A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.

tile products make their exit through the opposite journal,G

IMPROVED REVOLVING FURNACE.

The roasting of ores, having for its object the removal of all such volatile substances as sulphur, antimony, arsenic, of water entering through the perforated diaphragm, I. In (to this way such materials are reduced so as to beasily remound processes more easy, is ordinarily done either in movable; and at the same time, if precious metals be under ounds or heaps or in stationary furnaces (reverberatory or treatment, such portions of the latter as would otherwise otherwise), according to the nature and kind of ore. As a escaps are caught and retained. From the condenser, the substitute for these various means employed, the invention blast passes, as shown, into the chimnsy
illustrated in the an nexed engraving is intended, and it is con. structed so as to per structed so as to per form effectively all the operations of roast ing, annealing, smelt ing, extracting mercu ry, drying, reducing ores, etc. The three views here given show, first, (Fig. 1) a perspective view of the apparatus; second (Fig. 2), a longitudinal section of the furnace as used for roasting ores, and third (Fig 3), a transverse sec 3), a transverse sec
tion of the invention ion of the invention arranged for smelting purposes. It will be seen also from the engravings that the fur naces are intended to grouped about a central chimney, one opering into each of the four faces of the base of the latter. Referring to Fig. 2, A is a sphere of boiler plate or castiron, lined with ganister, fire brick, and asb, fire the effect of which the effect of which lining, we are in formed, is to keep the exterior of the spher cool, even while an extremely high heat is maintained within This globe is suspend

MANES' REVOLVING FORNACE. - Fig. 1.

 ed on hollow journals,and on its exterior surface are circular racks, B, which engage with the gear wheel, C, and the latter communicates with the hand wheel, L. By turning this hand wheel the globe is easily rotated. E is the furnace, the blast from which enters the globe, which is previously filled with ore and closed, through the water tweer F, which,as shown, passes through one of the hollow journals. During the operation of roasting, the globe is constantly rotated, so that the ore within is kept in agitation, thus allowing the heat to pass through and act upon every part of its mass. The vola-The adaptation of the furnace for smeiting purposes is asily understood from Fig. 3. The globe is of course hel water tweers through both journals, passes down through the charge, is reflected up, and exits through the open man hole above. The tweers can be continued downward and en tirely around the bottom of the globe if required When the process is complete, the globe may be tipped to discharg its contents through the manhole at J, or it may remain sta its contents through the manhole at J , or it may remain st

For handling refractory and low rades of gold and silv res, the inventor claims for the apparatus special advan tages, as by its use several tuns can be worked daily, and the abor of but one man to attend the furnace will be required. The globular form adopted is one easy of construction and well suited to sustain its great weight from two points of support. The lining of the interior can,it is claimed,also be rendered more stable than in any other form, while it present ess surface for the diation of heat. The inventor has also introduced a new and effective process for amalgamating gold and silver ores, which, used in connection with the furnace, adds greatly to the advantages of the latter as a means of extracting the precious metals from their ores. Many of the ores hitherto found most difficult to handle, such as nickel, cobalt, antimony, arsenic, zinc, bismuth, lead, copper can be safely worked, as no injurious fumes save such as through the cond thrs can the condensand steel can. Iron already can also, as reated indicated, be mpod and made with mportant advantages, as the annealing of malleable iron and the use of crucibles in converting or making steel together obviated. The ogether obviate, is of these furnaces is now, we earn, being constructed at the works of the Hartford, Conn., Machine Com. pany for the new Nickel Smelting and Refining Company of the ssme city. Four complete furnaces of like pattern are to be erected by the corPatented April 6, 1875. For further information address he inventor, Mr. James Manes, 74 Asylum street, New Haven, Conn.

A German firm has recently introduced an alloy of 62 parts copper, 18 parts lead, 10 parts tin, and 10 parts zinc. It is called dysiot, and is a kind of whitish brass, readily fusible.

Srientific Ammerican.

MUNN \& CO., Editors and Proprietors. pUblished weekly at
NO. BT PARK ROW, NEW YORK. o. D. MUNN.
E. beach.

TERMS.
One copy, one year, postage included...
One copy, siz months, postage included.
ClubRates.
Ten coples, one year, each 82 70, postage included...
Over ten coples, same rate each, postage included. 82700

By the new law, postage is payable in advance
the subscriber then recelves the paper free of charge.
Notr.-Persons subscribing will please to
Notr. Pe macribing will plesse to clve their full mat Offlee and State address, plainly written. and also state at which time thes wish their subscriptions to commence, otherwise the paper will be sent from
the recelpt of the order. When requested, the numbers from January 1 st , when the volume commenced. In case of changing residence, state former address, as well as give
be made unless the formeraddress is given be made unless the former address is \&iven.
If any of our readers fall to receive their if any of our readers falit to recerve their numbers regularly; if the direcrault of any sort at this office, we will thank our friends to send us postal
tor card complaints, and repeat the same, if need be, until the remedy is effect ed. Do not hesitate to complain. We desir
ourselves and patrons right and satisfactory

VOLUME XXXIV., No. 6. [New Series.] Thirty-first Year.
NEW YORK, SATURDAY, FEBRUARY 5, 1876.

THE SCIENTIFIC AMERICAN SUPPLEMENT. No. 6.
anding
F.

table of CONTENTS

i. TECHNOLOE

 Culttivate, What to Propagate
1X. PISCICULTURE.-Trout Ponds, by J. I. Pease, 11 ifg.

COMBINED RATES.
 MUNN \& CO., $\underset{37}{\text { PUBLISHERERS Row. }}$ \qquad
Single coples of Supplement sent to any address on receipt of 'Science Record" for 1876.
To prepare the matter for a volume of 600 pages is a work of considerable magnitude at any time: and to gather the requisite material, so that it includes everything new in the fields of mechanical, chemical, and phy sical science discussed during an entire year, and then to arrange and classify the
subjects, is by no means a small task. The Science Record, which we expected to issue on January 15, and for which several hundred persons are waiting, will not, for the reasons above hinted at, be ready till about February 10. The printers and binders bave promised us a large edition early in February, when the orders on our books will be filled in the rotation in which they were received.
The volumes for the previous four years, from 1871 to 1875, are on hand, ready for present delivery. See advertisement on another page.

MACHINE MERCY

While crossing one of the ferries between this city and Brooklyn the other day, we formed one of a knot of person who curiously watched an individual who had clambered up on the walking beam of another steamboat that was passing
us, and who, clinging to the beam, was swayed up and down us, and who, clinging to the beam, was swayed upand down
as he coolly scrubbed at some portion of the bright work as he coolly scrubbed at some porle about us seemed to b The general sentiment of the people about us seemed to be we profoundly differed from our neighbors, and thought to ourselves that the workmen was, to say the least, a fool. Why could he nor wait five minutes until his boat came to rest in the slip, and then clean and polish to his heart's ontent while the beam was stationary? In fact there was n reason that we could perceive, and hence we were driven to
the above uncomplimentary opinion, as we always are whenver we witness a presumably rational human being peril lif limb uselessly
"Familiarity breeds contempt" is a trite old proverb, and one which appears to be especially true in regard to people accustomed to dealing with machinery. It is not so in many ther cases ; soldiers who handle fire arms and explosives all heir lives are proverbially the most careful persons with their deadly weapons. They seldom blow off their fingers or the tops of their own skulls, through pure negligence, as many an unfortunate sportsman has done: for the reason, perhaps, that long experience with gunpowder impresses hem with the merciless nature of that material when it is gnited. But machine attendants somehow manage to get a different idea, and almost, it appears, arrive at a notion that machine is a sort of sentient being which knows them,and won't smash or bite off their limbs as it will those of other people. What scores of workmen we haveseen with stumps
of fingers! Machine and circular saws especially are peculiarly partial to such diet. We read of a case recently of a work man who was descanting on the advantages of his saw, and whomerely wanted to point out how truly it ran. He pushed his finger forward a little too far, and whiz! off it went. He felt a peculiar sensation, not a huri (for it is well known that here is no pain attending the lopping off of a member
very rapidly revolving blade), and, half instinctively, he poked out another finger, and that likewise departed. Then he dis covered that something was wrong, and subsequently that he was minus two fingers. Fingers cut off are trivial accidents to some that occur through carelessness. Not very ong ago; a woman in a New Englaad mill went to work with her hair down. She moved carelessly around among the
buzzing wheels and shafts, and the first thing she knew her tresses were caught, and no Pawnee on the plains could have scalped her more neatly. Her misfortune benefited Science, however, for it gave the doctors a splendid opportunity to try the efficacy of transplanting skin. Medical skill healed the wound, we believe, but her flowing locks were gone. A workman was strangled in a somewhat similar way, his loose could not be ching and twisting itself about a smber, met more horrible fate by becoming entangied with a shaft which swung him around and around, dashing him against the beams and floor at every turn, until, before the motion could be arrested, he was literally torn to pieces. We have seen men on steam vessels crawl down among the machinery, with a light in one hand and a tool in the other, and try to work, dodging some moving part at its every revolution, the rolling of the ship making their position still more perilous. A case happened, a very short time ago, in which a machinist entered the narrow enclosure in which the paddle shaft crank of a steamer worked. He knew perfectly weil that steam was up, and that the vessel would shortly get under way; but for some unaccountable reason, he shose at the last minute to get under the crank, perhaps to put the last touch on some
repairing job. It was his last touch, for the engineer, whom he did not notify of his intention, happened to work the tarting bar to give the engine a turn or two. The crank came over and smashed the unfortunate being out of all human semblance.
We might goon and multiply instances of this kind inde nitely: doubtless there are few of our readers who cannot do likewise. But despite the knowledge of the prevalence of these casualties, people continue to be careless. The en gineer doesn't realize that the engine which he has rubbed till he can see his face in any part of it, or whose motion he has controlled for the last ten years, will crush him if he once gets in its clutch. Hasn't he a pet name for it, and doesn't he pat the cylinder affectionately, and view it allove with a kind of fatherly interest? Certainly he reasons somer how that the insensate iron and steel will spare its master Then there is the machinist. Did he not put up those countershafts, and fit that belting? What if he does gat up on ladder, and try to slip a belt already on the driven pulle ${ }^{5}$ over a big driver with the latter in motion? He laughs whe the risk of his getting caught between belt and pulley is pointed out, guesses he knows this gear, and "he's done it a thousand times," and the thousand and first time may result a horrible death. Locomotive engineers are also fright fully reckless. With an engine going forty miles an hour, it is much more prudent to slow down or even stop in order to oil a squeaky bearing than to climb out on the side and
hang over so as to reach the place with the oil can. Better lose a minute or two of time than risk life. The men who run our locomotives have plenty of chances to display hero ism and daring at the right time; and it is for the very reason that they are so rarely found wanting in those qualities that we hate to see them uselessly peril their lives.
In a word, workmen should learn that there is no such thing as familiarity with machinery. Study your machines, we say, know every bolt, every nut, every piece of metal in
them, know how to repair, to build, to invent improvements, know how to exact their utmost capabilities; but for your own safety, and for the sake of those dependent on your la-
bor, do not relax one instant's care, nor persuade yourself bor, do not relax one instant's care, nor persuade yourself that you can rely upon your dexterity or upon any half sup posed merciful attribute in moving masses of metal.

PROGRESS OF THE GREAT JETTY WORKS AT THE MOUTH OF THE MISSISSIPPI.

On January 15, 1876, the jetty works constructed under the United States grant, made to Mr. James B. Eads on March 3 last, had been so far extended into the sea that the almost complete control of the river discharge had been ac complished through a distance of $1 \frac{1}{2}$ miles from the land's end, and within 2500 feet of the crest of the bar.
Through the extent of this mile and a half, the river cur ent had swept out $1,263,222$ cubic yards of the bar on De cember 25,1875 , and the removal by the river is progress ing at the rate of about 30,000 cubic yards per day; 2,000 , 000 yards more will have to be scoured away before 20 feet depth of water is secured across the bar.
The works on each line of jetty are partially constructed out beyond the crest of the bar to the full distance they are intended to be built, and the work on this portion of the jetties is being pushed with the utmost vigor, over 25,000 cubic yards of willow mattress work having been construct ed and securely placed in position, and ballasted with stone, within the last 30 days-the total amount laid thus far being about 125,000 cubic yards. The construction of 20,000 additional yards is all that is now required to build the jetties up above mean low tide, and out to the crest of the bar 10,500 feet from the land's end at the mouth of the Missis. ippi.
It is confidently believed that a sufficient amount of mate rial is now in place, if no more work were done, to insure a
depth of 20 feet of water across the bar, within three or fou months. One remarkable feature thus far developed, i he deepening of the water between the incomplete jettie n the outer slope of the bar, which is doubtless caused by the tidal action that is now partially controlled by the jetty works beyond the crest. This deepening clearly shows how groundless are the fears that the effect of the jetties would simply be to pile out the excavated material on the oute slope of the bar. The fact that the crest of the bar has not deepened, notwithstanding the immense amount of materia excavated from above it, between the lines of the jetties, is in exact accordance with the theory upon which Mr. Eads has based his application of the jetty system to the improve ent of the mouth of the Mississippi
Those predicting the failure of the system have constant y asserted that the chief part of the sedimentary matter of he river was pushed out to sea, on the bottom, by the ac ion of the current: while Mr. Eads has persistently de clared that this was a grave error, and that these matters were almost wholly borne to the sea suspended in the water of the river, and that, the more rapid the currant, the great or would be the amount of material held by it in suspension; and hence an increase of current above the normal in any part of the river, flowing over a strictly alluvial bed, would cause the water to take up an additional load of this matter which it would retain in suspension so long as the velocity f current was maintained ; and when thus charged, it would be simply impossible for it to take up any load or produce ny additional scouring. The current receives its first ac eleration at the upper end of the jetty works, and here it first becomes charged with the surplus load. It receives no further acceleration in its passage over the crest of the bar (owing to the incompleteness of the work there), over which escapes laterally. The enlargement produced by the ex cavation gradually reduces the current, where it occurs, by he enlargement of the channel, and the acceleration and extra loading of the water then takes place lower down and nearer the crest of the bar. The effect of this is to shorten up the base of the bar, and to deepen the channel above it, efore the crest of the bar is reduced.
The original crest of the bar was a plateau 3,500 feet wide ver which an average depth of only $7 \frac{1}{2}$ feet of water could be found, between the parallel lines of the jetties, which are laced 1,000 feet asunder. This plateau is now reduced t width of less than 600 feet, and will gradually be reduced o nothing, before the deepening of the bar crest will begin to take place. As the current is quite as rapid now across the crest of the bar as it is between the completed parts of the jetties, it is evident that, if the sedimentary matters of the river were pushed along the bottom, by the current, the deposits which are most elevated, like the summit of the bar, would be the first to be pushed off, and piled up beyond the bar crest, in the sea water beneath the river discharge, or in what has been termed the "dead angle." The base of the bar on the 20 feet line of depth was nearly 10,000 feet long when the jetties were commenced. This base has been shortened still more than the plateau forming the bar sum mit, and is now only about 6,200 feet long, measured in the direction of the jetties.

REMOVAL OF SNOW FROM CCTY RAILWAY TRACRS

For a considerable time past litigations have been prose uted on the part of residents aloug the line of some of our city street railways, with the object of preventing the companies from piling up the snow at the sides of the tracks.
On behalf of the residents it was shown that the companies were in the habit of using plows and rotary sweeps piling the snow up in continuous banks between and at the sides of the tracks and in front of the adjoining dwellings, rendering all approach to the latter by ordinary vehicles practically impossible. It was claimed that the
companies by thus doing became almost exclusive occupants of the street, the householders being shut off. It is quite common for dwellers on our street railway routes to wake up on winter mornings, and find a compact bank of snow from three to four feet high along the front of their pre mises, deposited there during the night by the industriou railway people, aided by their powerful machinery.
On the part of the railway companies, it appeared, during the course of the recent legal proceedings, that the use of the plows and sweepers was necessary to the proper working of the roads; that the snow must be removed, or the passenger cars could not run; that their charters required them to run the cars; that if they were to be enjoined from clearing the tracks, the court would nullify the act of the legislature; that consequently the companies could not be legislature; that consequently the companies could not be
legally prevented from clearing the snow, as they were in legally prevented
the habit of doing.
the habit of doing.
Judg $\begin{aligned} & \text { Sedgwick, }\end{aligned}$.
Judg \ominus Sedgwick, before whom the last proceedings came, has rendered a decision which, we think, will commend itself to the people by its plain, common sense, practical way of solving the difficulty.
He admits the right of the companies to clear their tracks of snow, and to pack it up at the sides of the streets as they now do; on the other hand, he decides that t'e companies must not obstruct the use of the streets, and requires them to remove their snow banks within a reasonable time after every storm. This decision gives general satisfaction, and fully meets the requirements of the case. It is true it imposes a laborious and expensive work upon the companies, as they are unprovided with special means for the removal. But wo cannot doubt that some of our ingenious inventors will study out the proper machinery to do the business cheaply. With them we leave the subject. Whoever can devise the proper mechanism ought to reap a handsome reward. Now let us see what mechanical genius can do in the matter.

high gas bills and their prevention

A conflict exists at present in Brooklyn, between the gas companies on one side and some of the gas consumers on the other. The price of gas has reached lately $\$ 3$ por 1,000 feet, and even at this high cost has by many been found to bo of poor and unsatisfactory quality. As a result, some poople have abandoned the use of gas and substituted lamps. It is well to remember that large gas bills are due not merely to the cost per 1,000 feet of the gas burnt, but to the number of feet consumed. As any one can easily learn to read his meter index from the instructions printed on the back of the bills rendered, it is presumable that the consumer is informed of the quantity of gas he is using, and hence cannot dispute bills which accord with the meter. But the meter is sometimes the object of the consumer's suspicion Now supposing him to be certain that no gas unknown to him has been wasted, the question of the veracity of the meter is easily settled by a simple test. The wet meter is simply a circular box filled with water to a point a little above its center. The axis carries a series of curved buckets, each capable of holding a definite quantity of gas, which is admitted at the central part of the meter, and which causes the buckets successively to rise, thus keeping them in contibuing rotation. As the edge of each bucket rises from the liquid, the gas escapes and goes to the delivery pipe at the circumference, while the quantity so discharged is measured by the rotation of the bucket axis, acting on gearing which communicates with an index. Now to test this meter, provide any large airtight vessel, say a good sized jar, of which the exact content in cubic feet and inches is easily calculated. Fill this with water and reverse it, mouth down, in a good sized pan, on the bottom of which are two or three inches of water. The atmospheric pressure will keep the water in the jar. The connection between the house pipe and the meter being previously cut, and a piece of rubber tubing attached to the meter, lead the end of the tube into the throat of the jar. Turn on the gas, which will bubble the jar is driven out, stop off the gas. Fill the jar with water the jar is driven out, stop off the gas. Find, and jar with water again, thus expelling the gas col ected, and repeat the opar-
ation. Do this, say five times, until in fact the previously ation. Do this, say five times, until in fact the previously determined cubic contents of the jar, multiplied by the num-
ber of fillings, equals exactly (for example) 10 cubic feet. Now compare the result thus obtained with the indication of the index on the meter, allowing a slight margin in favor of the latter to compensate for any inaccuracy on your part, and the error of the meter, if any there be, will at once be apparent.
The causes of error may then be searched for; and generally the trouble is tbat the meter has either too much or too little water. This water is put in through a screw, on top of the front box and to the right. It should be admitted until it escapes from the vent in the side just below, when the same is opened. It sometimes happens that a plumber, in filling a meter, will fill above the vent, and yet not sufficient ly raise the float (which is supposed to regulate the entrance of the gas and shut the same off when too much or too lit tle water is the case). The effect of this is to diminish the cubic contents of the buckets, while the index shows no
change in the number of revolutions of the drum. So that the consumer then pays for more indicated cubic feet than he has really consumed. To remove water, try the bottom screw, and take out the water from what is called the dry
well. When there is too little water in the meter, its proper well. When there is too little water in the meter, its proper quantity is easily added, and the contents should just escape from the lower edge of the vent. In winter, the meter is very prone to freeze: this need not occur more than once, if the consumer will pour a little glycerin into the water after
old meters becomes thick, from the accumulation of tar and dirt from the mains. This causes a slow and unsatisfactory
action, and should be remedied by cleaning the meter out action, and should be remedied by cleaning
and replacing the impure with fresh water.
There are various other causes of high gas bills, which the householder might well look to, but into which we cannot enter in any detail here. Prominent among these are the burners, a poor one of which may easily burn double the gas and not give half the light of one properly constructed. The ordinary type of burner, besides, burns out, and, through the enlargement of its orifice, soon becomes very wasteful of gas. Another cause of waste is due to people trying to read or work by several lights located in a high chandelier or fixture, instead of by one light brought near them. A single burner, one foot distant from the page of a book, will shed on that page thirty-six times more light than the same burnon that page thirty-six times more light than the same burn-
er six feet away; or in other words, the single burner, located as first stated, will light up the page as brilliantly as six chandeliers, of six burners each, hung six feet from the book. The absolute quantity of light is the same at all distances, but it is spread out over an area which increases with the square of the distance from the flame; so that it is obvi ous that lights are used very wastefully when they are placed far away from the objects which they are to illumin placed
ate.

A NEGLECTED INDUSTRY.-BEE CULTURE.

Phefe is one industry in this country which is not over worked nor overcrowded, and which offers reasonably large and sure profits, because for its products there is always a demand. It is one which hundreds of people can carry on without interfering with their regular occupations, and which might serve to give employment to many now seeking labor, or additional income to others of straitened means. We refer to beekeeping, and we speak of it now because the opening of spring is a good time, for those who may
heed our advice, to make a beginning. Out of the $40,000,000$ heed our advice, to make a beginning. Out of the $40,000,000$
people in this country, only 70,000 are beekeepers, and these send to market about $15,000,000 \mathrm{lbs}$. of honey and wax yearly. Now to see how enormously below the average, of what the country ought to produce, the above yield is, we have only to make a brief calculation based on the assertion of the late Mr. Quinby, one of the best and most reliable authories on apiculture. He says that, on an average, every acre of ground ought to yield 1 lb . of honey-cities and all, be it remembered, because it has been practically demonstrated that the bees will find excellent materials for honey in the refuse and garbage as well as in the few green spots en closed within brick and mortar walls. There are 1,897,146,240 acres in our national domain; and even if we deduct 50 per
cent of this for utterly uninhabited localities, the yield should be about sixty times greater than it is. To proceed a step further, every pound of honey is worth, on an average, 25 cents, and each pound of wax, 30 cents. Taking the figures in the last census as a basis, the value of the annual product is: Wax $\$ 189,338$, and honey $\$ 3,676,703$, total $\$ 3$, . 866041 . But this is only $\frac{1}{62}$ of the va'ue which might be produced, and therefore the said possible value is worth $\$ 240000,000$, consequently there is a waste of $\$ 236,000,000$ worth of valuable produce, which evaporates into the air. One well known authority plainly asserts that the amount of honey lost, in California alone, yearly, exceeds in value the quantity of gold gathered in the State during the same period. The census says that, in 1870 , there were but 136 pro fessional apiarists in the country; a monthly publication devoted entirely to discussion of bee culture is our authority for the statement that, altogether, 70,000 persons keep bees. Only 1 person, then, out of every 570 in the United States, is engaged in preventing the abovenamed waste, or, more strictly speaking, in trying to divert some of the evaporated value into his own pockets: 1 person in about every 300,000 sus says that doing this as an exclusive business. country, clerks and salesmen be it noticed, not employees in general, one to every 144 of the population. There is not a year elapses that does not see hundreds of young men and women s warming into the great cities looking for clerical employment, nor can a winter pass but that we are not brought face to face with terrible destitution, and merchants everywhere are compelled to deny, for their own immediate
welfare, appeal after appeal which strongly excites both sympathy and charitable feelings. An advertisement in a daily journal of this city for clerical help results in answers by the hundred, as we personally know. Now is there not something wrong in a system under which, on one hand, an in-
dustry, not a new one born yesterday but one almost as old as the human race itself goes begging for people to follow it, the resources of which are suffered to run to absolute waste to the extent of millions of dollars yearly; and under which, on the other hand, thousands of the best part of the population manage to crowd into big cities and there starve because there is no honest labor for them?
We do not argue that each and everybody should instantly provide himself with an improved hive and a swarm of bees and therein find sooner or later a fortune; we merely point out one industry, more thoroughly and uniformly neglected than any other that we now can recal. It is, moreover, in the development of industries of this kind that the solution of the much agitated woman question lies. Apiculture is one of the few pursuits that a woman is physically able to follow in its every branch; herein it is of especial advantage. Again, its development would prove a general blessing in that, besides enlarging the field of labor for every one it might serve to attract men, out from behind counters in millinery and dry goods stores, away from the cities and into the open air of
the country whore, in agriculture, man's natural calling, the
muscles which Nature has given them, and denied the weaker ex, could be put to profitable use. We shall revert to this subject of bee culture in its more practical bearing at some future time.

Mr. Edison's New Force.

To the Editor of the Scientific American:
I notice in your issue of January 29, 1876, some experiments conducted by a gentleman signing himself "Elec. tron," who attempts to prove that the phenomenon observed by me, and which I have called etheric force, is due to the "extra" current from an electromagnet.
There are several sources of error, I think, in his experi ment, among which may be mentioned bad insulation of battery or leading wires and binding posts, and the close proximity of the galvanometer to the vibrating apparatus.
Owing to the extreme delicacy of a mirror galvanometer, the sources of error are extremely numerous, and it requires long practice and careful manipulation to eradicate them. If "Electron" will use large gutta percha wires, take the reading of his galvanometer in another room, suspend his battery by insulating cords, use a large hard rubber base for his vibrator, and keep a sharp look out for possible sources o error, he will obtain a brilliant etheric spark right through his galvanometer without a tremble of the spot of light.
In reply to your correspondent J. P. H., who sees nothing inexplicable in obtaining a spark from an uninsulated wire laid for a long distance upon wet earth and connected to a highly insulated source of power, I will state that his tele graph experiment is not a similar one. If he had disconnect ed one pole of his battery from all connection with anything except air, and placed his battery uponan insulated stand, he would hardly have succeeded in working with a relay or any other electric instrument under the conditions he mentions. With this, there is no chance for circuit, and it is the same with the source of etheric force.
Newark, N. J
Thomas A. Edison.

Captain James B. Eads.

We give in another article a report from an authentic source concerning the progress of the Jetty-works at the mouth of the Mississippi, which shows a gratifying improvement in the channel so far as the works have been carried, and indicates that within a very short time we may expect to see the great river freely opened to navigation by vessels of the largest class.
The opening of the Mississippi will have a wonderful in fluence upon the material prosperity of the Republic, and will form a crowning event during this centennial year of our country's history. The region thus thrown open to the world's commerce is one of unsurpassed richness, capable of supporting an immense population.
To the noble engineer by whom, at his own cost, this great work was undertaken, the highest honors are due In war and in peace, his commanding talents and remarkable sagacity have been devoted to patriotic labors, which have always resulted in public benefits of the most extensive, farreaching nature; and he well deserves the nation's gratitude We nominate for the Presidency Captain Jam s B. Eads of St. Louis,
ble honor.

A Curious Explosion

The Virginia City (Nev.) Enterprise gives an account of the explosion of what was supposed to be simply a pail of water, or rather of ice. It was being heated near a forge so as to thaw the contents, when, just as it was being removed, it suddenly blew up, tearing the bucket to shreds and severely in juring two men near by. The local journal thinks that the cesualty was due to nitroglycerin from a giant powder cart ridge, which previously had been thawed in the vessel,forming an unremarked film on the inside. We doabt this ex planation. There appears to have been nothing but a mod erate heat applied, and that certainly would not have exp.oded the nitroglycerin. If the latter were present, it prob ably exploded through being on the outside of the bucket and so suffering a shock by the latter being swung, by the person who was lifting it from the forge, against an obstacle.

Dr. Henry J. Anderson.

The funeral ceremonies of Dr. H. J. Anderson, who died in India several months ago, were recently held in this city Dr. Anderson was formerly a Professor of Mathematics in Columbia College, and, although not distinguished for any especially great work, was nevertheless a gentleman of re markably wide scientific attainments, and a vigorous pro moter of scientific research and progress. He went to Aus tralia to observe the transit of Venus from a station of his own selection, north of Melbourne; and on the way home, a Lahore, India, while making explorations in the Himalaya mountains, he contracted, through exposure, the malady which terminated his life. He was seventy seven years o age, and
college.

Road Steamers

Referring to the reward offered by the State of V^{T} isconsin, of thousand dollars, for the invention of a roid locomo tive or steamer, capable of traveling five miles an hour on common roads, published in last week's SCIENTIFIC AmERI a drawing of the most recent English example of this kind of mechanism, from which it is possible that our inventors may derive useful hints.

A NEW AIR REFRIGERATOR

We extract from La Nature the annexed engraving of a novel and ingenious device, which may be used with equal facility either as a refrigerator or as a heater or purifier of a current of air. A fan blower, at C, driven by the belt, forces a blast in by the conduit, A. The air passes up through a finely perforated plate, P, over which runs a stream of water, entering at T, and escaping below at t. The air finally emerges at E . If cold water, drawn from a well or cistern, or admitted from a running brook, be supplied at T, the air, by passing through it, becomes thorou ghly cooled; and if hot water be used, the reverse is the case. At the same time the blast is deprived of any atmospheric germs or dust which may be in it, and is delivered purified. Or it may be impregnated with antiseptic or perfumed material, by suitably mingling such with the water. The apparatus is the invention of MM. Nézereaux and Garlandat, and would seem practicable for use in many localities.

The Emperor Bell.

The third largest bell in use in the world was recently placed in the southern tower of the cathedral in Cologne, Germany. Three castings were made, of metal obtained by melting French cannon captured during the Franco-Prussian war. Two were unsuccessful, but the third was perfect. The iwenty guns used weighed 50,000 German pounds, and to these was added $80,000 \mathrm{lbs}$. of tin. The time of melting was but ten hours, and twentynine minutes sufficed to fill the mold. The cooling continued for four weeks. The ter. Its total weight is over 25 tuns. Of the larger bells in existence, two, those of Moscow, weighing respectively 193 and 63 tuns, are broken. Pekin has one bell weighing 53 tuns, and Novgorod, Russia, one of 31 tuns-both of which are in use.

WOODWORKING MACHINERY IN ENGLAND

Our engraving gives an excellent birdseye view of a very extensive wood working machinery establishment in England It is owned by Messrs. Thomas Robinson \& Son, and the limber Trades Journal states that it is the largest factory in the world of its kind, machines for special woodworking operation 3 , such as shipbuilding, cooperage, wagon building, door and window sash making, being constructed in large numbers, and railway and car-building companies being applied with complete sets of plant. The works cover an area of about seven acres, and give employment at present to $1,200 \mathrm{men}$.
The general arrangement may be seen may be seen from the en graving. Th fitting shop i built in sheds, on one flat, ex cept 178 feet of the end, which is built with a gallery round and left open up the middle for a traveling crane. It has a total length of 537 feet, and of 537 feet, and a width of 103 feet. It is fitted up with al kinds of tools by the bes known ma kers. There may be seen in different sta ges of pro gress all kinds of machinery for the conver sion of timber to its various uses. Particularly to be no larly to be noof erection are of erection are machines for railway wagon building fo the Midland
and for the Jape and Yorkshire Rall many of which are completed, exhibit strength combined with elegance. The galleried end of the fitting shop is devoted to the erection of steam engines, to the designing and construction of which this firm has paid especial attention, so as to make them suitable for the driving of sawing machines. The gallery round this shop is used for the fitting of small machines, principally saw benches and light engines.

Passing out of the fitting shop at the end, we come into the boiler shop, where boilers of all kinds are constructed, a specialty being made of those intended for sawmills, where specialty being made of those intended for sawmills, where
it is desirable to burn up the waste from the machines. This shop is fitted up with a steam riveting machine, and all the most modern tools used in boiler making. The smithy runs parallel with the fitting shop, and is separated from it by a yard in which are stored the castings as they come out of the foundery. An overhead steam traveling craneruns the whole length of the yard, as far as the boiler shop, and is found very convenient both for economizing space and for loading purposes The smithy is fitted up with steam ham

NEZEREAUX AND GARLANDAT'S AIR REFRIGERATOR.

most modern appliances. It is of proportionate extent with he fitting shops, being 298 feet long by 49 feet wide. Pa rallel with the smithy, a railroad and offices and stores in rvening, stands the pattern shop and foundery
The pattern shop is a large three-storied building, 183 fee long by 48 feet wide, the ground floor being occupied by pattern makers, and the upper rooms for storing patterns. Messrs. Robinson \& Son turn out some very heavy castings, and their foundery is one of the special ubjects of interest. It is one of the largest in Lancashire, having a length of 316 eet by 94 feet wide, and is divided up the center by a row of massive cast iron pillars, on each side of which are two verhead steam traveling cranes, which traverse the whole length of the building, thereby effecting very great economy of labor. Outside the building are stoves for drying cores, sand-mixing sheds, grinding mills, and three cupolas fo melting the metal. Another important branch of this es
arge the bulk odder, but it may be used about in the proportion of a quar er of a pound of salt to one hundred pounds of leaves or urnips. Above the filled trench the fodder is to be heaped up like a roof, so that the rain water may run off easily. Af er this the heap is covered with tree leaves and with soil A straw cover would be too porous, likewise a stiff soil better than sand. The earth ought to be rammed so that losed caver of about two feet and a half in thickness or a d ormed ; and should the son begin to burst or to break, stamp ng ought to be repeated. The principal matter of impor tance is to keep off the atmospberic air, else the mass pro-
ceeds to molder and to putrefy. Leaves and chopped roots treated in this way will keep good many years.

The Old Grievance of Car Ventilation.
The vexed question of car ventilation, says the National Car Builder, has again come to the front, and is vigorously
 local columns of our city journals. The writers on the subject are doubtless commuters, who muters, who
travel on the crowded night and morning trains that run to various points in the neighborhood of the city. A test of their endurance can hardly be devised, anditis quite natural that the grumblers, in what they have to say, should speak feelingly. Fancy a car on a moist December evening, packed to its full capacity - doors and top ventilators closed lators closed, windows douweatherstrips weatherstrips, in full blast; then imagine a conglomerate odor, in-
tablishment is the forge. Messrs. Robinson perform them- creasing in power every moment, made up of musk, baked
selves all the various operations of converting the metal to a suitable state for the fitting shops. All shafts for log frames and engines, and other heavy forgings, are made here rom the scrap produced in the other departments. The scrap is heated in two furnaces, the escaping gases from which pass at a high temperature through the flue of a vertica boiler, and are sufficient to generate steam for the supply of wo large steam hammers, one of three tuns and one of one
peanuts, cigar stumps, kerosene, old boots, fried onions, and tanglefoot whisky-and the peculiar inwardness of the situation is partially realized. And yet, strange to say, the mallest current of outside air, let into this seething pit of oulness, is pretty sure to give offence to some one, and he too seeks an outlet for his indignation in the newspapers. This shows that the proper ventilation of cars is an impossibility so long as it is subject to the control of passengers.

THE MANUFACTURE OF DYNAMITE.

Our illustrations show the apparatus commonly used for the preparation of nitroglycerin, the dangerous substance to the peculiar properties of which the fearful slaughter at Bremerhaven is due. A contemporary states that Nobel, the inventor of dynamite, tried many experiments "in order to bring nitroglycerin within the range of articles of transport, and finally hit by accident upon the one which resulted in and finally hit by accident upon the one which resulted in
the production of the powder known as dynamite." This the production of the powder known as dynamite." This
description is a severe criticism on the inventor and his description is a severe criticism on the inventor and his
discovery, for every change of temperature produces free nitroglycerin from dynamite, and the latter substance is thus far more dangerous than the former; and an attempt to send dynamite over land or sea will soon show how it is regarded

Fig. 1,-PREPARATION OF NITROGLYCERIN.
as an article of article of freight by railroad and ship authorities.

Nitroglycerin is usually commenced by mixing 2 parts nitric acid with 4 parts sulphuric acid. This mixture heats spontaneously, and is left for 24 hours to cool. Then 1 part glycerin is added to the combination of the two acids by the method shown in Fig. 1, the acids being in the vat marked 1 , and the glycerin in vat 2 , the vat 3 being a reservoir of water. The vats 1 and 2 communicate with a box, C, which is lined with lead, and divided into compartments which open into the trough, D. This box is provided with machinery to give it an oscillating motion, indicated by the dotted lines; it also has a thermometer to show the temperature. A constant stream of cold water is made to flow around the vat, D, and out at N . As soon as everything is ready, the acid is allowed to flow through A into C, and the glycerin through B into the same vessel. At the same time an oscillating motion is imparted to C by workmen who are stationed at a distance of thirty or forty feet, protected by a strong wall. As soon as all the glycerin has flowed in, the operation may be considered as ended, for the nitration takes place instantly. The oil from D is drawn into the vat below, which is half filled with water. The nitroglycerin sinks to the bottom and can be decanted from the dilute acids.

The nitroglycerin being now ready for use, the next step is to mix the oil with inert silica. The infu sorial earth has three constituents which must be removed -water, organic salts, and coarse gravel. The first two are removed by calcining at a red heat in an oven with four shelves, one above the other, on which the earth is placed and slowly pushed from the upper to the lower. The organic matter which is considered dangerous to the stability of the dynamite, but which is less dangerous than the nitroglycerin, is thus burnt out. It is then pressed with hard rollers

Fig. 3.-MICROSCOPIC ENLARGEMENT OF INFUSORIAL EARTH
and sifted, which separates it from the larger grains. It is now ready for use.
Fifty lbs. of the infusorial sand are put into flat wooden tanks and covered with 150 lbs . nitroglycerin, when the workmen mix them with the naked hand. Gloves of india rubber were at first provided, but the workmen preferred to knead the mixture with the free hands. In half an hour the
incorporation of the oil with the sand is complete, and the dynamite is ready for filling in the cartridge molds. The cartridges are simple cylinders, protected by parchment paper. If ordinary paperis used the oil soaks into it, and there is great danger of premature explosion. Dynamite is a brownish gray, sometimes reddish, inodorous, pasty, greasy mass, having the specific gravity of $1 \cdot 6$. When ignited by an ordinary flame it burns up quickly without detonation, iand must therefore be fired with a patent exploder containing fulminate of silver inclosed in a copper capsule. When n its normal state, it requires a heavy blow of a hammer on an anvil to explode it, and even then only the portions struck are fired. Nitroglycerin, however, is easily exploded by percussion, and it exudes from dynamite on the slightest change of the temperature; and the wood of the boxes in which dynamite is packed becomes, by slow degrees, impregnated with nitroglycerin, and forms a most dangerously explosive material, which may give rise to serious accidents in warehouses where it is stored.
The sulphuric acid used in this dangerous manufacture is the oil of vitriol of commerce, an acid too well known to need description here. The nitric acid is usually made from native saltpeter, imported from Chili or elsewhere; and as it is required to be highly concentrated, the preparation of it is a peculiar process, which is shown in our Fig. 2. In a cast iron vessel, A, is placed the nitrate to be operated upon, to which is added, by means of a funnel, strong sulphuric acid. The.lid is replaced, and the vessel connected, by means of the clay-lined tube, B, with the glass tube, C, dipping into the clay-lined tube, B, with the glass tube, C, dipping into the
large stoneware flask, D , which serves the purpose of a relarge stoneware flask, D , which serves the purpose of a re-
ceiver. This flask is connected by means of a tube, a, to a ceiver. This flask is connected by means of a tube, a, to a
similar vessel, D^{\prime}, and that to a third vessel, $\mathrm{D}^{\prime \prime}$, and so on, in order to completely condense the vapors which might have escaped through the first, second, and third vessels. The iron vessel, A, is heated by means of the fire placed in the hearth, F, the smoke and hot gases being carried off by G, H. At the outset of the operation, the damper, d, is so regulated as to shut off the lower channel and cause the smoke and hot gases to pass through E, heating the vessels, $\mathrm{D}, \mathrm{D}^{\prime}$, and $\mathrm{D}^{\prime \prime}$, this precaution being required to preven their cracking by the hot acid vapors entering from A. As soon, however, as the distillation has fairly commenced, the damper is altered to shut off E , and pass the hot air and gase through G. The oroduct from each retort is so mixed tha the a verage specific gravity shall be equal to 47° or $48^{\circ} \mathrm{B}$. A weaker acid than this does not work well.
The acids being mixed as above described, the next step is the mixture of them with the infusorial earth, called by the Germans kieselguhr, which is found in most countries. The polishing powders known as tripoli and electro-silicon are pecimens of it; and it is composed of the skeletons of a vas number of diatoms, which yield a spongy silica, admirably adapted for a polishing powder, or as an absorbent for oils
hoe, and draw it over the last. In the tool on the left, the wo jaws act simultaneously upon the leather through the motion of the nut, C, upon the screw. The same movement brings the jaws toward each other and stretches the leather around the last. The two pairs of jaws in the second tool engage the sides of the leather, and are then drawn there upon and also inwardly by the action of the cam lever. Lasts are usually made upon the ordinary type of lathe employed for turning irregular forms. For this purpose, however special machinery has been devised, to which class be longs the

Last lathe,
represented in Fig. 2. In this machine, the block, L^{5}, from which the last is to be cut, is, by a train of gearing, made to present a face to the cutters precisely corresponding to the face of the model against the guides, $\mathrm{P} \mathrm{P}^{4}$. By moving links on these rods, up or down on their graduated scales, the las

Fig. 2.

may be enlarged or reduced in its relative proportions to the model. A similar variation of the bar, $\mathbf{N}^{\prime \prime \prime}$, on the sector at the end of the machine, will vary the work in relation to its length as compared with that of the model.
In Fig. 3 is a
bOot shank machine,
used for drawing the leather of the upper or boot leg over he last into the hollow of the shank. The leather being laced over the last is inserted between the jaws, which ar ivoted to the plate. The screw connecting the jaws by arms is thus turned, causing the jaws to be brought toge ther, and thus stretching the leather. The same figure also shows a boot stretcher, for stretching the up pers. The last is divided into an upper and an under section which are connected by a lever The fore end of the upper section is pivoted to the fore end of the lever, and the middle end of the lever has its fulcrum at the mid-length of the lower section. The screws operate to rais the rear end of the upper section directly, and its fore end through the medium of the lever The upper surface of the last has changeabl knobs to stretch the leather in particular places. Fig. 4 represents a

BOOT HOLDER
or jack, for holding the boot during the process of manufacture. The base piece is attached to the bench and has a stationary prong. The movable prong containing the foot piece is at tached to the other, and is held at its adjust-

Fig. 2.-PREPARATION OF NITRIC ACID.

glass for pigments, and fireproof packing and numerous other \mid ment by a rack and pawl. The operation may be clearly purposes. A microscopic view of a portion of this substance shown in Fig. 3, which fully exhibits the remarkable po osity which makes it adaptable for absorbing the perilous fluid which gives it its efficiency as an explosive.

BOOT AND SHOE APPARATUS.

The illustrations, selected from Knight's "Mechanical Dic tionary,"* given herewith represent apparatus used in the manufacture of boots and shoes. The engraving, Fig. 1 represents

LASting tools,
which are employed to grip the upper leather of a boot or Fig. 1.

Lasting-Pinchers.

Tool for lasting Boots and Shoes.

Fig. 3.

Boot-Stretcher.
Fig. 4.

Boot-Holder.
understood from the engraving. A similar device is some times used to stretch the boot while blacking or varnishtimes
ing it.

Fig. 5 shows a boot sole with steel calks attached, for the use of pedestrians in winter weather or when scaling the

Cintresumdence

Employers and Trade Unions in England.

To the Editor of the Scientific American
Intelligence having been received from England that the Amalgamated Society of Engineers is in dispute with the employers, on the question of the re-introduction of the system of piecework, which dispute has culminated in one strike, with the probability of the occurrence of others, I take the opportunity of ventilating this question a little, premising my remarks by stating that they are based upon personal knowledge of the actual facts. As a rule the editors of newspapers have very little mercy upon trades' unions, and this has been often said to be because the interests of newspapers lie with the employers of labor. This I believe to be a mistake, for even a mechanical newpaper has as large a circulation among workmen as it has among employers. The truth is rather that employers are more apt to avail themselves of the press, to present their side of the ques tion to the public, and workmen are not usually skillful as writers or as special pleaders. Furthermore, editors, having no knowledge of the real evils of piecework (for piecework has its evils), and not being enlightened thereon by the workmen themselves, whose interest it is to ventilate that side of the question only, cannot be expected to form an equitable judgment upon the issues involved.
All the real causes of the opposition of trades' unions to the introduction of piecework will be found to be elucidated in the following recital of facts, in which it will be made apparent that, between employers and employed, there is, so far as abstract justice between them is concerned, but little to choose, and that the balance, if any there be, is decidedly in favor of the workmen, excepting in so far as acts of violence are concerned; and the occurrence of these acts is due only to the fact that a strike or lockout renders the condition of the workman a positively desperate one, whereas to the employer it is a mere question of his capital lying idle.
Public opinion is largely influenced by the publications of such works of fiction as Charles Reade's "Put Yourself in his Place," in which injustice is done to the workman, not in describing the terrible deeds which have been wrought by one workman on another, but by gathering together isolated cases of extreme violence, and attributing them all to the hero. This was perhaps a necessity for the author, in order to give this book the flavor of sensation necessary to the success of such works. But the excuse for the author by no means debars the artisan or trades' unionist from protesting against the injustice he sustains at the hands of the writer,
whose impression on the public mind, by the description of whose impression on the public m
such outrages, is grossly partia].
Towards the end of the year 1860, a young man who had been in business in South America and had returned to England, was re-engaged in the workshop in which he had served his apprenticeship; and having himself been an employer, he resolved to so perform his duties as a workman that he would prove to others that a good workman had only to study the interest of his employers to secure promotion. He wished were capable and who studied their interests, that the inter were capable and who studied their interests, that the incer
ests of the two were bound up together,and that the success of the one involved the success of the other; but alas! his employers were a railroad company, and that companies have no souls was amply "proven in the sequel." Labor was, in the estimation of this workman, a commodity whose value,
like that of any other article, was just what it would fetch, like that of any other article, was just what it would fetch,
its price being regulated by the quantity and quality delivered, and varying with the same. It was, therefore, not very encouraging to him to be told that it did not matter how much work he did, nor how well he did it, and that his wages at starting could not in any event exceed £1.12s per That for that was the highest price paid to a new hand. chandise, bscame to him at once painfully apparent; as it is not a rule of trade to pay less for an article because it is the first time you have purchased such a thing. There was nothing for it, however, but to accept the situation, and trust to time to obtain a higher rate of pay in the future.
However, time passed, on, and the workman found noimprove. ment in his condition until at last it was decided to have much of the work done by piecework. Accordingly a set of engine connecting rods were set aside to be fitted up by
piecework, and some dozen workmen were selected and inpiecework, and some dozen workmen were selected and in-
vited to give an estimate of what they would do the job for and the young man in question, whom we will cell Tom, gave the lowest bid and took the work, the price being sufficiently below the ordinary cost to be satisfactory to the managers. A set of axle boxes, other sets of rods, and several other jobs were done by Tom under similar conditions, he earning as much again as his day's work wages.
This caused a sharp competition, as other workmen, anxious
to better their condition, gave in lower prices ; Tom, however, kept the lead, al ways managing by shrewdness, luck or whatever else it may be termed, to take every job he bid for. Nothing daunted, however, his fellow workmen con tinued to compete, thus compelling Tom to either reduce his prices or lose the work. Some of the competitors bid because they would be satisfied if, by working piecework they could increase their pay only twenty.five per cent others competed upon general principles,saying that, if Tom could do it, they could. At length,however, Tom's repeated success discouraged competition, not, however, without raising some little feeling among the men, on account of his having, as was charged, cut the prices of the work down. This charge was scarcely fair, since it was in consequence of the competition of others that the prices had been reduced It cannot, however, be denied that, since Tom was alway the lowest, he was the most instrumental in the reduction o prices, notwithstanding the fact that his price was as a rule remarkably close to the next lower one. But the feeling among the men did not amount to positive estrangement and it only found vent in upbraiding Tom by statements tha he was ruining the trade and injuring the other workmen. At length, however, Tom began to make from 60 to 70 per cent more than his day's wages would have been: and this notwithstanding that the prices of his work had been very materially reduced since the piecework began. He inno cently believed that the unusually low cost of his work, and the unusually large amount of his earnings, would open the eyes of his employers to his expertness, to the methods by which he saved time and work, or to whatever other cause may have enabled him to do so well. How far this was the case, he learned by an intimation that the prices of his work must be reduced because no piecevork man was allowed in
that shop to earn more than 50 per cent more than his ordinary daily wages. He pleaded that the cost of his work wa at least 50 per cent less than the large quantity of the same kind of work being done in the same shop by men who had had from 7 to 15 years' experience on it. He was told it didn't matter what time the day's work men had taken, nor what their work had cost, or was now costing; he was making too much money, and must reduce his prices. He urged that, since no one else would take the work at so low a price as his, he could not perceive why he should be called upon to still further reduce the price; and he was informed that he must either reduce the prices of all those kinds of work on which he carned more than 50 per cent above ordi nary day's wages, or else he would be put back to day's work on his old day wages; and as an alternative he had o reduce the prices.
Now, this was not a new shop, or one in which a constant change of work was had; but, on the contrary, there had probably never been, at any one time during the then preceding 15 years, less than 70 workmen in that shop who were employed on the same kind of work, many of whom had been engaged for years on precisely the same jobs from the selfsame drawings. Tom learned from the old hands that similar rules with regard to the amount of earnings of piecework men existed throughout England, that the rules were a sort of tacit understanding, and that as a conse quence piecework men who had any wisdom in them gaged it so as to never exceed the al.otted amount of "time and a half," as it is called.
At this time Tom's refections were anything but rosecolored, as he had commenced with the idea of being an example to other men and a student of his employers' interest; but although he had practically demonstrated the identity of interests of the employer and the employed, he had advanced sufficiently far in his programme to be on questionable terms with many of his fellow workmen, and at loggerheads with his employers. His situation, so far as his personal relations with his business acquaintances were concerned, threatened ostracism ; he felt almost like a crimi nal, and was only consoled by the consciousness that, in his own mind, he could not believe that doing a large amount of labor for an unusually small price, which is perhaps the most severe language in which his struggle to better his condition can be termed, deserved the meted punishment. "So much work for so much money," and "the more the work, the more the money," sounded exceedingly well as aphorisms; but when the workmen shouted: "No extra work, and no extra pay," and the employer added: "No more pay, however much more work you may do," and (in the same breath) "less pay for more work for you only," it became exceedingly difficult for Tom to put his theory of identity of interests into any sort of practice. Tom found himself, according to the ordinary rules of commerce, the very worst paid man in the shop. In every arti cle (as his work may be termed) he sold, he obtained a less pric \bullet than any one else, and was at the same time grumbled at and virtually punished by the purchaser (his employer) because he had so many articles to sell; while that same
purchaser was buying the same quality and kind of crticles from others on the same spot at a much higher price. He however, resolved to persevere in his course, and let the future take care of itself, with such results as I will de cribe in another letter
New York city.
A simple mode of roughing horses, practised in Russia, consists in punching a square hole in each heel of the shoe, which, in ordinary weather, may be kept closed by a piece of cork. When the ground is slippery, the cork is re moved, and a steel spike inserted. If this steel rough be made to fit the hole exactly, it remains firm in its place and is not liable to break off short at the neck, like some of the screwed spikes.

PRACTICAL MECHANISM.

T Joshea ros

$\overline{\text { Ntmber } x{ }^{2}}$
to divide a circle into any number of equal parts. When a circle requires to be marked with a number o holes equidistant from each other, it is a very difficult mat er to set the compasses so that, commencing at any on oint and marking off the centers of the holes continuousl one direction, the last center marked will come true with he one first marked : because, if the points of the compasse re only one half the thickness of a line out, the error becomes, supposing the circle to require 60 holes around it, 60 imes as great in the distance between the center last marked nd the starting point
The consequence is that it is almost impracticable to mark off any large number of holes in such a manner, no nly on account of the frequent trials necessary to obtain o fine an adjustment of the compass points, but because the frequent trials will leave upon the surface of the work so many compass marks that those last made become almost indistinguishable from the other and incorrect ones. By the following method, however, such holes may be marked off ufficiently correctly for all practical purposes, and more ex editiously than by any other means
Let us suppose that it is required to mark off 60 equidis tant holes upon a circle 30 inches in diameter. Our first pro edure will be to ascertain at about what distance to set th compasses, so as to be nearly correct at the first trial. The most natural way would be to find the circumference of the circle, which is $94 \cdot 248$, and divide it by the number of holes, 60, which will give us 15708 as the distance between the enters of neighboring holes. The difficulty, however, of setting the compasses to the distance represented by the de cimal fraction becomes apparent; and though this plan gives as near a result as any that can be arrived at, even in those cases in which the diameter of the circle may contain fracions of an inch and the number of holes required may be an dd one, still, in the matter of our example and, in fact, in 11 circles of whatever diameter, if the required number of oles is even, we may adopt a much better plan as follows We know that the radius of any circle will divide its circumference into six equidistant points ; and since we require en times as many of such points, we have only to divide he radius of our circle into 10 equal parts to get the required istance, between the compass points, more correctly than by any other method. In many cases a simple mental cal culation will give us the required distance. If, for exam ple, our 30 inch circle requires to be divided into 18 equidistant points, we would say: If the radius (15 inshes) of the circle gives us 6 points, one third of it, 5 inches, will give us 18 holes. Such instances are, however, the exceptions and it is therefore necessary, in all cases where the required number of holes or points is an odd one, to divide the cir umference by their number; and if an even number be re quired, to divide it into the radius of the circle, which may e dose readily enough if the number of boles is small, but f they are many, the following method is the most expedi tious: In Fig. 200, let A B represent the radius, 15 inches, of

our ciscle, and therefore the distance between any two points when the circle is marked off into 6 equal divisions. It is pparent, then, that each of such divisions will require to contain ten equidistant points, which we mark off as fol lows: Setting the compasses as near as practicable to $\frac{1}{10}$ of he radius of our circle, we commence at A, and mark on one side of the line only the line, C, and from that the line, D, and so on $u p$ to G. Then recommencing at B, we mark off in like manner the lines, H, I, etc., up to L, and the exact like manner the lines, $H, 1$, etc., up to L, and the exach center between the lines, G and L, will be the true position
for the center hole, notwithstanding that none of the other points are in their proper positions, nor at proper distances part. We now note that, as the lines, G and L, overlap ne another, the compass points were a shade too wide open This defect we remedy to the best of our judgment; and tarting from the center point, between L and G, we mar off the lines, M, N, and O, on one side, and P, Q, and R, on he other. Then commencing again at A, we mark off the ines, S and T, and then from B, the lines, U and V : the junction of the lines, T and R, forming another true point, and that of O and U forming another, the fifth practically rue division. It will be readily observed that, by marking he lines, from C to L, on one side only of the line repre senting the radius of our circle, and then subsequently mark ing the lines, from O to V , on the other side only of the said radius line, we keep them distinct, and are enabled readily o perceive the difference between them. For all ordinary purposes our compasses will now be set sufficiently exactly but if a greater number of holes be required, we make a ligh centerpunch mark at the points, A and B, and at the junc tion, in the center of the nearest approach of the lines, T R, O, and U; and rubbing out or chalking over all the lines ave the one representing the radius, we proceed as above to mark out other holes to justify the compass points' distance. The centerpunch marks, however, should be made ver ightly, and all of about one depth. If this second adjus ment is necessary, it may be concluded by commencing at and continuing on to B, so as to have the longest possible and continuing on to B , so a
distance for the justification.

Whenever the number of holes required is a multiple or to T : thus obtaining the point, K. This method, howeve divisor of the diameter of the circle, we may obtain the first expeditious and correct for certain work, is not applicable to approximate distance of the compasses as follows: Every circumferential work in which the distance between two of inch of the diameter of the circle represents $3 \cdot 1416$ inches of the adjacent points is at the most $\frac{1}{20}$ of the circumference of its circumference; and since, in our example, the diameter the circle; because the angle of the surface of the metal to of the circle is supposed to be 30 inches and the number of , the compass point causes the latter to spring wider open in holes required is 60 , it is evident that every 3.1416 inches of consequence of the pressure necessary to cause the compas the circumference will have to contain 2 holes; and there point to mark the metal. This will be readily perceived on fore $3 \cdot 1416 \div 2=$ the proper distance of the compass points. reference to Fig. 204, in which A represents the stationary Had the number of holes required been 30 instead of 60 , their and B, the scribing or marking point of the compasses. distance from center to center would be $3 \cdot 1416$ inches, while Having found the two diametrically opposite points, A, K had their number been 15 their distance from center to cen-; we note how much out of true the two lines last marked, E ter would be $6 \cdot 2832$. Now supposing the compasses to be and I, in Fig. 201, vary, and we alter the compass points (in set as nearly as possibly correctly, we proceed upon our cir- this case) to $\frac{1}{60}$ of the variation, that is, we divide the amount, cle as follows: Commencing at A, Fig. 201, we mark off

continuously one from the other, and taking care to be very exact in placing the point of the compasses exac, ly on the mark at its junction with the circle) the 30 points, $\mathrm{B}, \mathrm{C}, \mathrm{D}$, etc, ending at E. Then commencing again at A, we mark off continuously and equidistantly the 30 marks, F, G, H, etc , ending at T; and the center, K, between the t wo lines, E and I, will be the true position of the point diametrically opposite to the pcint, A, from which we started.
It will be perhaps observed by the reader that it would be more expeditious and perhaps cause less variation were we to set the compasses to the radius of the circle and mark off the point, K, as shown in Fig. 202, commencing at the point,

A, and marking off on the one side the lines, B, C, and D , and on the other side, E, F, and G, the junction or center, between G and D, at the circle being the true position of the point, K. For circles struck upon flat surfaces, this plan is decidedly advantageous: and in cases where there are not at hand compasses large enough, a pair of trammels may be used for the purpose; but our instructions are intended to apply also to marking off equidistant points on such circumferences as the faces of pulleys or on the outsides or insides of rings or cylinders, in which cases the use of compasses or gages is impracticable. The experienced hand may, it is true, adjust the compasses as instructed, and mark off three or four of the marks, B, C, D, etc., in Fig. 201, and then open out the compasses to the distance between the two extreme marks, and proceed as before to find the center, K , but as a rule, the time saved will scarcely repay the trouble; and all that can be done to save time in such cases is, if the holes come reasonably close together, to mark off, after the compasses are adjusted, three or four spaces, as shown in Fig

203. Commencing at the point, A, and marking off the points, B, C, and D, we then set the compasses to the distance between A and D, and then mark, from D on one side and from A on the other, the marks from F to L and from M
of the variation between them, by the number of holes or points required ; and setting our compasses as nearly as ou judgment dictates, we mark off our next two points, as shown in Fig. 205 Commencing at A, we mark off (on the other

higion

side of the circle, so as to keep them distinct from the mark previously made) the lines, B, C, etc., as far as the line, G that is to say, we make as many of such marks as are equal to one quarter of the whole number required. The object o showing a less quantity in Fig. 205 is to keep the illustra tion distinct and clear. Then we start from the point, K, and mark off the same number of points, represented by the lines, H, I, and ending at M; the center between the lines, G and M, at their nearest point of contact, is the true posi tion of point No. 3, the point, A, being No. 1, and K, No. 2 By proceeding in a similar mavner on the other half of th

circle, we get the true position of point No. 4. If, in obtaining points 3 and 4 , the compasses are not found to be set dead true, the necessary adjustment must be made; and it will be seen that, so far, we have obtained four true positions, and the process of obtaining each of them has served as a justification of the distance of the compass points. From these four points, we may proceed in like manner to mark of the holes or points between them; and the whole will be a true as it is practicable to mark them off upon that size o circle. In cases, however, where mathematical precision is required upon flat and not circumferential surfaces, the marking off may be performed upon a circle of larger diame ter, as shown in Fig. 206. If it is requirtd to mark off the

circle, A, Fig. 206, into any even number of equidistan points, and if, in consequence of the closeness together of the points, it becomes difficult to mark them (as described) with the compasses, we mark a circle, B B, of larger diameter, and perform our marking upon it, carrying the marks across the smaller circle with a straightedge placed to intersect the centers of the circles and the points marked on each side of the diameter. Thus, in Fig. 206, the lines 1 and 2 on the smaller circle would be obtained from a line struck through 1 and 4 on the outer circlo; and supposing the larger circle to be three times the size of the smaller, the deviation
from truth in the latter will only be $\frac{1}{3}$ of whateverit is in th former. If the number of points to be marked off on any circle is an odd one, the only variation from the above in structions is as follows: Suppose that we have commenced at the point marked 1, in Fig. 207 : we mark off half the re

quired number of holes on one side and arrive at the point ; and then, commencing at the point 1 again, we mark of the other half of the required number of holes, arriving at the point 3. We then apply our compasses to the distance etween the points 2 and 3 ; and if that distance is not ex ctly the same to which the compasses are set, we make th ecessary adjustment, and try again and again until correct djustment is secured. It is highly necessary, in this case, o make the lines drawn at each trial all on the same side of the circle and of equal length. For example, let the lines, A, B, C, D, in Fig. 207, represent those made on the first trial, and E, F, G, and H, those made on the second trial ; and when the adjustment is complete, let the last trial be made upon the outside or other side of the circle, as shown by the lines, I, J, K, L. Having obtained the three true points, marked 1, 2 , and 3 , we proceed to mark the interme diate holes, as described for an even number of holes, save that there will be one more mark made on one side of holes 3 and 4 than there are on the other side of them. In cases where mathematical exactitude is not a requisite, and an odd number of holes is required, after setring the compass points as nearly true as necessary, and obtaining from them the points 2 and 3 , we may take another pair of compasses, and find with them the center between points 2 and 3 . Then taking the first and adjusted pair of compasses, we make mark, as shown in Fig. 208. We first draw the line, E, and resting one leg of the compasses on the point, A, we draw the segmen of a circle, B; then restiag the point of the compasses on the point of inter section of B and E, we draw the segment of a circle, C. The distance, at E , between the two segments, B and C , repre sents the required distance apart of the holes. We now take our extra pair of compasses, and find the center of B and C as denoted by the point, F, setting the compasses to the exact center, so that, when one point rests on F, the other will come fair with the lines, B and C. We turn to our work represented on Fig. 207; and from the center found between points 2 and 3 , we make, with our extra pair of compasses, a mark on each side of that center, which will represent the correct position of points 2 and 3 ; and we then correct the variation between them nearly enough for ordinary purposes without the tedious process of going over the whole ground again, because the distance between points 2 and 3 was not precisely correct.
In marking off any number of holes varying in their dis tances one from the other, the variation being regular, as for instance holes around a 30 inch circle, 60 in number but each two holes being 157 inches apart, the distance between the next two would require to be 1 inch , and so on, as shown in Fig. 209. The total number of holes must in this case be an even one; hence we mark off, by the rules already given, one half of that total number, making them equidistant all round the circle or circumference, as the case may be, which points will represent the distance apart of the holes that are widest apart, as the holes, A, B, C, D, and E, in Fig. 209

amounting in our example to 30 in number. We then set our compasses to the required distance apart of the two holes nearest together; and commencing at A in Fig. 209, we mark the center for the hole, F, and from the center of the hole B, the center of the hole, G, and so on, continuing all round the circle, but taking care to mark the new center in each case in advance of or behind the points, A, B, C, etc., according to the manner in which the first of the holes nearest to gether was marked. Thus in Fig. 209, the points, F, G, H, and I, are marked to the right, in each case, of the points from which they were struck.
There are of course many variations in the grouping of holes around a circle, but all the principles involved in marking them off are shown in the examples given above.

IMPROVED SULPHUROUS ACID APPARATUS FOR

 bleaching cane juiceWe illustrate herewith a new apparatus for bleaching cane juice through the action of sulphurous acid gas It is claimed to introduce less acidity into the juice, and consequently to produce sugar more dry and of a superior $\mathrm{gr}^{\text {ain }}$ to that or dinarily made by machines in use, to obviate the use of bon black in the clarification of refined sugar. to work uniforml in any kind of weather, to bleach efficiently , to admit of easy cleaning and repair, and to be adapted to any mills. A is an airtiebt chamber, in which is a vertical shaft which carries the wings, B , the latter extending spirally around the shaft in the spaces between the shelves, C . The juice is admitted to the chamber through the pipe. D, and falling upo the upper set of wings is thereby dispersed and collected by the shelf immediately beneath. Through apertures in the corners o the shelf it then falls, meeting the second set of wings, and being again dispersed by the centrifugal force. This continues until the lowest compartment is reached. when the fluid escapes by the pive, E. In both pipes, E and D, are sealing chambers, which prevent en trance of air into the main chamber, A.
The sulphurous acid gas is generated by burning sulphur in the furnace shown, out of which it passes by pipe, F, which extend over the apparatus and finally enters the low er compartment. The gas is about two and a half times heavier than air ; and in order to produce a draft sufficient to draw it uv and through the chamber, A, the wings, B, are again utilized, so that they thus perform a double offfce. These wings, rotating at the rate of 300 revolutions per minute, necescari ly produce a strong upward current, which therefore meets the descending liquid. which is alreadr beaten into a fine spray. That the latter will thus be brought into intimate contact with the bleaching agent is obvious; and furthermore, it will be observed that the cane juice, just before it is drawn off, meets the fresbest supply of entering gas. The juice thus bleached, if left to rest and defecate at least ten hours, will have, we are informed, most beautiful appearance, and will make a very superior quality of liquor. The machine acts especially well in treating cane badly injured by frost, and has already been practical. ly tested on a large scale.
Patented March 30, 1875. For further par ticulars address the manufacturers Mossrs
Lescale \& Guedry, Paincourtville, Assumption Parish, La.

harding's cushion emery wheel.

We illustrate herewith a new form of emery wheel, the principal feature in which is the flexible or cushion rim. This is so constructed as to be soft and yielding to pressure, thus is soconstructed as to to soft andishing of articles, both heavy and light. The rim is also adjustable, and never needs truing, and is therefore durable and economical.

The device is composed of a strong cast iron wheel having a double periphery, through which several apertures are made. The outer rim consists of several layers of leather or other suitable material, firmly cemented together and varying in thickness from one half to three quarters of an inch, according to the purpose for which the wheel is needed. This leather rim is attached to T-headed bolts which rest on
springs, as shown, and are set up and adjusted by nuts within the inner periphery of the wheel. In operation the flex ure of the rim will move around the wheel in wave form a the object to be ground is pressed against its surface, the transfer of pressure from one point of support to another aking place in a perfectly uniform manner
Patented January 17, 1871. For further particulars, rela
Patented January 17, 1871. For further particulars, rela
ive to sale of rights for Eastern and Southern States, etc.

APPARATUS FOR BLEACHING CANE JUIC?.
address the inventor, Mr. Thomas Harding, No. 3 Second street, Lafayette, Ind.

Journal of the american Electrical Soclety. We have received the first number of the Proceedings of the above society, which, in respect to beauty of typography and excellence of contents, is one of the most valuable documents we have seen for a long time. The Society comprises among its members all the principal practical discoverers and workers in electrical science, and perhaps it is therefore not surprising that the selections of its contributions to electrical knowledge should be unusually good.
The first article is by Elisha Gray, whose remarkable in ventions in the transmission of musical sounds by telegraph bave from time to time been noticed in the Scientific american. The present article gives a full and intelligible description of them, and the article is of so much interest that we reproduce it in full, with its excellent illustrations. It will be found complete in our Scientific American Sup It wineme 0 . We in LLENEN, N. 6. Wo are ith of the excellent engravings that accompany the paper. Mr. lent paper on Quedruplex The Sociery lent paper on Quadruplex Telegraphy: Mr. C. H. Haskins, a onper on the Use of Condeusers as Repeaters: Mr. I. N. Miller, a paper on Lightning and Lightning Rods: Mr. R. H. Jewett, an article on an Improved Line Galvanometer. etc.
For the present year, General Anson Stager is the President of the Society. The publishing committee are W. H. Smith, F. W. Jones, M. G. Kellogg. The headquarters are at Chicago, Ill.

Wonderful Clock

One of our foreign exchanges gives an account of ' a marvellous piece of mechanism, which just been exhibited in Paris. It is an eight day clock, which chimes the quarters, plays three tunes every twelve hours, or at any intervals required. The hands go round as follows: One once a minute; one once an hour; one once a week; one once a month; one once a year. It shows the moon's age, the rising and setting of the sun, the time of higb and low water, half ebb, and half flood; and there is a curious contrivance to represent the water, which rises and falls, lifting some ships at high water tide as if they were in motion, and, as it recedes, leaving them dry on the sands. The clock shows the hour of the day, the day of the week, the day of the month, the month of the year; and in the day of the month provision is made for the long and the short months. It shows the signs of the zodiac; it strikes or not and chimes or not, as may be desired; and it has an equation table, showing the difference between the clock and the sun for every day in the year."

Working Men's Lodgings at the Centennial. Our excellent contemporary the Philadelphia Public Ledger quotes approvingly our recent suggestions regarding the pro iding of cheap quarters for working men who may be on bled to visit the Centennial, through concerted action of rades' unions and other societies, but adds that good cheap ccommodations are already in existence. The editor says 'As to the matter of lodgings at moderate rates, the Scien TIFIC American may assure its artisan reader that here, if anywhere in the world, working men can secure good, respectable, comforta ble, and desirable lodgings and board at mo derate rates, for all that may come-unles they come in armies more than a hundred thousand strong in one day." We are certainly glad to learn the above, and no doubt our readers will be likewise; but on the other hand with a vivid recollection of the frightfully ex orbitant prices demanded for the meanest ac commodations at Paris in 1867, and especially at Vienna in 1873, we still adhere to our idea that cheap quarters cannot be too plentiful, and therefore that the work suggested by us for the societies would by no means be useless.

Athough we are inclined to congratulate the Philadelphians on the golden harvest which they will thus reap, it behooves us, and indeed everybody, to see that the reaping is re stricted to its legitimate field. Philadelphia ha very much more to gain, by placing every facil ity in the path of working men desiring to bene fit themselves by witnessing the Exposition than she possibly can have by her citizens seek ing to profit pecuniarily by their attendance.

NOEL'S IMPROVED CORN PLANTER

We illustrate herewith a new hand device for planting corn. According to the inventor, it may be manipulated so easily that the operator may traverse the field as rapidly as if the appara tus were but a walking stick carried in the hand The invention is fully shown in Fig. 1, and in Fig. 2 it is represented in operation

A and B are two bars connected together by pivots passing through overlapping plates near the lower ends. At the extremities are secured steel plates, C, whichenter the ground and make an opening for the reception of the seed. Be tween the bars pieces of leather are attached, ex tending from the overlapping plates to the hop per, D. The seed contained in the latter is re moved and dropped between the bars by the slide, E, which enters D through an aperture in the bar, A. The outer end of the slide is secured ts bar, B. The seed enters a hole in the slide, indicated by dotted lines at F ; and the size of the hole is regulated, so as to take more or less seed, by a suitable sliding piece
To the bar, A, is attached a convenient handle, the end of which is pivoted to a short connecting bar, which is also similarly attached to bar, B. This allows of the easy opera tion of the bars, which carry the slide into and out of the hopper, thus allowing seed to pass to the plates, C, and thence, on the latter opening the ground, into the hole made The object of the loop on bar, A, is indicated in Fig. 2, i serving to afford a secure grasp for the device. The rigid handle, G, may be held by the operator with one hand while he grasps the handle above with the other, so that both

hands, when desired, may be conveniently applied. The spring shown between the upper parts of the bars holds the plates, C, together while the machine is being carried, and while said plates are being forced into the ground
Patented through the Scientific American Patent Agency January 4, 1876. For further information address the in January 4, 1876. For further information address the
ventor, Mr. M. P. Noel, St. Cloud, Stearns county, Minn.

IMPROVED THRASHING MACHINERY

We publish herewith an elevation of the exterior and one in section of an improved thrashing machine, recently con structed by Messrs. Wallis and Stevens, of Basingstoke, En gland, and exhibited by them at the recent Christmas exhib ition of the Smithfield Club, held at Islington, London Fig. 2, the exterior view, shows the machine as it stands in the rick yard or the field, and Fig. 1, to which all the letters in the following description relate, shows the construction and working of the machine. This thrasher resembles very much a similar English machine illustrated in this paper last year, but agriculturists will observe that it is quite differen in its internal construction.
A is the feed mouth through which the unthrashed corn s fed into the machine. B B, adjustable mouthpieces for increasing or decreasing the size of the mouth to suit differ ent descriptions of corn. C , the thrashing drum, which has ent descriptions of corn. C,
a steel spindle, wrought iron head and rings,and either six or eight ash beaters-accord ing to the size of the machine -fitted with Coucher's pat ent beater faces and plate iron fronts. D, the concar or breasting, made entirely of wrought iron, and provided with adjusting screws, E E at the hinge, F, for regula ting its distance from ting its distance from the drum. G G, casing behind concave which carries the thrashed corn as it passes
through the bars of the con through the bars of the concave down on the upper shoe on the riddle board, L. H H, the straw shakers worked by the shaker crank, I, each alternate shaker being attached at one end or the other by links, J J. turning on centers, K K. The shaker shakes out of the thrashed straw any loose corn which may be left in it. L, vibrating shoe on which the corn falls from the drum and shakers. In this shoe is fixed the perforated mahogany riddle, M, which separates the short broken straws-technically called "cavings"-from the corn. This, and also the lower shoe, is driven by connecting rods from the riddle crank, N. O, the lower vibrating shoe, to which is fixed the first winnowing machine, P. Both shoes are suspended from the framing of the machine on spring hang. ers, Q. P, the first winnowing machine, in which are placed an upper perforated zinc riddle marked "blast riddle," which assists the blast in separating the chaff from the corn. and a lower riddle marked "hussey riddle," for taking out he husks containing grains of corn-technically known as 'husseys" or "chobs"-poppyheads, etc. S, spout for coneying the corn to the elevators. In the bottom of this spout isa third riddle-not shown in the section-for separating any small seeds which may be mixed with the corn. T, the fan which supplies the blast of air to the winnowing machine, P. Slides are provided to the openings in the center of the fan through which the air is drawn in, by opening or closing which the strength of the blast can be regulated to suit the particular sort of grain being thrashed; and by regulating these and raising or lowering the hinged flaps, U, at the back of the winnowing machine, the whole of the chaff can be blown over without carrying any of the corn with it. V, the elevator which carries the corn up and delivers it either into the barley horner, W, or else direct into the second win nowing machine without its passing through the barley horner at all. W, the barley horner, the steel blades of which are set at an angle so as to throw the corn out at the upper side of the horner casing, where it is marked "opening." By raising the hinge valve, X , by means of a handle outside the machine, the corn will then fall on the slope board, Y, instead of on the valve, and so pass direct into the second winnowing machine without passing through the horner at all. This arrangement is of importance, as some sorts of grain, and beans and peas, would beinjured by being passed through the horner. Z, the second winnowing machine, which has a set of hard wood riddles for thoroughly separating from the grain any chaff. husseys, etc., which may have passed the first winnowing machine, or have been rubbed off in the passage through the horner. It is suspended on spring hangers and vibrated by a connecting rod fixed to the end of the upper vibrating shoe, L. A blast of air is blown through the winnowing machine by a fan fixed outside the framing of the machine, shown by the dotted line behind the barley horner. The husseys, etc., removed from the sample by the winnowing machine, as well as the dust and awns from the barley horner, are carried into the pout marked "dust spout," to the bottom of which a saek
is attached to catch them. R, the Penny's patent adjustable otary screen whichseparates the clean corn into three sam ples-namely, best corn, best tail, and small tail. A brush is used for keeping the rotary screen clean. Apparatus for lifting and bagging the chaff is often added, in which case the chaff can either be bagged or allowed to fall, as shown in the drawing, at pleasure. This apparatus is shown, in the external view, fixed to the side of the machine near the front end thereof

The Chicago Stock Yards.

The business enterprise which characterizes the people of Chicago is best portrayed by the quick and substantial man er in which they have rebuilt their city. But some idea f the extent of the gigantic stock business of Chicago may be had from the following extracts from a recent article in the Chicago Times:

IMPROVED THRASHING MACHINE.-Fig. 1.
" Stock can now be gotin condition for this and all eastern markets at these stock yards with a despatch and perfection unequaled anywhere on the face of the globe. The new works constructed make an imposing showing A new ex change building has been finished, 50 x 137 feet in area, con taining offices, restaurant, etc., heated by steam and otherwise comfortably arranged. There have also been built four yard offices, a hay barn, a corn crib, large horse sheds, a great stable, a post office, and a new printing press office. There has, however, been other and greater work even than this achieved. Think of twenty acres covered with new and superior cattle pens; and of ten acres of covered hog and sheep pens. 'There are also six new scale houses, equipped with Fairbanks' standard scales. Beside all this over five acres of yards and alleys have been replanked Over $5,000,000$ feet of lumber has been consumed in this work of improvement. Twenty double-decked chutes have been made for the shipping division, twelve of these being

IMPROVED THRASHING MACHINE.-Fig 2
for the Baltimore and Ohio Railroad. A mile of new water pipes has been laid. Over five hundred new gates, and about the same number of water boxes, have been made. A
half mile of eight-feet sidewalks has been completed. The cost of this improvment has been morethan $\$ 200,000$. The company has about two hundred acres of land in active and continuous use for tracks, yards, roads,etc, the whole space covered by the demands of the place, roadway included, amounting to about three hundred and seventy acres. More than twenty four miles of railroad track are operated at the stock yards; so that the company, in addition to its other features, is really a railway organization of no small pretensions. The rails used here are mostly of steel, and the equipment of the lines includes 160 frogs and switches con-
 chutes and pens, making a total of 1,525 . There are also
fifteen corn cribs and ten hay barns, besides the different weighing houses.
"A brief summary of figures will show how business at the stock yards has gone on during the progress of the improve ments we have sketched. About four millions of live hogs have been received. Add to these about nine hundred thou sand beef cattle and half a million sheep, and we have a tota in round numbers of nearly five and a half million bead of live stock received. Only about one fourth of that number has been shipped, the remainder having been consumed by he huge packing and other like interests having their bead quartersin Chicago. The total valuation of live stock hendeded t the stock yards during the year 1875 is estimated to exreed hundred millions of dollars."

A Good Suggestion.

A writer in Engineering says: The inadequacy of the pres ent means employed for saving life at sea has been sufficientl demonstrated. No doubt much has been done by inventors to mitigate the perils of the sea, and it does seem a little bard that their exertions should prove of no avail, just be cause their inventions have not been allowed to get a fair trial. To alleviate this evil he suggests that a competitive he suggests that a competition of exhibition might be got up of apparatus for saving life at sea, to test the relative mesits of such inventions, and to en able the Board of Trade to de cide what a vessel ought to carry. He also suggests that a ship ought to be provided with means to save at least one third more than her complement of passengers and crew, as it often happens in such circumstances that a boat is rendered useless, and thi just means death to a certain number. Besides, did the pas sengers know that there was more than sufficient means to save all on board, it would help materially to allay any panic. As it is desirable to economize space on board ship, some of a ship's furniture might be utilized for saving life; for instance, the beds might be air beds of waterproof material, which, being provided with couplings, could easily be attached to one another and form a very good raft. Further, a raft provided with provisions and water might be kept in readi ness to set adrift in any emergency, so that it could be picked up. He also advises that a whistle, or some such instrument should be attached to each apparatus for saving life, in order that there might be some chance of those who are ship wrecked letting vesseis know of their vicinity, especially a night. All these are good suggestions, applicable not onl to England but to this country.

The Stereoscope as a Civilizer
A "Quaker among the Indians" wishes that a good stereoscope, with suitable pictures, could b exhibited in every Indian camp and properly explained to the people, the effect of an exhibi tion of stereoscopic views among the Comanches being, according to his experience, most amusing a well as extremely salutary
"As a body the Indians who have never been East, and, as a consequence, have seen but fer white people, are disposed to dis believe the accounts they receiv respecting their numbers, the mag nitude of their towns and cities, and the extent of the country they occupy. They believe that thei wn people who have been Eas have been duped by some kind of sorcery, or, as they would say, 'medicine.' They also think it is mpossible to make an imaginary picture. Hence a picture is to them 'proof positive' of the existence of an original. Consequent y, exhibiting towns, buildings, rural scenes and soldiers has had a most convincing effect. This was much hightened by having some mountain scenes from Colorado, familiar to them, and which they recognized at once. This was, in fact, the strongest adducible evidence that the accounts they had received were so far from being exaggerations that the half had not been told them. One middle-aged man, who has always treated these reports with the utmost skepticism, was particularly struck with them. He could not sufficiently express his surprise, but beat upon his mouth in utter astonishment Sun Boy, who had often told him what he saw in the East, would say to him in Kiowa: 'What do you think now? You think all lie now? You think all chiefs who have been to Washington fools now? Again and again would he look them over, with his hand upon his mouth, dumb with amazement. After he had looked them over several times, being a war chief, he called in his warriors, and exhibited the pictures to them, talking
to them all the time. I could understand but a part, yet would gather such expressions as these: 'Look! see what a mighty powerful people they are!' meannig white people. ' We are fools! We don't know anything! We just like wolves running wild on the plains! Such an effect on the war chiefs and warriors cannot but be very salutary, and must conduce much toward deterring them from going on the war path against such a ' mighty powerful people.'

scientific and practical information

the lightina of london.

The streets of London have an aggregate length of 2,500 miles, requiring about 5,000 miles of gas mains, and upwards of 54,000 public lamps, which consume some thing like $1,000,000,000$ cubic feet of gas a year, or about $3,000,000$ a day. The gas supply of the entire metropolis is about $14,000,000$ cubic feet a year, or $38,500,000 \mathrm{cu}$ bic feeta day, requiring for its production the coking of 1, 500,000 tuns of Newcastle coal. The cost of the coal is reported to be $\$ 8,750,000$. The value of the residual products, ported to be $\$ 8,750,000$. The value of the residual products,
such as coke, breeze, tar, and ammnnia liquor is, as much as such as coke, breeze, tar, and ammonia liquor is, as much as
$\$ 3,500,000$. The gas rental of the city is $\$ 15,000,000$, of $\$ 3,500,000$. The gas rental of the cit
which $\$ 1,250,000$ goes for street lamps.

the cucumber in russia

What the onion is to the Spaniard, or the potato to the Irishman, that the cucumber is to the native Russian. It is the indispensable part of every Russian peasant's every meal. In the account of his trip up the Volga to the grea fair of Nijni Novgorod-which, by the way, packs the greatest amount of instructive and entertaining description in the smallest space of any book of travels printed the past season-Mr. Munro Batler Johnstone remarks the profusion of water melons and cucumbers every where offered for sale. At the fair and on the road thither, pyramids of melons, ilike cannon balls in an arsenal, were. heaped up in every direction; and as for cücumbers, one couldn't help thinking that a plague of cucumbers, like locusts, had descended upon the earth. All along the Volga, from Astrakhan to Nijni, the whole population seemed engaged in eating water melons, which were sold for three copecks, equivalent to one English penny, two cents. At every station the trade in melons glish penny, two cents. At every station the the
was rivaled only by the traffic in sunflowers.
But if the water melon and the sunflower are luxuries and pastimes, the cucumber is a law and a necessity. One never sees a Russian peasant at dinner without a lump of black bread and a cucumber. "A moujick's dinner may be said to consist of $x+$ cucumber." The x will consist of his favorite cabbage soup, with or without meat in it, and sometimes, in addition to it, the famous grit porridge; sometimes the soup is without the porridge, sometimes the porridge without the soup, but in either case the cucumber is always there; and should x equal zero, then the ever-faithful cucumber doesduty for all the rest.
In the hot and arid regions of Southern and Southwestern Asia, these succulent vegetables are highly appreciated, and with good reason. Juicy and cool, they cannot but be always refreshing where water is a rarity; but in a climate like that of Russia, the cucumber is the last thing one would expect for a national dish. Mr. Johnstone suggests that their price-about the fifteenth part of a cent-may help to explain the anomaly. We are rather inclined to think it likely that the Russian peasant eats cucumbers, not so much because they are cheap, as because his remote ancestors, who came from the South, were cucumber eaters. To the one the taste for cucumbers was the natural result of climatic con ditions; with the other it remains an inheritance and a national eccentricity, in spite of a naturally unfavorable climate.

NEW MODE OF HARDENING SANDGTONE.
In Saxony, sandstone is soaked in a solution of alkaline silicates and of alumina. The liquid penetrates some inches into the stone, and renders the surface so hard that it re sembles marble and will bear polishing. On being heated to a high degree, the surface vitrifies, and it may be colored at pleasure.

A PayEment animalcule.

Professor Laidy, of the Academy of Natural Sciences, describes in recently published proceedings of that body a curious animalcule which he discovered on street pavements. It is named gromir and resembles a cream-colored ball about one sixteenth of a line in diameter. When placed in water, it in a few minutes projects, in all directions, a most wonder. ful and intricate net. Along the threads of this net (which are less than one thirty thousandth of an inch in diameter) float minute navicula from the neighborhood, like boats in the current of a stream, until, reaching the central mass, they are swallowed. Professor Leidy states that during dry weather the creature remains quiet in the dust, and that when rain falls it spreads its net and gathers food.

rrparing banboo for paper

We mentioned recently Mr. Thomas Routledge's investigations relative to the utilization of bamboo as a paper making stock. The following is the method in which hetreats the young plants: The stems are first passed through heavy crushing rolls, in order to split and flatten them, and at the same time crush the nodes. The stems then go through a second series of rolls, which are channelled or grooved in order to divide them into strips. The latter, being cut into convenient lengths by a guillotine knife or shears, are deliv. ered by an automatic feeder direct to the boiling pans. Both the boiling and washing processes ordinarily in vogue for producing half stuff or semi-pulp, Mr. Routledge conducts in a series of vessels connected by pipes and furnished with
valves, so that communication between the vessels may be egulated as desired, and in such method that,the receptacles being charged in succession, the heated lye (composed of caustic alkali) can be conducted irom vessel to vessel. The lyes are thus used over and over again until exhausted, fresh lye being continually supplied, until by degrees the extrac. tive matters combined with the fiber have been rendered soluble. In the same manner hot water is admitted to re move the matters rendered soluble, leaving the fibers suffi ciently cleansed. A final cooling stream of water is run on and through the fiber, which is drained and pressed. "The semi-dry material is next submitted to the action of a " wil low" or "devil," by means of which it is opened or teased out and converted readily into a tow. like condition, when it is dried by a current of heated air, induced by a fan blast. When baled up for storage, it may be kept for an indefinite length of time; and when reccived by the paper manufac length of time; and when recived by the paper manufac
turer, it has only to be soaked do wn and bleached in order to fit it for making paper.
wafer capsules for medicines.
Among the latest devices for the administration of medi cine is the wafer capsule, by means of which any dose, how ever unpalatable, can be taken without the slightest disagreeable tas te. Capsules, generally speaking, are nothing new ; but in the present case the novelty lies in the shape which is much better than the gigantic elongated pill form ordinarily adopted, and also in the fact that the capsule is made of flour and water wafers, and may be supplied to druggists empty, and may be,by the latter, easily filled when medicines are dispensed. They are simple disks cut out of a thin wafer sheet by hollow punches. To render them concave, they are dampened between cloths and placed between two curved plates of tin, by which they are quickly shaped. The medicine is then placed between two wafers, the rims are brought together and moistened, and a slight pressure closes the edges tightly. Some simple apparatus for this purpose as been devised by Mr. E. M. Boring, of the Philadelphis College of Pharmacy.

ASTRONOMICAL NOTES.

Observatory of Vassar College.
The computations and some of the observations in the following notes are from students in the astronomical department. The times of risings and settings of planets are approximate, but sufficiently accurate to enable an ordinar bserver to find the objects mentioned

Position of the Planets for February, 1875. Mercury.
On the 1st of February, Mercury rises at 7h. 58m. A. M., and sets at 6 h .42 m . P. M. On the 29 h , Mercury rises at 5 h . 1 m. A. M., and sets at 3 h .41 m. P. M.
Mercury, which was west of Saturn before January 28th, passes east of Saturn at that time, is again very near Saturn in right ascension on the 7th of February, but some degrees furth
seen.
Venus will be brilliant all through the month, setting at h. 50 m . on the 1st of February, and at 8 h .55 m . on the 29 th The moon will be in conjunction with Venus on the 28 th .

Mars.

On the 1st of February, Mars rises at 9 h .41 m. A. M., and sets at 10 h .13 m. P. M. On the 29 th , Mars rises at 8 h .36 m . A. M., and sets at 10 h .4 m . P. M. The moon will be in con junction with Mars on the 29th.

On the 1 st of February, Jupiter rises at 2 h .15 m . A. M. and sets at 11 h .52 m . A. M. On the 29 th Jupiter rises at 0 h 38 m. A. M., and sets at 18 h .11 m . A. M.
The most noticeable phenomenon connected with the mo ions of Jupiter in February is its near approach to the star S Scorpii, and the possible occultation of the star by th planet, on the early morning of the 28th.
β Scorpii is a star of the second magnitude, and with an ordinary glass may be seen to have a companion star of the fifth magnitude.
saturn.
On the 1st of February, Saturn rises at 8 h .3 m . A. M., and ots at $6 \mathrm{~h} 21 \mathrm{~m} . \mathrm{P}$. M. On the 29th Saturn rises at 6 h .21 m . A. M., and sets at 4 h .49 m. P. M.

Uranus.
On the 1st Uranus rises at 5 h .38 m P. M., and sets at 7 h . 34 m . A. M. of the next day. On the 29 th , Uranus rises at 3 h .40 m. P. M., and sets at 5 h .42 m . the next morning. It is among the stars of Leo, and can be seen with an ordinar glass; its motion among the stars is toward the west

Neptune.
Neptune can never be seen without a good telescope, and at present is not well situated.

Occultations.
On the 3d of February, the path of the moon will be among the beautiful stars of the Pleiades, and the moon will occult, or hide from our view, several of the small stars, moon will be just past the first quarter in high northern de clination, and the phenomena will occur in the evening hours, a fine opportunity will be afforded to those who love to watch these changes. To the astronomer, observations of occultations are valuable for determinations of differences of ongitude.

Sun Spots.
The report is from December 18 to January 18 inclusive. hotography and observations have been much interrupted by clouds. Three pictures only have been taken, of the dates

December 22, December 23, and December 27. The photoDecember 22 , December 23, and December 27 , on 22 and December 23 show, on the westgraphs of December 22 and December 23 show, on the west-
ern limb, a large group or spots, which disappeared before he next picture, December 27 In the picture of this date, a pair of small spots was seen on the western limb. From December 27 to January 9, whenever observations could be made, the sun's disk, as seen through a glass of three inches perture, was free from spots. On January 10 a very small group was observed on the western limb, but after that could not be found.

Success in Labor.

Mr. George W. Cnilds, of the Philadelphia Led ger, is one of the most successful newspaper publishers in the land He is the friend of the laboring man, and practises himsel he precepts which his paper advocates. The following ed torial from a recent issue characterises the man-the pub lisher:
"There is nothing more essential to prosperity than the establishment in the popular mind of the intimate connec tion between efficient labor and true success. In one sense they are synonymous. Success consists not so much of the eward a man reaps from labor as the value of the labor it self. He who, by honest work of band or head, is constantly ariching the world is intrinsically the successful man whether riches or poverty fall to his lot; while he who masses millions by speculation or fraud, leaving none to less his memory when he is gone, has made his life a dis strous failure. We trust the time may arrive when this shall be the common acceptation of the word success, but a present it is not so. We usually measure it by what is gained not by what is given; by the reward which labor bringsnot by the intrinsic value of the labor itself. Even by this gage, however, the connection is still closely preserved. Eventually each one's personal welfare is strictly dependent upon his value to others. There may seem to be exceptions to this. Idleness and unfaithfulness may occasionally ap pear to reap the fruit that belongs of right only to honorable industry; but in the long run it is not so. The cheat is dis covered, character is sifted, and justice is indemnified for covered, character is sifted, and justice is indemnified for
her dishonored claims. Faithful, patient labor, of some sort that benefits mankind, is the only road to personal prosperity, that benefits mankind, is the only road to personal prosperity,
and the success that seems to follow quicker and easier meand the success that seems to fol
thods is short-lived and illusory.
"Few, however, believe this in their hearts. To many, work is only a disagreeable necessity, to be taken like medi cine, in as small quantities as possible and dispensed with as soon as may be. They do not love it for its own sake, they do not care for its importance to mankind, or its reflex influence on their own characters. They do not specially desire to at tain excellence in it, and they only put enough energy into its performance to accomplish immediate and necessary results. Their hearts are not in it; they are ever looking beyond and over it to find objects of interest. Other things excite, stimulate, and inspirit them; their work alone is dull and irksome. Labor thus performed can never be of supe rior quality, can never greatly add to the happiness or progress of mankind, can never bloom into true success. It has no soul to animate, no hope to inspire, no vital power to de velop it. A life spent thus, in unwilling and compelled la bor, in wbich the heart has no place, is surely one of the saddest of failures. There are others again who fail in their life work because they are ashamed of it and think it be neath them. They blame fortune or circumstances for hav ing condemned them to a toil which they conceive degrading If their lot had been cast differently, they think, they migh have made some mark in the world; if their work had beent of a higher grade, they could have pursued it with energy and zeal; as it is, they only follow it from necessity and with no more assiduity than they are compelled to exert. Such persons make a fatal mistake. It is in them, not in their work, that the fault lies. For if they do not perform what is committed to them with fidelity and zeal, how can they be itted for a higher post? Besides, this separation of work nto ranks and grades is altogether artificial and unauthor zed. Who can decide which labor is higher or lower than nother, which is of more or less value to mankind? It is no he kind of work, but the manner in which it is done, tha etermines its value. The faithful day's work, in the field, the workshop, or the forge, in the kitchen or the factory, is far more honorable, useful, and elevating than that of the scheming politician or the flushed and eager speculator, who count his votes or his gains by the thousands, but whose abors add nothi
" It is certain
important for each one to find his own ap inted work in the world, that which he loves best, and can o best, as far as practicable; but it is folly to sit down su pinely and give way to despair and lethargy because he im agines he ought to occupy a more prominent or importan post. Nine tenths of the changes made under this delusion prove to be for the worst instead of the better. The charac er and capacity that fail of success in the one case fail ye more signally in the other. Froude well says: "You can ot dream yourself into a character-you must hammer and orge yourself one;" and it is only by laying hold earnestly nd vigorously of the work that lies nearest to us, and rais ing its value by putting into it all the vigor and energy, all the patience and fidelity, all the thought and ability we can command, that we have any right to expect success in any f its meanings.'
The simplest way to dye billiard balls red is to soak them for ten or fifteen minutes in very dilute nitric acid, wipe hem dry, and place them for the same length of time in an mmoniacal infusion of cochineal ; repeat this until the de sired color is obtained.

THE NATURE OF THE PHENOMENA DISCOVERED BY MR. EDISON.

by p. h. vander weyde, m. d.

Two of your recent issues contain interesting articles on Mr. Edison's recent discoverg. One is by Mr. W. E. Sawyer, page 36, and the other by Dr. G M. Beard, page 57. The writers take directly opposite views of the matter, and therefore some comments may be welcome to such readers as look with interest on new discoveries in electricity, field remarkably fertile with subjects of purely scientific im portance, and also with facts capable of useful practical application.
Mr. Sawyer claims that there is no novelty in the alleged discovery, that two years ago he experimented in the same way, having learned the existenc9 of the identical phenomenon from others, that he considered the spark to be the ef fect of molecular magnetic vibration, " not, however, purely magnetic, but magneto-dynamic," and "practically of no value."
Dr. Beard was at first inclined to the same view as that taken by the Scientific American, by myself, and by others, namely, that the phenomena were simply due to electric induction, produced in the atmosphere surrounding any vibratory electro-magnet: but now he appears to have deserted this rational view, and to have gone over to Mr. Edison's idea that it is a new force; and he bases his conclusion on some new experiments, of which he gives an account,and the results of which appear to him to be irreconcilable with the attributes of pure electricity.
I cannot but disagree with both gentleman, as I do not see how the view of Mr. Sawser, who considers it to be a "mole cular magnetic vibration," can conves any definite idea in harmony with what we know of the behavior of the mag netic and electric forces. His assertion that it is practicall of no value is böld and hazardous in the extreme; it is al ways very impradent to maintain, because we do not succeed in solving a problem or finding the practical application of phenomenon, that nobody can, and thereby to deny that the problem or phenomenon may some day become a most fruit ful source of discovery. For proofs, I point to the fields of physics and chemistry, which abound with illustrations showing the ca
cing a verdict.
Dr. Beard's conclusions are tinged with some disregard of the laws of static electricity. I have noticed this frequently to be the case with some electricians of the present day, many of whom have studied exclusively the laws governing voltaic currents; and from such I have often heard asser tions, proving that they wore total strangers in the field of static electricity, and entirely unacquainted with the charac teristic experiments with the old-fashioned frictional electric machines, Leyden jars, etc. I do not say this to throw any reflection upon the capacity of Dr. Beard, whom I know to be a thorough electrician; but still, if he were more familiar with the inducing action of the conductors (not those of the style now used with Rhumkorff coils, but the old style, consisting of two paraliel tinfoils or their equivalents placed at a distance), he would not come to the conclusion that the electricity (or whatever it is) passed from one tinfoil to the other through the air between them : but he would see that inductive influence only reaches from the one to the other, the +-+- , etc., condition of the one exciting inversely a -+-+ , etc., condition in the other plate
It is now more than a century since the Abbe Nollet, in France, made a similar mistake by maintaining that the electric current passed through the glass of the Leyden jar. He saw that, when such a jar was insulated, for every positive spark with which the inside coating was charged he could draw also a positive spark from the outside, and therefore he concluded that the positive elec'ricity passed through the glass. This otherwise eminent investigator never obtained in his whole life a clear idea of induction; he could not conceive that a positive electric charge of the inner coating of the jar could, while retained there and without being lost, induce a positive electric charge to leave the outer coating.

The very experiments mentioned by Dr. Beard are to me most convincing pruof that the phenomena are due to induction. Frictional electricity will, when the conducting wire is cut, if the ends are separated beyond the distance that the spark can leap, be totally arrested at the separation; but if we attach large conducting flat surfaces, like tinfoil, to the ends of the wire, so that the charge can diffuse itself over one surface, it will, by induction, cause elestric phenomena in the other flat surface and the wire attached there to. This is not an overleaping of the electric current through the air, but simply an inducing action, exciting the other plate by a destruction of its neutrality, and a separa tion of its + and - electricities. In fact, the arrangement of the parallel tinfoils, described by Dr. Beard, is nothing but one of the forms of the old-fashioned condenser

I see no reason why all the phenomena observed by Mr. Edison cannot be considered as: 1. Induced electric currents constantly reversing polarity, so rapidly changing and neutralizing each other that it is very difficult to determine any polarity at all. 2. Induced electric currents, of very low intensity, but enormous in quantity, which at once explains
their laek of physiological action and the needlessness of a perfect insulation.
If, after the above explanation, we review the six points which Dr. Beard gives on page 57, against the theory that it is electricity, we find: 1 The various forms of electricity, recognized as such, vary so much among themselves that
all. 2. Many forms of the electric force produce no perceptible or demonstrable physiological effects. 3. Induction of electricity is not resisted by air, glass, rubbsr, or paraffin, as is the case with the electric current itself. 4. The absence of polarity is only a negative proof; and polarity may yet be demonstrated with the proper apparatus, if care be taken in manipulation. 5. The inducing action of electricity passes through non-conductors, such as air, rubber, glass, etc.,
most readily when the terminuls consist of large surfaces Electricity of low intensity will not pass off at points. 6 Electricity diminishes in intensity with the distance from the exciting cause, in definite ratios determined by the na ture of the conductors: while the induction also depends on the distance and the nature of the intervening insulating substances

To place this supposed new force between heat and mag etism appears to me to be entirely unwarranted. We know that light consist of waves of a velocity of vibration of over $450,000,000,000,000$ oscillations per second; non luminous heat has a less velocity, and its principal effect is to expand bodies, and change their molecular aggregation from solids into liquids, and then into gases: while mag netism manifests itself alone in the attraction and repulsion of a very limited number of bodies; the intrinsic nature of magnetism is still a mystery, and we know little about it, except that it is closely related to electricity, and besides we know the nature of that relation. But of electricity w know more. We know that it may differ greatly in inten sity and quantity, that the various forms produce the utmost arieties of phenomena: we know that electric currents in duce other currents; that permanent or temporary magnet ay induce currents; that this inducing action extends lik an atmosphere around electric currents and magnets pro ducing other electric currents or magnetic phenomena When we look at all this, and at the circumstances unde which the assumed "etheric force" is produced, we cannot help considering any attempt to deny its electric nature a vain endeavor to magnify the importance of the discovery which is, in truth, in itself important enough not to nee any such exaggeration
Another argument that this force is not electricity itself and is only related to electricity, and not to magnetism, and much less to heat, may be deduced from the new theory of the intrinsic nature of the electric phenomena. This I will serve for a future occasion.
New York city.

A Hydrothermic Motor.

M. Tommasi, we learn from Les Mondes, has recently con structed a so-called hydrothermic motor, from which h has obtained effective results. The dilatation and condensation of oil, caused by the action of heat, transmits motion to mechanism which actuates a piston at the rate of 100 stroke per minute. With M. Tommasi's model, at this speed, abou ne third of a horse power is developed. It is believed that with large machines an efficiency of several horse power can e realized. The inventor thinks that the chif applicotion o realized. will be its utilization of the chef application of steam engines, something after the manner proposed fo the bisulphide of carbon and ammonia machines. The alter nate dilatation and condensation of oil is, however, not attend ed by the production of annoying vapors as is the case in th last mentioned motors. This is one advantage of impor tance, while another is found in the enormous force which exists in the process of dilatation of the oil. The editor of Les Mondes states that he saw the cover of the small tu bular boiler used by M. Tommasi torn off, and the four heavy screw bolts by which it was secured broken, while the oil in filtrated the apparently hard cast iron as if the latter ha een sponge.
From this it will be seen that the motor is apparently cap ble of yielding almost instantly a powerful force, for a brie period, a quality which might be advantageously utilized on ocomotives. In such a case the machine would be operated by the heat of the exhaust, and could be thrown intoaction whenever a heavy grade was to be ascended, necessitating extra work. By its use, also, after a train had acquired suf-
ficient momentum, steam might be allowed to run down to just sufficient to keep the engine to its duty, with no margin for emergencies or for starting purposes. The hydrothermic motor would start the train or apply the heavy power neces sary to increase the speed. This would cause no inconsider able saving of fuel. The use of the oil as above detailed is not new in principle, as a similar invention appeared in this country twenty years ago. M. Tommasi's application of the tatement, seems to be novel

The U.S. Torpedo Boat Alarm

The Graphic's Washington correspondent gives the fol wing particulars of the torpedo boat Alarm, now at the navy yard in that city, in charge of Lieutenant Commande William Bainbridge Hoff
' It is the first command of this gallant young officer, and by a singular coincidence, next his own is now anchored th Relief, the first command of his father, Admiral Hoff. The as in name, and admirably illustrates the improvements made in our navy. There is much of interest to be seen on the Alarm. She has a single death dealing turret, a 15 inch gun in the bow, the largest afloat, a formidable prow used as a weapon of attack, and a row of Gatling guns ranged along both her sides. A surprising deal of general utility business is done by an ingenious combination of machiner ship steered, and torpedoes run out if desired. All this can
be directed by one parson standing in a small shot proof en losure on the deck. The mode of attack of such a vessel a he Alarm is, I am told, first to blind the enemy with an lectric light flashed in its face; then to fire the fifteen ncher at the foe; at the same time to run out and explode orpedo beneath the hostile vessel ; next, if there is anything left to attack, to give a coup de grace with the incisive prow and if the enemy still decline to be wiped out of existence he devastating instruments of the turret are called into re quisition, and if they do not sutfice the Alarm swiftly turn broadside to the foe, and brings into range in turn the in nocent-looking but fatal rows of Gatlings."

Useful Recipes for the Shop,

A well known druggist gives the following directions for coating pills with sugar or gelatin in the shop: Pills which have been thoroughly dried can be coated with sugar as fol ows: Boil 32 ozs. of best white sugar with $12 \frac{1}{2}$ ozs. o distilled water to a sirup, and use enough of this sirup (tem perature 120° to 150°) to moisten the pills in a small coppe ettle or pan, exposing it to a heat sufficient to dry the pill while kept in motion and worked with the hand. After thi first coat is dry, the operation is repeated until the pill is covered with sugar sufficiently. A very soluble coating for pills is the following composition; 1 oz . flaxseed, $\frac{1}{2} \mathrm{oz}$. Irish ooss; boil with 8 fluid ozs. water, strain, add 4 ozs. sugar, boi gain and use in the same manner as a solution of gelatin is sed for coating pills.
To detect fusel oil in whiskey, the readiest process is to hake one or two fluid ounces of the liquor with an equal volume of pure ether, and about one fourth of it volume of water. The supernatant liquid being decanted will, on being evaporated at the ordinary temperature eave behiad the fusel oil present in the whiskey, to gether with some of the flavoring ingredients that may have been introduced artificially.
A very pretty amusement, especially for those who have just completed the study of botany, is the taking of leaf photographs. One very simple process is this: At any drug cist's get a dime's worth of bichromate of potash. Put thisin wo ounce bottle of soft water. When the solution becomes saturated-that is, when the water has dissolved as much as it will-pour off some of the clear liquid into a shallow dish on this float a piece of ordinary writing paper till it is thor oughly moistened. Let it become nearly dry in the dark It should be of a bright yellow. On this put the leaf, and un er it a piece of soft black cloth and several sheets of new paper. Put these between two pieces of glass (all the pieces hould be of the same sizg) and with spring clothespin asten them together. Expose to a bright sun, placing th eaf so that the rays will fall upon it as nearly perpendicula s possible. In a few minutes it will begin to turn brown ut it req aires from half an hour to several hours to produce a perfect print. When it has become dark enough, take it rom the frame and put it in clear water, which must be hanged every few minutes, till the yellow part becomes perfectly white
To pickle beef for long keeping: First, thoroughly rub salt into it and let it remain in bulk for twenty-four hours to salt into it and let it remain in bulk for twenty-four hours to
draw eff the blood. Socond, take up, letting it drain, and draw eff the blood. Socond, take up, letting it drain, and
pack as desired. Third, have ready a pickle prepared pack as desired. Third, have ready a pickle prepared
as follows: For 100 Jbs. beef use 7 lbs. salt; saltpeter as follows: For 100 lbs. beef use 7 lbs. salt; saltpeter
and cayenne pepper, each 1 oz.; molasses, 1 quart; and and cayenne pepper, each 1 oz.; molasses, 1 quart; and
soft water, 8 gallons; boil and skim well, and when cold soft water, 8 gallons;
pour it over the beef.
Says a correspondent of Inter-Ocean who has had muc experience with wire fences: "I would not recommend straight wire with patent barbs, as it is liable to break in cold weather. There is a twisted wire with barbs that does well, as it is said the twist will allow it to expand so that it will not break. Of this kind I have some on my own place is a perfect fence for any cattle or horses. I have thre ires, and posts two rods apart, but on level ground the might be three or four rods apart."

A Chinese Roger Bacon.

A Chinese scientist has established at Shanghai a scientific aboratory, which will strongly recal the famous workshop f Roger Bacon. With an extraordinary energy, in the pos session of which he seems to differ greatly from the gene rality of his compatriots, this wise Celestial, after purchasing he apparatus merely, has taught himself photography. He as likewise studied medicine with a European doctor, and nvented a new, and it is said very efficacious, antidote for the opium habit. In his laboratory are electric bells, a printing press, and a large variety of ingenious philosophical apparatus, mainly of his own device and construction The principal object of his investigations, however, is to find a way of printing Chinese books in movable type. With the aid of the machinery at the Presbyterian mission, he has already begun the manufacture of the matrices or molds for the type, an immense undertaking when it is considered that for each single sort or variety of character,no less than 6,66 matrices are required. Moreover, there are over $20,000 \mathrm{Chi}$ nese characters. Each matrix must be cut from wood and electrotyped. It wilf require, it is said, fourteen years' work of the mission machinery to make 24,000 different characters. In the six years in which this benefactor of his race bas een at work, he has produced 5,000 matrices of little charac ters and 6,000 of larger ones. With what he has already of small type, he has printed a little volume. He does not expect to live long enough to complete his immense task, and herefore is educating his children to the proper degree of skill in order thatthey may continue the undertaking.

NEW BOOKS AND PUBLICATIONS.

A Guide to the Microsoopical examination of Drineing Watrr. By J. D. Macdonald, M.D., F.R.S., Assistant Professor
of Naval of Naval Hygiene, etc. With Twenty-four Lithographic Plates.
Price $\$$. Philadelphia, Pa.: Lindsay \& Blakiston. New York Price
city: William Whood $\&$ Co.
Nearly all the impuritles in water may be detected by the microscope.
Mineral bodies of course ese evishte Minneral a odides of course are vistibe a and when rot corrosive, or other wise
intrinstcally yurtful Intringlically hurtful to the system, they do harm by mechanical action on
the intestines. All the ova of entozoa and minute worms are readly seen through the same tnstrument; and the vegetable bodides (algace, etc.), many of which are e erceptible to the unalded viston, may emit sulphurerted
 portant revelation is the presence of 1 living creatures which subsist on or-
ganic impurities which defy detection by the most powerful instruments, ganic cmpurttes which defy detection by the most powerful Instruments,
and which are the agents by which many of our severerest and most loathoome executed plates, in which nearly all us a voume of twenty-four admirably executed patees, in which nearry all
the organtc impurtites are displayed; so that a careful oberver can readily detect any unsanitary condititin of his water supply. The book 19 valuable
as a contribution to an interesting branch of natural history; but tis chief as a contribution to an Interesthg branch of natural history; but tits chief
func lon will be to ald our health inspectors and other santary authorites func 1 wis to ald our health inspectors and other saitay our highest recommendation.
Dyeing and Calico Printing, including an Account of the Most
Recent Improvements in the Manufacture and Use of Aniline
Colors. Illustrated with Wood Engravings and Specimens of Colors. Illustrated with Wood Engravings and Specimens of
Dyed Fabrics. By the late Dr. Crace Calvert, F.R S., etc., etc. Dyed Fabrics. By the late Dr. Crace Calvert, F.R S., etc., etc.
Edited by John Stenhouse, F.R S. and Charles E.Groves, F.C.S. Edited by John Stenhouse, F.R S., and Charles E. Groves, F.C.S.
Price $\$ 8.00$. Manchester,England : Palmer $\&$ Howe, Bond street. New York city : John Wiley \& Son, Astor Place.
This is one of the most elaborate and handsome technical works which we have ever read. Dealing with a complicated subject involving many pro cesses of the most elaborate chemical sclence, it 1 s a treatise which will be
useful to the accomplished chemist in his laboratory, and at the esame t time one which we should unhesitatingly place in the hands of any intelligent workman. The illustrations are nothing short of perfection. The book
possesses additional interest as a legacy to the tindustrial world from one posseeses additlonal Interest as as 1egacy to the ind ustrial world from one
who spent his Iffe in gaining victories over the occult forces of Nature. glving the frutts thereof to manklind. With perhaps the exception of
 ance or the processes employed th the higher manufactures than Dr. Crace
Calvert. A catalogue of his labors would occupy much of our avallable space, but it would be an enduring monument to hrs untring zeal and hit
tnexhaustibe inventive powertn experiment. His iterary executors have done full justice to the labor which Crace Calvert left almost initshed when he was called away.
Prosrrpina. Studies of Wayside Flowers. Parts I \& IL.-Ariadne FLorkntiva. Six Lectures on Wood and Metal. Engraving.
Nos. IV, \mathbf{V}, VI.-DEUCLION. Colleoted Studies of the Lapse Nos. IV, V, \& VI.-Devcalion. Collected Studies of the Lapse
of Waves and Life of Stones. Parts I $\&$ II. By John Ruskin, of Waves and Life of Stones. Parts 18 II. By John Ruskin,
LL.D., Professor of Fine Art, Oxford, England. Price $\$ 1$ each. LL.D., Professor of Fine Art, Oxford, England. Pr
New York city: John Wiley \& Son, 15 Astor Place.
These three little volumes fathfully portray thell eminent writer, whose
style has lost nothing in force or vivactly
ince the time when the frrst volstyle has lost nothing in force or vivaccty stine the time when the frrst vol-
ume of "The Stones of Ventice", astonished the world by the power of tis
 ment either to the crittc or the reader; sumfle eft to say, that all the force of
his logic and hls intense sympathy are used in these volumes on behalf of
 MARTINDALE'S UNITED STATES LAW DIRECTORY FOR $1875-6$, con
 in Each of the Principal Cities of the United States and Canada together with a Digigest of the Commercial Law of eacho of the States and Territiories, and the Bankrupt Law in Full. By James B. Martindale, Attorney and Counsellor at Law.
The extenslve scope of this work 1 s fully shown in the above title; and a_{n}
examination proves that the labor of the author has been thoroughly and examination proves that the labor of the author has been thoroughly and
taithnuly done. The book 18
tespecially valuabie to merchants, who are ralthrully done. The book is especlally valuable to merchants, who are
frequently subject to serious losese through tronanace of the laws of the various states to which they ship goods.
Revised Statutes of the Untred States, relating to Minera
Lands and Mining Resources. By Walter A. Skidmore. Second Lands and Mining Resources. By Walter A. Skidmore,
Issue. San Francisco, Cal.: Sumner, Whitney \& Co.
This 18 a valuable compendum of all the minning laws of the United States fully annotated. Reference is made to the decisions of the Attorney Gene ral and of the Interior Department, in cases involving mining questions
The circular instructions of the General Land Offce are added, and there bject. The book will prove useful to lawyers, as it places bef ore them the law In complete
form, and so coplous 1 y indexed and d igested as to admit of the ready applications of its provisions to any case.

```
Inventions Patented in England by americans.
    Complied from the Commissioners of Patents' Journal. 1
        From December 17 to December 30, 1875. Inclu
Boiller Tubi Stopprr.-P. Walker, Jersey City, N. J.
Bottle Stopper, etc.-C. De Qullfeldt et al., New York city.
Calorio Engine.-F. Brown, New York city.
Carving Fork.-C. s. Landers, New Britain, Conn
Copying Trlegraph.- W. E. Sawyer, New Yoik city.
Cord Fasteners.-G. p. Reeves et al., Helena, Mon. Te
Cotton beatrr.-R. Kitson et al., Lowell, Mass.
Cotton Opmesp.-W.
Cotton Opener.-W. E.
Engrating Pantagrap. - J. Hope, Providence, R. I.
Grar Tackle -G. Stacy, Nanuet, N. Y.
Journal Bearings, etco-W. A. Hathaway et al.
Locking Switca.-D. Rousseau, New York city.
making Spires.-W Haddock, Plttsburgh, Pa.
Printing Machinery.-R. M. Hoe, Nef York city.
Printing Press Fred.-J. T. Ashley et al., Brookly
Rotary Puddler.-W. Sellers et al., Philadelphla, Pa.
Rubber artioles.-H. P. Dunbar et al., Boston, Mas
Rabert artioles.-H. P. Dunbar et al., Boston, Mass.
SEWbr Trap.-J. A. White, Concord, N.
SLATE Deske--W. Rose, New York city.
Treating Alloys.-B. Silliman et al., New Haven, Conn.
Valve, exc.-J. Wolf. et al.. Philadelpha, Pa
Vegetable Parciment.-A. G. Fe I, New Yo
```

Frcen emetican and fatequ zeatents.

NEW MECHANICAL AND ENGINEERING inventions.

improved fire extinguishing and escape apparatus. William E. Wuod and Edward Leonard, Baltimore, Md.--The ob ject of this invention is to provide a means for the immediate supmeans of escape from factories and other large buildings containing many operatives. The invention consists in a stand pipe upon the outside of the building, with hose pipes and connections at the windows of each story, in combination with balconies upon the outside of said windows, connected with the earth by means of outside ladders. By means of this arrangement, a ready means of escape is upper stories in such a position as to be free from the smoke.
improved sewing machine thread guard. Lillian Roosevelt, Hempstead, Texas.-This is a clamp having
ppositely extended arms, arranged as a guard attachment to the Wheeler \& Wilson sewing machine for preventing the thread from being thrown off the tension by the work, and for preventing the thread from running off the spool on the spindle.
improved turbine water wheel.
John B. McCormick, Armagh, Pa., and James L. Brown, Brookville, Pa.- The object of this invention is to increase the effective
power of a turbine water wheel whereby a wheel of a given depth power of a turbine water wheel, whereby a wheel of a given depth
may utilize a larger proportion of the water than wheels of the same depth heretofore used. It consists in a wheel having a double series of buckets, one of which is arranged to receive its wate laterally and interiorly, and the otherarranged to receive its water being also exteriorly from a common flume, the said two seriee confluence which reacts upon the wheel in the direction of its circumference, and utilizes a larger percentage of motive power The invention also consistsin the combination of the said wheel with other cobperating parts.
improved street railway track.
John Quigley, St. Joseph, Mo.-This is a cast iron tie, with an
Jevated and broadened seat for the rail at each end, contrived to elevated and broadened seat for the rail at each end, contrived to
fasten the rail in the seat by a key. The broadened elevations for rasten the rail in the seat by a key. The broadened elevations for
the chair are grooved in the sides, so that the earth of the road will pack in and hold the tie down securely. The object is to enable ron to be used, instead of the less durable wood, and co save the manent seats for the chairs.
improved combination lock.
George F. Knight, Carroll, Ohio.-This invention relates to certain improvements in combination locks applicable to storehouses,
dwellings, safes, vaults, etc., and designed to increase the security of the same against the efforts of burglars and thieves. It consists principaly in a number or series of bolts, zo arranged with small withdrawal of one bolt shoots into place and locks another until a certain number of turns are made which constitutes the combination at which all of the bolts are withdrawn and the door unlocked. It also consists in the particular construction of a bell-ringing device, which, operating in connection with the bolts, keeps up an inessant ringing during any attempt to unlock the same. The inven
tion also consicts in other details of construction
improved turbine water wheel
John B. McCormick, Armagh, Pa, and James L. Brown, Brookine, Pa.-This invention relates to certain improvements in that
lass of turbine wheels which receive their water from a vertical lass of turbine wheels which receive their water from a vertical
fume through lateral chutes, and discharge the same centrally through the bottom of the wheel. The invention consists in the peculiar construction and arrangement of a tapering wheel, which is made smaller at the top than at the bottom, to compensate for
the different velocities of the water at the top and bottom of the whe different velocities of the water at the top and bottom of the wheel by reducing the radius of lev
tion to the said decreased velocity.
improvement in balancing millistones.
William Gosshorn, Waterloo, Pa.-This inventor proposes a bail, which is adjusted centraly in the eye by means of the screws which adjust balancing sections. By turning either of the screws, required, and, bs moving the weights up or down, the stone is bal nced on the point of the spindle in the center of the bail. By raising or lowering a section of the balancing riog, the change affects the running of the stone, as the latter is suspended and re onves freely on a center

improved trap for steam pifes

Charles A. Read, Bridgeport, Conn.-This is an improved steam rap for thoroughly draining the water of condensation from steam pipes for heating buildings without allowing the escape of steam. An adjustably seated globe has an interior vave and top perforathat connects with the steam pipes to be drained. The valve closes or opens the plug as the pipe is expanded or contracted by heating or cooling.
improved well drilling apparatus.
Daniel Henry Muir, Racine, Mis.- In this device there is a tube Which extends down the bore and along a groove in the drill
Within an inch or so of the bottom. The effect of the action of to within an inch or so of the bottom. The effect of the action on ube has a check valve to prevent the mud from going back when the drill rises, and it is mounted in a support which turns in unison
with the drill. This arrangement keeps the surface of soil under entrivance in connection with the tube, to lower it from' fime to time, and to hold it above the bottom of the bore. By this con trivance, the taking of the drill out of the bore and removing the mud with the sand pump are avoided.

NEW WOODWORKING AND HOUSE AND CARRIAGE BUILDING INVENTIONS.

boldnank.
IMPROVED WAGON SPRIN
Alexander W. McKown, Honesdale, Pa.-This inventor propose novel combination of torsion springs of a vehicle with auxiliary or re-enforcing torsion springs, arranged under the wagon body, other supports, to be thrown in or out of action, according to the weight of the load to be carried. The lever of the auxiliary springs is swung up, and secured, by any suitable fastening device, to the
wagon body when not in use. The effect is to utilize more fully wagon body when not in use. The effect is to utilize more fully the power of the springs, and to render them more durable by ren
dering the strains upon them uniform. dering the strains upon them uniform

IMPROVED brace rod for vehicle springs. Alfred Cliff, Lapeer, Mich.-This is a rod for connecting the front
and hind springs of a carriage to stay them against forward and backward motion. It has an attaching plate connected by a pivo the other end, which allows of longitudinal extension and contraction to compensate for the lengthening and shortening of the distances between the connections on account of the independent vertical movements of the springs.

IMPROVED PUMP.
Henry M Wyeth, Newark, Ohio.-This invention relates to cer truction of a double-acting submerged pump, in which two valve are connected by a slide so as to move together on opposite sides
of the piston, and operate both the induction and discharge ports. IMPROVED HORSE POWER.
Frederick Trulender, Harmersville, N. J.-This is an ingeniou rrangement of mechanism, driven by an endless chain and plat orm, so placed that the horse walks upon a level, while through power as it would in a machine in which both platform and track were inclined.

IMPROVED CHILDREN's Carriage.
Thomas Galt and James Blaisdell, Rock Island, Ill.-The body o his carriage is suspended on cross bars bet ween coiled springs, and
balanced over the rear axle, so that a slight pressure will tipit either forward or backward, and thus enable the vehicle to be easily op-
erated by a child. The reach is so arranged as to connect the body erated by a child. The reach is so arranged as to connect the body with the front axle.
IMPROVED THILL COUPLING.
Daniel D. Whitney, Beverly, N. J.-This inventor proposes the and the forward end of a hinged arm of the coupling, for securing he pin of the thill iron in the notches of the said arms. This forms a means of quickly attaching and detaching of the thills, allows o
wear being readily taken up, and prevents rattling of the parts. IMPROVED CHAIR.
George Grems and Leonard I. Fowle, Fredericksburg, Iowa.These inventors have devised a simple and easily adjustable chair back. A back piece independent of the ordinary back, and located
above it, is connected by bars to the front of the ordinary arms, so as to swing up and down. Ratchet braces extend from the back down through an eyepiece attached to the bottom of the chair by means of a lever pawl to hold the back at any hight. The device may be used with or without the ordinary back, as desired.

IMPROVED FOLDING OR PORTABLE DESK.
James Miller, Atlanta, Ga., assignor to himself and Luther S. Ames, of same place.-This is an improved portable desk for offices,
that may be folded into small space for transportation or storage, and set up readily into open or closed position for nse. It is spe cially adapted in cases in which a frequent moving is rendered necessary. The novel feature is a top section with drawers and pigeon
holes, to which the lower section, made of folding front, side, and rear walls, is hinged, to be locked by suitable fastening devicesinto open or folded position.

NEW HOUSEHOLD ARTICLES.

IMPROVED SOFA BEDSTEAD
William E. Buser, Chillicothe, Ohio.-The invention relates to an rrangement of cords or pulleys beneath the adjustable false bot om of the two-part folding sofa, for the purpose of elevating the same to a level with the other part of the bed when opened; and it in such elevated position. The pins or lugs work in inclined grooves in the vertical sides of the lounge.
improved fly trap
Thomas C. Dunn, Promise City, Iowa.-This trap is designed for catching flies at dusk on the ceiling and walls. It consists of a box
which is hung to a supporting plvot frame, and provided at the open front half of its top with a swinging spring-acted lid, that i fringed with brushes, and thrown open by a lever when applied to the ceiling, and closed instantly when removed from the same. A
corner recess of the flanged front edge allows the emptying of the corner recess of the flanged front edge allows the emptying of the
fies from the box after they are killed.
improved heating stove.
William M. Morse and Morris G. Knox, Harmar, Obio.-In order o utilize the heat of the fire to a great extent, and also to ensure rapid circulation of air through the air chamber of a cylinder ove, these formed with large radial inlet air pipes and a central ver ical pipe, which connects with a discharge passage in the top plate for the air.

IMPROVED WASHING MACHINE.
Jesse Bartoo, Plainfield, Ill.-When the clothes have been put in the box, the handles are worked up and down so as to force arries down its supply of air, and presses the clothes against th orward side of the suds box, and holds them while they are rub bed by the movements of the other pounder, the clothes constantl different place.

NEW TEXTILE MACHINERY

IMPROVED LOOM TEMPLE.
John C. Thickins, Washington Mills, N. Y.-This is a drum and ratchet contrivance for the weighted cord, so arranged that when
he cord is unhooked to shift it along the cloth, the ratchet sup ports the weight, and thus relieves the operator from the Jabor of holding it. After hooking on the cord again, the ratchet lever is roiding it. After hooking on the cord again, the ratche
aised the operator to let the weight strain the cloth.

new agricultural inventions.

IMPROVED HARVESTER REEL RAKE
Thomas H. Bacon, Hannibal, Mo.-The invention relates to cerparticular construction and arrangement of the revolving ree particular construction and arrangement of the revoliving reel
shaft and oscillating rake arms, with cams for controlling the motion of the rake; and also in the construction of the devices for adjusting the rake for high or low grain.

IMPROVED STUMP EXTRACTOR.
John A. Hart and William A. Grove, Tionesta, Pa.-This device consists of a truss beam, which is supported on side standards and races, and carries centrally a longitudinally fulcrumed main levers, ccording to the power required to lift the stump, while the front nd is connected by pulleys and rope with a tackle block, coupling pivoted V brace pieces, stiffened by chains, to the bed piece. By
detaching the tackle block, the V pieces may be swung out of the way of stumps in setting the extractor. The general arrangement is strong, and such as to admit of the application of power to much advantage.

IMPROVED HARROW.
Joseph R. Van Orthwick, Hillsdale, Mich.-This a harrow provided with runners, which are applied by raising the outer end of each section of the machine by means of its handle, while the teeth are inserted. A bar is then slid through notches, to prevent the
sections turning on the pivot rod. Thus the harrow is adapted for sections turning on the pivot rod. Thus the harrow is adapted far
employment in the transportation of grain to the field, the same employment in the transportation of grain to the fild, the same
being placed or loaded upon the top thereof, thus saving extra or additional means for effecting such transportation.

NEW CHEMICAL AND MISCELLANEOUS INVENTIONS.

Daniel M. Read, New York city.-This inventor has patented two new pocket book attachments. The first relates to the ratchet and hook for engaging the same adjustably, so combined as to form a imple securing device for the flap of the book. The second is a tructed that persons holding it in their hands can be enabled to tructed that persons holug it in their hand can be enabled to

कutimes and tersoual

he Charge for Insertion under thish head is one Dol- lara Line. If the Notices erceed Four Lines, one

 lar a Line. If the Notices exceed Four Lines,Dollar and a Half per Line will be charged.
"Wrinkles and Recipes" is the best practical
"ndbook for Mechanics and Engineers. Hundreds of valuable trade suggestions, prepared expressly by cele brated experts and by correspondents of the "Sclentific
Amercican." 250 pages. Elegantly bound and fillus-
trated. apprentices. Malled. post pala, for \$1.50. Address B
N. Munn, Pubilsher, P. O. Box 772 , New York ctty. Copyright of a Valuable Leather Preservativ
cor Sale. W. R. Burgess, Mafltt's Mills, N. C. Wanted-Machines for Knitting Narrow Fancy
Worsted Webs sultable for Borders. H. E. Dillingham.
Wanted-Agents in Eastern and Western States
(1beral Commission) to sell the Toope Patent Grate Best in the world. Chas Toope, 88th st., 4th av., N. Y. How to lay out the Teeth of Gear Wheels. Price
50 cents. Address E. Lyman, C.E., New Haven, Conn. Wanted-The address of makers of hard solder
for Brass. Address Box 3109, New York Post Office. Leather and Rubber Belting, Packing and Hose.
Greene, Tweed \& Co., 18 Park Place, New York. Hearing Restored-Great invention. Book free. Wanted-A Bone Crusher, suitable for crushing
bones size of nut coal. A stamp mill preferred. P. 0 . bones size of nut
Wanted-Second hand Railroad Track Scales, 30
ft. platform, 20 tons draft. Address E. B. Seeley, Bowl
 $\$ 195 ; 16 \mathrm{ft}$. Planer, $\$ 700 ; 6 \mathrm{ft}$. Planer, $\$ 275 ; 4 \mathrm{ft}$ Planer, $\$ 175$
Wanted-One Heavy Drop,with 600 1b. Hammer,
and one Facing Machine. Address P. O. Box 2258 , New Haven, Conn.
$1 / 2,1, \& 2$ Horse Engines, $\$ 30,60, \& \$ 100$; Boilers
for same, $875 \& \$ 100$. T.B.Jeffery, 253 Canal St., Chicago For Sale-Engine 4x8; no boiler-new-
good. Will send pho. A. R.. C., Lincoln, Ill. Manufacturers of Middlings Purifying Machines
and Chilled Rolls, used in the Manufacture of Flour send Circulars, o
Wilmington, Del.
An Erector, Engineer, and general Machinist desires a permanent engagement. References f
Address $\mathrm{D} . \mathrm{C} .$, , 29 Concord St., Brooklyn, N. \mathbf{Y}
Wanted-A Combined Power Punch and Shears
for ordinary work. Address Louden ${ }^{\prime} f{ }^{\prime} g$ Works, Fatr for ordinary
No 2 Bogardus Mill for Dry Work for Sale at ha Abbe Bolt Headers, the best-Prices reduced
sizes made. 2 sizes made. Palmer Power Spring Hammers, 10 sizes. Piles-No matter of how long standing your case
may be, or how many remedies falled, a cure is possible. may be, or how many remedies falled, a cure is possible.
Circulars free-cause-consequence and cure. Wonder

Steel Castings, from one lb. to five thousand lbs.
nvaluable where great strength and durability are erenvaluable where great strength and durability are P quired. Send for C
Wanted-To purchase the Patent of a good article of general use, or will manufacture and p
Address B. B. Robb \& Co., Cincinnati, Ohio.
Use Yocom's Split-Pulleys on all Shafting, same
appearance, strength and price as finished Whole-Puleys. Shaftung Works, Drin
Second St., Philadelphia, Pa.
Designer or Draughtsman-Engagement wanted
by an engineer of practical and scientific education. Wood workinger or minactical and scientific education. Address Civ. Eng., 322 East 55 th St., City.
Blake's Belt Studs are the best and cheapest fas-
tening for Leather or Rubber Belts. Save ten times Linen Hose for Factories-1, 11/2, $2 \& 21$ inch.
At lowest rates. Greene, Tweed \& Co., 18 Park Place. Manufacturers! Send for illustrated catalogue
of Best Belt Pulleys made. A. B. Cook \& Co., Erie, Pa. Fine Castings and Machinery, 96 John St., N. Y For Sale-Second Hand Wood Working Machin-
ery. D. J. Lattimore, 31st \& Chestnut St.. Phila., Pa. Electric Burglar Alarms and Private House An Insts; Batteries of all kinds. G.W.Stockly, Cleveland Solid EmeryVulcanite Wheels-The Original Solid Emery Wheel-other kinds imitations and inferior. Cau-
tion-Our name is stamped in full on all our best Standard Belting, Packing, and Hose. Buy that only. The
best is the cheapest. New York Belting and Packing Company, 37 and 38 Park Row. New York.
Hotchkiss Air Spring Forge Hammer, best in the
market. Prices low. D. Frisbie \& Co . New Haven. Ct. Water, Gas and Steam Goods-Send eight stamps or Catalogue, containing over
Farrell \& Co. Pittsburgh, Pa.
For best Presses, Dies, and Fruit Can Tools, Bliss
\& Wrillams, cor. of Plymouth and Jay, Brooklyn, N. Y. For Solid Wrought-iron Beams, etc., spe adver-
tisement. Address Union Iron Mills, Pittsburgh, Pa., tisement. Addres.
orlithograph \&c.
Hotchkiss \& Ball, Meriden, Conn., Foundrymen
and workers of sheet metal. Fine Gray Iron Casting Peck's Patent Drop Press. Still the best in use
address Milo Peck, New Haven, Conn. All Fruit-can Tools,Ferracute W'ks,Bridgeton,N.J. American Metaline Co., 61 Warren St., N.Y.City For Solid Emery Wheels and Machinery, send
the Union Stone Co., Boston, Mass., for circular. Hydraulic Presses and Jacks, new and second
hand. Lathes and Machinery for Pollshing and Buffing E. Lyon, 470 Grand Street, New York

Spinning Rings of a Superior Quality-Whiting-
ville Spinning Ring Co., Whitinsville, Mass. For best Bolt Cutter, at greatly reduced price
addrese H Diamond Tools-J. Dickinson, 64 Nassau St., N.Y Temples and Oilcans. Draper, Hopedale, Mass.

3adest Mineries
R. M. P. will find an answer to his query as to power from compressed air on p. 43, vol. 34,
W. P. C. can make a solution of tin salt by the -W. P. C. can make a solution of tin salt by the process described on \mathbf{p}. 139, vol. 31, and he can crys. tallize the metal from the solution by a method
described in the same article.-S. B. S. will find a escription of a one track railroad on p. 370, vol 9. -J. E. F. will find a full description of the Keely motor on p. 400, vol. 32.-C. W. J. will find directions for making patent leather on p. 122, vol 7.-P. P. will find, on p. 91, vol, 32 , directions fo aking chloride of calcium.-H. S. T. will find di rections for making imitation black walnut on p
90 , vol. 32. This also answers J. C. A.-W. L. wil , vol. 32. This also answers J.C. A.-W. L. Win in the ocean on p. 208, vol. 33.-T. H. will fitd diections for molding rubber on p. 283, vol. 29. Thi also answers H. F. B.-M. T. will find an engraving o a kerosene lamp for heating a small boiler on p. 29, vol. 33.-F. M. can dissolve gutta percha in b ulphide of carbon. -T. G. Will find directions fo naking glue that will answer his purpose on p,
282, vol. 31 . For a recipe for flour paste, see p.219, vol. $30 .-$ G. G.P. can remove inkstains from pape by the method described on p. 410, vol. 32.-W. N
G. will find directions for stereotyping by the pa G. will find directions for stereotyping by the pa-
per process on p. 363 , vol 30 . For a recipe for ste per process on p. 343, vol 30 . For a recipe for ste directioas for French polishiig on p. 11, vol. 32.ter on p. 119, vol. 30.-A. wiil find directions fo tempering springs on p, 363, vol. 32.-W. M. B. will find that paraffin varnish is a good non-conducto
of electricity. See p. 91 , vol. 31.-D. C. H. will fin of electricity. See p. 91, vol. 31.-D. C. H. will fin a description of the Mont Cenis tunnel on $\mathbf{p} .213$ vol. 25.-G. C. will find directions for bluing stee
on p. 123, vol 31.-J. H. will find a description of on p. 123, vol 31-J. H. Will good field on p. 363, vol. 31. -W. L. S. will find a good article on building a windmill on p. 241, vol. 32.-C. A. S.'s perpetual motion device is very old. See p. 82, vol. 24.-M. S. can bleach paraffin by the
process given on p. 309 , vol. 30 .-W. H. F. Will find brocessgiven on p. 309, vol. 30.-W. H. F. Will find
full information on blast furnaces in " The Iron full information on blast furnaces in "The Iro
Trade Manual,", published by Wiley \& Son, New York city.-M.L will find a recipe for root bee bing a submarine light on p 229, vol. 23.-S. E. will find the proportions in which to mix carbolic ac:d with soap on p. 241, vol. 29.-D. C. will find direc-
tions for bleaching tallow on p. 27, vol. 31.-H. B. Jr. can make artificial meerschaum by the proces
 scription of a spectroscope on pp. 277,384, vol. 28 ,
-J. M. will find directions for ascertainir g the trength of bollers on p. 186, vol. 32.-J. D. can fasten emery on iron by the process given on r .
363 , vol. 33.-H. C.S. will find directions for pasting 363, vol. 33-H. C.S. will find directions for pasting
paper labels on tin on \mathbf{p} 26, vol. 34.-T. R W. will nd a description of a cement for cast iron on
(1) C. M.
(1) C. M. B. asks: Will iron decompcse corrosive sublimate? Last spring I stuffed a few
birds, and used a solution of corrosive sublimate applying it with a small piece of common cotton batting on an iron wire. In the course of about two months the wire rusted, and the cotton appeared to be full of quicksilver, in little spheres, rom the size of a pin's point to that of a pin head. A. Yes. The action is accompanied by the ration of subchloride of mercury.
(2) L. E. B. asks: 1. Is there any known way to dry fish otfal without the use of the patent dryer? A. Send us a sample of the patent drye
you have reference to. So much depends upo the condition of the materials, and the temperature at which the operation takes place, that it is impossible to give any very decisive answer. 2. When it is dried, what proportion of ammonia
could I safely calculate on obtaining from it? A. The average amount of available nitrogenou per cent.
(3) S. E. T. asks : 1. What are grape spirit French spirit, corn spirit, and English spirit a
used by perfumers? A. Grape spirit is the spirit ased by perfumers? A. Grape spirit is the spirit ation of corn. The other two grades we do no recognize by the names y ou give them. 2. Is spir
it of jasmine the same as extract of jasmine? it of jasmi
Probably.
(4) R. H. B. saya: I use 8 inch welded boil r flues for stove pipes, etc. How can I cut of herain at the roof or catch the water below? A Construct two conical flanges around the flue pipe where it connects with the roof, above the latter with the largest end of the cones downward; seand the top edge of the upper one to the pipe, by soldering or by packing within a ferrule. The up per cone will serve as a cape over the lower one and as they are not fastened to one another, no harm can come from expansion and contraction.
(5) J. F. M. \& B ask. Can you inform me of an easy manner of steaming geese feathers We have plenty of steam. A. The feathers ma be placed in a long tubular vessel surrounded by a steam jacket. In order to prevent any tendency
to condensation of the steam as it passes through the vessel, it should be considerably superheate before being allowed to enter, and be passed hrough as rapidly as the case will permit.
(6) W. B. W. asks: What substance or substances of a quickly drying and gummy na
ture will serve as a vehicle for sulphuric acid, o any other acid that will quickly destroy vegetable tissue, without neutralizing the acid or destroying the properties of the vehicle? A. We do not think it is practicable to use any of the stronge as the gums, gum resins, and oils are more or less
acted upon by acids, if the latter are sufficiently strong
fiber.
(7) A. B. asks: How can I clean jugs in which linseed oil has been kept for a long time, so hey will not smell like the oil? A. Remove as much of the oil as possible by means of naphtha concentrated hot solution of potash or soda concentrated hot solution of pota
ye). Finally rinse with clean water.
(8) J. H. C asks: What are the grestes an be operated? I wish to use a three horse power engine three or four times per week, about ve hours at a time; if I get a boiler large enough run the engine that length of time without add og any water (not providing any pump) the boile low off 50 lbs pressure would not danger xplosion be entirely obviated? A. These condiions, supplemented by careful management hould ensure safety in a high degree
(9) J. H. S. says: I have a bath tub set in
ood. How can I paint or coat the surface with imitation of marble that will resist water? A The following has been used for this purpose Boil a quantity of water glass (silicate of soda) in dd sufficient oxide of zinc to form a stout bod color, and apply several coats to the woodwork if necessary.
(30) J. W. S. says: In your article on p the rubber in a mixture of bisulphuret of carbo 95 parts, and rectified spirits 5 parts, untilit swel's
into a pasty mass. It may then be molded into into a pasty mass. It may then be molded into
any form required." I can dissolve the rubbe nicely, but cannot form it in a mold. You say Your trouble probabls arose from using vulcan ized rubber. Try pure rubber in bisulphide o piece of the rubber which I used. What is th difficulty? A. Bisulphide of carbon is the mos sual and best solvent for caoutchouc (india rub ber). This solution, owing to the volatility of the its natural state. When alcohol is mixed with he sulphide of carbon, the latter does not an onger diesolve the caoutchouc, but simply sof ens it. Alcohol precipitates solutions of caout chouc.
(11) F. L. B., of Yokohama, Japan, says am manufacturing safety matches, and find tha ther become soft in the warm, damp weathe which we have here durirg the summer month ntimony sulphur, and glass, and the best glue for the matches, and amorphous phosphorus, sul phuret antimony, and glue for the boxes. English matches stand this climate, and they are not var aished. What can I use that will keep the com osition ends free from the influence of the purpose with very good results.
(12) M. R. H., of Manuheim, Germany,says:
We have a brick room or oven wlth an iron floor. By means of furnaces underneath, it is graduall heated (during 12 hours) to 295° Fah. What liquid or substance can be put into an iron globe, com municating with a pipe outside the building, to cause a piston to rise as the heat inside is de veloped? A. Let the pipe from the globe turn downwards outside the room, a certain distance
determined by experiment, and then bend and turn up again in a vertical position; fill the pipe utside the room with water, thus enclosing a certain quantity of air within the globe and in that portion of the pipe which is in the room Now, if vou provide a float upon the surface of the water in the exterior vertical pipe, as a pis ton, the expansion the air in the globe win team, and so effect the object you desire.
(13) J. S. C. asks: What are the causes of what power in the reciprocating engine, and cause? A. The following table, from an article b Messrs. Hunt and Skeel, on "The Methods of Testing Steam Engines," gives a good idea of the qual ity and amount of the losses, in the case

Units of heat in 100 lbs . anthracite. Heat equivalent to weight of ashes,
Total heat in 100 lbs. of anthracite. Carried off by hot gases in chimney
Avallable to
Avallable for work in cylinder
Transformed into work
Absorbed by friction, etc..............
Absorbed by friction, etct..... of
Tsefully applied to propulision.
(14) J. B. M. says. We have a yacht 32 feet ong by 6 feet 4 incbes beam. Would it mak reater speed with two propellers of 26 inches difeter and 35 inches pitch, driven by two engine one propeller of 36 inches diameter and $31 /$ fet pitch, driven by 1 engine of 4 inches diameteran inches stroke, boiler being same in both cases A. You do not send sufficient data to enable us to form an opinion. Other things being equal, how ever, one screw is generally preferable. Of cour here may be special cases, as with yachtsor ve light draft, where better resula
ained by using two propellers.
(15) E. R. asks: Will a half horse pow notor be large enough to propel a boat 20 fee nd 16 inches at the stern? A. The boat will no be very effective under the circumstances. 2 . want to usea 16 inch propeller wheel, and drop it inches below the bottom of boat. What pitch pitch of the propeller from 27 . to 30 inches
(16) W. H. B. says: In answer to a ques little more pressure at the bottom." I suppos ou mean that the weight of the water gives the ver pressure, and that, aside from that, the ressure is equal. Am I correst? If so, is the answer a correct one? Does not the water (at its
urface) resist the action of the steam in a downward direction? And is not the pressure carrit hrough the whole body of water to the lower part f the boiler? Suppose the boiler is half full o water. Then the upper part of the boiler (on Wich the steam acts directly) is $\frac{4}{7}$ greater than th urface of the water; and if steam presses equally rom the weight of water) there is 4 more pressure n the upper part of the boiler ${ }^{\frac{1}{7}}$ If this is no rue, please explain why? A. Your idea in regar the weight of the water incleasing the pressur on thebottom is correct. You will find the other part of your query answered in any good treatise
on the pressure of fluids.
Minerals, etc.-Specimens have been re ceived from the following correspondents, and sxamined, with the results stated
G. F.-It is a cast of a fossil plant in sulphure is sulphuret of iron. \mathbf{M}-It is hydrate esquioxide of iron mixed with clay. By burning it is converted into an inferior brown umber. Mix minium to change its color to a red.
J. M. H. Jr. asks: Can you give me a r ϵ
ipe for making decalcomanie varnish?-R. M sks: Are black pearls of commercial value?-J W. C. asks: How are gelatin capsules, such as ar asks: How can I make a polish or varnish for rubasks : How can I make a polish or varnish for rub

COMMUNICATJONS RECEIVED
The Editor of the SCIENTIFIC AMERICAN ac
somowledges, with much pleasure, the receipt o riginal papers and contributions upon the follow gralpape

On Coal Mine Explosions.
$\begin{aligned} & \text { By J. F. R. } \\ & \text { On a Curious Tree. }\end{aligned}$ By W. J. McG.
On a Curious Tree. By W. J. McG.
$\begin{array}{ll}\text { On Safe Launches. } & \text { By P. } \\ \text { On Etheric Force. } & \text { By J. R }\end{array}$
On Etheric Force. By J. R.
On Water Pressure in Mains. By J. C
lso inquiries and answers from the following
J. C. H. - H. L. - M. C. - P. s.-J. B. D.-R.s.P.
R. S. R. - T.H.-C.H.
-T. M. - F. W. C. - J. C.-J. K. - B. L. W. W. - H.

HINTS TO CORRESPONDENTS
Correspondents whose inquiries fail to appea hould repeat them. If not then published, they may conclude that, for good reasons, the Edito declines them.
Enquiries relating to patents, or to the patenta bility of inventions, assignments, etc., will not be only are given, are thrown into the waste basket as it would fill half of our paper to print them all but we generally cake pleasure in answering briefly by mail, if the writer's address is given.
Hundreds of inquiries analogous to the following Whe sent. Whose electro-motor is the best orating, using steam as the heating medium Who sells small balloons? Who makes a barome er with a self-adjustirg scale? Whose is the be pump for raising water from a mine 45 feet deep? Who makes lead chambers for sulphuric acid
works, and what do they cost ?" All such person I inquiries are printed, as will be observed. in the column of "Business and Personal," which is spe ially set apart for that purpose, subject to th desired information can in this wa be expe ditiously obtained.
[OFFICIAL.]
INDEX OF INVENTIONS

Piters Patent of the United States wore

Granted in the Week Ending
January 4, 1876.
and each bearing that date.

Busk fastentIg. R. Stokes....
Butcher's stall, J. Matheson Calendar, C. S. Murphy.. Camera, E. B. Barker... Caraxle, G. W. Miltimore............
Car axle, lubricator, G. M. Morris Car brakes, hand crank for,
Car coupling. G. H. Ames. Car coupling. G. W. Brady Car couoling, J. Kensler...
Car coupling, D. W. Vowle Car heater, Lemeunier \& Marti Car mover, J. G. Wilber..... Car replacer, Bride \bowtie Bl Carbureter, A. Wiggin
Carousal or roundabout Carpet cleaning machine. J. Hothersall Cattle wash. A. Sievers.
Chair, Grems and Fowle Chair, Grems and Fowle Cheese turner, C. Barlow Cloth-shearing machine. I. L. Holmes
Coffins, show case for, E. W. Wilco Colter, A. Muir.

Comb, B. F , Brttont

Cooler, millk, W. H. Johnson.
Corkscrew, F. T. Witte.....
Corn coverer. T. B. McCes
Corset, G. W. Reynolds.
Mcadams
radle spring attachment, H . S. Hale
Dental engine, S. S. White
bice box. A. Walker
Die, Porter \& Platt...................
Door check, w. G. Hoffman
Drills, bit for metal, T. P. Farmer
Dust pan, W. J. Parker.............
Elevator for buildings, Bevins Engine, direct acting, J. W. Mathleson Engine house gong, R. Bragg

Engine, reversing valve, Bevins $\&$ Wei
Engine slide valve, Kelly $\&$ Gardiner.
yelets, settiog, L. C. Buettner
abric, padding, H. Howard
Fare register, electrical, S. Bergmann
Faucet, U. Bohren.
Ferting machine, J. J. O'

ertilizers, making, H. O.

Fishing tackle, J. T. Buel
Fishing tackle double spoon, J. T. Buel
Food extract from fish, S. L. Goodale Furnace for heating blanks, J. W. Bonta (r). Furnace. heating, S. D. Vose Furnaces, lining puddling, J. A. Burden ame counter, Bretzfield avd sternheime Gas stove, W. M. Jack son........... Globe holders, T. F. McGann rain conveyer, H. W.
Halter, T. Gingras.
Harness saddlle, R. Spencer.

chine, H. A. Graen

 Hay loader, J. A. Bower............Hay or straw, twisting, A. A. Wells Hoisting apparatus, L. T. Pyott... orse power for drilling wells, G. A Iose carriage and engine, J. A. Hous ce cream freezer, S. M. Gosson ndicator, cashier's, T. Olsèn. ron ores, deoxiaizing, A. G. Hunter..... 171,811 ettle and vegetable cooker, F. D. Lepper. Ladder expansion jack, F. Rote ard-rendering tank. P. Andrew Lasting machine, F. S. Hunt atch, gate, w. H. Key...
eather dressing macnine, w. H. Rosengteel
eather, treating, H. W. Adams
ightning rod. C. F. Smith.
ightning rod, H. W. Span
Lock. combination, G. F. Knight
Locomotive head light, Mills, Bell, and Carey.
Magnetic machine, electro, J. Kidder (r)
ashing macnine, T. A. Mcintyre
edicines, sirup for, R. S. Peyton
Metal beams, beuding, Jenkins and Funk
etal plates, coating, Morewood et al... 171,686, 6
Metal shapes, former for, A. Ball..
Mill, wine and cider, C. Boul
Monument, J. C. Stinson....
Nut lock, G. W. Heury
ut blanks. rolling, J. Ostrander
re concentrator, J. M. Thompson.
Paddle wheel, J. Kampm
Padlock, J. L. Hirsch..
an, milk and cheese, H. W. Horton
Paper box, R. Ritter.....
Paper fastener, J. Adair
Paper for postage stamps, etc.., J. Schnoble
Perarnbulator, J. Lauer.
Piano truck, C. A. Franc
Pipe, water, J C. Ro. B. Wither
Pipes, trap for sewer, W. A. Pit

Planter, corn, A. C. Burgner
Planter, corn, Galt and Trac Planter, corn, M. P. Noel Plow, W. A. Estes.
Plow, hand, M.
Pocket book fastentng. D. M. Rea Pocket book lock, D. M. Read....
Press, cotton, J. W. Macumber. Pump, H. M. Wyeth
Pump, rotary, W. o. Crocker.
Purifier, middlings, G. Milbank
Railload, N. Gibson.........
Railload rall, G. R. Dunhar.
Rallroad rall joints, fish bar for, J. M. At Atinson Rallroad switch, W. A. Weant. Railiroad switch, street. T. Newman.....
Railroad transfer table, c. Hathaway. Rake, horse, Clarke, Utter, and Gorha
\qquad
Rope clamp. L. H. Page
Ruler, parallel, J. G. Henderson
Safe, fireproof, W. Hagert
Sash fastener, J. R. Pavson
Sash fastener, J. G. Perry
Sash hosteder, J. R. P. Peyson..
Scales, dydrostatic. F. Boc
scales. weigh, w. C. King.
Scraper, road, W. H. Bowma
Scythes, cradle finger for, w. Hamilton.
ewing machine, Gines \& Stiles
Sewing machine needle threader, H. A. Ellis Sewing machine treadle, T. F. Woodbrid Sewing machine thread zuide, w. A. Springe ewing machine, straw, M. P. Car Sbade holaer, J. Ellis.
Shafting, w. L. McNair
Sheet metal clamp, Kittredge \& Clark.
Skylight, Querner \& Surke..
Sleigh runner, M. S. Brooks.
Sleigh runner, M. S. Brooks.....
Sleigh knee, W. P. Wentworth.
oldering compound. L. Houriet.
park arrester, W. H. Richardson
Spark arrester and damper, A. Winton
pectacle holder, G.
Stair rod, M. Krickl
Stove, cook, Brown \& Askin
Stove, gas, W. M. Jackson
Stove, heating, Morse \& Knox...
Stove, oll-burning, E. G. Adams.
Stove pipe thimble, J. T. Hall
straves, burner, for gas, T. J. Kelly
strer
Stua and button, J. B. \& W.
sringe, C. E. Kochling.....
Syringe tube. rectal. M. Matto
Table slide, extension, H. G. I orter
Tbill coupling, D. D. Whit ney...
brasher and separator, bean, c. S. Hall........
Thrashing machines, beater reel for, C. S. Hall. Toy gymnast, R. A. Smith....
Toy watches, G. Powell............ 171,850, 171,85
Track clearer, W. Hamilton.

Track clearer, W. Hamilto
Trap, fly, E. Littleffeld.....
Truck, piano, C. A. French.
Trunk, W. J. Large
Tweer, C. M. Morgan
Umbrella handle, W. H. Blake..........
Umbrella rib tip retainer, H. B. Stillman mbrella runner, G. W. Hatch
Valve, flexible, F. Kah
Vehicle seat spring, W. F. Baird.
Vehicle spring brace rod, A. Cliff
Vehicle spring brace, C. L.
ventilator for windows. P. Mihan
Wagon beds, end extension for,
Wagon bolster, o. E. Griswold.
Wagon, side bar, C. B. Wood................
Warping machine, Follensbee \& Entwistle
Washing machine. J. Bartoo..........
Washing machine, L. C. Hall.
Washing machine. W. R Reed.
Washing machine, Templeton \& Moulton.
Waterproofing compound, T. H. Dunham. Water trap supply. etc., J. H. Morrell.
Water wheel, C. Chalfant.
Whiffetree bolt, T. Siselly.
Wire stretcher, Taber \& Morgan
designs Patented.
rich, Chicago, Ill
$8,885 .-$ Breastrin. -W. H. Halsey. Newark, n. J.
, 886 .-Boxes.-M. F. Bell Fut
887.-Coffin Plate

8CHEDULE OF PATENT FEES. On each Caveat....
n each Trade mark.
On flling each application for a
On issuing each original Patent
On issuing each original Patent...
On application for Reissue
On filing a Disclaime

On application for Design (7 years)
On application or Design (14 years)

CANADIAN PATENTS

December 23, 1875, to January 10, 1873.
5,533.-A. Rams.
Dec. $23,1875$.
,537.-L. Hurd, Kewannee, III., U. S. Edible compound. Dec. 23, 1875.
separator. Dec. 30, 1875.
5,539.-L. Flagg, Ce
gate. Dec. $30,1875$.
gate. Dec. 30, 1875.
mi,m|

5,511.-A. Christin, Chicago, Ill., U. S. Bottle stopper. Jan. 3, 1876. 5,542.-A. D. Crosby, Cuba, N. Y , U. S. Chain pump bucket. Jan. 3, 1876. 5,543.-S. C. Hamlin, Ypsilanti, Mich., U. s. Rubber bucket for chain pumps. Jan. 3, 1876. $5,544 .-H$. N. Slater, Webster, Mass., U. S. Process of flocking cloth. Jan. 3, 1875. 5,545.-H. Gillmore, Simcoe, Ont. Sash holder. Jan. 5, 1876. 5,546.-H. Wells, Ottawa, Ont. Revolving drag harrow. Jan. 8, 1876. 5,547.-W. P. Widdifield, Siloam, Ont. Weather strips. Jan. 8. 1876. 5,548.-A. Newell, Chicago, Ill.. U S., et al. Constructing dead pulleys. Jan. 10. 1876. 5,549.-D. S. Cornell, Warwick, Ont. Barrel. Jan. 10, 1876. 5.550.-D. S. Cornell, Warwick, Ont. Barrel and cylindrical box. Jan. 10, 1876. 5.551.-G. J. Tandy, Kingston, Ont. Boiler for steam engines, etc. Jan. 10, 1875. 5,55\%.-J. Hawes, Worcester, Mass.. U. S. Egg beater and mixer. Jan. 10, $18 i 6$. 5.553.-G. W. Robinson, Bennington Center, Vt., U. S. Hand corn planter. Jan. 10, 1876. 5,554.-A. Smith, Clifton, Ont. Applying liquid fuel to the heating of metals, etc. Jan. 10, 1876. 5,555.-A. W. Shaw, Saccarappa, Me., U. S. Hydraulic cement. JJan. 10.1876. 5,556.-W. D. Edy et al. Fanning mill and elevator attact ment. Jan. 10, 1876. 5,557.-G. W. Johnson, Yarmouth, N. S. Pump. Jan 10, 1876. 5,558.-C. L. Jeffords, Jamestown, N. Y., U. S. Converting castiron Into steel. Jan. 10, 1876. 5,559.-F. Beauchemin, Rolton Falls, P. Q. Dough mix ing machine. Jan. 10, 1876. 5,560.-W. Milner, Strathroy. Ont. Joor base protector. Jan. 10. 1876. 5,561.-J. H. Grant, Grimsby, Ont. Mowing and reaping machine. Jan. 10, 1 S76. 5,562.-A. S. Buckelew, Jersey City, N. J , U. S. Watch case spring. Jan. 10, 1876. 5,563.-T. J. O'Sullivan, Hamilton, Ont. Heativg drum. Jan. 10, 1876. 5,564.-R. D. O. Smith, Washington, D. C. Water closet. Jan. 10, 1876. 5,565.-F. G. Butler, Bellows Falls, Vt., U. S. Horse rake. Jan. 10, 1876. 5,566.-T. Northey, Hamilton, Ont. Steam pump or boiler feeder. Jan. 10, 1876. 5,567.-W. T. Lintner et al., Fort Plain, N. Y., U. S. Pad for chair legs. Jan. 10, 1876. 5,568.-B. Barker, Ellsworth, Me., U. S. Stave-jointing machine. Jan. 10, 1876. 5,569.-J. Woolridge, Dean's Corner, Iil., U. S. Land roler. Jan. 10, 1876. 5,570.-G. Blatchford, Mitchell, Ont. Reed organ. Jan. 10, 187n.

Adurtisements.

Engravings may head advertisements at thesame rate per line, by measurement, as the letter press. Adver
tisements must be received at publication office as early as Friday morning to appear in next issue.
STAVE, SHINGLE, HANDLE AND CABINET

UTRONG TESTIMIONY

SAFETY VALVES. By Ricbard H. Buel, C. F. g. No.
D.
D.
D. VAN NOSTRAND, Publisher, 23 Mur, ay St. and 27 Warren St Ne New Yor
ples sent free by mall on recelpt of price.

Iade from pure long fiber Asbestos, Self. Lubricating

H. W. JOHNS, 87 Maiden Lane, N. Y M'fr of Patent Asbestos Roofing Stenm Pipe, an
Boiler Coveriugs, Paints, Fire Proof Coat
ind

W ANTED-Situation by a young man of good

 O THE CAUSES OF KNOCKING IN HIGH

I want to sell, GROD THINGE

WHIPPLE'S

Patent Door Knob.

Cotton Seed Huller.

TYOTCLCPB

M UNSON CABLELGATNING CoNDUCTOR

$\frac{\text { THE }}{\text { Tind }}$
Bigelow Engine,
The Cheapest and Best Portable
Engine offered to the Public.

Price of StatIonary Engines:

 H. B. BIGELOW © CO.

Best Mill Spindles and Steps, MILL GEARING Shafting, Pulleys \& Hangers.
B. WOOD \& CO.,
Cbambersburgb, Pa

FOOT LATHES.
[RON BRIDGE BULLDING-A complete de

 TVWIV

All Purposes The CHEAPEST thd Best now in us
all Warranted. EXETER MACHINE
WORKS Sole Makers, 140 Congress St,
Boston, Mass
 E"OE H876.

GFOI.OGY AND MINERALOGY,
ASTRONOMY,
Every person who desires to be well informed concorn-

 All the preceding volumes of SCIENCE RECORD Gve volumns, 1872, 1873, 1874, 1875, and 1876.

MUNN \& CO., PUBlishers, $\begin{gathered}37 \text { Park }\end{gathered}$
Park Row,
New York city

FOREIGN PATENTS
THE CENTENNIAL. There is no doubt that our Centenvial Expoeisentative people from all parts of the world, and
they will take home with them many of our best improvements to introduce into their own manufactures.
An unu
An unusual opportunity will be offered for sell-
ing to these people such foreign patents ing to these people such foreign patents as hav
been secured on goor American inventions in the respective countries from which these visitors come.
At the reduced prices for which patents are obtained abroad, our people will lose a chance not
likely to occur again, if they do not avail themselves of the opportunity of securing their inventions in foreign countries at once, so as to have mer.
For cost of patents in the different countries and
the conditions on which they are granted, send for pamphlet containing full information. $\begin{array}{cc}\text { Address } & \text { MUNN \& CO., }\end{array}$ 37 Park Row, New York
Branch Office, cor. Fand 7th Sts., Carimer Pat haxting Sipuring thament Hytum
R. .. STATE \& CO., Springfield, Ohio.

simplend for Pamplet and

CREW PROPRLLERS, TREIR SHAFTS AND

CLARK \& COMPANY'S
PATENT SELF-COILING, REVOLVING STEEL SHUTTERS

 and are endorsed by the feading archttects of the JAMES

 OPIUII
 Planing \& Matching,
 PATENT
Planing and Matching

 OTIs Machinery.

RACING BOAT STOCK
SPANISH \& WHITE CEDAR
 Rosemoon, walvut, se.

NIAGARA STEAM P P UMP

$\rightarrow \quad a$ specialty.

\odot
 VINEGAR HOG MADEG IM

 h.p. Som

THe Union iron mills, pittburgh, Pa.

 Compressed air moitive power.-Fo

- $\square^{\text {CENTENNIAL DRILL Chock }}$
(A)

 Setailiteot bind

MACHINERY.

IRON \& WOOD WORKING MACHINEEY OF EVERY DESCRIPTION
Cold Rolled Shafting.
Bangrgs Rulirs coiplinas briving a
GEORGE PLACE
pari's Damascas Spring Steel Soli-Aajusting

Machinists' Tools Mann \& Co's. Patent Officess.

Established 1846.

The Oldest Ageney for Soliciting Patents in the United States.
thaenty-nine years experience
MORE PATENTS have been secured through this agency, at home and abroad, than through any other
the world. They employ as therraminers, specification writers and draftsmen that can be found, many of whom have been se lected from the ranks of the Patent Office
SIXTY THO USAND inventors have availed entions, and procuring their patents.
MUNN \& CO . , in connection with the publication of the scientific Ambrican, continue to examine invention onfer with inventors, prepare drawings, specifications, an sssignments,attend to filing applications in the Patentoffic pay while pending before the examiner. This is done
step through their branch office, corner F and 7 th streets, Wash atents, trademarks, and reissues, attend to rejected cos prepared by the inventor or other attorneys), procure copy rights, attend to interferences, give written oplnions on matters of infringement, furnish coples of patents, and, in nd in foreign countries.
A special notice is made in the Scientific American o Anvenions patented through this Agency, with the name art or whole, to persons sttracted to the invention by such notice.
Patents obtained in Canada, England, France, Belgium, Colonies, Russia, Prussia, Spain, Portugal, the Britis ranted at prices greatly reduced from former rates, Se for pamphlet pertaining specially to foreign patents which states the
country

Copies of Patents.
Persons desiring any patent issued from 1836 to No em ber 26.1867 , can be supplied with offcial coples at a rea sonable cosh the price depending in g8 8 an an specifcations, mas be had by remitting to this office $\$ 1$ A copy of the claims of any patent issued since 1836 will be furnished for $\&$.
When ordering copies, please to remittor the same a above, and state name of patentee, titlo of invention. and
date or patent. date or patent.
A pamphlet
A pamphlet containing the aws and full directions for oound Reference Book, gilt edges, contains 140 pages an many engravings and tables important to every patentee and mechanic, and is a useful handbook of reterence for ev erybody. Price 25 cents, mailed free. Adaress

Publishers SCIENTIFIC AMERICAN
37 Park Row, N. Y.
branch Offic

gatuextisemfucs,
Back Page : : : : $\quad \$ 1.00$ a line.
Inside Page
cents a line. Engravings may head advertisements at the same rate
perline, by measurement, as the letter press. Advertisements must be received at publication offce as Honn to

TANTATE of SODA Upright Stationary Engines, Strong, Simple, Safe, and Se 6, and 8 Horse Power
GRIFFITH \& WEDGE,
Zanesville, Ohi

 AMERICAN Journd of SGiplle,

Chemistry,Physics, Geology,Mineralogy
Natural History, astronomy, Meteorologr, etc.

COLD ROLLED SHAFTING

 ictitdral and indostria EXPOSITION WH1 be Hold on the Fair Grounde, at 26, $\mathbf{N a 7 6}$, and

FOR CHARLIE'S PRESENT. Get the ToM THUMB TrLEGRAPH, put ip tr neat
littie boxes contatinng working sounder, telegraph hap-
 Can pe seen in practical operation at the e sclecentife

 such as the magnetic curves, electric light, lifting
wetghts, making compasses, magnetizing knives, elec-tro-plating, \&c. F. C. BEACH \& CO., makers, 246
Canal St., near Center St., New York.
Todd \& Rafferty MachineCo.

NEWSPAPER FILE.

An Unpreceaented Success. The NILES ENGINE. Thousands Already Sold.

Wrinkles and Recines

 thorities, the most valuable Handbook ever compiled for Engineers and Mechanics of every class. by Joshua Rose, which has appeared during the pastesyear in the Scientric year in the SCIENTIFIo AmerionN-Useful new papers
on mechanical operations by distinguished experts-Hunon mechancal
dreds of knotty points in Mechanics and Engineering fully explained in terms that every one can understand. No high mathematics or intricate formule. Recipes of all kinds for industrial processes, for cements, for mak-
ng simple instruments, etc. Hints for farmers and for ng simple instruments, etc. Hints for farmers and for
housekeepers. The whole is a collection of the very best practical hirs, have been sent to the Scirntific Amirions by
yeal its correspondents and contributo
1mmense variety of new material.
Price \$1.50, post patd.
pages. Large pocket-book size.
pages. Large pocket-book size.
Wrinkles and Recipes and Sclentifc American for on
year 84.20.
Address

| $\begin{array}{c}\text { Address } \\ \text { P. O. Box 772. }\end{array}$ |
| :---: | \(\begin{gathered}H. N. MUNN, Publisher,

3y Park Row, New York.\end{gathered}\)

TMPORTANT FOR ALL CORPORATIONS AND

 Hamilton, Ohio. HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY
W. B. FRANKLLIV, V. Pres't. J. M. ALLEN, Pres't. J. B. PIFRCE, Sec'J.

Schlenker's Stationary
Revolving - Die Bolt Cutters, HOWARD IRON WORKS, BUFFALO, N. Y.
 Niagara
SteamPumpWorks
 charles b. hardick, 23Adamsitree

IRON PIANERS,

The Standard-Best Stock-Finest Finish D. ARTHUR BROWN \& CO, Fisherville, N. H. T OULMIN'S ELLIPSOGRAPH-Draws ellipses

BUILDERS

 Send for Catalogue of booksBIokNELL \&Co. $27 \mathrm{Warren} . \mathrm{N} . \overline{\mathrm{F}}$ W. C. DUYCKINCK Railway, Machinists' and En gineers' Supplies,

$\$ 5$ a year by mail, post-paid. Send 10 cents for Specimen Copy TO ILLUSTRATE AND DESCRIBE the many interesting themes and objects presented in the
Great Centrinial International Exposition of 1876, and also to meet the wants of that large class of readers who desire an increased supply of Scientiflc Information, particularly of the more Technical and Detailed character, we shall
issue a special publication, entitled the SCIissue a special Publication, entitled thi sci-
ENTIFIC AMERICAN SUPPLEMENT, to be printed weekly during the Centennial year of 1876, and, perhaps, permanently thereafter. Each number will have sixteen large quarto pages, issued weekly, printed in the best style, uniform with the SCIENTIFIC AMERICAN, but sepa-
rately paged. The SCIENTIFIC AMERICAN SUPPLEMENT International Exposition, will embrace a very wide range of contents, covering themost recent and valuable papers by eminent writers in all THE PRINCIPAL DEPARTMENTS OF GCIENCE AND USEFUL ENOWLEDGE, to wit:
cing New Chemical Discotallurgy.-Embra

 2. Mechanics and Engineering.-The
latest and best papers upon Steam Engineering,
Railway Engineering, Mining, and Civil Engineer
 3.-Electricity, Light, Heat, Sound.-
 Electric Eng Ines, New and Userul appilic.
Electrictity in the Arts, with engravings. structures

5.-Technology.-New and Useful Invention

 -Technology.-New and Useful Inventionand DDscoverries retatinn to THE ARTS; Improve-
ments In Photography Printing, New Implements, ment In Photography Printing, New Implement
New Machinery New Proceses New
provectipes, Im

6.-Agriculture, Botany, and Horticul ture.-New and Useful Information in all branches of Ariculture. Descriptionsor New Plants, Trees,
Shrubs, and Fiowers, New Useful, and Interest
ing Facts in relation to Cuitivation, Propagation-
\%.-Ru
The Latest Informatio ty or Miscellaneous Information, pertalning to Ru 8.-Materia Medica, Therapeutics Hygiene.-Exhibting the progress of Medical
Sclence in various branches ; New Medicinal pre parations, New Heaith Appliances, and much In
teresting Information.
9.-Natural History and Zoology.-Th Latest Investigations. Discoveries, and most Inter-
esting Information in this department of Science.
10 \& 11.-Meteorology, Terrestrial Physics, Geography.-Accounts of Interes Ing Atmospheric and Terrestrial Phenomena, Tra
vels, Explorations and Dlscoveries, etc.
estigation and $_{\text {and }}^{\text {mest }}$ Interesting Geological Investigation 13.-Astronomy.--Recent Interesting Discover ies and Information, with Reports of A stronomica
Phenomena, Progress, New Instruments, etc.
TERMS:-Scientific American Supple ment, one year, post-paid, 85.00 ; half year, $\$ 2.50$

Mill FurnishingWorks

THE BEST INJECTOR
 Ovor 15,000 Now In Uus Hero and in Burope

MIREROPE

Portiand Cement.

Steel ${ }^{\text {Th }}$ Tube Cleaner.

COVERING
WITH " AIR SPACE" IMPROVEMENT
Saves 10 to 20 per cent. CHALMERS SPENCE CO
foot E. 9th St., N.Y:; 1202 N. 2 nd St., St. Lou1s, Mo

Scinnuricican

For 1876.
The Most Popular Scientific Paper in the World. Thirty-First Year
Only $\$ 3.20$ a year including Postage
THE SCIENTIFIC AMERICAN, now in its 3ls year, enjoys the widest circulation of any weekly newspaper of the kind in the world. A new volume commenced January 1, 1876. Published week-
1y. Now is the time to subseribe and to form clubs.
The Contrants of the SCientific american mbrace the latest and most interesting informa Scientific progress of the world ; Descriptions, with beautiful Engravings, of New Inventions,
New Implements, New Processes, and Improved New Implements, New Processes, and Improve Industries of all kinds; Useful Notes, Recipes, Workingmen and Employers, in all the variou

EVERY NUMBER contains sixteen large quart pages, elegantly printed and illustrated with many
engravings. The year's issue contains 832 large ongravings. The year's issue contains 832 larg pages, equal to four thousana book pages, at a cost criber. Fingineers, Mechanics, Telegraphers, Inventor Manufacturers, Chemists, Photographers, Phy of all Professions, will find the SCIENTIFIC AMERICAN most useful and valuable. Its page teem with interesting subjects for thought, study and conversation, and are an unfailing source of ew and instructive in formation. As an Instruc has noequal. It is promotive of knowledge and progress in every community where it circulates t should have a prominent place in every House hold, Reading-Room, and Library.

TERMS OF SUBSCRIPTIONS.---POSTAGE One copy Scientific American, one year.... $\$ 3.20$ ne copy scientific American, $1 \times$ month 1.00 One copy Scientific American and one copy
Scientific American Supplement, both
for one year, post-paid.............. 7.00
copr Scientific American, one year, 50 and one copy Science Record........... 5.20 those who form Clubs o procure Subscriptions. A beautifully illuminate Subscription List, also Prospectus and Rates, sen

MUNN \& CO.

SPARE ROW, NEW YORE

