says: I am the owner of a tract fhand in the Carson valley, that lies some 25 feet above I am at a loss to know how to get much of it under culcost me more than Iave irrigation, and ditching would cost me more than I am able to expend. Can I force water upon the land from the river by means of a force
pump, say, through a 3 inch pipe? If so, what size or power of pump should I have? How much fall of water should I have back of the pump, and would it do to se the pump in an excavation in order to give it a fall? A. If you can use a windmill, your plan of artificial irrigation may be successful; and by addressing a manufac-
turer, you can obtain particulars as to machinery reuired
(59) C. C. C. asks: How can I line sheet iron tanks with Portland cement? A. We do not think you can succeed in causing the cement to adhere perma nently to the sheet iron unless the lining is given a great
thickness. The cement could be moulded into thin bricks and built in with cement mortar. Portland cement can be obtained of any dealer in building materials.
(60) Mr. J. H. Tjörswaag, of Flekkefjord, arway, says: As an example of how fast the appear tudes, I can mention that last year in the carly days of June the snow covered the ground at Masi, in the north ernmost part of Norway under 70° north latitude, and in the middle of July the potatoes were all in full bloom Itis but fair to add that the sun does not go below the horizon from the 15th of
A couple of years ago I built a new barn with barn
yard all of wood. Partly for the sake of appearance but chiefly to make the barnyard more easy to clean, gave the walls and ceiling two coats of oil paint. Now as long as mild or warm weather prevails, it is all wel enough; but as soon as cold weather sets in, the evapo-
ration from the animals (only four or five cows) settles ration from the animals (only four or five cows) settle
under the ceiling, collects in drops, and (when heavy enough) falls on the floor, on to the animals, or runs down the walls, making everything wet and dirty. Can
I ventilate the room ($25 \times 14 \times \tilde{1} 1 /$ feet $)$ in an efficient manner, and at the same time retain sufficient warmth fo the animals, and how? The temperature here during
winter varies from 18° to 45° Fah. A. The space is winter varies from 18° to 45° Fah. A. The space is
rather small for that number of cows, and a little ven tilation would benefit them. A small opening at the tilation would benefit them. A small opening at the
floor upon one side and at the ceiling upon the othe would answer the purpose. The size of these opening might be graduated by sliding shutters.
(61) E. R. asks: 1. If I have an air-com pressing pump which will hold $1 / 2$ cubic foot of common air, how many times must I force the piston up and
down until I have respectively pressures of $15,30,50$, 75,100 , and 125 lbs . per inch over the atmospheric press ure in an air tank of the same dimensions as the pump A. It will make considerable difference whether you
cool the air as it is compressed, or not. You will find formulas by which you can make the necessary calcula tions, in question (26) on p. 235, vol. 35. 2. If the valv that connects the pump with the tank be 2 inches in di amecer, will it take a greater force to move the piston
down when the communication between the tank and pump is open, and does the compressed air in the tank press with a greater force on the valve than if the valve were only 1 inch in diameter? A. By using the large
(62) F. G. T. asks: 1. What size of boiler will it take for a small engine $3 / 4$ by $11 /$ inches? A. You can make a boiler 3 inches in diameter, and 5 inche
high. 2. Would it do to make it out of tin? If so, what pressure would it stand? A. It can be constructed of tin for a pressure not exceeding 10 lbs. per square inch 3. Could I keep up steam with burners and coal oil? If
so, how should they be placed, under the boiler or in a so, how should they be placed, under the boiler or in flue? A. The lamp should have a burner that would an
swer without a chimney, or by having a central fue in swer without a chimney, or by having a central flue in
the boiler, that would take the place of a chimney. What tools would it require to makea small engine out of ready made castings? A. The tools required to fit up of ready made castings? A. The tools required to fit up
the engine will be a vise, some files, taps and dies, ham-
(63) R. K. asks: Will you please tell me what is the difference of heat in the sun's rays on a per
pendicular round stick 4 inches thick by 2 feet high, and one of the same size placed to incline 6 inches to th south? A. We presume you refer to the different area the two cases. You can easily plot or calculate this for he two cases. You can easily plot
(64) F. W. S. says: I wish to build a vase which shall hold about forty gallons of water, to bo placed where I can have pipes runing about five fect such a manner that, by the use of pipes, the water of its own weight may be made to form a fountain from onet two fect high? A. You can arrange it on the principle o
Hero's fountain, which is illustrated in many elementary treatises on natural philosophy
(65) J. B. says: 1. We have to use salt water in a boiler. Is it injurious? A. Salt water form
scale in a boiler, which is injurious. 2. How is a con denser made? A. A condenser is a vessel in which the steam is condensed either by contact with or by being
exposed to the cooling influence of water. 3. What is exposed to the cooling influence of water. 3. What the hottest water which a common force pump wil throw in a boiler? A. Pumps made for hot water wil act when the temperature is quite high. With others,
the temperature of the water should not ordinarily ex ceed 100°. 4. Is salt water more injurious to a boile than sulphurous or lime water? A. There are some salt water from the ocean.
(66) W. G. says: I have a steam pump of the following dimensions: 22 inch steam cylinder, 10
inch plunger, 4 feet stroke, 9 inch suction pipe and 9 inch discharge pipe. The discharge pipe runs 250 feet north on a rise of 40°. It makes a quarter turn, and uns 94 fecteast, horizontally, and then another quarter turn and runs 290 feet north on a rise of 40° to the point delivery. The pump works as smoothly and with a ittle jar as possible; but there is a heavy jar in the dis harge pipe which moves the whole column when the less than 18 strokes there is no jar. Will you please tell e the cause and the remedy? A. According to dat 550 feet. The jar is probably due to the stopping an starting at the end of each stroke, and might be reduce
(67) J. V., of Canterbury, England, says have a traction engine, with one cylinder 8 inches in iameter and 12 inches stroke, which I work at 100 lbs pressure. What difference will there be in the power if qual? What difference will there be in the power of 9×12 inches and a 914×16 inches engines, all other thing eing equal, at 1001 bs . pressure? A. Calling the pow of the 8×12 inches 1 , that of the 8×16 will be $1 \cdot 33$, that
of the 9×12 will be $1: 27$, that of the $91 / 4 \times 16$ will be 1.78 .
(68) J. H. E. says: The following is take from a book high in authority on mechanical subjects,
speaking of an ordinary steam engine: "If, on the in roduction of steam to the cylinder, it has a pressure of ay 4 atmospheres, it follows that it will act upon the piston with all this roce to causelt to descend, sine communication with the external atmosphere, there is resistance $=1$ atmosphere opposed to its movemen 3 atmospheres," I wish to inquire if the pressure (4 a mospheres) is that which is indicated by the stean gauge, and what becomes of the pressure of the air in the boiler after the air is worked out? I know that an gauge. A. In the statement quoted by you the referenc vacuum. The steam gause, being pressed internally by the sleam and externally by the air, indicates the differ ence of
sphere.
(69) W. S. says: 1. Given the boiler or re efvoir of a fire extinguisher, tested to 150 per squar hich, 4 inches long, of 9 inches diameter, and about $1 / 4$ quired the size of engine it will run, with charcoal, re ing pressure? A. The reservoir could be made to an swer as a boiler; but it would not be advisable to carr a pressure of more than 60 or 75 lbs . 2. I wish to cas off smooth, and polish it, could I use it for the core t cast the cylinder around, and could I drive the iron out A. You will not be able to make a very good cylinder in
the manner you propose. There is no difficulty in mak ing a sand core quite as smooth as the one that you sug gest.
(70) I. C. C. asks: How can I make a good diter, capable of filtering three or four pails of water 2 at bottom, with a height of 3 feet; and I fllled it with alternate layers of charcoal coarse gravel, and sand For a week or 10 days it will work well, and then the your purpose to use sand only, spread out over a large horizontal surface, and when choked by the accumu the sand and renew it. After a more extended interva whole might be renewed.
(71) T. P. B. asks: What is fire? A. Fir is, commonly speaking, gaseous matter in a state of in energetic combination with atmospheric oxygen. Scientifically it might be described as matter under the in fluence of intense atomic or inter-molecular vibration. philosophy.

Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the result stated:
C. W. R.-It contains carbonate of lime and alumina.-clay.-G. F.-They are all crystals of quartz (pure silici acid). They are quite common, and of little value.-M. A.-It does not contain silver, but antimony and lead \sim M. A. A. - The sand you send consists princip
M. H. H. says: $\overline{1 .} \mathrm{An}$ acquaintance claims that, in a sugar cane mill, one of the crushing surface sents a smaller surface to the cane, it will do the same work easier. Is it so? 2 . What are the advantages and -T. W.D. asks: Which steamboat, running in fres water, is the fastest, and what is her speed?

communications received.

The Editor of the ScIENTific American acknowledges, contributions upon the following subjects: On Saving Life in Case of Fire. By J. S. On Nickel Plating. By D. G.
On High Interest. By J. H. S.
On Reclaiming the Desert of Sahara. By R. T. E. On a Tidal Motor. By A. S. W. T.
(isection and Multisection of Angles. By
On Pernicions Literature. By C. W. B.
Also inquiries and answers from the following:
F. M. B.-C. G. L.-D. B.-G. W. K.-M. A.-W. D. J. W. B.-C. G. L.-D. B.-G. W. K.-M. A.-W. D.
J. - M. J. C.-S. H.

HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to appear should
repeat them. If not then published, they may conclude
that, for good reasons, the Editor declines them. The
address of the writer should always be given. ddress of the writer should always be given,
Inquiries relating to patents, or to the of inventions, assignments, etc., will not be published here. All such questions, when initials only are give re thrown into the waste basket, as it would fill half o ur paper to print them all; but we generally take pleasre in answering briefly by mail, if the writer's address Hundreds of inquiries analogous to the following re sent: "Who sells lampblack by wholesale, and wh its price? Who sells apparatus for the production auphate of potash? Whose is the best metalic pisto hinery? Who makes cotton and wool carding mahe best fireworks be obtained ${ }^{\prime \prime}$ " All such personal in quiries are printed, as will be observed, in the co mn of "Business and Persunal," which is special ioned at the head of that column. Almost any de ired information can in this way be expeditiousl btained.

official.

INDEX OF INVENTIONS

for which
Letters Patent of the United States May 1, 1877 ,
AND EACH BEARING THAT DATE.
[Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list cluding boththe specitcations and drawings, will be frnished from this offlee for one dollar. In ordering ease state the number and date of the patent desire
ir into vessels, forcing, J. F. Hess Bark mill, W. H. Bibson
asket, folding, J. J. Pesinger
Bedstead, sofa, C. Kade
Beer cooler, A. Kunkle.
Beer cooler, A. Kunkle
Bell, w. H. Nichols....
illiard chalk cup, H. W. Collend
inder, temporary, W. P. Bissell.
Boats and vessels, A. Crosby
oiler feeder, A. I. Sternberg
oiler furnaces, grate bar for, P. J. Schmitt
Boot heels, making, W. B. Arno
Boot sole buffer, F. Winslow
oot cleaner, C. H. Southall
Bottle stopper fastening. F. Sch!ich
Bottles, locking device
Brtck killn,
H. Dickson.
Brick killn, H. Dicks
Brush, B. L. Budd
Bullets, patching, S. W. Wood
Butter pail cover, J. G. Fisher
utter worker, C. A. sands
Can, J. w. Masury
Canal boats, steering, B.ole
Candle holder, C. Kirchhof (r)
Car axle lubricator, Bollman \& Ernst
Car brake, J. Stephenson
Car coupling, Gibford \& McCormick.
Car coupling, Gibford \&
Car coupling, M. Heines.
ar coupling, B. Rowell
Car screen, W. D. May.
Car spring, J. B. Quirk.
Car spring, J. B. Quirk
Car starter, D. Shoup
arbonic acid generator, F. W. Wiesebrock
Cartridge, B. L. Budd
Cartridge, metallic, J. H. Gill
Budd (r)
Cartridge, signal, E. w. Very
Caster, furniture, A. C. Martin
Chain, drive. J. F. Kingwill
hair, barber's, J. Griendling, Sr.....
Churn, o. W. Davis
Churn, T. Tostevin
Churn, power, W. H. Sterns.....
Churn, reciprocating, A. F. Brooking
Cigar lighter, I. N. Clawson
Clothes dryer, G. S. Walker
Clothes pounders, w. T. Robertson. Coffee roaster, Caldwell \& Pleitz. Coffn, F. H. Hill (r)
ooling board, T. H. Graves.
Corn stalk cutter, J. P. Brower
Corset, M. P. Bray.
Cottoncleaner, J. Greaves
Cutch, L. F. Weldon
Cultivator, R. W. Alexan
Cultivator, A. Busenger attachment, Hubbard \& Robingon
cultivator, vegetable, etc... W. Pierce..
Curd cutter and agitator, M. P. Jackson
Dental tool, Babcock \& Mas
Dish holder, H. C. Milligan
Draft regulator, T. Baker
Drawhead plates, former for, J. Green
Draw frame, stop, J. Bullough
Draw frame, stop, J. Bullough
Eave trough, P Snyd
Egg beater, J. F. Monroe
Electro-magnetic motor, w. W. Gary
Electro voltaic belt, J. Bryant.
Elevating earth, C. E. Milliken.
Embossing press. D. Koenig ...
Emery composition, B. L. Budd
Engine and propeller, Gray \& Noyes
Engine and propeller, G. E. Noyes
Exercissing machine, A. W. Lozier.....
Exhaust steam, utilizing, W. H. Thoma

Eyeglass, S. Oppenheim
Fare box, J. B. Slawson

Feathers, renovating, M. L.
Felt, non-conducting, S . Radcliffe

elt, non-condu

Fence wire, barbed, D. C. Stover.
Fish hooke, spring, J. o. King
Flour bolting machine, F . Feiste
Flowers, artitifiala, S. Potts..
Fruit dryer, B. L. Ryder (r).
Fruit dryer, automatic, A. Q. Rexnold.................
Furnace for heating steel, J. B. Armstrong (r). Furnaces, feeding steam to, w. Ramse
Gaiters, etc , making P. Fischer (r)
Gas generator, T. s. stewart
Gate, swinging, J. R. Brott
Grain crusher, J. \& R. Reid
Grain distributer, J. W. Lewis.....
Grain reducing apparatus, C. Bailey
Grain separator, R.
Grate, J. A. Mofftt
Grinding mills, adjusting, Westc
Gun-cleaning brush, B. L. Budd.
Gun-cleaning case, B. L. Budd
Gun-cleaning rod, B. L. Budd
Gun-cleaning rod, B. L. Buda
Guns, fleld wiper for, B. L. Budd....
Gutter and moulding. H. Strater, J.
Gutter and moulding. H.
Harness check hook, s. W. Stickney
Harrow, т. J. Holmes,
Hay elevator, C. S. Kershaw
Hay elevator, H. C. Stouffer
Hay elevator, H. C. stouffer
Health lift, A. W. Lozier..
Health lift, A. W.
Health lift, A. W. L
Hilh pressure engin
Hinge J. S . Lash
Hinge, J. S. Lash
Hotsting apparatus, D. Brobs
Morse detacher, W. A. Clark
Hose carriage, I. W. MeGarey
Ice conveyer, A. Hunt.........
Ice plow, C. A. \& T. L. Hiles.
ndicator, office, J. R. Cluxton (r)
Inkstand, H. H. Burrington.....
Ironing table, Hotchkiss \& Hebar
roning table, Hotchkiss \& Hebard..
Key fastener, L. W. Kennedy
Knob latch, reversible, N. O'Brien.
Knob latch, reversible, W. E. Sparks
Knob, metal covered, McManus \& Colbur
Knob, metal covered, McManus \& Colburn..
Lamp and blow pipe, spirit, s. Needles
Lamp bracket, Bliven \& Parker.
amp burner, J. Rasch .
Lathe work, carrier for, G. Harman
Lathing, metallic, J. W.Kensett (r)
 Lock case, C. H. Lambkin.....
Lock for cell doors, G. Ropes.
Lock water alarm, Bingham \& McTighe..
Magazine fire arm, wetmore \& Bennett. Manure, distributing liquid, J. D
Manure spreader, J. S. Kemp. Mashing machine, J. Brandenbur
Metal composition, F. Porter \ldots.
Middlings separator, C. N. Smith...
Millstone feed regulator, N . Hamer
Mining drill, T. J. Morgan. ...
Nail machine feed, B. F. Rice
Nut lock, F. L. Williams
Ore grinding machine, H. Trumbull
ore grinding machine, H. Mrawell
Ore separator, wet, w. Hooper.
Ores, etc., crushing, w. Hooper.
Ores, sludge from iron, W. Hoop
Organ action, reed, R. E. Letton
Paint composition, J. Fetzer
Paint composition, roof, A. Blaisdel
Paper pulp dresser, w. C. Tuttle................
Paper rolls, dressing, fly burs, J. I. Robinson
Peg foot, W. . B. Arnold.
Pen, funtain, Berlie \&
Pen, fountain, A. T. Cross
Photographic printing, 0 . Saron
Photographic printing, o. Sarony
Plano action frame, P. Gmchlin.. Pianoforte key, U. Pratt
Yipe elbow, W. Borrman....
Pipe tongs, A. H. Jarecki (r)
Plow cleaning attachment, J. H. Storm
Postage and revenue stamp, J. Sangster Preserving meat in transit, J. Campbell
Printing press, plate, H. W. Browne Printing press, plate, H. W. Browne...
Pruner and fruit picker, A. L. Bevans. Pruning shears, H.T. White..............
Pruen
Puddlers' bals,
Quueezing,
Quilting suckow. Puilting machine, A. Beck.... Railway rail joint, G. H. Grant Raiway rails, carrying, A. J. Gustin
Railway carrier roll, A. J. Gustin ... Railway signal, C. \& F. Haise
Railway signal, electric, C. S. Shivler Railway signal, ele A. Osenbruck
Railway wheel. J. Reamer, A. Goddard Refrigerating oysters,. J. C. Jone
Revolving fre arm, D. Moore Rock drilling machine, A. J. Mershon.
Roofs, snow guard for, G. F. Folsom.. Rouge paste, composition, B L. Budd Rowelock, P. A. Danielison..............
Safe, burglar proof, A. T. Wood ward Safety pin, W. A. Butler
Sash fustener, J Hatzl.
Sash fastener, W. Kemp, Jr................................
Saw blades, making. J. A. House.....
 ewer trap, H. A. P...... ewer trap, H. A. Palmer................
Sewing button holes, T. S. Huntington
Sewing machine, ruffer, etc., N. Wilso Sewing machine shuttle, D. A. Daly Sewing straw, Blackburn \&t Moeslein
Sheet Iron, apparatus for pickling, J. \mathbf{D}. Grey.....
Sheet tron vessel joint, F. G. Niedringhaus, et al. Shoes, making, G. McKay

190,403

DESIGNS PATENTED. 949.-Handles for tea Sets, etc.-E. Haviland,
 ,954.-TowEL Borders.-R.T. Webb, Randallstown,Ire$\xrightarrow{\text { land. }}$
[A copy of any of the above patents may be had by
emitting one dollar to MUNX \& Co., 37 Park Row, New remitting on
York eity.]
ghavertisements.

THE DINGEE \& CONARD CO'S Roses Nifu=
S. B. JEROME \& CO., Extra quallity Clocks.

(Established 1856) Manuracture parliug spoctal, Detached Lever Time Pieces.

 A MANUAL OF RULES, TABLES, AND

Metallingy of lron and Steel, etc.

 Kivo kaldy.-Experiments on Fagersta steels.

 Phillipss,-Elements of Metallurgy. Illustrated
Rovo
Rovers.-Elementary
Treatise on Iron

 hi it arthi-Guns and steel. $8 v$

will furnish his addreess.
HENRY CAREY BAIRD \& CO.

Industrial Pyulishers, Booksellers, and Importes $\mathbf{8 1 0}$ Walluut Street Philadelvhin.

$\$ 8$ woung america scroli sal beats the
 PATENT FOR FRUIT DRIER FOOR SALE
 FOOT LATHE, TURNING LATHE, CIR-

Wend ED-Plow. Grinalng nad Poiahng Machinery

EXTRAORDINARY, With engravings; price, WONDERFUL,
and valuable MEDICAL WORK.

Special Notice. Microscopes.

 CHIS. COLLINS, Mieroscope Manufactnre Maker of the Harley Binocular Microscope.

PATENTST At AUCMON $\underset{\substack{\text { Br } \\ \text { sen } \\ \text { sen }}}{\substack{2}}$
 THE DRIVEN WELL.

 Manura by the HULL $\&$ BELDEN CO., Donbury, Ct.

Driven or Tube Wells

ARSENIC IN THE ARTS.-A Lecture

Blake's Patent Stone \& Ore Crusher.

N. F. BURNHAM'S WATERWHEEL

VANDERBURGH, WELLS © (O., MA-

 BELLEFONTE Water Wheel.
 Fwiviz

 M. P. DUNCAN \& CO.,
Bellefonte, Pa

Pond's Tools

$\underbrace{\substack{\text { No. WOOD, Madison, Ind. }}}_{\text {DEAF NE, RELIEVED. No medicine. Book }}$

MEW DEPARTURE TIMAELNC

POCKEI COIN DETECTOR
 BRADFORD MILLCO. MANUFACTUERE or
French Buhr Millstones, Portable Corn \& Flour Mill

BOYS ,

 south Norvalk, Coinn

 WESSELL METAL, A PERFECT IMITA-

BAKER's
Rotary Pressure Blower
 NITBRALFAMM BROS. 2318 Frankford A venue, Philadelph

 Wood-Working Machinery,

 $\$ 95$ Ament and PLUMBAGO. PLUMBAGO.

Steel Name stamins.

WANTED - FOR MONCLOVA, STATE

THE SUCCESS.

[^0]ghluextisementy.
Inside Page, each insertion $-:-75$ cents a line.
Bach Page, each insertion $--\mathbf{8 1 . 0 0}$ a line. Engracings may head aderertisementsat the same rate per rine, by measurrement, as the letter press. Adver.
tisemens must e received at pubblication office as acarly
as Friday morning to a

$\$$Milers Falls Co 74 Chambers St.,

COARDIOLA'S

 COFFEE © SUGAR MACHINERY Poishing Machinesa Cotree-rafhing
 tion ive pript

MillStones and Corn Mills.

 Whinemake Burr Millistones, Portable Mils, Smut Ma-chines, Packers Mill Plcks, Water Wheels. Fulleys, and
Gearing, specially adapted to Four Mils. Send for
catalogue.

[ESTABLISHED 1846.]
Mnnn \& Co's Patent Ofices.
The Oldest Agency for soliciting Patentsin the tHitty tears' EXPERIENCE.;

MORE PATENTS have been secured through this
agency, at home and abroad, than through any other in the world.
They employ as their assistants a corps of the most exdraughtsmen, that can be found, many of whom hav been selected from the ranks of the Patent Office. SIXTY THOUSA ND inventors haveavailed them-
selves of Munn \& Co.s services in examining their inselves of Munp \& Cois services in examining their in-
ventions and procuring thelr patents. MUNN \& CO., in connection with the publication of ventions, confer with inventors, prepare drawings, specifcations, and assignments, attend to fling applications watch each case, step by step, while pending beforethe examiner. This is done through their branch offlee, cor-
ner F and 7 th Sts., Washington. They also prepare and ner F and Tth Sts., Washington. They also prepare and issues, attend to rejected cases (prepared by the inventor
in or other attorneys), procure copyrights, attend to interferences, give written opinions on matters of infringe-
ment, furnish copies of patents, and, in fact, attend to very branch of patent business, both in this and inforA special notice is made in the SCIENTIFIC AMERICAN of all inventions patented through this agency, with the name and residence of the patentee. Patents
are often sold, in part or whole, to persons attracted to Phe invention by such notice. Patents obtained in Canada, England, France, Belgium, Germany. Russia. Prussia. Soain, Portugal, the British Colonies, and all other countrics where patents are
granted, at prices greatly reduced from former rates. Send for oamollet oertaining specially to toreigu pat-
ents. which states the cost, time granted, and the reents, which states the cost, t

Copies of Patents.

Persons desiring any patent issued from 1836 to Novem-
er 26,1867 , can be supplied with offlial copies onable cost, the price depending upon the extent of rawings and length of specifications.
Any patent issued since November 27, 1807, at which time the Patent Offlce commenced printing the drawings and specifications, may All copy of the claims
When ordering copies, please to remit for the same as and date of patent. United States patents, sent free. A handsomely bound Keference Book, gilt edges, contains 140 pages
and many engravings and tables important to every patentee and meckanic, and is a useful handbook of reference for everybody. Price 25 cents, mailed tree

Address

MONN \& CO., $3 y$ Park Row, N. Y.
BRANCH OFFICE-Corner of F and 7th Streets,

嘕 TO LUMBERIMEN and SAWYERS.

JOSEPH C. TODD I

 rst.. Xen Tork, or Pa

COURDTIG

 COVERING

HARTFORD

STEAM BOILER

Inspection \& Insurance COMPANY.

Homemade telescopes.-Direc

GARRISON, 34 to 44 First St., STEAM Manturar POMP

MEN OF PROGRESS.

Enjear inditit cinizitic

 at washington, The rrouping is spirite d and irtistice
Among the persons represented are the following emi-
nent Inventors: CYRUS MORSE M. MCOBMIC
 OODYEAZ....

Iron-Ratch Machinery.

 MUNN \& CO.,
Pyrometers, For sioming hat of

Address JOHN A. ROEBLING'S SONS Manufactu-

NEWSPAPER FILE

 MUNN \& CO.
A. S. CAMERON'S

A. S. CAMERON,

Works, Foot of East 23d St. NEW YORK CITY.

$$
\mathbf{\$ 3} \text { PRINTING PPESS }
$$

$$
1872,1873,1874,1875,1876
$$ SCIENCE RECORD.

 HOGY, TERIESTRIAL PHYSICS, AN'D MINERALOGY,

ncluding a large number of handsome engravine

S. GUITERMAN, EXPORT AND COM-

THE BEST

Boiler Feeder

FRIEDMANN'S INJECTOR,

NATHAN \& DREYFUS, New York.

Send for Circular.

ALUMINIUM - ITS CHARACTER Weight, Industrial Uses. Alloys, Method or Manufacture
and Cost in Market A valable paper scivNTHIC
AMERIC N SUPTLEMET No

EMERY WHEELS ANDG, PRA.
ROCK DRILLING MACHINES
AIR COMPNDESSORS

Steel Castings,

 Lehigh university--Turtion Free

MACHINISTS' TOOLS.
Lathes, Planers, Drills, \&c.
new haven mandeacruring con:
P.BLAISDEII \& CO.,

Worcester, Mass.,

UPIIGHTpRREILSLELS.

$\$ 0$ Outt free Saliry yaranted , write at once $\mathrm{F}^{\text {OOU Power fin in ing }}$ By

Itroputit

SCIENTIFIC AMERICAN For 1877,
the most popllar scientific paper in THE WORLD.
THIRTY-SECOND YEAR.
VOLUME XXXVI.-NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN beg to announce that on the sixth day of January, 1877, a new volume was commenced. It will continue to be the
aim of the publishers to render the contents of the new volume more attractive and useful than any of its

To the Merhanic and Mamufacturer.
No person engaged in any of the mechanical pursuits should think of doing without the Scientific American.
Every number contains from six to ten engravings of new machines and inventions which cannot be found in

TEERIS OF SUBSCRIPTION.
One copy of the Scientific American will be sent
for one year, 52 numbers, POSTAGE PREPAID, to any subscriber in the United States or Canada, on receipt of three dollars and twenty cents by the publishers.
One extra copy of the Scientific Ayerican
supplied gratis for every club of five subscribers at $\$ 3.20$ each; or six copies for $\$ 16.50$ without extra copy.
The Scientific American Supplement. A weekly paper, uniform in size with the Scientific ing drawings of engineering works, and elaborate treatises on every branch of Science and Mechanics, by eminent writers, at home and abroad. An illustrated cover protects the handsomely printed sheets. Price, $\$ 5.00$ per annum. Single copies 10 cents
one comy of the Scievtric
One cony of the Scientific American and one copy of one year, postage prepaid, to any subscriber in the United States or Canada, on receipt of se en Dollars by the publishers.
The safest way to remit is by Postal-Order, Draft, or Express. Money carefully placed inside of envelopes, securely sealed, and carefully addressed, seldom goes
astray ; but it is at the sender's risk, Address all letters astray, but

MUNN \& CO. 37 PARK ROW, NEW YORK.

[^0]: $25^{\text {¢ }}$ MONKEY WRENCH $35^{\text { }}$

 PATF,NTEES or makero of tueful and sale-

