a WeEkly Journal 0f practical information art science, mechanics, Chemistry, and manufactures.

a singular collision.

The engraving on this page, selected from the pages of the Railroad Gazette, was made from a photograph taken on the spot, and is therefore a correct representation of the scene. It has been stated that the managers of the road on which the accident occurred paid a large sum of money for the negative, with a view to prevent the circulation of copies and publication of the picture; but one copy at least escaped their vigilance, and the result is before our readers. Our contemporary, like ourselves, is unaware of the locality of the accident, all particulars having been carefully kept from the public; but the C 3443 on the stock car may be a clue as to the rolling stock composing one of the trains, although the interchange of railway cars is so frequent as to make it difficult to determine on which line such an accident actual ly occurred. The trains were certainly not passenger trains, as both engines are freight locomotives; and if happily n able to conceal from the public the singular catastrophe.
Of the violence of the collision, there can be no doubt; and it doubtless occurred on a straight piece of line, or one or both of the engines would have been thrown from the track laterally. The interlocking of the driving wheels, the ruplaterally. The interlocking of the driving wheels, the rup-
ture of the side bars, the complete and clean division of one ture of the side bars, the complete and clean division of one
cylinder longitudinally (leaving one half attached to the cycylinder longitudinally (leaving one half attached to the cy-
linder head in which the piston rod is at rest), together with the upheaval of probably 60 tuns dead weight, show the tremendous force with which the leviathans must have met, and the speed at which they must have been running, to

NEW YORK, JULY 1, 1876.
$\left[\begin{array}{l}83.20 \text { per Annum } \\ \text { [POSTAGE PREPAID. }\end{array}\right.$
cause such utter destruction when they were suddenly brought to rest. Perhaps some of our readers will give further details of the occurrence, and tell us on what road it happened.

the gallatue rotary engine.

We have recently had occasion to examine the ope ration of a new rotary engine devised by Mr. A. C Gallahue, applied to the propulsion of a launch some thir ty feet in length. The construction of the machine, brief y described, includes two hollow cylinders whose surfaces run in contact with each other, and the shaftsof which are connected by exterior gear wheels. In the peripheries of these cylinders are pistons (two in each cylinder) which are set out against the side of the shell by interior bolts and nuts. To these last the steam has no access. In each cylinder, at the extremities of the diameter, perpendicular to that joining the pistons, are made transverse grooves so that in passing the point of tangency the piston of cylin der No. 1 enters the groove in cylinder No. 2, and vice ver ad. It will be observed that there are no sliding abutments, and that the points where wear may be expected are at the edges of the pistons and at the ends of the cylinder. In the first instance, said edges are hardened, and the wear is taken up by leaf springs, inside the cylinders, provided with set screws. At one end the cylinders abut directly against the head. Between their other ends and the opposite head are
placed two disks, between which is fibrous packing. Set placed two disks, between which is fibrous packing. Se
screws, passing through the head, act on the outer disk, so
that, by setting these up as becomes necessary, a tight fit en
rates thing 180 revolutions at 80 lbs . of steam, the inventor 8 inches square, saw-which occupies a floor space of but -at 12 horse power. We can state that the machinery worked cmoothly and without jar or pound, and that, whe worked smoothly and without jar or pound, and that, whe being wasted by blowing through. The exhaust was clearly being wasted by blowing through. The exhaust was clearly
and sharply apparent, and the manipulation of the engine, and sharply apparent, and the manipulation of the engine,
whether reversing, going ahead, or holding, was effected with facility
The inventor informs us that in smonth water a speed of over twelve miles an hour has been maintained. Under proper conditions, we think that the engine would be found well suited for boat propulsion, as well as wherever light power is required. For further particulars the reader may address Messrs. A. C. Gallahue \& Co., Morrisania Station, New York city. For prices, see advertisement on another column of this issue.

Selenium Experiments

R. J. Moss has discovered that, when a bar of selenium is placed in the exhaust tube of a Sprengel pump and the air exhausted, the selenium becomes electrically conductive in the course of ninety hours. The selenium is then found to be covered with a delicate film of mercury, from the globule contained in the pump; and the conductivity is ascribed to this film.

Srientific Ammerian.

ESTABLISHED 1846.
MUNN \& CO., Editors and Proprietors.

published weerly at

NO. BT PARK ROW, NEW YORK.

O. D. MUNN.

A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN One copy, one year, postage ticluded...

Over ten coples, same rate each, postage Included........... 8272700 over ten coples, same rate each, postage tncluded..................... 2 go
The postage is payable in advance by the publishers, and the subcriber then recelves the paper tree of charge.
Nort,
Note.-Persons subscribing will please to give their full names, and Post oftice and State address, plainly written. In case of changing residence state former address, as well as give
unless the former address is given.
Scientific American Supplement.
A distinct paper from the Scixntific Ampricin, but of the same size, TERMS.
One year by mall... 8500
ScIENTIFIC AMRICAN and Suplemme, to one address.......... 00
Sngle Coptes....... . .. 10
The safest way to remit is by draft, postal order, or registered letter. Address MUNN \& Co., 37 Park Row, N. I
LIF Subscriptions recelved and stngle coples of either paper sold by all
the news agents. VOLUME XXXV., No. 1. [New SERIEs.] Thirty-first Year.

NEW YORK, SATURDAY, JULY 1, 1876.

Con

THE SCIENTIFIC AMERICAN SUPPLEMENT. Vol. II., No. 1.
For the Week ending July 1, 1876.
table of CONTENTS.

II. ENGINEERING AND MECHANICS, 9 engravings.-Crank shaft o

${ }^{\text {iII. }}$.

The scientife American Supplement

 tout huseribers.

MUNN \& Co., Publishers,
3 Parl Row, New York.
 lis. Single coppes of any desired number of the SUPPLEment sent to any
address on receftot of 10 cents.
Newspaper and other publishers will be supplied with electrotypes of the Centennial Buildings and most of the other engravings which appear in the Scientific American and Supplement, on very cheap terms. For prices address the publishers, and indicate at the same time what engravings are desired, and the date of the issue in which they appeared.

NEW INVESTIGATIONS ON THE EARTH'S HEAT

 The theory ordinarily accepted as accounting for th creation and present condition of the earth is based on nebu lar hypothesis, and assumes that the globe, at one time gas eous, subsequently became molten, and is in that state now, with the exception of a comparatively thin crust, estimated to be about to be about 60 miles in thickness. Our know ledge of the interior condition of the earth, however, is mainly speculative; and the strongest support to the above theory is met with in the increase of temperature noted on descending into mines and like excavations. This increase is estimated to be about 100° per mile; so that, supposing it to continue through a distance of but 100 miles, or $\frac{1}{35}$ part of the earth's radius, a temperature of no less than $10,000^{\circ}$ Fah. must exist at that depth below us. Such a temperature quainted, and vaporize many solid elements. On the other hand, it may questioned whether the effect of the immense pressure on the earth's interior, due to the action of the imprisoned vapors and to the superincumbent weight, must not suffice to remove the limits of the solid crust far below the above estimate; so that liquefaction may begin only at a distance of several hundred miles from the surface, and there may be still sufficient viscosity in a large part of theremaining interior portion to prevent free movement of the remaining inter
liquid nucleus.
We have said that our knowledge is but speculative, and its principal confirmation is found in the fact that, wherever excavations have been made, the increase of temperature the intrin. From this, however, it distances necessary to descend in order to produce like aug. mentations of heat must be comparatively less as the center of the earth is approached. The heat coming from the interior, transmits itself by conduction while traversing interior, transmits itself by conduction while traversing
spheres more and more vast; and supposing the conductibility of the mass to be uniform, the temperature of the exbility of the mass to be uniform, the temperature of the ex
terior, layers of the globe should diminish in proportion as their volume augments.
Recent investigations by Professor Mohr, of Bonne, at the deepest well in the world, have adduced results altogether at variance with the preconceived estimates referred to above, and which, if hereafter substantiated in other lo calities, will tend to throw grave doubts on the igneous theory of the earth. The well in question is located a Speremberg, near Berlin, Prussia, and has been sunk to depth of 4,000 feet. The thermometric record is as follows

Depth	Thermometer	Increase pe 100 feet
700 feet	15.654°	
900 "	17.849 ${ }^{\circ}$	$1.097{ }^{\circ}$
1,100 "	$19.943{ }^{\circ}$	1.047°
1,300 "	21.939 ${ }^{\circ}$	0.997°
1,500 "	23.830°	0.946°
1,700 "	25.823°	0.896°
1,900 "	27.315°	0.846°
2,100 "	28.906°	0.795°
3,390 "	36.756°	$0 \cdot 608^{\circ}$

The third column decreases in arithmetical proportion, showing for each descent of 100 feet equal differences of $0 \cdot 050^{\circ}$ or $\frac{1}{2}^{\circ}{ }^{\circ}$ Réaumur, equal to $0 \cdot 11^{\circ} \mathrm{Fah}$. Applying this ratio to the depths below 700 feet, and between 2,100 and 3,390 feet, Professor Mohr forms a table as follows

Depth		Increase per Iop feet	Depth	Increase per
100 feet				

Continuing this, the author finally determines that, at a depth of 5,170 feet, there will be no further increase of tem perature, and that the heat indicated at that distance win be ature will enter the earth. Obviousk an the ther mometer at 3,390 feet, or $35 \cdot 756^{\circ}$ Réaumur, equaling $114 \cdot 701^{\circ}$ Fah.; so that according to these observations, the highest in ternal heat of the globe falls below that of boiling water.

WORKING MEN'S HOMES.---SIR SYDNEY WATERLOW's ONDON ENTERPRISE.

The problem of providing healthy and comfortable homes for the working classes is one with which students of social science have largely dealt in Europe, and one which, ere very long, must in this country demand earnest and thought ful consideration. It is an undeniable fact that, so long as working men are compelled to live in the vicinity of squalor or filth, or are crowded into tenements where every sanitary physical, must suffer ; and the legitimate result is the injury and depreciation of the class in whose well-being the prosperity of the community in great measure depends. For economical reasons, if none olher, and hence it follows that philanthropy aside, it is to the interest of all to keep the subject agitated until some amelioration of the presentstate of affairs is accomplished
Relief from the overcrowded tenement is, perhaps, no where more needed than in New York. Rapid transit, when gained, will do much towards improving matters by opening cheap homes in the suburbs; but even then an immense number of people will still be obliged to live in the heart of the city. For them, and for their brethren in other popu lous localities, as well as for working men in factory towns, improved homes are urgently needed; and until the same are
provided, the epidemics which yearly afflict the denizens of tenements, and are due most frequently to foul and impure air, may be expected. Nor can we hope to materially de crease the number of the intemperate so long as the attrac tions of the bar room are set off against cheerless and com fortless homes.
There are two ways of accomplishing the required end, namely, either the workmen may coöperate or capitalists can promote the matter as an investment. Both plans have been successfully tried in England. It is certain that to wait for philanthropy to do the work is not wise. On one hand, philanthropists like George Peabody, or Peter Cooper or Baroness Coutts are few and far between; and on the ther, a majority of working men possess a feeling of independence to which the notion of accepting any benefit sav oring of charity is especially repellent. Experience has shown that the working man will prefer poor and even un healthy quarters to the best accommodations, so long as the latter savor of the almshouse in disguise. While such schemes are necessarily based on philanthropy, that fact is best kept in the background, and the project should be put on a dollars and cents basis, which precludes the idea of obli gation
Now as to the two practical ways: The practice of coöp eration has been a favorite one among English working men for many years, and it has worked marvelous results. It is based on the sound policy of cash payments. and dividing the profits of trade among members. Land and building societies are two of its forms. A working man desiring a house joins a society, who effect the lease for him. Instead of paying his landlord, he pays a certain subscription and interest to the society; and when his subscriptions are paid up, the association buys the house and conveys it to him. Those who do not purchase houses receive a dividend and bonus on their shares. The Permanent Building Society, of Leeds, England, has furnished healthy tenements for about two hundred families. There are also towns and villages in Lancashire where very large sums have been saved. In Burnley, the Building Society, of 6,600 investors, in one year saved $\$ 800,000$. This society has assisted in hundreds of cases by advancing money on mortgages, which are repaid by easy instalments. It will be seen that these societies aid men to keep themselves by saving money to buy their own homes; and when it is considered that no such wages, even proportionately to cost of living, are paid in England as American workmen receive, the results show wonderfully the advantage of the habits of thrift thus promoted.
Passing to the second plan, this is also divisible. It may be carried out by individual employers for the benefit of their employees, or by corporations for the benefit of the whole working class in general. The former would be the whole working class in general. The former would be the course in manufacturing villages and towns, the latter in
great cities like New York. We can best exemplify the great cities like New York. We can best exemplify the
working of both by example. In South Lancashire, the cotton spinning mills of the Messrs. Ashworth have been in operation for some seventy years. Owning a large tract in the vicinity, the proprietors have built complete villages The cottages are of stone, two stories, and very comfortably arranged. The rentals are at fair prices. The men are paid regularly, and they in turn as regularly pay their rent. Schools are provided. In a word, so well organized and controlled is the great establishment that crime and misery are practically unknown. Drinking shops are abolished, there has never been a case of theft in the place, and great numbers of the men have become owners of their own houses. At Saltaire, where the vast wool-spinning works of Sir Titus Salt are located, 756 houses are rented by the work people. Each house is separate in all its appointments, has every sanitary convenience, and the rent is within the operative's means. There are no drinking houses; but in their place are public laundries, baths of all kinds, libraries, schools, reading rooms, and, in fact, Saltaire is as near Uto pia as the most enthusiastic social reformer might hope. So much for single-handed work. Great as are its results they are exceeded by those achieved by the Industrial Dwel lings Company in London. Here is a corporation based on a philanthropic foundation, but conducted on business principles, which render its working a model for future emulation. Some fourteen years ago Sir Sydney H. Waterlow (who, by the way, is now in this country, serving as chairman of the English jury on the Paper and Stationery Department of the Centennial, and to whom we are indebted for the following facts) erected at his own expense a block of dwellings in the heart of London, provided them with every convenience, and ented them to about 80 families at sums sufficient to. yield a fair return on the outlay. So satisfactory were the results that a company was formed, with a capital of $\$ 250,000$, to erect more buildings on a similar plan. The capital has fron time to time been increased, and at present the total re sources are about $\$ 5,000,000$. The income is 11 per cent on the cost of the property; and for the past five years, there has been a large surplus profit after paying 5 per cent divi dends. There are now 1,596 tenements in occupation, ac commodating 6,750 people; others are in progress, and the present capital
The buildings are of brick, ornamented with copings of artificial stone, made on the spot by the company, from Portland cement and coke breeze. This is easily and cheap y molded into tasteful forms, and is remarkably durable The tenements, which are entirely separate, contain fron wo to four or five rooms; and every one, whether large or small, contains a compact little kitchen fitted with a range boiler, clothes chest, and sink, and is provided with an abun ance of water. The closets are detached from the tenements and are separately ventilated. There is also a neat contrivance
for dust, which is thrown down a shaft to a receptacle in the cellar, whence it is removed. The hight of the rooms averages 8 feet 6 inches, and the superficial area about 130 feet. The rent averages 50 cents per week per room. suite of five rooms costs $\$ 5.75$. In other words,for about the same or a little less money than it costs in this city to hire a floor in a rookery, or in a building in which, in nine cases out of ten, sanitary laws are ignored, the working man may obtain a pleasant, comfortable home : better, it appears, in many respects than the French flats which rent here at from $\$ 500$ to $\$ 750$ per year, for a suite of rooms.
The effect of the above project has been a marked improvement in the moral, physical, and social condition of the working people who have availed themselves of the ad vantages offered, and a greatly diminished sick and death rate, as compared with London generally. It also has served to show how a work of genuine philanthropy and charity may be accomplished without impairing the self-respect of the beneficiaries, and may at the same time, afford a fair interest to the invester.

THE FARMER'S FOES.

The terrible pests which have wrought such ruin on the agriculture of whole districts of this country have appeared; and they have commenced their detestable industry with undiminished vigor. A correspondent in Iowa says: "Potato bugs are more numerous this year than they were last;" one in New Jersey reports: "Our State is particularly infested with potato bugs;" and similar accounts from Pennsylvania, Virginia, New York, and Massachusetts have been published in the columns of our contemporaries.
Professor Riley, State entomologist of Missouri, in his valuable report for 1875, states that, although the beetles were very numerous last spring, they became comparatively scarce and harmless, and did not become multiplied till the third brood had developed, by which time the crop was suf ficiently matured to be out of danger. He reports that a beetle (lebia atriventris, black-bellied lebia), half an inch long, has been seen to destroy the potato beetles in Maryland, and the common crow has been observed to devour them, and
even to dig them out of the ground whither they had retired even to dig th
Among artificial remedies and preventives, Paris green seems to maintain its lead, and some new facts as to its use have recently been published. The poison can be cheaply manufactured as follows, but much danger will be avoided and trouble saved by buying it already prepared of dealers. Dissolve 2 lbs. sulphate of copper in 1 gallon hot water, in a stone jar. In another jar put 1 lb . white arsenic and 2 lbs . pearlash in 44 lbs. hot water, and stir till dissolved. Mix when needed in the proportion of 1 part of the former to 5 of the latter. Use with a sprinkler. Professor Riley states that the potatoes themselves show no trace of injury from arsenical poisoning ; and he quotes Professor Kedzie to the effect that the soil is uninjured by the use of Paris green. Even water from the soil will not become poisonous unless the Paris green is used in excess of the requirements of insecticidal purposes.
The locusts are now commencing business, and giving, by their numbers and activity, some indication of the prospects of the season. Our readers are familiar with the doleful history of this plague, and of the devastation of large sections of Kansas, Missouri, Iowa, Nebraska, and other States by it. Professor Riley's observation of the nature and
habits of the locust is laborious and careful ; but the remehabits of the locust is laborious and careful; but the reme-
dies yet discovered seem to be much out of proportion to dies yet discovered seem to be much out of proportion to
the extent of the disaster. Destroying the eggs by shallow the extent of the disaster. Destroying the eggs by shallow
plowing, burning the unfledged young, cutting off the march of the adult insects by digging ditches, catching them in nets and seines, and burning sulphur seem to be useless against foes which occupy the land, not by counties merely, but by whole States, and which are as the snowflakes for multitude, and multiply with great rapidity. "Every bushel of locust eggs destroyed is equivalent to 100 acres of corn saved," says Professor Riley. The encouragement of game birds and sparrows is recommended, and the distin guished scientist believes that this will be found to be on of the best means of checking the increase of the species must be used, if anything can be done at all. To this end, must be used, if anything can be done at all. To this end,
our legislators may well address themselves; and the diffuour legislators may well address themselves; and the diffu-
sion of sound practical knowledge on this subject is a work sion of sound practical knowledge on this subject is a work
which Congress might take up in perfect assurance that it which Congress might take up in per
could not be more usefully employed.

A MISAPPLIED TESTIMONIAL

One of those erratic geniuses with which every editor is more or less familiar, through his persistent seeking to ven tilate absurd theories in our public journals, recently ad vertised a lecture in this city, on "Magic Reciprocals, a Mathematical Revolution." The announcement in the daily newspapers stated that the discourse was to be given at the
request of a number of our best known citizens, headed by request of a number of our best known citizens, headed by
Mr. Peter Cooper and Mr. William Cullen Bryant; and at the door of the hall, a printed copy of the very flattering invitation, with signatures appended, was handed to every comer.
While it is, of course, possible to doubt the authenticity of While it is, of course, possible to doubt the authenticity of
the document, the fact nevertheless remains that the statethe document, the fact nevertheless remains that the state
ment that the lecture was asked for by these gentlemen was paraded in the papers repeatedly without eliciting con tradiction from them. The result was that a goodly audience, including several scientific men, gathered to hear about the supposed discovery. Instead, they listened to a misstatements, mixed with metaphysics and a notion of the

Darwinian theory apparently imbibed from some misin
formed religious newspaper. The gist of the theory was the assertion that a point is the reciprocal of a straigh line: supported by not a shadow of logical reasoning, but by a series of elaborate drawings in colored inks of right lines, forming figures somewhat analogous to the multifarious forming figures somewhat analogous to the multifarious
curves produced by the geometrical chuck used in engravcurves produced by
ing bank note plates.
While no one can
While no one can dispute the right of anybody to be lieve and to promulgate any mathematical nonsense that
may please him, many, we think, will, like ourselves, regret the support, tacit or open, perhaps unwittingly, afforded by the signers of the invitation. If these gentlemen did append their names, they have simply asked public confidence in a theory which a moment's examination must have shown them was ridiculous; if they did not, then a word of con tradiction from any of them would have exhibited matters in their true. light. Some of these gentlemen, who have done valuable service toward the spread of scientific knowledge, will, we think, agree with us in the view that their countenance of such proceedings, whatever their private opinion may be regarding the inventor, is to be deplored, since it tends to bring the cause of Science into disrepute through conveying to people the idea that false and un founded theories have been regarded by the learned as of
genuine scientific importance. At the same time the effect genuine scientific importance. At the same time, the effec also is to place the charlatan or visionary enthusiast on a
level, in the minds of many, with those emiment scholars who have aided so greatly to disseminate useful information through the medium of the popular scientific lecture. It would be better if the indiscriminate giving of laudatory testimonials could be confined where the practice belongs, among the venders of quack nostrums. Nothing is more certain than that, as regards mechanical inventions, reports scientific discover one's opinion.

THE CENTENNIAL EXPOSITION.

A material change in the programme of the agricultura display has been made through the decision of the authori ties that there shall be no competitive field trials of farm implements. As these trials have been announced in the prospectuses of the Exposition for the past two years, and go the tests, it certainly seems rather late in the day to go the tests, it certainly seems rather late in the day to
abandon them now. The reason given is that such experiments, while they may demonstrate the excellent working of the apparatus, afford no idea of relative durability, a very important consideration to the user. It should be understood, however, that only the competition is ruled out. An exhibition of threshers and separators in operation at Schenck's Station, fourteen miles from Philadelphia, is now in progress, and on June 26 grass was to be cut, and on July 5 the wheat will be ready for reaping.
The attendance at the Exposition has been large latterly and sufficient, if maintained, to secure its financial success An unfortunate dissension arose a short time ago (but no longer exists, as we are informed), between the Centennial Commis sion and the Board of Finançe, involving a conflict of the authorities, mainly regarding financial matters. Both boards have done good service, and it is greatly to be hoped that the organization and management may not devote to useless dis putes the energy which has thus far contributed so greatly the success of the enterprise.
the belaian exbibit
in Machinery Hall is well calculated to excite general sur prise at its extent when the small size of the country is con sidered, but is not, on the whole, to be wondered at when we recal the rapid progress in every industrial pursuit made by the Belgian people. A pair of Corliss engines built by P Van Den Kerchere, of Ghent, are remarkable for admirable design and workmanship, and are considered by many engineers to be in some respects superior to the great Cortis boring and tubing mine shafts and wells below the water level. Special interest attaches to the various railway exhibits, as the railroads of the country are among its largest sources of revenue. The different specimens of rails ex hibited are of an improved pattern, and some are so ar ranged as to do away with the wooden sleepers common in
this country. There are also new varieties of the street car rais country. There are also new varieties of the street ca
rais designs for holding such tracks in place. Next comes a large number of different sized railway buf fers and springs, made of forged iron and used on railway cars to deaden the force of concussion. There are also numerous specimens of car couplings and wheels. Among the general machinery are two spinning machines with specious piston motion and a lift and fore pumphaving a co sides, specimens of connecting rods for engines, the process of bellied turning, an interesting model of a system of machinery for the utilization of greasy waste, from railroads from suds of wool scouring, residue of palm oil, etc.

Japan.
We have already alluded in some detail to the fine Japanese display in the Main Building. The agricultural exhib it bears the same marks of completeness and admirable selection. All the various process of silk culture, from the explained by models, charts, etc., from the government office for experimental silkworm breeding at Tokio. Here are shown the large hampers made of bamboo and used in carrying the mulberry leaves from the field to the place o two or three days for the young worms. Then come the
bamboo baskets for separating the parts of leaves of differ ent weight, and the knives used in cutting them from the branches, together with the chopsticks for handling the worms, as the perspiration from the fingers is considered in jurious to them. A very fine series of mulberry leaves and modes shows the process of cultivation in different soils also specimens of insects injurious to the trees are also exhibited. In fine, the visitor has only to use his eyes to learn an immense amount of interesting information regard ing the great silk industry of the Japanese empire.

Tea culture is illustrated by diagrams, showing modes of cultivation of the plant and specimens of the teas, together with examples of the method of packing. The manner in which the Japanese woods are displayed is especially good Each particular variety, of the hundred or more exhibited, is shown both dressed and in a rough state, and beside it are placed portions of the bark and a few leaves from the tree Each specimen is distinctly labeled with its name, an im provement which would greatly facilitate inspection if it could be carried out through all departments of the Exposition.
If any one is curious to know something of Japanese food he will find displays of cured fish and hams, pickled fruits sauces, and bottles of mineral waters. Some of the sauces which take the place of the omnipresent Worcestershire or atsup are produced from a variety of curious ingredients. Soy is made of fermented wheat and beans mixed with tabl alt; another, called nagaoka, is made of clean pounded barley, wheat, and soja hispida (a kind of bean), malled, with salt. These substances are brewed together, kept for abou three years, and are then ready for use.
Bamboo is so extensively used in Japan that the large ex tent of the exhibit might well have been expected. From hugh poles, thick enough to form supports to a house and 20 feet in length, down io the most delicate wicker work and nets, the useful reed is presented in every conceivable form. A separate section is devoted to the display of shells, skins of fishes, horns, and feathers of various kinds; another is filled with barks and dye stuffs, another with a beauti fully arranged collection of cereals. In fact, the Japanese display is surpassingly good; and if the visitor undertake o study the resources of any one country as evidenced in the Centennial, he can devote himself to the examination of none with more pleasure and profit than to those of Ja pan.

iron and steel wire

The visitor need not expect to find all the metal exhibits in Machinery Hall, although presumably this department is the proper place for them. Some of the finest are in the Main Building. The Washburn and Moen Wire Works, of Worcester, have erected a huge column 12 feet high, built f coils of clean new wire, each coil being of immens ength. One shown to us weighs 525 lbs., and is over a mile long, and is made from American pig iron without weld or joint. The same concern exhibit ramrod wire in great bunches, a column of glistening broom wire, scores of coils of pin wire, steel furniture wire, belt hook wire, telegraph wire, clothes line wire, and whole heaps of wire for genera purposes. Certainly few can realize to how many differen ends wire is applied. Here, for example, is the fine stee material used in pianos, another variety for making wire gauze window screens, and a new invention for tying hay bales in lieu of the wooden withes now employed.
A magnificent specimen of forging is exhibited by Phillips, Nimick \& Co., of Pittsburgh. Interspersed with saws and saw steel of all shapes, tastefully arranged upon the walls, are immense bars of iron, bent cold into knots as if by the hand of some giant. There are a great wrought iron ex pansion joint for water pipe, rolled in two half circles and welded so as to resist a tremendous pressure, Sligo Spec ial, or SS, plates that have withstood pressures of $77,000 \mathrm{lbs}$ per square inch, and the Sligo fire box, 106 inches in diame er. having 64,000 lbs. tensile strength. Near by, in the dis play of Hussey, Wells \& Co., of Pittsburgh, is a homogen-
eous crucible steel boiler plate of 76,000 lbs. tensile ous crucible steel boiler plate of 76,000 lbs. tensile trength. Beside it is an axle which has had five blows al ernately, first on one side and then on the other, by a drop hammer weighing 1,600 lbs., falling 25 feet. The metal is bent slightly, but not broken.

stove Making In Canada.

The American Stove Manufacturers' Union held a meet ing in Philadelphia on June 15 last, and the first busines attended to was the appointment of a committee on patent laws. The subject of patent protection has recently been brought before the notice of the Union by the alleged piracy of American designs by Canadian makers. General Rathbone informed the meeting that he saw in the Main Building of the Centennial Exposition, in the Canadian department, a stove of his own pattern, another of a pattern belonging to the firm which the President, Mr. Jewett, represented, and many other standard American works. He said that stoves were sent to Canada, and casts made of the patterns, which the Canadian manufacturers obtained letters patent for and sold as their own designs; and not only that, but they had the effrontery to send the same pattern to the Centennial Exhibition to obtain premiums for originality of design. He hoped the matter would be brought to the attenion of the Centennial authorities, and such measures taken as would prevent the Canadians from receiving rewards for designs and articles which did not now and never did belong to them. President Jewett held that it was a swindle upon the public. Mr. Spear had suffered in the same manner. It was agreed that the committee on patent laws draw the attention of Congress to the necessity for a treaty with Canada of a reciprocal character.

IMPROVED HOT BLAST BOILER FURNACE.

We illustrate herewith a new construction of boiler furnace, the object of which is to save the loss of heat due to waste through grate bars, through imperfect combustion of oxygen with the gases evolved, and through the frequent admission of cold air into the fire chamber. The manufacturers claim that double the number of cubic feet of air is required by natural draft to produce combustion that is necessary when a forced blast is used, because the needful amount of oxygen can be more perfectly combined with the gases at a point in the furnace where combustion is possible. Thus the heat ordinarily expended in elevating the temperature of the surplus air admitted is saved. This is done as follows: All the nir admitted to the fire is conveyed from the fan, shown in the rear, through pipes, A A, along the fire bed to the airtight fire chamber, D, and under the grate. It thence passes up through the improved grate bars to the fuel, and is also orcedback through the small pipes, B B, to the cross perforated pipes, C C, distributing the heated oxygen at proper points under the boiler, to unite with and assist in burn ing the escaping gases. The air is obviously heated before it enters the fire, the heat of the cinders, clinkers, and refuse of the furnace being utilized for this purpose, by pushing the hitherto unused material over the bridge wall and into the pit back of bridge wall, where it assists in heating the pipes, A, and whencol, can be withdrawn at the door shown. It will be obthe door shown. It will be observed that there are no ash pit
doors to be opened, and that there doors to be opened, and that there is no necessity of throwing open furnace doors to check combustion, that end being easily effected by stopping the air blast. Thus the furnace is protected from the injurious effects of sudden changes of temperature. On the improved grate, we are informed, all dust, shavings, tan bark, and other refuse will burn as well as the best lump coal. Besides thus producing economy, through the air arriving at the point of combustion already heated to the proper temperature by heat otherwise wasted, the general construction is such as to insure a cool and pleasant fire room, a condition hardly possible so long as fires are cleaned and hauled through the furnace doors. This furnace can be easily applied to boilers already door
A large number of commendatory testimonials are submitted, showing that from twenty to thirty per cent of fuel is directly saved by the invention. For further particulars relative to sale of patent, address the manufacturers, Messrs. U. B. Stribling \& Co., Madison, Ind.

MCMILLAN'S SELF-REGULATING GAS BURNER

It has been demonstrated by experiment, by M. Lemoine that, in order to obtain the greatest amount of gas light at least cost, the following rules should be remembered: 1. A good burner will produce four times the amount of light that a

poor one will, the quantity of gas burnt being equal. 2. The intensity of the light increases with, but in a greater ratio than, the size of the slit. 3 . The increase of illuminating power varies with the decrease of pressure. 4. The gas should be burnt at the lowest possible pressure. 5. The pressure should remain constant; and 6, the pipes should be largeenough for the amount of gas carried through them. In the new gas burner, illustrated herewith, it is claimed that the conditions stated in rules 4 and 5 above given are fully realized, and uniformity of flow and economy in the consumption of gas are combined with a simple, cheap, and durable construction. The engravings represent the device in full size, both exteriorly, Fig. 1, and in section, Fig. 2. The base section, A, forms a cylindrical chamber into which the lower concave part of the tip section, B, is hermetically secured. C is a flexible diaphragm of leather or other suitable material, which in interposed and fastened between the sections; this supports centrally the stem of a valve, D, which opens and closes from beiow the entrance aperture of
the gas, according to the pressure of the latter on the dia phragm. The diameter of the chamber, in A, is larger than that of the diaphragm, so that, concentric with the diaphragm, there is an annular channel into which the gas flows through suitable apertures, as indicated by the arrows. The gas then passes by the inclined channels in the upper section to the delivery tube, and is there fed to the tip at any position of the upper section, without necessitating any spe cial adjustment of the same to the gas-conveying channels, as the communication is established as soon as the section are united. The flow is thus evenly maintained and is inde pendent of the pressure below the valve. The regulating attachment may be kept within small compass, so as to be

STRIbLING'S HOT BLAST BOILER FURNACE.

usual glass globe. The pressure at the tip of these burner when in use is stated to be about two tenths of an inch wa ter pressure. It gives full flame with only five tenths pressure on the supply pipe, and will do no more with a pressure of thirty inches. Testimonials are submitted, showing in one instance a saving of twenty-six per cent of gas burn in a period of eight months.
Patented through the Scientific American Patent Agency by D. D. McMillan, January 26, 1875. For further particu lars address E. H. McMillan, La Crosse, Wis.

SCENES AT:THE CENTENNIAL.

The extent and variety of the Centennial show afford many interesting and characteristic scenes to the observant visitor. In the upper part of the engraving on our follow ing page is shown one of the entrances with the crowd con gregated thereat. The entrance to the Grand Plaza, from Belmont and Elm avenues, is next shown, and a view of one of the stations on the narrow gage railroad that runs all round the grounds, affording much economy of time and labor, is also given.
The lower part of the picture is occupied by a view of number of the principal buildings erected by the different States for the accommodation of their commissioners and delegations, which we have described so recently that any lengthy details of the structures which are represented in the engraving will not be necessary. The view represented was made from a point near the English government building looking in an easterly direction along what is known as State avenue, on which most of these buildings are situated The New York building, shown on the left hand of our picture, is a showy and convenient structure, with ample piazza room. The Governor's room, office, and the ladies' apart ments are handsomely furnished and hung with paintings. Massachusetts has erected the building next in the line; it is somewhat oldfashioned in style, but thoroughly commo dious in design and arrangement. The Connecticut building stands next; and though small, it is large enough for the purposes for which it is intended. New Hampshire has a plain square structure fifty by fifty-five feet, situated east of Connecticut cottage ; beyond it are the headquarters of \mathbf{W} isconsin and Illinois. Indiana comes next, with a build ing of striking appearance. A little further to the eastward we come to one of the most substantial structures of the State group, that of Ohio. It is built of dressed stone from the quarries of that State.
The engraving is selected from the pages of Harpers Weekly.

Window Ventilation

A writer in the London Sanitary Record gives the following instructions for making a cheap window ventilator Take two pieces of board a quarter of an inch thick, one inch wide, and as long as the lower bar of the window ; three narrow pieces half an inch thick and one and a half inches long, one end being cut with the bevel of the window stool. Nail these pieces across one of the long slats, one at each end and one in the middle, placing the short side of each piece even with the lower edge of the slat. Nail the other slat on the opposite side of these short pieces, bringing the upper edge of the slat even with the square end of the short pieces. This will make a compound bar with half an inch between the slats, and one slat half an inch higher than the other when the whole is turned upon its edge. Place the whole under the lower window sash, with the higher slat on the outside. The air can then pass under the outer siat, between the two slats, and enter the room over the top
of the inside slat, having an upward motion which will cause it to mingle rapidly with the warm air of the room and thus prevent any sensible draft. By thus raising the lower sash, a space will be left between the top of the lower sash and the bottom of the upper sash, through which anther thin layer of air may enter the room at some distance from the layer at the bottom of the window. The air must also enter with an upward current, causing it to speedily mix with the hot air in the upper portion of the room. This rrangement is especially adapted to secure safe window ventilation in bedrooms.

There is a prevalent notion that ice purifies itself by the process of freezing. This is not based on trustworthy scientific observation, and, indeed, is not true In the recent annual report of the State Board of Health of Massachu setts are given the details of an out break of intestinal disorder, clearly attributable to the contamination of impure ice. The malady broke out last summer in one of the principal last summer in one of the principal
hotels at Rye Beach, N. H., and, while not attended with fatal ef while not attended with fatal ef
fects, extended to a large number of people. After long and unavailing search, the cause of the trouble was found in the pond whence the ice used in the hotel had, the winter before, been taken. The outlet where by the body of water emptied it self had become obstructed, so that the water was rendered nearly stag nant. At the lower end where the feeding brook entered, and over a space 500 feet long by 150 wide, had accumulated a homogeneous mass of putrescent matter, composed of marsh mud and decomposing sawdust. This foul matter, held in suspension in the water, was conveyed by currents and winds to every part of the pond, and an analysis of the melted ice showed it to be heavily charged with such impu rities. It is obvious, from this, that the same care given to wells and other sources of drinking water should be giv en to the bodies of water from which the usual ice supply is gathered.

A NOVEL CULTIVATOR

Mr. James C. Stone, of Leavenworth, Kansas, has patent ed, through the Scientific American Patent Agency, May 2 1876, a new cultivator, which pulverizes the soil and cuts up weeds by means of a series of circular saws. These are at tached and driven in the simple manner represented in our engraving. On the drive wheel, A, are formed toothed gea wheels, E, which mesh the teeth of small gear wheels, F attached to the saw shaft. The latter rotates in bearings on arms, H, which ride upon the journals of the axle at the in ner ends of the hubs of the wheels, A, so as to keep th wheels, F in gear with the wheels, E, however much th shaft may be raised. The saws are placed upon the shaft at distance apart of three and a half inches, as may be de-

sired, or as the character of the land to be operated upcn may require. To the center of the bail, attached to the saw shaft, is pivoted the end of a screw, K, which passes up throug a hand nut, L, swiveled to a bracket, attached to the frame so that, by turning the said hand nut, the saws may be adjusted te enter the ground to any desired depth, or may be raised from the ground. The axle is suitably bent to accom modate the saws.

The Belfast ginger ale, which has for the last few summers quice a popular beverage, may be made as follows Powdered double refined sugar, 16 ozs : bicarbonate of soda $\frac{1}{2}$ ozs. : citric acid, $4 \frac{1}{2}$ ozs. : concentrated essence of ginge drops. The soda, acid, and sugar must be carefully dried separately, at a temperature not exceeding 120° : and the sugar before drying must be thoroughly incorporated with the essences, to which a small quantity of caramel as color ing may be added. This forms a powder, a dessertspoonful of which will make a tumblerful of the drink.

IMPROVED SAFETY BRIDGE FOR RAILROAD CARS. The invention herewith illustrated is a gang plank and guard railing, designed for connecting car platforms, so that train employees and passengers can pass from car to car without danger while the same are in motion. The guards may be folded into a narrow compass so as to be out of the way when the cars are uncoupled.
The gang plank, Fig. 1, is hinged to an end piece which is rigidly secured to one platform, and is provided with fixed upright posts suitably connected to the platform railing. A pivoted guard rail platform railing. A pivoted guard rai
extends along each side of the plank to extends along each side of the plank to
movable upright posts, A, and is conmovable upright posts, A, and is con structed in the form of lazy tongs, the folding of which is permitted through the lower ends playing in slots in the post, as shown in Fig. 2. The movable posts, A, are strapped to the platform rail ing, and are provided with guide rods, B, to which the gang plank is connected by swinging ${ }_{2}$ crank arms, C, shown in Fig. 2. These arms have sliding sleeves at their point of connection to the rods, B, so that the guards adjust themselves to the varying length of the platforn during the motion of the train. They produce, when the gang plank is swung up, during the coupling or uncoupling of the cars, the simultaneous folding of the guard rail, and also the opening ou of the same when the plank is lowered
The railing may be applied loosely to the platform or hinged to the fixed posts of the latter, so as to be swung sidewise. The device is equally well adapted to the gang planks of steamboats.
Patented through the Scientific American Patent Agency, May 16, 1876. For further particulars address the inventor, Captain L. F. Frazee, 194 Grand street. Jersey City, N. J.
Captain Frazee will be remembered by many of our rea ders as the genial and popular captain of one of the steamboats that used to ply between New York and Long Branch

Dyeing with Artificial Alizarin.

Forster proposes to add a fatty acid to the color, in order to produce upon cotton with artificial alizarin a red resemb ling Turkey red. He mordants with alumina, and dyes in an alizarin bath containing soap, neutralized with sulphuric acid. The mixture of alizarin and fatty acid, which separates out in fine flakes, dyes the tissues readily, and gives bright and solid colors-red, rose, and purple.

A NOVEL DEVICE FOR SEWING ON BUTTONS.
We illustrate herewith a very ingenious little attachment designed to render the sewing machine available for the sewing on of any kind of button. The device is simple and easily made and operated. In brief, it gives to the sewing machine a new capability, and for this reason will doubtless meet a ready welcome

It is obvious that, in order to give a button the necessary movement under the needle so that the latter can pass backward and forward from hole to hole, a different feed motion from that usually found in sewing machines is needed. And, moreover, such motion must be adjustable according to the distance between the holes in the button. This seems to be neatly accomplished in the present device.
A, Fig. 1, is an arm attached to the needle bar of the machine and jointed to the bar, B, which is pivoted to the inclined standard shown. C is the clamp for holding the work, and vibrates freely on the pivot, D, Fig. 2. Between the parts of the clamp is a bar, E , the pointed end of which protrudes into the opening in which is a cam, F, secured in a
shaft which is attached to the bar, B. At each descent of the needle bar the cam, F, is carried backward, so that one or the other of its rear projections strikes the angles of the clamp plate, Fig. 2, and so turns its pointed forward end to either hand. When the needle bar rises the arm, A, swings the bar, B, forward, and the cam is carried in the same direction, so that it acts alternately first on one side and then n the other of the angle piece, E. This obviously vibrate , other of the angle p. This obviously vibrate

FRAZEE'S SAFETY BRIDGE FOR RAILROAD CARS.

Historical Scientific Relics.

A remarkably interesting exhibition of scientific apparatus is now open in South Kensington, London. The enterprise was organized under government auspices, and is internaontific The collection includes not only apparatus for sci objects in any and for the teaching of science, but also any display is instruction and not with these. The end of the isplay is instruction and not advertisement, so that there is no competition and nothing in the shape of awards. Papers will, however, be read, descriptive of the articles exhibited.
The most interesting part of the col-
lection is that which includes lection is that which includes modes and apparatus which are historical. Proloably no such gathering of the results of the initial conceptions of some of the greatest discoveries and inventions n the world has ever before taken place. Among these are Bramah's original hydraulic press, the Comet, Puffing Billy, and Rocket engines; Newcomen's original model of his engine, a large collection of Watt's models, a large colled steam cylinder made by Papin ished steamling's model of his air encine a link motion made by W H gine, a link motion made by W. Howe Dr. Mill ${ }^{\text {in }}$ (788(the engine made for Dr. Miller in 1788(the first engine used for steam navigation), the original model of the Eddystone lighthouse, and a bar lathe of Watt's. Still more interesting are the original apparatus with which Faraday obtained the mag-neto-electric spark; the original air pump and Magdeburg hemispheres of Otto Von Guericke, portions of the traces by which the horses were attached to one of the hemispheres being still left; also a stereoscope made by its shifted along the plate and adjusted by the clamp screw der house" made by Prinentor, Sir David Brewster, a "thun shown, so as to regulate the throw of the clamp according to the distances between the holes of the buttons. The attachment can be adapted for use on any sewing machine, and is also suited for sewing on hooks and eyes, buckles, etc.
Patented through the Scientific Americ in Patent Agency, April 4, 1876. For further particulars address the inventor Mr. J. W. Fries, Salem, Forsyth county, N. C.

The Aquarium in New York City.

New York city is at last to have an aquarium. The subject of providing this most valuable means of study has been discussed repeatedly for the last ten years, and we, in common with others, have frequently advocated the estab. lishment of a finny menagerie in Central Park. There is a probability of an aquarium being built in our great pleasure ground sometime in future; but before that collection is fairly begun, we doubtless will see finished the work recent y started by private enterprise. The nearest approach to a large aquarium New York ever possessed was due to Mr .
P. T. Barnum, who exhibited a number of tanks containing P. T. Barnum, who exhibited a number of tanks containing
rare fish and a white whale (which some skeptics declared rare fish and a white whale (which some skeptics declared
was of india rubber) in his old museum, which stood where the was of india rubber)in his old museum, which stood where the
Herald building now is located. It is worthy of remark that to Mr. W. C. Coup, Mr. Barnum's former executive officer, is due the inception and undertaking of the present enterprise.
Work is already well advanced on the building, which is located on the plot of ground recently occupied by the Col osseum, at the corner of Broadway and 35th street. The edifice, says the American Architect, will be one story in hight, of brick, with large sash lights at the sides; and one immense skylight will form the roof. The tanks will be placed at a distance of three feet from the side walls, giving room for a passage, to accommodate pipes, and also to fa cilitate the passage of attendants. Light for the tanks will come from above, the spectator looking through a plate glass front. The sides of the tank are to be composed of slabs of slate, while rockwork will slant up at the rear There will be a storage reservoir of a hundred thousand gal lons, where a supply of salt water will be kept. This water will be conveyed from the river in barrels, and kept from stagnation by aeration, for which purpose air pumps worked by engines will be provided. The middle of the floor will be occupied by large tanks, built partly above and partly below the surface of the ground. These great tanks will be reserved for the white whale, sharks, and other large fish. Small tanks will be placed at convenient points; and when in running order, the establishment will be able to accommodate all classes of fresh and salt water fish.
Mr. Coup recently succeeded in capturing two white whales alive, in arctic waters, and in transporting them safely to a tank prepared for them in his building. Both, however, committed suicide in their endeavors to break
through their narrow quarters, cutting themselves so severely, on projecting edges, that they bled to death.

origin of Fiber in Puddled Iron

The grain or absence of fiber is generally produced by the fusibility of the manganiferous or alkaline scoriæ, by the sof tness of carburetted or phosphuretted iron when heated, and by the high temperature at which the pudding is coning fusibilitiber, on the other hand, results from the spar comparatively low temperature of the puddling.-M. H. Le comparatively low temperature of the pudding.-M. H. Le
Chatellier.
der house" made by Priestley, Galileo's telescope and several ther of his instruments, Sir Francis Drake's astrolabe, the apparatus used by Joule in ascertaining the mechanical equi valent of heat, Black's pneumatictrough, a quadrant belong.
ing to Tycho Brahe, a telescope by Huyghens, Babbage's cal ing to Tycho Brahe, a telescope by Huyghens, Babbage's cal culating machine, Whitworth's original gages, the original Wheatstone bridges, and Armstrong's hydro-electric machine. There are hundreds of other exhibits, all connected with some great scientific achievement.

New Sulphate of Potassa.

The composition of this salt is : Sulphuric acid ($\mathrm{SO}_{3}{ }^{\text {a }}$) $4 \cdot 9$; potassa (KO), $50 \cdot 6$; water (HO), $4 \cdot 6$. The formula $\mathrm{SO}_{3} \mathrm{KO}+\frac{1}{2} \mathrm{HO}$ would require: Sulphuric acid, 43.7; potassa, $51 \cdot 3$; water, $5 \cdot 0 .-$ M. J. Ogier.

ALMOND'S IMPROVED DRILL CHUCK
We illustrate herewith a new and simple drill chuck, so constructed that the jaws have a large amount of bearing surface, and hence will keep true for a long period, that no dirt
 can enter the working parts, and that there is a direct connection between the jaws and the machine spindle, so that the parts become, it is claimed, as one piece.
The body of the chuck, A, Fig. 1, is turned of 1罗-inch steel and is pierced with three guideways to receive the jaws, B. These are made of These are made of Stub's best wire, hardened at the grip ping ends, and with Fig. 2.
 blue at the part where the screw thread is cut. The thread engages with a corresponding thread in the embracing nut, C made and applied in halves as shown in Fig. 2. As the curves are alike, the jaws are prevented from turning on their own axes, ing on their own axes, to move endwise and towards the center, when the nut is re volved. The nut is hardened to a temper corresponding to the threaded part of the jaws. The latter have a slight twist, so that the tendency of the drill in the work acts to tighten their edges on the tool rather than to loosen them. The device, as a whole, is durable, compact, and cheap ; and since all its parts are cylindrical and produced in the lathe, they may be easily duplicated.
Patented by Mr. T. R. Almond, February 8, 1876. For further particulars address the agent, J. M. Montgomery, 105 Fulton street, New York city. See advertisement in another column.

NEST-BUILDING FISHES.

The anabatida form one of the most remarkable of all species of fishes, owing to their capability of living for a long time out of water, a power which has formed in them some curious habits. The anabas scandens, or climbing perch, of India, has been known to live for six days out of its appropriate element; and some will sometimes quit the water and wander over the land, so far from any stream or pond that they were formerly supposed to have dropped from the clouds. The German naturalist Daldorff states that he once saw one of this species which had climbed a ree to a hight of five feet ; but this is stated by other obervers to be an impossibility. This power is due to the peuliar structure of the pharyngeal bones, which, in a cavity in the base of the skull, are dilated into voluminous lamina, forming cells in which a supply of water may be carried fo the purpose of keeping the gills moist.
But the gourami's instinct is more peculiar than that of any other mem ber of the tribe. By their united la bors, the male and female construct a well built nest, in which the ova are deposited, and which protects the young fry from the thousand enemie by whom infantile fish are pursued and tormented
The body of the gourami is of a brownish color, varied with some golden tints on its sides ; the belly is of a silvery brown. The conforma tion of the fish is high from its belly to back, and the body is narrow; the head is short, the mouth small and protractile. The scales are large and round. The fish is properly herbivorous, but will eat insects and earth worms; and it is so voracious that says M. Dabry de Thiersant, the cre oles of the Mauritius call it the hog of the river
The gourami, like most other anabatido, is found throughout the East Indies, and is a valuable food fish of delicious flavor, resembling that of the European carp.
Many attempts have been made by the French to acclimatize it on this continent, especially in Cayenne; but little success has been met with. In Algiers, other attempts have been made, and greater encouragement followed. At the Cape of Good Hope and in Australia, the experiments wer Cape of Good Hope

Our engraving of the gourami and its nest is selected from the pages of La Nature.

THE SCORPIONS OF EGYPT.

That indefatigable naturalist, Mr. Frank Buckland, has recently published the following account of a fight between a mouse and a scorpion, the illustration (representing the thick of the combat) having been drawn on the spot by spectator:
"In February, 1868, I received a box by post containing two live scorpions, kindlly presented to me by my friend, the late lamented J. Keast Lord, who had caught them un der a stone at Heliopolis, in Egypt. Wishing to test the power of the scorpion's sting, I got a glass globe and turned in one of the scorpions. A mouse having been caught in the trap, I thought I might just as well let the scorpion try his powers upon it as the cat. I therefore shook the mouse into the glass with the scorpion. The scorpion, an average-sized one, immediately resisted the affront; and the mouse, who had never evidently seen a scorpion before, did not know whether he was his friend or his enemy. Not liking the continued jumpings of the mouse, the scorpion twisted and began brandishing about his sting. The mouse shortly crossed his path. The scorpion instantly lunged his sting into him. This challenge woke up the mouse, who began to jump up and down like a jack in the box. When he became quiet, the scor in the box. When he became quiet, with his pion again attacked the enemy, with his
claws extended like the pictures of the scorclaws extended like the pictures of the scor-
pion in the zodiac. He made another shot at pion in the zodiac. He made another shot at
the mouse, but missed him. I then called the mouse, but missed him. I then called
' Time!' to give both combatants a rest. 'Time!' to give both combatants a rest. up the scorpion once more, and, as ' the fancy ' say, 'he came up smiling.' The mouse during the interval had evidently made up his mind that he would have to fight, and not strike his colors to a scorpion as he would to a cat. When, therefore, the scorpion came within range, the mouse gave a squeak and bith in thed well between the mouse's ears on the top of his head (see engraving). The scorpion then tried to retreat, but could engraving). The scorpion then tried to retreat, but could not, for one claw had got entangled in the fur of the mouse. The mouse and scorpion then closed, and rolled over each other like two cats fighting, the scorpion continually stabbing the mouse with his sting, his tail going with the velocity of a needle in a sewing machine. When the scorpion got tired, the mouse got hold of his tail with his teeth and gave it a sharp nip. The mouse seized the opportunity, and immediately bit off two of the scorpion's side legs. He then
retíred, and began to wash his face. I had expected, of course, that the poison of the scorpion would have killed the mouse, but he didn't seem a bit the worse for it. When I examined him the next morning, he was quite lively and well; and had nearly eaten up the whole of the scorpion for his breakfast. Of course I rewarded the mouse for his plucky conduct by giving him some milk, and by letting him go in a place where it was not likely the cat would find him.
"Scorpions are inhabitants of hot climates; they live among stones, logs of wood, etc., in such places, in fact, a those inhabited in England by wood lice and centipedes, etc They are said to attain the length of twelve inches in Bata

THE GOURAMI (OSPHRONEMUS OLFAX).
via ; and along the Gold Coast, I have heard (but hardly be lieve it) they are found as big as a good sized lobster ; the ge neral size is about three inches long. It not unfrequently happens that scorpions are brought to England in timbe brought over.'

Lily Culture.

Much non-success in the cultivation of lilies arises from working in too much fresh manure, which has come in contact with the bulbs and caused them to decay. If the fol lowing treatment is given them, but little fear of failure need be apprehended: In the fall, after the stems are ripened off or killed down with frost, lift all the bulbs; and if the soil is of a loamy nature, procure some fresh muck (the most preferable being that in which the native lily luxuriates) and shake all roots or weeds, etc., out of it ; then pu a good covering of it on the bed, also a good manuring of well decayed manure, and trench the bed about 18 inches deep, keeping the manure well to the bottom of the trench o that most of it shall be below the base of the bulbs, in corporating at the same time the peat or muck well with the soil. After the trenching is done, level the bed on the sur-

Naphtha, Benzine, and Gasoline.
The distinction between the three above-named articles which exists only in degree of their specific gravity. is clear y set forth in The Grocer as follows
"Among the chief products of petroleum, which enter largely into every-day trade, and about which very little is known even by those who handle them, are naphtha, lenzine, and gasoline, all of which are the first results of the distillation of petroleum. The application of the three names is oftentimes confused, though there is a practical difference between the products, which may be easily determined by the simple use of an hydrometer. The first result of petro leum distillation shows a gravity of 90°, and the di \cdot tillation from that down to 80° gives what is known as gasoline, which is used almost exclusively in patent gas ma chines for the manufacture of burning gas, a very fine light being obtained from its use. It is also employed as a carbonizer of coal gas, and, when pro perly applied at the meter, and with improved burners, it adds greatly to the richness of the flame. The gas companies use gasoline as an admix ture for their product, in which case it becomes an adulterant, because of the imperfect means employed in its use The distillation from about 74° down to 68° is termed benzine, which is largely used by painters as a substi tute for spirits of turpentine; the lat ter, being more oily, produces a much heavier paint, giving a better finis and being much more durable, but benzine is a quick dryer, and, being cheap, is especially adapted to rapid and low-priced work. The scouring establishments also use very larg quantities of this product, and it is deodorized and sold in small bottles under various names, for removing grease from clothing and similar purposes. When first ta ken from the still it is highly odorous, and that disagree able feature is only removed by means of re-distillation and treatment with sulphuric acid. The goods that are bottled and retailed in that way frequently have some fragrant perfume added to counteract the pungent odor, which cannot be entirely removed from the benzine by any manner of treatment. Benzine is sometimes used for burning, but is exceedingly dangerous, and should never be employed for that purpose.
The heavier gravity product of the still, ranging from 62° 65°, is termed naphtha, and is the lowest distillation un mixed with oil, which distils over at about 62°. Naphtha is used in the manufacture of varnish, oil cloths, and paten eathers. It is also largely employed in connection with in dia rubber, of which it is the only perfect solvent, being vastly superior to spirits of turpentine. We have shown in this brief space the proper gravity of these different pro ducts, and persons who have occasion to use any of them can easily protect themselves against impositions by applying the hydrometer test to which we have already alluded.
The finer burning oils are made from distillation ranging from 51° down to 45°. Most of the high test oils show a gravity of about 47° to 48°, but this is too heavy for a very fine free-burning oil, and the finest product made has a gravity test of 50°, and a fire test of 150° Fah. This gives a perfect light, and may be used with absolute safety. The low priced kerosene oils, testing down as low as $110^{\circ} \mathrm{Fah}$., and under, and of 46° to 48°, are being superseded by the better grades; and the good results are shown in the very rare reports of injury to life or limb from the use of an article which, because of its impurity and danger was, a few years ago, very general ly condemned.'

Cleaning stik.
The following mode of cleaning silk garments has been successfully tested. The garment must first be ripped and dusted. Have a large flat board; over it spread an old sheet. Take half a cup ox gall, half a cup ammonia, and half a pint tepid soft cup ammonia, and half a pint tepid soft
water. Sponge the silk with this on both sides, especially the soiled spots. Having finished sponging, roll it on a round stick like a broom handle, being careful not to have any wrinkles. Silk thus washed, and thoroughly dried, needs no ironing and has a luster like new silk. Not only silk but
IGHT BETWEEN A SCORPION AND A MOUSE.
face, and plant the bulbs in rows, about one foot apart fo small bulbs, larger ones further, and about the same disight ince rows, putting them into the ground for with rood protection of rough horse manure or any such material which will help to keep them from getting too much frost. In the spring, before the bulbs start, remove the covering and they will come up strong and vigorous. When planting the bulbs, surround each one with a good handful of river the bulbs, surround each one with a good
sand.-Cultivator and Country Gentlemun.

To remove grease stains from silk hats, use first turpen tine and then alcohol.
merino, barège, or any woolen goods, may be thus treated with the best results

For the benefit of people who, like a large proportion of the inhabitants of this city, reside in localities where disareeable odors from slaughterhouses, oil works, or bone oiling establishments are prevalent, we have tried various umigating compounds,such as pastilles, etc., in order to de termine which best overcomes such stenches. We find none o efficacious as simple burnt coffee. Grind the roasted ber ries moderately fine, moisten the powder slightly, and throw 1 oz . or so on a pan of hot coals. The odor seems to remain in a room even when the windows are opened

A NEW METHOD OF MAKING SURTACE PLATES.

by Joshua rose.

It has been for many years accepted as an indisputable fact that a true surface plate could only be produced by means of hand scraping. Now the hand scraper in reality makes a series of shallow cavities, the tops between the cavities having a surface bearing. The finer the scraper, the greatir is the number of cavities, and therefore the greater i; the number of bearing spots; so that a finely fitted pair of is the number of bearing spots; so that a finely fitted pair of surface plates present the appearance of closely dotted
bright bearing surfaces combined with adjacent scraper bright bearing surfaces combined with adjacent scraper
marks which had no bearing. The depth of a majority of these marks is undoubtedly veryslig ht ; but any one who has used a surface plate for any length of time is aware that while after a time most of the scraper mark 3 become effaced, yet many of them remain, demonstrating that some of them were deeper than others: and this is sure to be case, no
matter how carefully the saraping be performed, because matter how carefully the scraping be performed, because the scraper is not at all times equally sharp, and hence cuts deeper at some timgs than at others. The difference may, it to the amount of its extent. Scraped surface plates may be made so nearly true that a plate, say 12×8 inches, will lift 2 lbs. per inch on a small surface applied to a large one, or the two plates of the size mentioned will have between them a vacuum of about $\frac{1}{2} \mathrm{lb}$. per inch of area when one completely covers the area of the other, and of about 11 lbs. per inch when one surface only covers one half of the other: while, when one surface covers one third of the other, the vacuum will be increased to about $1 \frac{1}{2}$ lbs. per square inch of the surface in contact. It must, however, be a well scraped surface to give results of such a standard of excellence.
In th3 early days of the mechanic's art, surface plates were finished by grinding them together with fine emery; this, however, was found objectionable, in that the softer parts of the iron would grind away more quickly ; and as no m thod of overcoming this defect was discovered, the practice of scraping was introduced, and it has held its own to this day as the mo.st perfect mothod of obtaining a true surface, notwithstanding that it produces simply an area of fine hills and hollows. These hills and hollows may be sensibly leveled by well rubbing the plates together, it is
true; but cast iroa, of which it is found most desirable to trus; but cast iroa, of which it is found most desirable to
make surface plates, wears under such conditions, so that a make surface plates, wears under such conditions, so that a
very hard skin is formed upon the contacting high spots, very hard skin is formed upon the contacting high spots,
and they finally get very bright and so hard that it is impracticable to wear away the high places. If a plate of cast iron, after having been finished, is well rubbed upon a wrought iron or brass true surface, the high spots upon the cast iron will abrade much more rapidly, but still not sufficently to render it practicable to abrade the surface so as to efface the scraper marks, and still keep the surface plates practically true.
Surface plates of wrought iron may be scraped true, and then rubbed together until the scraper marks are very nearly all effaced; but such plates are very subject to wear, and ly all effaced; but such plates are very subject to wear, and
consequently soon get out of true. Scraped surface plates consequently soon get out of truc. Scraped surface plates
of cast iron have therefore, hitherto, been the only ones made. Some three weeks ago, howevar, a mechanical cormade. Some three weeks ago, howevar, a mechanical cor-
respondent of the Scientific American wrote to the editors a letter enquiring what were the specific objections to getting up surface plates with files and emery paper; and the enquiry was handed to me to answer in the columns of "Answers to Correspondents." The first impulse was to reply that true work could not be produced by the use of files and emrry cloth or paper. Upon further consideration, however, the conclusion was reached that it was practicable to make, with such tools, surface plates superior to those produced by the scraping process. Having then in my possession a little surface plate made at the Freeland tool works, which plate was one of a pair exhibited at the American Institute Fair in 1873, and having also the mate to the above, which had been in use for some time, and was deep ly scratched all over and indented in several places by careless use, I took the latter and smooth-filed it all over until the indentations and scratches were effaced, and then commenced the truing, using the new plate to test with. When the marks showed that the plate under operation bore about equally all over, a superfine smooth file was used un-
til the previous file marks were obliterated, and the test til the previous file marks were obliterated, and the test marks again showed about evenly in all parts of the plate. Here it may be well to observe that it is not to be supposed
that the flat surfaces of these files were used indiscriminately upon the surface under operation. Each file was chalked before being applied to the work, and then a few light stroke of the file were made ; after which the teeth of the file stroke of the file were made ; after which the teeth of the file
were closely examined for the dark spots, which spots indiwere closely examined for the dark spots, which spots indi-
cated which teeth stood the highest. Then only such parts cated which teeth stood the highest. Then only such parts
of the file were used as showed the testh in the middle of the width of the file to be cutting, and which were cutting without any action of the teeth beyond them after passing an area of teeth which were not cutting. By this means I could so place the file that the cutting teeth had contact with the part of the surface requiring to be filed, and yet be assured that no other part of the file was doing execution. An 8 inch Grobet file, of the finest cut, was the next one used, a dead smooth not being at hand. The advantage of using a
Stubs' dead smooth would have consisted in that Stubs' and Stubs' dead smooth would have consisted in that Stubs' and other dead smooth files are made harder than the superfine cast iron surface, soon lose their grip, because they are not cast iron surface, soon lose their grip, because they are not
made sufficiently hard for such duty. They are, however, the truest cut files I have ever handled, and suited my purpose admirably. After having, with the Grobet file, ef pose admirably. After having, with the Grobet file, ef-
faced all the marks made by the superfine smooth file, and
fitted the plates until the marks showed evenly all over No. 1 French emery paper was applied, first lengthwise and then crosswise of the plate. The paper was wrapped, in then crosswise of the plate. The paper was wrapped, in
not more than two folds, around the file, which was done to preserve the edges of the plate from becoming rounded from the action of the emery paper. Care was also taken not to rub the emery paper too much upon the edges of the plate for fear of rounding them; because rounding these edges would have rendered it impracticable to have finished them without scratching the surfaces, for the following reasons No matter how much care is exercised, two plates having very smooth surfaces cannot be put together by placing one on top of the other, and then worked without scratching their surfaces; because the very dust in the air will be suf ficient, upon such fine faces, to deeply score them. The proper way is to clean the face under operation with an old linen rag, and the test plate with a piece of rag about two inches square that has had two drops of oil put on it. Afte over the test plate, and then it must be wiped with a piece of clean rag and again applied to the test plate, this process being repeated several times, so that the amount of oil upon the test plate shall be barely sufficient to tarnish it. Then we pass the hand over the plate under operation to remove any particles of dust, and apply the test plate, putting it on one corner of the other, balancing it until its surface is lev el with the other (the two faces contacting over about an
inch of area); and then, while pressing the faces together, we slide the top plate horizontally over the lower one Then, if the edges of both plates are true and sharp, they will remove from the surfaces of both plates those parti cles of dust which would slide under a rounded edge, and get between the surfaces and scratch them. Our next oper wards and move the test plate upon the lower one, back spots which were at first dark have become bright through abrasion. The emery-papering process is to be continued until the file marks are effaced all over the plate; while at the same time the test surface plate marks are distributed evenly all over, that is to say, in spots of about equal area and at equal distances apart.
The next procedure is to find a means to apply the emery cloth to the high spots, where the test plate marks showe without touching the unmarked spaces between them, which is to be accomplished by wrapping small pieces of No. 1 French emery paper around a small piece of round wood, of about $\frac{1}{2}$ inch in diameter, the sharp corner being chamfered off for a distance of about $\frac{8}{8}$ inch. The emery paper should not make more than two complete circles of covering around the wood, and should be brought to bear upon the plate a the chamfered edge of the wood. To prevent the emery pa per from cutting in lines, it is moved in circles, say $\frac{8}{8}$ inch diameter, and pressed firmly upon the plate upon the brigh marking spots. By this motion, I find the emery paper is less liable to cut out the softer parts of the grain of the iron; while at the same time, another advantage is gained in the fact that, the surface of emery paper in contact with the plate being less than \ddagger square inch, it cuts very freely a first, but becomes glazed very rapidly, and polished after the first few strokes, an action which renders necessary a fre-
quent moving of the paper upon the wood but is in every way desirable. After the whole of the marks left by the test have been operated upon in this manner, care being taken to operate more freely on those spots where the test marks were the heaviest, the process is continued with No. 1 French emery paper, and subsequently with numbers 00 , 000 ,and 0000 , commencing by using the 0 grade upon a file and rubbing it lengthwise and crosswise of the plate, and finishing by the piece of wood and circular motion 00 is first applied in very short strokes of the file, taking care that the paper near the end of the file only is used, so that it can be brought to bear upon the required spots only,
the finishing being performed as before. During the use of the finishing being performed as before. During the use of
the 000 and 0000 emery paper, the test plate is not supplied with any lubricant whatever, but is kept bright and clean and rubbed until the marking upon the plate under operation has a shining area only; until at last it becomes implace the detect that the test plate bore any harder on one little greater ther, the vacuum between the two being bued surfaces. A fine film of oil is then to be placed upon the test plate, which is then freely applied in order to give it a better hearing if possible. This object was, in the first case, only partially successful, however, since it was too tedious. After some little consideration I determined to pass a piece of fine oilstone over the surface; and selecting a piece with an unusually fine grain, I filed its surface flat and beveled of cast iron, I wore the bevel and the face of thate piece true, and applied first the flat face of the oilstone to my surface plate. But I found that it had no effect whatever, al though applied with considerable pressure. The beveled
edge of the stone was then applied, and it had the effect of edge of the stone was then applied, and it had the effect of
slightly dulling the polished surface. Upon again applying the test plate, I found the vacuum was increased; but the surface did not work quite so evenly, and 0000 emery paper moved in circles was again brought into requisition, with the result that the vacuum became so great that it was only with great difficulty that the upper plate could be moved horizontally upon the lower one, that is, providing that they were put together as before described. If, however, they were put together without being pressed one to the other, the film of air between them would cause the upper one to glide about like a piece of ice placed upon smooth ice
It now became a problem as to how to finally finish the
over, there being apparently no high or low spots ; and yet the color of the metal appeared slightly varied in places, notwithstanding that the surface was bright and smooth to a high degree. Continuous rubbing of the plates together was at first tried, but without apparent effect, since the bearing seemed equal all over. The plates were then put together, allowing a film of air to be between them, and one plate to, as it were, float upon the other; the top one was then ouched sufficiently to set it in motion, in all directions; and if any one part of the plate was found to act as a center of motion more frequently than the others, out of a test of bout twenty motions, that part was very lightly touched with worn emery paper of the 0000 grade.
The result thus obtained is as follows: The plates in question are 12 by 8 inches; and placed one fairly over the other, it takes 200 lbs. to pull them apart vertically and about 150 lbs . to move one horizontally upon the other. A mall piece of cast iron surfaced on an area of 7 inches will maintain on either of the plates a vacuum of 5 lbs . per inch of area.
These plates are now in the Machinery Hall of the Cen ennial, and may be seen in the space occupied by the Pu am Machine Company.
For the benefit of those who may desire to make a surface plate, it may be as well to here describe the method by which t may be obtained. First, then, the plates should be pro ided on the back with three resting points, two being a one end (one near each corner of the plate) and the other being at the opposite end and in the middle of the width of the plate. By this arrangement, the plate will lie on the bench resting at all times on three points, without rocking, even though the surface of the bench be uneven : which plan will protect the plate from the deflection due to its own weight. Between these resting points, there should be ribs to support the plate and to prevent still further deflection. In the Whitworth plates, these ribs run straight from cach resting point to the others, thus forming a triangle, and cross ribs are also introduced. The plates, three in number, which we will designate as Nos. 1,2 , and 3 , should be placed first on the three resting feet, and then on the edrges and lastly on the faces. Nos. 1 and 2 are first fitted together and then No. 2 is fitted to No. 3. Now it is obvious that, in fitting No. 1 to No. 2, we have had nothing to guide us as to

making either surface true. One plate may bear upon two diagonal corners only, while the other may bear upon all four corners or all round the edges. In this case, we know that the one bearing upon two corners only is atwist, but the other may be hollow, or both may be hollow. Still we have no alternative but to fit them together. We may, it is true, test both surfaces with a straight edge, which must be used as follows: It should be wiped quite clean and placed upon the surface plate in various positions, as lengthwise, crosswise, and across the corners of the plate; and while in each position, we must take hold of one end, and, without placing any vertical pressure upon it, move it laterally back and forth a little, say about two inches, to see where it takes a fulcrum on the surface of the plate. If the center of its movement is at the center of the surface plate, then the sur face of the plate is rounded, or highest in the middle. If it moves on the plate, first most at one end and then most at the other, the surface is hollow; while if it moves with an irregular and shuffling movement, it denotes that the surface is as true as the straight edge will test. Plates 1 and 2 having been fitted together, we take No. 2 and fit it to No. 3, not operating upon No. 2 at all. We next take No. 3, and try it to No. 1. Now if 3 and 1 , when tried to gether, show each other to be rounded, it is proof that No. 1 is rounding to half the amount of difference between it and No. 3, as shown in our engraving, from which it will be ob served that the two nearest together faces of Nos. 1 and 2 may fit together, one being rounded and the other hollow. No. 2 may be taken as a gage whereby to fit No. 3, their sur faces being made to fit perfectly. But if we take No. 3, and apply it to No. 1, they will disagree to twice the amoun that No. 1 varies from a true, flal surface. We next refit Nos. 1 and 3 together, taking, as nearly as we can judge, an equal amount off each of them; and then taking No. 1, we recommence and fit No. 2 to No. 1, No. 3 to No. 2, and final. ly No. 3 to No. 1, taking half the amount of difference, between them, off each; and we then repeat the whole operation until all three plates applied indiscriminately fit each other perfectly.

Repeated applications to copper or brass of alternate washes of dilute acetic acid and exposure to the fumes of am monia will give a very antique-looking green bronze.

The Civil Engineers, Convention at Philadelphia
The eighth annual convention of the American Society of The eighth annual convention of the American Society of
Civil Engineers is now in session in the Judges' Hall at the Centennial. The meeting opened on the 13th of June, Mr. G S. Greene,C.E., of New York, presiding. Among the papers thus far read is one by Mr. T. G. Ellis, of Hartford, on the Centennial History of Engineering, in which he reviewed progress in this science over the past century. All the facts presented by Mr. Ellis have been fully noted by us in the series of editorials in American progress which recently appeared in these columns. The first regular business trans published essay,by Mr. C. Bender, on the theory of continupublished essay,by Mr. C. Bender, on the theory of continu
ous girders in relation to economy in bridge building. Mr Pettit, architect of the Main Exhibition Building, read a pa per on the character of the engineering work, therein giving the reasons for the adoption of the plan selected. The pecu liarity of construction is that it is likethe framework of a table. The long iron supports carry the dead weight, and the trusses resist the side pressure. A good test of its stability was made in February last, when a wind having a pressure of 18 lbs. per square foot caused no perceptible vibration. 'The amount of iron used was $8,340,000$ lbs. The iron, flat angle, and round, measures 141 miles in length and if mad each edge. There is 1 square foot of glass for each 4 square feet of surface covered. Mr. Pettit also described the gener al plan of installation of exhibits; and Mr. Schwartzmann architect of Memorial Hall, explained his construction of that edifice. Complete abstracts of all papers read will ap pear in the Scientific American Supplement.

Correspoudeace.

The Locust Pest. Scientific American

To the Editor of the Scientific American

The facts mentioned by your correspondent J. F. Dun woody, of Louisiana, Mo., are interesting, and, for one, I am always glad to get such exceptional facts; but they do no invalidate the other facts recorded by me in the article on locust prospects from which you condensed in a recent num ber. That locust eggs are destroyed by excessive moisture, and especially by alternately soaking and drying, I have abundantly proved by experiment; and I do not doubt the correctness of the observations of the Minnesota Commis sion. My conclusions as to locust injuries in 1876 are also most thoroughly substantiated by the experience of the past two months, which, considering the contrary opinions very generally entertained and promulgated last winter, is very strong proof of the correctness of the statements upon which my opinions were based. It is not improbable that eggs in a tenacious slough bottom, continuously covered with wate for months, would suffer less than those alternately soaked and dried in a porous soil, on the same principle that vegetation under like conditions would rot sooner in the latter case; and if Mr. Dunwoody were to state the circumstances
attending the fact he mentions with more explicitness, so attending the fact he mentions with more explicitness, so
that we could know the nature of the slough bottom, and feel confident that the locusts observed subsequently to its drying up actually hatched there from eggs laid before it was overflowed, we should without doubt find that his observation admits of an explanation in harmony with the opinions which he thinks it invalidates.
As to freezing, the eggs, as I have shown in my own writings, will withstand with impunity almost any amount of it, and the young locusts may also be frozen in solid ice and yet live; but the fact nevertheless remains, and is supported by such extensive experience as not to be gainsaid, that, when the young of the Rocky Mountain species prematurely quently destroyed by continued severe freezing, or by continued freezing and thawing.
St. Louis, Mo.
c. V. Riley.

Remarkable Example of Spontaneous Combustion To the Editor of the Scientific American
A singular instance of spontaneous ignition took place in my house some time ago. On entering the house about noon, I detected the smell of something burning. An immediate search was made, and upon entering the parlor I noticed smoke rising from a center table that was placed near a south window. I stepped up to the table and noticed some pieces of cotton goods on fire, which I smothered out with my hand. Alongside of the goods that were on fire lay a stereoscopic instrument that was exposed to the direct rays of the hot noonday sun. It so happened that such was the position of the two lenses that they caused a burning focus on the goods and set it on fire. Had we been absent till an hour later,the fire would have extended itself, to the destruc tion of the house and all that was in it.
Round Mount, Texas. G. P. Hachenberg, M. D.
[Accidental fires produced by lenses have frequently come to our notice. The glass globes filled with water and used to contain gold fish will converge the sun's rays to a focus of sufficient intensity to ignite light materials, and have of sufficient intensity to ignite light materials, and have
thus started incipient conflagrations. The heavy glass bullseyes sometimes used for dead lights in ships have also proeyes sometimes used for dead lights in ships have also pro-
duced similar effects; and we once called attention to a reduced similar effects; and we once called attention to a re-
markable case where a bulb of glass, formed in a large sheet markable case where a bulb of glass, formed in a large sheet
used as a window pane in a store, and due to a defect in the used as a window pane in a store, and due to a defect in the
manufacture, proved the means of setting fire to objects manufacture, proved the means of setting fire to objects
displayed inside. Druggists' show globes of colored water also form powerful lenses, and we once knew of an enterprising apothecary who employed them as a cheap source of
heat for his distilling apparatus. Of course there have
sun's converged rays. Huge mirrors have been built to mel
ster to refractory substances. Ericsson has devised a solar engine and probably the latest invention of the kind is M . Mou chot's solar boiler, where the steam generator is placed in the focus of a concave reflector.-EDs.]

The Scientific Farmer says that the best way to preven erheating of compost is to pack the surface down solidly, by simply treading upon the heap with the feet (after pul verization), or, still better, to spread a little earth over the pile, taking care to pack it somewhat. Either method tend to exclude air, and thus prevents too rapid oxidation.

NEW BOOKS AND PUBLICATIONS.

Elements of Physical manipulation. By Edward C. Pickering, Technology. Part II. Price \$4. New York city: Hurd and Houghton, 13 Astor Place.
has now lare. Pickering's irst volume was recelved with general ravor He has now largely extended the scope of the work, and has introduced new volume contains an admirable chapter on mechanical engineering in uding detalls of bollers, steam pipes, and indicator diagrams, as well rtcles on speed and friction of shafting, belts, and pulleys. The friction ake and ransmission dynamometer are fully explained : and some valuare, we belleve, entlicely new, are described and illustrated. The appara us employed in the growing sclence of meteorology occuples one of the stronomy'" contains a clear description of the instruments in commo ase for nautical and stellar observation. Tables of squares, cubes, powers logarithms, tangents, and sines, and of the propertles of me: als, 11 quids,
gases, and vapors, are added in appendices, with full explanations. ases, and vapors, are added in appendices, with full explanations. The de cription of a good physical laboratory and a list of test experiments for
tudents' use complete the work. The laboratory described is that under the charge of the writer, in which about 100 students are instructed ever year. We cordially commend the work to all teachers of sclence classes,
as one which they should study themselves and place in the hands of their as one w
pupils.
Handbook of Electrical Diagrams and Connections. By
Charles H. Davis and Fiank b. Rae. Price \$1.50. New York city: The Graphic Company, Park place.
city : The Graphic Company, Park place
Company in this city; and by their joint labor, they have produced a book he highest value to the telegraph profession. It contains engravings of a he instruments (single, duplex, etc.), relays, batteries, etc., in ordinary se, with well written and detalled descriptions. The historical portions of ess to the many claimants to the credit of originating the telegraph and ther detalls, who are frequently so numerous and so contradictory as to bewilde the reader. Thirty plates and a map of the world showing all the telegrap cables in existence are added, all being executed by photollthography, in the best style of the art. The work is on
books we have seen for some time.
The influence of the blue ray of the Sunlight and of the ABE CLE ral A. J. Pleasonton and others. Philadelphia, Pa. : Claxton Remsen, and Haffelfinger.
A good description of the purport and matter of this remarkable work apears in an article on p . 388 of our volume XXXIV. We have little to add
the description there published,except that the book itseif is more eccenic than we could have bulleved, unless gulded by a perusal of its contents nd colorless glass in the transom window of its stable, the cure of a woma uftering from a complication of undescribed disorders by a similar applicaOn, the cure of spinal disease by use of a bath of blue light, and many milar cases cited by the author, remove this book beyond the sphere o cience and inductive investigation, by the publication of which certain authors are now trying to obtain notorlety.
Practical treatise on the Construction of iron highway Bridges, with a Short Essay on the Application of the Principle of the Lever to the Analysis of Strains. By Alfred M
Boller, A. M., Civil Engineer. Price $\$ 2.50$. New York city Boller, A. M., Civil Engineer. P
John Wiley \& Sons, 15 Astor Place.

$$
\text { John Wiley \& Sons, } 15 \text { Astor Place. }
$$

Tne author states in his preface that he intends this work for the use of seful to any euch bodies having to provide for the construction of bridges he points to be regarded in designing an efflctent structure are enumerated and fully described; and the author's cautious advice regarding spectica tons and contracts will, if followed, relieve local authorities from much responsibility as to the security of the work. The book is likely to dissemia
The Centennial Newspaper Exhibition, in Fairmount Park, Rhila.

解 agency in this city, and the admirable display of American newspaper itte-
rature at the Centennial is due to their zeal and enterprise. A description of the very large and varied exhibit of our newspapers and the statistics of American Journalism will be found in this handbook, whitch should be read
by every visitor to the Centennial Exhibition, who will find in the Newspaby every visitor to the Centennial Exhibition, who will find in the Newspe-
per Building one of the most attractive displays to be found in the whole per But
show.
lied to Areoretical, Practical, and analytical, as ap plied to Arts and Manufactures. Parts V. to
Pa.: J. B. Lippincott \& Co., 715 Market street.
The publication of this work was announced when the first four number reached us; and the subsequent ones need no comment, betng printed in similarly handsome style, with the same cliaracteristics. We must, however, wenty dollars is too much to pay for a book which does not establish it authentecty and accuracy by giving information as to its authorship.
Principles of Approximate Computations. By Joseph J. Skin-
ner, C. E., Instructor in Mathematics in the Sheffield Scientific
School of Yale College. New York city : Henry Holt \& Co.
This treatise is likely to prove of espectal value in solving those numerou problems which involve repeating decimals, as well those in which occur
measurements with instruments capable of giving only a limited degree of precision. These diticulties are dealt with by the author in a very practical manner; and his method produces results which are ilttle at variance with those obtained by continued calculation
The american System, german. A Record of Professor C. C. Schaeffer's High School Test Course. Philadelphia, Pa Charles, Brother, \& Co
This book is the record of a vast amount of information, Imparted to the pupils of the Philadelphia Central High School, in six lessons of 45 minutes
each. Although published without any evident order or arrangement, it contains several excellent features, among which may be mentioned the construction of German sentences, the explanations of gender and Umlaut, Pace
 Proprietors of "Iron," 12 Fetter Lane.

High Masonry Dams. By John B. McMaster, C. E., Author of "Bridge and Tunnel Centers." Price 50 cents. New Yo city : D. Van Nostrand, 23 Broadway and 27 Warren street. A practical and valu
Seventh annual Report of the State board of healtil of Massa -hUserts, just published, is replete with useful Information. Most of the
egislative pubicications of the Old Bay State are so ; but this cannot be said of many statistical reports issued by some other States, or of a great number which are authorizect snd published by approval of Congress. We are inebted to the State Board of Healt h, each year, for an early copy of their report, from which we are enabled to extract much useful nformation for ur readers. The document before us leaves no branch of the subject on
sanitary sclence untouched; and the statistics, espectally those affecting population and mortality, are suflictent to convince any one of the national mportance of the compulsory observance of health regulations. The re-
ort, moreover, furnishes to other State and city boards an excellent mode port, moreover, furnishes to other State and city boards an excellent mode -
or the preparation of such volumes, and a gulde for the investigation of for the preparation of such volumes, and a gulde for
the subjects. which it would be well for them to follow.

decisions of the court

Supreme Court of the United States. bberhard faber.

| re |
| :--- |
| fie | ye

 $?$ma
$2+=$

$\pm=\mathrm{Zvaz}=$

$4=\mathrm{mav}$ N

Zercent ${ }^{2}$ nuericaur and forcign qequtentg.

NEW MECHANICAL AND ENGINEERING INVENTIONS,

improved car coupling.
Wilfort H. Farris, Troy Station, Tenn.- When the cars are run together, the projecting end of a bar strikes against the end of the
opposite drawhead, which causes bars to throw the link forward, opposite drawhead, which causes bars to throw the link forward,
so as to drop over the pin of the advancing drawhead. As the link drops into place, it strikes a pi
and the coupling is completed.
improved watcil key.
John S. Birch, New York city.-The essential feature of this watck key isa contrivance by which adjustable cone-shaped jaws, out of the end of a tubular case by a spirally grooved revolving tube. They are closed on the post to hold it for turning by a gentle
endwise pressure on the case. Another feature of the invention endwise pressure on the case. Another feature of the invention
is a friction contrivance to prevent the torsional action of the case is a friction contrivance to prevent the torsional action of the
on the cone-shaped jaws from working them loose on the post.
improved leather-rolling machine.
John Bright, Stoneham, Pa.-This is an improved machine for rolling sole leather, which includes several novel features in meful, easily operated, and to enable it to pass over thick places in the leather without any jar to the foot lever

the combination of a pitce of rubber witila a lead pencil nota a

ImPROVED CIGARETTE MACHine.
Joseph Marengo and Alexandro Marengo, Montreal, Canada--
This invention consists in combining, with an adjustable roll, endless belt, and operative mechanism, a pair of rolls arranged on arms, one rigid and the other hinged, the former provided with a
stop, and the latter with a regulating screw. By this means, the stop, and the latter with a regulating screw. By this means, the
approximation of the rolls is definitely gaged, according to the size approximation of the rolls is
of cigar that is being made.

IMPROVED EXPANDING WELL CURB.
Alexander A. Peck, Hammond, Wis.-This consists of an expanding curb, to be used for cement-lining wells, constructed with a sectional shell of vertical planks and sheet metal plates for lap-
ping the joints, and with adjustable arms and expanding rims. The latter are coupled to a center shaft by which the shell is ex panded and contracted, and also shifted along as the work progresses.

IMPROVED ELEVATOR.
Jacob Meyer, Hollowayville, Ill.-To each arm of a braced cross piece, at the top of a post, are attached pulleys, over which pass
ropes which lead toshafts provided with ratchet wheels and cranks, and secured to the side of the post. To the other ends of the rope are attached hooks, to receive the eyes of the bails, two of which are connected with the ends of each rope. For raising a hay rack,
the four ends of the two bails are connected, and the rack is raised the four ends of the two bails are connected, and the rack is raised
by turning the crank. For raising a wagon body, a rectangular frame is attached with the four ends of the two bails. To the frame are pivoted four rods, the lower ends of which connect with the ends of the crossbars of the wagon body. By operating the crank
shaft, the wagon body may all be raised together, and without dis shaft, the wagon body may
arranging any of its parts.
improved car for one-rails railway
David B. James, Visalia, Cal.-This invention consists of one line of broad-faced wheels in the center to carry the load, and smal guide wheels to run each slde of the rall on vertical axies project ing down from the car. These wheels serve to keep the carrying are made to grip the rail. The whecls are connected with a platform which just clears the rail, and the car is mounted on pivots arranged in the line of the wheels and supported on the platform, ity is lowered. The guide wheels running against the sides of the rails move from and toward the rails, and are provided with
springs to keep them in contact. The essential advantage claimed springs to keep them in contact. The essential advantage claimed
for this contrivance is the economy in the cost of the track that it affords, one rail only being required and that being of wood.

IMPROVED RATCHET STOP FOR WATCHES, ETC.
James D. McAnlis, Beaver Falls, Pa.-This is mainly designed as
a substitute for the spring pawls for ratchet wheels in machiner in which strong springs have to be retained at one tooth of the wheel, so that the tooth click is liable to break and get worn. It consists of a ratchet wheel, in combination with one or more small
pinions thatslide in a recessed and toothod encircling frame, and allow the turning of the ratchets in one direction, while stopping them positively in the opposite direction.
improved railroad joint.
Richard O. Keefe, Omaha, Neb.-This inventor proposes to use a short section of a rail between the rail ends when they separate by contraction, in order to tighten the joint. Duplicate bolt
holes are made in the fishplate for shifting the fastening bolts, as may be required by the shifting of the holes in the rails.

NEW HOUSEHOLD INVENTIONS.

IMPROVED WINDOW-SHUTTER OPENER
John R. Day, New York city.-This is a contrivance for opening freproof shutters from the outside of the building in case of fire ing the shutters, contrived so that the hasp will hook on the bolt to fasten. The bolt may be drawn back by hand to unfasten the shut-
ters from the inside. Also it can be drawn back from the outside of the building by a hand lever, with which it connects by rods and levers. Any desired number of fasteners are all connected to one lever, so
up case.
improved elastic block for splitting kindling wood. John C. Hubbs, New York city.-The object of this invention is wood may be split upon it while standing upon the floor withou injuring the floor or jarring the room, and which, when not in use in a splitting block, may be used as a seat. The invention consist gu:? with the splitting block to form a seat. The splitting is done up on the top of the block, and the jar of the blow is received by the springs, so that the floor will not be jarred or injured.
improved culinary vessel.
Daniel J. Esser, Mauch Chunk, Pa.-The inventor states that this vessel is adapted to cook in a perfectly odorless and inoffensiv ing, closed top, and bottom supports, adapted to place differen sizes of cooking vessels and broilers within the same.

IMPROVED ROCKING CIIAIR.

Martin Schrenkeisen, New York city.-The object of this invention is to improve the construction of the rocking chair for which letters patent were issued to Charles Brada, October 20, 1874, to counteract the tendency of said chair to lean forward. This is the two sets of springs being coiled in opposite directions.
improved bird cage.
John D. Heins, New York city.-This improved cage is intended for mating two or more female birds with one male, and consists of ose partitions, diviaing it into two or more compartments. Thes pentions are pro partment into another when one female has gone on her nest. The partitions are made to rise and be supported a little above the tray in the bottom, for drawing it out for cleaning.
improved combined moning board and table James A. Geraghty, Newark, N. J.-This device is so constructed connected with and supported from the table, and, when not required for use, can be placed beneath the top of said table, so as to entirely out of the way.

IMPROVED SASII HOLDER.
Henry Powelson, New Rrunswick, N. J.-This is a combination o two rods and a cone-pointed screw with the sash and casing of a window. The screw is inserted between the inner ends of the bare, ward, pressing their outer ends against the casing, and thus locking ward, prcssing the.
improved hot air furnace.
David Boyd, New York city.-By this invention, the heat is di the pipes and flues that carry off the smoke and heated products of combustion, and the other compartment contains the fire pot and eating parts of the furnace, thus making two separate radiators. Each chamber is properly supplied with air to be heated, so that the whole capacity of both is utilized.
improved wash boiler.
Emmor M. Mallett, Westville, Mich.-In using the washer, when he steam begins to form, it forces the water up through the tube to be discharged upon the clothes. The water passes down throug nels formed by plates to the bottom of the boiler, to be chan forced up through the pipes and be discharged upor the clothes.
improved washing machine.
William Bymaster, Jamestown, Ind.-In using the machine, the sufficient quantity of soap and water are put in. The movable ubber is lowered upon the clothes, and the cover is secured in place. The operator then grasps a cross bar in his hands, and turns he rubber back and forth, which washes the clothes thoroughly.

MPROVED BACK SUPPORT FOR BATH TUBS
Emil F. W. Eisenmann, New York city.-This consists of a back upport, attached to lateral webbing suspended by straps from side ods of the tub, t.
ods by stop pins.
NEW WOODWORKING AND HOUSE AND CARRIAGE
BUILDING INVENTIONS.
improved guide for sawing machines.
Harrison P. Taylor, Franklin A. Perdue, and Jeremiah M. Perdue hich may be adjusted to vary the width, the bevel, or the tape of the work, without the use of a rule, square, line, or gage.
IMPROVED LADIES' WORK TABIE
L. Frances Woodward, Woodstock, Vt.-This table has separate laces for the various articles used for ladies' work, so that the may be at all times conveniently accessible. Itis made of such ow sewing chair, and light, so that it can be readily carried from ow sewing chat
place to place.

IMPROVED SCHOOL، DESK.
David I. Stagg, New York city.-This isan improved folding desk which shall be so constructed that the desk board may be turned nto a ve
the desk.
mproved velocipede.
Lhe lar. Wheeler, Sharon, Pa.-This invention consists in driving ecchewhecls of a three-wheeled velocipede by means of tread arry pawls on the wheels, and rotate the same in a forward direc

NEW CHEMICAL AND MISCELLANEOUS INVENTIONS.
mproved bag holder.
John T. Brown, Morrisville, Va., and Joseph Colbert, Fredericks burg, Va.-This invention consists of a hopper provided with hooks or the attachment of the bay and sliding upon the front surface clips provided with flanges that rest against the rear surfaces of the uprights. To the upper clip are pivoted two detents which are pressed between the teeth of the uprights by springs attached to the lower clip. The upper portions of the detents form handles,
by means of which their points are released from the teeth and y means of which their points are released from the teeth an the hopper raised or lowered. The uprights are

IMPROVED TERRET PAD.
John R. Basiger, Harrisonville, Mo.-This is made of a screw ocket for a terret ring, with a recess for retaining the layer of the ing riveted or screwed to the back band. The device is adapted for animals used for heavy work.

IMPROVED MUSICAL TOP.
Ella N. Gaillard, New York city.-In this pretty and ingenious oy is placed a musical box, to the running gear of which sto spin, allowing the musical box to play. When the power imparted by the act of spinning the top is exhausted, and the top stops, the entor states that bells or chimes may be used in place of the ongued plate of steel commonly used in musical boxes.

mproved tobacco-curing apparatus.

John B. Smith, Milton, N. C.-The tobacco leaves are strung on ered. When full the wires are attached to frames. These, when oaded, are placed with their ends between guide studs of the curing ing by suitable tackle, and are secured by cross pieces. When sufficiently dried, the frames are let down and the leaves stripped off from the wires.

cotusiness and sersmad

The Charve for Ineertion under this head is one Dol-
 ceeds Four Lines
will be charoed.
$\xrightarrow{\text { Agricultural Implements and Industrial Machin- }}$ For Bolt Forging Machines and Power Ham-
mers, adoreses. C. Forsatith $\&$ Co., Manchester, N. H .
 Perfect Stave Jointer-Patented Sept. 28, 1875

 Send for Circular and Sample of Wheat. for the

 Exater Steam Enines. Machinery Hall, U. .S. . .

 ${ }_{n}^{\text {Patentees-desirng IIght articeses manuafactured }}$

Best Belt-Pulleys-A. b. Cook $\&$ Co., Erre, Pa. Centenial Exhibition, Philadelphia.-Examine Machine-out brasg gear whels, for modele, \&oc. Rubber Hydrant Hose, Hose Pipes and Coup-
ungs, beat gualty. Send tor trlces to Bailes, Farreil
 duced over 2 per cent. Hull \& Belden Co., Danbury, ct. Driving Beits madet ororder, to oacomplish work 4 North Third St. Phlladelpha, Pa

 Johason's Univeral LLathe Chuck-A warded the

 E. P. Bullard, 88 Beekman St.t. New York.

Trade Marks in England-By arecentamend

 $\underset{\&}{\text { For best Presese, Dies, and Fruil Can Tools, Buise }}$

Hotendse \& Rall Meriden, Conn, Foundrymen io order. Job work sollcteced
For Solid Emery Wheils and Machinery, send
the Unon Stone Co., Booson, Mases, tor

 Dlamond Tools-J. Dickinson, 84 Nasseu St, N. Y. Temples and Ollcans. Draper, Hopedale, Mase. Hamilton Rubber Works, Trenton, N.J.J., Manu-
tacturers or or
\& pavement Ing, Packng, car springs, und Rubuer tor Meenantcal
uee. Send for price list.

Hotchkiss Air Spring Forge Hammer, best in the
anarke. Prices low. D . Fribbie \& Co., New Haven, ct. Patent Scroll and Band Saws, best and cheapes
use. Cordesman. Egan \& Co., ClincInnat1. Onlo.

 M. J. G. can give a gloss to writing ink by

 issolving a little refned sugar in it.-J. W. is con with zinc, the latter with tin. The article on manganese bronze, p. 355 , yol. 34 , is perfectly correct.C. w. T. will find particulars of a fast railway -C. W. T. Will find particulars of a fast railway
train in this country on p. 393, vol. 34. Mr. Brunel's 78 milles an hour was done on the Great West
ern Railway, England.-W. W. B. will find on pp ern Railw, 352 , vol. 34 , a history of the progress of t, past century.-A. v . W. can remove ink from
writing paper by the process described on p. 154 , vol. 34.-A. P. can calculate the proportions o screw-cutting gears by the method described on
p. 107, vol. 34.-T. W. M. will find a description of p. 107, vol. 34.-T. W. M. will find a description of
the Gulf weed on p. 91, vol. 31.-G. T. w. will find $2 \pi 3$, vol. 32 . As to the relative speeds of the to and bottom of a wagon whelel, see pe. . 298, vol. 31.
K. L. C. will find a description of the operation of atly wheel on p. 288, vol. 28.-J. F. S. will find on p. 329, vol. 33 a description of a battery suited to
an electric light. - . will find on .213 vol. 34 , di-ise,-F J. R will find on p. 344, vol lars of the fastest trains on record.-A.S. can pre pare fulminate of mercury by the formula given on p. 234 , vol. $30 .-$ S. G.A. can measure high tem-
peratures with a pyrometer. See p. 50 , vol. 33 .peratures with a pyrometer. See p. 50 , vol. 33 . E. E. N. will tha directions for polishing metal
on p. 57 , vol. 34 . For the best method of polishing plated work, see p. 251, vol. 33.-R. w. D. and oth ers will find an explanation of the different spee of points on a carriage wheel on p. 298, vol. 31--
F. W. B. and A. L. will ind directions for making colored fires on p. 203, vol. 34.-G. D. can purify water for drinking purposes by the process de scribed on p. 395, vol. 32.-O. can lacquer his fine
brass work. See p. 242 vol. 34.-w. J. McL will find on p. 376 , vol. 24 , a description of the use of the steam plow in this country.-J. H. M. will find on p. 74 , vol. 32, a recipe for balloon varnish.-E.
B. \mathbf{R}. will find on $p .214$, vol. 22 a a description of a boiler injector.-C. M. N. can bleach straw hats with sulphurous acid. See p. 11, vol. $32 .-$ D. J. T will find on p. 348, vol. 34, a description of the
deepest well. - A. A.S. F . 1 fil find on p. 331 , vol. 32 , directions for measuring the piece of timber. -E . A. M. will find on p. 180, vol. 28, directions for A.
p. 188, vol. 34 , a recipe for a depilatory. - E.
D. \mathbf{R} will find on p. 188, vol. 34, dirrections for nickelplating his brass instruments.-B. F. J. should
consult a physician.-w. F. B. does not state his boiler covering is made of.-P. F. E.'s question is merely metaphysical.-M. B. can bronze brass castings by the method described on p. 51 ,
vol. 33.-D. H., C. W. S., J. B. H., C. F., B. L., W. B.,
. R. J., R. N., E. N., S. V.N.,M. D., W.K., and others, Who ask us to recommena books on industrial and $\begin{aligned} & \text { scientific subjects, should address the bookseniers } \\ & \text { who advertise in our columns, all of whom are }\end{aligned}$ Who advertise in our columns, as
(1) J. H. Jr., asks: 1. To what extent will column of mercury expand when contained in plied? A. Mercury expands about 0.018 of its vol ume when heated from 33° to $211^{\circ} 2$. . Will mercury, when conflned, expand with great force, like iron
or
onther metal when slightly heated? A. Yes. 3 . or other metal when slightly heated? A. Yes. 3.
Will mercury injure iron in any way?
A. Under Will mercury injure iron in any way? A. Under
ordinary conditions, no. ordinary conditions, no

1. When gunpowder
Into gas? A. Yes. in a strong iron vessel until a great pressure is obtained, and the gas then be used to drive an engine? A. Such plans have been proposed. Usu-
ally, however, the gunpowder is inimical to conally, how
finement.
(2) F. C. S. says: 1. I am running a smull engine of sis horse power, but the boiler is rated
at 12 or 15 horse. How many busheli screenings at 12 or 15 horse. How many bushels screenings
ought it to take to run the engine one day? ought it to take to run the engine one day? A
The question is too indeflinite. 2. What kind of grate ought we to use for screenings? A. One
with narrow air spaces. 3. Which is the most ecowith narrow air spaces. 3. Which is the most ecoings for the fire? A. That depends somewhat upon the draft; and any one can readily settle the
matter for his particular case by a few trials.
(3) E. P. says: I have occasion to use permanganate of potassa solution in staining wood
work, and have had some trouble on account its affinity for metals. of what metal shall make a tank 2 feet by 4 feet, and 8 inches deep, contain permanganate of potassa solution ? A
In contact with strong solutions of this salt, all o In contact with strong solutions of this salt, all o
the more common metals are gradually oxidized the more common metals are gradually oxiazze
and dissolved. Vessels of glass, porcelain, or por celain-lined iron may be employed: or, in case these cannot be obtained of sufficient capacity, tanks or wells made of brick, and lined with large
tlags and good cement could be made th tlags and good
your purpose.
(4) J. C. O. asks: What effect will kerosene oil have on galvanized iron? A. If the oil contains no free mineral acids, it will not injur
the iron. Galvanize your iron on both sides. (5) E. H. M. says: 1. I am running 5 pairs of stones, using hard coal screenings. Will the arrangement work equally for burning soft coal
slack, tan bark, etc.? A. It does not necessarily follow that a furnace giving good results with re fuse coal will also answer for wet tan and sawdust. 2. I get an intense heat, but am afraid my
boiler will not stand it, as I have only 20 feet of
fire grate surface. Would it be better to double
the grate surface, and keep a thinner fire? A.
A. you will send us a sketch of your furnace,we wil be glad to give our opinion. Fro
you seem to be doing very well.
(6) S. H. asks: Is there any way of sawing cast steel bars as large as $6 \times 1 / 1 /$ inches, when hot
A. Bars of steel or iron of any size can be cut off, A. Bars of steel or iron of any size can be cut offr,
either hot or cold, with a circular frictional disk unning at great velocity. The rim of such a saw E. E., of Pa.
(7) W. K. P. asks: Will you please be kind alcium lights me a good recipe for making re eaux, etc. ? A. Place the light in a suitable lan tern provided with a large condensing lens. The olor of the rays may then be varied to suit the ancy by interposing near their focal point plece of thin, fincly colored glass. The glass employe of uniform texture, and as thin as possible
(8) G. T. W. asks: If there be a hill three any more stakes or palings to build a fence tave he hill, three miles, than to build one across th base, one mile, if the stakes or palings stand per pendicularly ? A. No.
(9) W. B. says: 1. Animal and vegetable days (in the ordinary glass bleaching houses, suc as are familiar to all oil manufacturers, and Which resemble an ordinary hot house) much
faster than they will at midsummer, when the aster than they will at masumer, when th sun is stronger and the atmosphere hot. Why is
this so? An ordinary observer would suppose that, the hotter the sun was, the faster the of would bleach; but this is not the case. A.The beaching quality of sunlight is chiefily confned to the more refrangible rays of the upper or vio-
let end of the spectrum. They seem to act by het end of the spectrum. Thoy seem to act by
virtue of a peculiar reducing or deoxidizing pow virtue of a peculiar reducing or deoxidizing pow
er; while the heat rays, or those from the lower ; wed or stimulate oxidation and fermentation. This
to latter force is comparatively slow in its action comparison with the activity of the former, and can therefore only silightly intluence or retard the nnal results. 2. Can you tell me the reason why hothouses and forcing houses for plants are al-
ways ventilated at the top? A. You are mistaken to the fact.
(10) R.H.says: In making French mustard have some trouble in bottling the same. Afte and smells badly. What can I do to prevent this A.After filling the bottles,place them loosely stop pered in a large vessel of water, which gradually raise to the bolling point. Then remove the bottles and seal them. It is common to allow the botles to stand 48 hours before performing the
(11) F. McA. asks: With what can I clean diamonds? A. You fail to state with what the stones are soiled. Try the following list of sub hot benzole or naphtha, bisulphide of carbon dilute acids, dilute alkalies, strong acids, stron alkalies, mechanical friction with putty powder, rouge, fine emery
(12) F. J. says: I wish to have cast a ves sel somewhat like the air chamber of a hydrau-
lic ram, but wider at the bottom, being 71 inches iic ram, but wider at the bottom, being 73/ inches in diameter at base, 10ys inches in widest part,and
12 inches high. What is the least thicknoss it 12 inches high. What is the least thicknoss it
should have to safely sustain a pressure of 75 to should have to safely sustain a pressure of 75 to
80 iron, and of cast malleable iron? A. It shout not be less than 14 or \% of an inch thick, in either .
(13) J. C. Jr. asks: 1. How can I make a heap soda water fountain for family use? A.
 so-called soda water is simply water that has been supercharged with carbonic acid gas under press-
ure when allowed to escape from under pressure. When allowed to escape from under press-
ure, a portion of the dissolved gas escapes into the air, causing the effervescence or briskness of beverage.
(14) H. S. K. says: In making small aneak. The brine oozes out through the pores of leak. The brine oozes out through the pores of
the oak because they are cut with the bilge. I there any preparation that will make them titht?
A. It is common to fll the pores of the wood with hot rosin. If this docs not give satisfaction, try the following: Make a strong solution of glue in hot water and add a sufficient quantity of tannin
to precipitate all the glue. Wash this precipitate of tannate of gelatin (artificial leather) in running water for some time, dissolve it in boiling vinegar, and while hot flow the interior of the cask with the liquid. Allow it to partially dry, and then fil the cask with clean water, allow to stand for several hours, and linally ren
invert the cask, and allow to dry.
(15) J. M. M. asks: 1. How can I bleach tearin at one operation? ram at present the stearin twice for making to melt the stearin twice (for making candles);
the first melting leaves it too yellow. A. Your method is perhaps one of the most practical and economical. 2. What is the cause of the yellowish tint? A. The color is due to a mechanical
admixture of liquid olete acid with the crystals of the solid stearic and margaric acids.
(16) I. M. H. asks: Has there ever been nvented any means to destroy the dead center
n an engine? A. Yes. Rotary engines have no nin an engine?
dead centors.
(17) A. I. P. asks: 1. How can the two
uiles, published on p. 33 , vol. 33 , and p. 276 vol ules, published on p. . 3 , vol. 33 , and p. perf, wol.
4 , relating to the power of small engines, be ce-
conciled? A. The frst rule is for the actualhorse
power, and includes deductions for friction of ipes, friction or mechanism, condensation, radiation, etc. To apply the second rule, the average
steam pressure, which would not be equal to the nitial pressure, must be known.
(18) R. B. says: I am about to organize a fre brigade, ead man or armed with, amon hook on the end, so that he can go upon the roo of a building and sustain himself by the hook nd cord from the ridge pole. Can a rope be so prepared as to be non-combustible, that is, whe nuse as described? A. Probabiy. the best thing wire, which is very strong and quite flexible Knots can easily be made at intervals by weaving In a single strand of wire with the strands of the rope, so as to form the rings called by sailors
Turk's heads. We cannot positively recommend rurk's heads. We cannot positively recommen
any of the various freprofing solutions whe any of the various freprooning solutions when
iffe depends on their efficacy. Tungstate of soda in solution is employed for freproofing fabric but might not prevent charring, which woul or strand of iron wrepe. through the line and us ungstate of soda in addition, the wire being trong enought to bear a mans wight in case the
(19) E. O. says: Can you tell me how to treat wood so as to make a good plate for an elec-
trical machine? A. There is no good way. Use

lass or ebonite

(20) H. M. W. says: 1. In your article on ay that a $1 / 4$ inch hole at mon inches distance woul bring it under an angle of half a degree. Wha are we to understand 1° to be at that distance . Nearly $1 / 2$ an inch, more correctly 0.47 inches In figuring I iameter to be 11 of an inch, which would mak
x_{1} inch at that distance occupy 25°. Am I correct A. You are correct, and so were we Lfe quart nch hole at the distance of 6 inches is seen uner an angle of $2 \cdot 5^{\circ}$, it would at a distance of 28 nches be seen under an angle of $8 x \cdot 5^{\circ}$ divided by 28, or 0.233 inch, for which we use 0.25 or $1 / 4$ inch intending that thc holc should slightly surpass
the apparent size of the moon so as to allow the observer to see the edges.
(21) A. B. asks: Does the temperature of inc and mercury rise when a cur
city passes through them? A. No.
(22) F. I. M. says: 1. I have made a tele gage) wire, 20 feet on cach spool. It works wel enough by itself; but when I putit on a line wit other instruments, it fails. I think the wire is too arge. What number (American gage) of wire
should I have, and how mauy feet on each spool shoulo have, and how mauy feet on each spool
A. Nos. 20 to 23 are good sizes; but there should A. Nos. 20 to 23 are good. sizes; but there should
be about 150 or 200 feet. 2 . Where can I get full See p .344 , vol 33 and p .362 vol. 3 L
(23) C. S. M. asks: What is a birdseye ject, and is always a perspective, except when th sen looking directly down.
(24) W. says: I have a building to protect is about 80 x 114 feet, and the house is about 35 feet from a canal, about 80 feet wide and many miles long. Will a rod of ordinary construce or in the wet mud at the bottom of it, have a sufficient contact to give full protection? If not, what do you recommend? A. It should be undertood that all conductors oner some resistance to the passage of electricity, and that a current divides among several conductors in proportion to
their conducting powers. The materials of building are to some extent conductois, consequently, unless the resistance of the rod and its connections with the earth are almost infinitely will pass by way of the latter some of the chal thing the ordinary rod offers sufficiently long resistance or is a good conductor; but the earth conis a better conductor than damp earth, to be sure; but the fact that an equal volume of water or of earth offers verymanytimes greater resistance than metals seems to be overlooked. In order to
reduce the resistance at the junction of the rod reduce the resistance at the junction of the rod
with the earth, the latter must have great surface contact with the former, and this is only effected the rods. to is not, in the main, extravagan
(25) M. S. S. asks: 1. Have the poles of the earth the same temperature? A. It is supposed so. 2. Have they the same length of night
and day? A. Yes, when the sun is on the equator. 3. How near to the poles does the land extend? A That has not yet been determined.
(26) G. R. T. asks: Why does the moon go farther north and south than the sun ? A. Be-
cause the moon's orbit is inclined $5^{\circ} 9^{\prime}$ to the ecliptic, which causes her to go north of the equator the sun goes only $23^{\circ} 27^{\prime}$
(27) D. H. asks: 1. What pressure ought a made of 1 inch copper, to stand per square inch, if bound with hoops of same metal, $\$ 4$ inch wide and 3 inches apart? A. It would be safe to carry from 75 to 80 lbs. 2. What size ought the cylinder to be in proportion to this boiler? A. Diameter $34 \times 11 / 2$ inches stroke. 3. What should be the di What is the easiest method of cleaning old flles? A. Use a wire scratch brush.
(28) D. F. asks: How much steam will it take to lift 2,000 lbs. off a $55 /$ inch pipe, inside di-
ameter ? A. Divide 2,000 by the area of the pipe ameter? A. Divide 2,000 by the area
which gives nearly 25 square inches.
(29) R. F. says: Is it not a generally ac-
cepted theory that, in order to double any given speed of a vessel propelled by steam, it requires four times the power? If so, why is it that a piece of timber shaped to the model of the hull
of a steamer and drawn through the water by means of a string passing over pulleys, and with weight attached sufficient to pull the hull readily,
has its motion accelerated to just double the speed when twice the weight is applied to the cord? A. You confound force and power. Suppose, in your experiment, the strain of the cord
is 1 lb . and the speed 1 mile per hour, in the first case, and that, on increasing the strain of the cord to 2 lbs., the speed is 2 miles per hour. Then the power exerted in the second case, where twice
the strain moves with twice the velocity, is $2 \times 2=4$ times the power exerted in the first case. This would be the deduction from the experiment as you have stated it; but your result is so much at
variance with those obtained by other experivariance with those obtained by oth
mentors that we hesitate to accept it.
(30) B. N. G. asks: How much pressure of steam to the square inch will a tin can, that holds
1 quart and is made of medium quality tin, carry lbs.
(31) F. B. R. says: In an argument as to economy of exhaust jackets around steam engine cylinders, A contends that the exhaust keeps the continually sweeps a way the heat from the cylinder down to the temperature of exhaust in noncondensing engines, say to 212° at least. We no-
ticed in your description of " Maxim's engine," May 6, 1876, that you uphold A.'s view of the case Plense tell us if that is the true theory. A. An engine jacketed with exhaust steam would have
some advantage over another in which the cylinder was exposed to the air ; at the same time, as long as the temperature of the interior of the cylinder is greater than that of the exhaust stcam,
theaction described by B. must take place to some extent.
(32) MI. A. S. asks: 1. Of what size should cedarlogs be for an aqueduct, if bored with a 2 inch hole, to sustain a pressure of 100 feet of wa-
ter? A. From 4 to 5 inches in diameter. 2. How thick should wrought iron pipe be for the same purpose? A. About $\frac{7}{\overline{2}}$ of an inch.
(33) E. E. C. asks: What pressure of gas 1,050 feet deep, 4 inches in the oil from a well ure per square inch equal to the weight A pressure per square inch equal to the weight of a colfeet high, with a slight addition to overcome friction.
(34) J. J. R. says: I have an ordinary furnace in the basement of a three story house. The furnace has a sheet iron cover which becomes hot and radiates in the cellar. Could I check the radiation by blanketing
other felting? A. Yes
(35) J. E. T. asks: What is the horse power acting on on improved turbine under the most favorable circumstances? A. About 75 per cent of the full effect of the water.
(36) I. W. says: We steam our handles, which are made of ashwood, but find that a great preparation we can put into the water to make the wood soften so it will not break? A. We think not. Good bending apparatus, thorough
steaming, together with at least a fair quality of wood, will generally insure success.
(37) H. M. asks: 1. Can you tell me of an for the working parts of models? A. Typemetal, composed of lead and antimony, will answer for many purposes. 2. What is the melting point of copper? A. About 2,500 Fah.
inches in speed must I run an emery wheel 3 olutions per minute.
(38) M. M. H. asks: Will as much water fall into a vessel at an angle of 45° or 60°, driven by the
A. No.
(39) F. C. K. asks: 1. Will a horizontal boiler $21 /$ feet long by 14 inches diameter be large enough to furnish steam for an oscillating engine
$21 / 4$ inches liameter by 4 inches stroke, making 100 revolutions per minute? A. It is rather too small. 2. Would such a boiler, of black shee iron, carry 40 or 50 lbs . of steam with safety ? carry about 40 lbs ., if well built.
Minerals, etc.-Specimens have been re cived from the following correspondents, and examined, with the results stated:
A. H. D. P.-The gas is probably carburetted hydrogen. Phe water contains a large percentage of chloride of sodium. This might be recovered been mislaid. Minerals should be sent in a separate package, labeled with the name and address of the sender.-W. W. K.-It is magnesium lime stone.
clay.

COMMONICATIONS RECEIVED.
The Ejitor of the SCIRNTIFIC AmRrican ac riginal papers and contributions upon the following subjects:
On Crime and its Cause. By T.D.
On the Potato Bug. By E. S G.
On a Check Mark. By
On Logwood. By L. S.
On the Baroscope. By D. M.
On Propelling Ships. By D. H. McC.
On a Mirror. By M. McG.
Dn Flax Growing in the West. By S. E. W.

HINTS TO CORRESPONDENTS
Correspondents whose inquiries fail to appear mould repeat them. If not then published, they declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, ete., will not be published here. All such questions, when initials as it would fill half of our paper to print them all, but we generally take pleasure in answering briefly by mail, if the writer's address is given. Hundreds of inquiries analogousto the following arc sent: "Who makes an ash felt covering for steam boilers? Who makes steam traps? Whose is the best theodolte my do not makers of ICAN?" All such personal inquiries are printed as will be observed, in the column of "Buainess and Personal," which is specially set apart for that purpose, subject to the charge mentioned
at the head of that column. Almost any desired at the head of that column. Almost any desired
information can in this way be expeditiously obinforma
tained.

OFFICIAL

INDEX OF INVENTIONS

Lette

Granted in the Week Ending.
May 30, 1876,

ND EACH BEARING THAT DATE [Those marked (r) are relssued patents.]

A complete copy of any patent in the annexed list,
including both the specifications and drawings, will be incluaing for this office for one dollar. In ordering.
furnished from please state the number and date of the patent desired, and remit to Munn \&Co., 37 Park Row. New York clty. Acid powder, J. V. Hecker.....
Air or stench trap, C. W. Garlan Alarm, burglar, J. H. P. Inslee
Amalgamator, L. Hinckley Amalgamator, L. Hinckley.........
Animal weaning bit, McGee et al. Anman Wator, clectric, Axthelm \& Pease.
Annunclator, electric, A. S. Wetmore... Auger, earth, C. W. Twigg,
Auricle, J. H. Batchelder.. Auricle, J. H. Batchelder
Bale tie, J. L. Randolph. Bale tie, Ji h. Snyder.......................
Bale tle wire, bending, H. W. Putnam.
Barrels, protector in tapptng Barrels, protector in tapping, B. Brown. Baskets, making, L. Porter.....
Battery, galvanic, R. Einvigler Battery, galvantc, J. E. Watson.
Bed bottom, spring, W. I. Winn Bed bottom, spring, w. I. Win
Bed dusting rack, J. Foster..... Bed frame, ad justment, W. J. Myers.
Bed lounge, w. E Buser Bed lounge, w. L. Busy (r)...
Bedstead, sofa, J. Retch..
Bedstead, sofa, J. Retch..............
Bedstead, wardrobe, J. H. Horsfall.
Bedstead, wardrobe, J. w. Post
Bedstead, wardrobe, J.
Bell, door, J. M. Hinch
Billard tables, lighting, H. C. Hayt.
Bird cage, G. F. I. Colburn..........
Bird cage, G. Gannther.
Bird cage, o. w. Taft
Bolt, Roblinson \& Ferr
Bolt for trunke, tray, G. Crouch
Boit for trunke, rray, G. Crouch.......
Bone black, revilifyig, J. Gandolfo.
Book case, revolving, J. J. Crandall. Book-stabbing machine, Hickok
Boot and shoe heel, J. W. Jones... Boot spring shank, S. P. Littlefleld
Bottle stopper, M. J. Hinden....... Bottle stopper, M. J. Hinden
Bottle stopper, P. Miles.....
Bridal bit, E. Llltenthal.
Broom, Kellogg \& Bunke
Bucket and cooker, dinner, F. Zugg
Buckle, A. B. Shaw (r)
Buckle, A. B. Shaw
Buckle, L. A. Spragu
Bunllatngs, metap cover for, Belt \& Perking
Burners, shade for gas, w. F. Bonnell, Jr. Bu ter worker, C. Plyers.
Can, meat, J. A. Wilson
Bu en, werk, J. A. Wlison....
Can,
Can, ofl, W.H. \& W. J. C.a

Car brake, J. Blanshan...
Car coupling, N. Darrow
Car coupling, N. Darrow...
Car coupling, H. Howson..
Car coupling, w.
Car coupling, J. W. Jones.....
Car coupling, W. E. Leonard.
Car coupling, J. F. Roehm
Car coupling, H. O. Werner.......................
Car coupling tightener, w. B. Dunning...17,994,
Car dumping, D. Manuel..............
Car heating apparatus, F. A. Miller.
Car starter, Moschcowitz \& Jasper.
Car trucks, shifting, R. H. Ramsey
Car trucks, shifting, R. R. Ramse
Car wheel rallway, R. N. Allen (\mathbf{r})
Carpet stretcher, J. S. Ingham.
Carpet stretcher, M. W. Knox.
Col
Carriage step, c. \mathbf{H}
Cartridge, A. Hall.

Chair seats, shaptng, A. P. Johns
Chimney cowl. P. J. Dambach....
Curn, Frank \& Kissling................
Cisterns, water-filtering, s. E. Mosh
Clsterns, water-mitering, s. E.
Clamp, JoIner's, G. A. Naumann
Clasp, garment, S. M. Allen.....
Clay wheels, operatIng, W. A. \& T. Elits
Clothes pounder, E. R. Swan .
Clothes pounder, E. R. Swan......
Clothes sprinkler, Ballou \& Woer
Coffce polish, C. H. Ntchols.
Coffee pot, c. Vanderbeck...
Comb, back, J. W. Fleischm

Door hanger, W. G. Collins...............
Drill, double bitted, w. H. Yarborough
Drul Drilling machine, rock, J. B. Waring.
Duster, feather, S. M. HIbbard..........
Ear ring, W. P. Yeoman............. Ear ring, W. P. Yeoman..
Ejector, steam, w. Ebbitt
Elevator, M. Elevator, M. E. \& O. T. Dozier
Engine, hydraultc, w. Smith... Engine, pumping, F. W. Köttgen
Engine, steam, Engine, steam, c. Duecker..........
Engine valve gear, Sulzer \& Ernst Evaporating pan, s. s. Connor........
Explosive compound, c. G. Bjorkma Explosive compo
Faucet, P. Skelly

Fence, barbed Iron, E. . .ims. Fertillzer, A. W. Rowland.

Fifth wheel for vehicles, P. Le
Fire extinguisher, J. Block..
Fire kindiler, B. Bicknell..
Flagstaff holder, A. Koclsch.....
Floor, teaselated s.
Flue cleaner, Hobbs \& Johnston
Furnace grate, w. J. Smith ...
Furnaces, spark arrester, etc., for, H. Pindar
Gas distributor, J. R. Shirley
Gas distributor, J. R. Shirley
Gas engine, A. De Bisschop
Gas fixture, J. McHenry
Gas ilghter, automatic, K. Voge Gas motor engine, N. A. Otto...
Gas regulator, G. W. Hambright Gas stoves, oven for, J. R. Shrley Generator, lamp stea,, . Fritz
Girder, metallic, J. L. Nostrand Governor, speed, J. M. King Grain binder, H. H. Bridenthall, Jr Grain welgher, J. T. Carmony... Grape vine support, Z. F. Mahorney.
Grate,W. H. Lotz....................... Grate, W. H. Lotz...................
Guns, dart for air. A. W. Gifford. Hair crimper, w. F. Drew
Hammer, drop, F. H. RIchards. Harness, J. L. Whitc..............
Harness clamp, J. McCormick. Harness clamp, J. McCormick
Harvester, J. H. Elward (r).
Harvester, J. . Elward Harvester, A. T. Nord....
Harvester rake, D. H. Kim Heater, steam, A. Van Horn (r)
Hemp and flax brake,
Hook fastening, suspension, w. H. Haines

Rallway switch stand, J. H. Ainsworth.
Railway track crossing, Gray et al.
Rake, horsc hay, Rake, horsc hay, G. M. L. McMillen.. Register, hot airr, Seavey \& Storer....
Registering apparatus, J. S. EElHott Regulator, draft, W. H. Gerrish Resinoussubstance, W. P. Jenney.
Revolver, s. Forchand........... Rope, baling, G. D. Jewct
sad iron holder, S. J. W Sash balance, Fowler \& Adam Sash fastener, E. Stannar
Saw, jig, w. I. Winne ... Saw tooth, insertible, T. S. Disston Sawing machine, G. Lee.....
Scales, weighing, s. L. Plumb clasors gage, E. Wiggins crew nuts, tapping, s. L. Worsley (r).
crew-threading machine, S. L. Worsle Screw, wood, C. D. Rogers.
\qquad eparator, graln, J. P. Scott
eparator, grain, J. J. West Sewing bird, J. W. McDermott............
Sewing machines, cam for, L. $\mathbf{1}$. Jone heet metal cap, D. H. Cow
Shoe fastening, w. J. Vitt Shoe tips, making, J. A. S Skate, J. Drucklieb. kates, ankle support for, J. Drucklleb Skate, W. J. Montgomery...
late frame attachment, F led, harvesting, R. B. F. Arzt Spark arrester, A. Mitchcll .. pring, door, J. K. Glifillan Stair cover fastenIng, A. Holbro Steamer, cullnary, C. M. Newell Stench trap, E. F. Hutchins Stove, heating, W. D. Bartlett....
Stove plpe damper, J. H. Rhamy Stove heater, L. M. Madson.......
Stoves, ovenfor gas, J. R. Snirley. Straw cutter, R. N. Boren Surcingle, P. B. Horton ..
Suspenders, end fustening
Table, Ironing, N. Clark....
Teeth, artitclal, w. P. Hall Telegraphs, duplex, T. A. Edison. 178,221, 178,......
Thill coupling, H. Dick Thill coupling, H. Dtek..
Tiles, making flooring, \mathbf{G}.
Trre upsetter, E. B. Rose...
Tool, compound, M. Young. Tool, blank, hand, L.T. k Track clearer, J. Mabbs.
Truck, barrel, S. Allman Trunk corncr clamp, E. A. G.
Trunks, tray bolt for, ©. Crouch Truss, spermatic, H. A. Stephenson.................
Turning and planing tool, metal, T. T. Lingard mbrella, G. \& C. Lieb Valve gear, J. E. Cllles......
Valve, , overnor, E. schirck Valve, steam, J. L. Agnew Valve, steam, R. T. Crane. Valve, throttle, Beal \& Andrcws
Varning, Varnish, w. P. Jenney.....
Vehlche spring, I. w. Mead. Velocipede, R. W Luack Ventllating apparatus, w. H. Millis entllator for windows, T. W. B acher
Vessels for buoys, ctc., Iron, T. F. Kowland Wagon spring, P. Miller Washer cutter, J. S. Appleto Washing machine clamp, M. N. Lovecl Watch timing attachment, T. Acklcy.
Watchman's time indicator, Watchman's time Indicator,
Weather strip, T. G. Plate. Wedges, making, J. Lcunerton
Windmill, c. c. Harris Windmill, C. C. Harris............
Window shade fixture, D. Grifin Wrench, E. H. Knight
Wrench, spanner, A.

```
Griffin
```


designs patented

,312.-BAss Relirf.-E. O. Frink, Indiannpolis, Ind $9,313 .-$ STAIR PLATEs.- W. H. Gouid, Montrose, N. J. , 314.-MATCH SAFE.-A. Iske, Lancaster, Pa. ,315.-Sofa Frame.-C. Tisch, New York city. ,321, 9, s22.-CARPETS. -T. J. Stearns, Boston, Mass. S33.-VASE.-J. H. Whitehouse, Brooklyn, N. [A copy of any one of the above patents may be had by remitting one dollar to MUNN \& Co., 37 Park ISow, New York elty.

schedule of patent fees
 on Issuing each original Patent. On appeal to Examiners-in-Chief............................... 810 n fling ation for Retssue n an applicatlon for Desilgn $3 \nless y$ years $.8: 310$
810 On application for Design (7 years)
On application for Design (14 years) .81 .5
$.8: 30$
gduertisements
Inside Page, each insertion -- $\mathbf{7 5}$ cents a line
Back Page, ench insertion -- $\mathbf{8 1 . 0 0}$ a line. Back Page, each insertion -- 81.00 a line. per line, by measurement, as the letter prexs. Adver-
tisements must be received at publication oflce as early as friaay morning to appear

HOISTEVERS IBLE

Stabs' Files,TTools \& Steel

PATENT FOR SALE-The Swise Industral Co.

 $\$ 8$ Igoung A

 $\mathbf{W}^{\text {ANTED-Bya practical Steam Botier Maker, }}$

Lehigh Emery Wheels

Wood-Working Machinery,

 Win $\overline{\text { Win }}$ HTED-Situation as Master Meehanic or

 SOUND WEALTH
$\$ 600,000$ IN GIFTS!
A FORTUNE FOR ONLY $\$ 12$. THE KENTUCKY
CASH DISTRIBUTION COMPANY authorized by a spectal act of the Kentucky Legislature
for the beaet will have the First of theirsertego Grand Dramirgs at THURSDAY, AUGUST 31, 1876, $\$ 600,000$
Thos. P. Porter, Ex-Gov. Ky., Gen'l Manager
POSITIV ELY NO POSTPONEMENT: One
one
one
one
One
ne

 All communcations, orders for Tickets, and applica
tons for Agences

HON. THOS, P. PORTER,
(ral Manager, Frankfort, Ky. Gallahue's "Little Ciant" Steam Engine

STEAM ENGINES FOR SALE

 drare the crotonesave the cosis

M

 PUNCHING For the Beet tad cheap

Florida Orange Groves,

P. BIAISDEIL \& CO.

Planing \& Matching.
 TO ELECTROPLATRES GEWELERS, AND

 MACHINERY,
IRON * WOOD WORKING MACHINERY
Cold Rolled Shafting.

GEORGE PLACE,

N. F. BURNHAM'S
 Stone and Ore Breaker

A ${ }^{\text {dVERTISERS Desiring mo reach Coun- }}$

WOOD, TABER \& MORSE, Eaton, Madison Co., N. Y.

Steam Engines,
Portable, Stationary,
and Agricultural.

Farms and Plantations, for Gral
Threehng. Food Cooling fo
Stock, Cotton Ginnlng, Saw tock cotton Ginning, Saw
agication.

TINTEGAR HOW MADE IN
Adarea. F. i. sAGE, springnel, Mase. Name Paper
 rivi Send for Pamphlet and Improved Soldd Steel Cutters for
all पind or
made to order, and wourders warranted
 AMATEUR WORKERS Rareand FancyToods

Beautiful Designs.
 GEO. W. READ $\& C O$ FOREIGN PATENTS

THE CENTENNIAL.

There is no doubt that our Centennial Exposition win rom all parts of the world, and they will take home with their own manufactures. An unusual opportunity will be orrered for selling to good American inventions in the respective countric ir m which these vistors come.
At the reduced prices for which patents are obtaine abroad, our people will lose a chance not likely to occur again, if they do not avail themselves of the opportunity of securing their inventions in forelgn countries at once so as to have their
coming summer.
For cost of patents in the different countries and the onditions on which they are granted, send for pamphle ntaining full information.
Address
MUNN \& Co.
Branot ofpiot, cor. F and 7th Sta.
sedavertisements.

THE HEALD \& SISCO Patent Centrifugal Pumps.

 Todd \& Rafferty Machine Co.

On roeapt of 25 cents, we eend by mall, poast patas,

 7illuetrateorry, as Appled to practical Pur poses. Wth

 MUNN \& CO., Publishers, Sclentiac American omee,

Compressed atr motive power.-For

NEWSPAPER FILE.

 evadran

MUNN \& CO.,
Publishers SCIEN
0
EFOOTIATHES,

Parose
 HOUSTON WATER WHEEL
 RRON WORKS.

 W. C. DUYCKINCK, Railway, Machinists', and En gineers' Supplies. 50 and 52 JOHN STREET

Niagara SteamPumpWorks charles b. hardick. BROOKLYN, N . \mathbf{x}.
 Portland and Keene's Cement.

〇HE UNION IRON MILLS, Pittsburgh, Pa--

 THE CENTENNIAL INTERNATIONAL EX

WHIPPLE'S

Patent Door Knob.

Machinists' Tools.

 NEW HAVEN DANUFACTURING, CO.,

PORTLANDCEMENT

The Tanite Co.,
STROUDSBURG, PA. EMERY WHEELS \& GRINDERS
Chicago or western head quarters
 S CREW PROPELLERS, THEIR SHAFTS AND

HARTFORD

STEAM BOILER
Inspection \& Insurance COMPANY.
 J. B. PIIRTE, Bex'I.

Mill FurnishingWorlss

 IRon bridge building-A

OLD ROLLED SHAFTING

The fort that that shating has ha per cent treater

Q) 2

SCIENTIFIC AMERICAN, FOR 1876. the most popular scientific paper in the worid.

THIRTY-FIRST YEAR.
VOLUME XXXIV.-NEW SERIES.
The publishers of the SCIENTIFIC AMERICAN beg to announce that on the first day of January, 1876, a new volume commenced. It will continue tents of the new volume more attractive and use ful than any of its predecessors.

To the Mechanic and Manufacturer.
No person engaged in any of the mechanical pursuits should think of doing without the ScIENsix to ten engravings of new machines and inventhons which cannot be found in any other publica-
The SCIENTIFIC AMERICAN is devoted to the interests of Popular science, the Mechanic Arts, Manufactures,Inventions, Agriculture, Commerce andle and instructive not only in the Workshop and Manufactory, but also in the Household, the Library, and the Reading Room. Each volume contains hundreds of Notes, Receipts, and Suggestions and Advice, by Practical Writers, for Working Men and Employers, in all the various arta. TRRMS OF SUBSCRIPTION - POSTAGE PAID BY US.
One copy Scientific American, one year ... $\$ 3.20$ $\begin{array}{ll}\text { One copy Scientific American, six months. } & 1.60 \\ \text { One copy Scientific American,three months } & 1.00\end{array}$ One copy Scientfic American and one copy
for one year, post-paid.
The scientific American Supplement A weekly paper, uniform in size with the SCIBNcontains working drawings of engineering works, and elaborate treatises on every branch of Science and Mechanics, by eminent writers, at home and abroad. An illustrated cover protects the handsomely printed sheets. Price, $\$ 5.00$ per annum Single copies 10 cents.
Remit by postal order, draft, or express
Address all letters and make all Post Office or
MUNN \& CO. 37 PARK ROW, NEW YORK.

