

I WEEKLY JOURNAL OF PRACTICAL INF0RMATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.

SLOTTING MACHINES

We illustrate herewith a recently constructed slotting main the Messre Now \& , of Notingham, an It a . It is a tool of grat stign, embodies several improvements which enable the work under control It will be seen that the tool is fitted with a compensating balance, A, to the ram, acting in any position the ram may attain. It steadies the stroke and takes up any back lash that may be in the slide and connections. One end of the compensating balance lever is formed into a slot, carrying sliding blocks from the crank pin,giving the quick return and adjustable stroke. The link connecting the lever o the ram is fired at the ex. the ond of the lever, which reme end of the lever, which nsures an almost direct verical thrust without any side pressure. This arrangement relieves the ram slide of considerable friction, and thus effects a direct saving in wear and tear. The ram is provided with a bearing of exceptional ength, so that it may be well and steadily directed in its stroke. A full stroke can be iven, or a short stroke, close o the table or farthest from it. The screw for adjusting . hem ght of ram is worked rom the front side at the ottom of the slot, B, for convenience. The machine is so rranged that all the movements, C, for the slide and tables may be worked from he side of the machine at which the workman stands, where are also placed the fly wheel and driving cone, with gearing at the opposite side. This arrangement has the double advantage of placing all the movements and adustments to the machine within the convenient control of the workman, who has herefore no occasi wh to moving from the tron back of the machine, and from back to the side, and then to mount on the table to adjust the ram, as in the ordinary machines, when setting work for operation. Δ urther and most important advantage is that the machine can be placed as conveniently to the line shafting for drivng as an ordinary lathe, the cone, D , being in parallel position to the shafting, and not at right angles, as in the or dinary way, where the cone is at the back of the machine. There is also ample provision made for varying the slide feed motions from one to ten teeth; and the circular table is provided with a simple and improved canting motion, so as to give a fixed and correct strip in key-way slotting. The proportions of the whole machine have been carefully considered in design and de tail.

Chinese Acrobats.

A party of Chinese tumblers, lately introduced into the Chinese theater, San Francisco, are indeed marvels in their line. Δ number of athletic Mongolians appear, stripped to the waist, and begin a sort of combat on the stage. At first the fighting appears to be promiscuous; but six or eight finally ally themselves against one man and try to overcome him by springing against him and striking him full in the breast with the soles of their feet. He meets this curious mode of attack by standing like a statue, while the others fall heavily upon the floor. A number of tables are next brough

NEW ENGLISH SLOTTING MACHINE.

to break every bone in his body; but he leaps up again im mediately and turns back handsprings across the stage. Again he climbs to the top of the tower of tables, while a second lies down upon a table a few feet from the base of tower. Turning a somersault in mid-air he falls upon the other body, the two breast to breast, and bounds off again with a second somersault. Other acrobats climbed to vari ous altitudes and fell upon the stage, alighting square upon their backs with a force which was astonishing. These feats are all executed by men in a semi-nude condition, so that there is no chance for padding their clothes. While the Americans in the theater applaud, the Chinese make no de monstrations of approval, but sit looking stolidly on. The
managers informed the reporter of the San Francisco Call that the tumblers are trained from childhood, and become habituated to the terrible concussions only by years of practice. He added that many are killed in training, or maimed for life. None of their feats are graceful, but simply indicate a tremendous amount of strength, nerve, and endurance

A New Method of Finishing Photographs.
"In the first place, enamel your print, as enameling, though not absolutely a sine quâ non, is a decided advantage. We will suppose this has been effected, the subject having been printed in an oval. Now let a mask be constructed, of eight-sheet cardboard, of suf ficient size to entirely cove the enameled and mounted picture, with margin to spare glue a piece of sand paper on one surface, rough side out and when dry cut out an aper ture of the exact dimension of the picture to be finished taking care the edge is accu. rate and smooth; adjust thi paper die, so to speak, on the face of the enameled picture and apply pressure. Passing hem through an ordinary rolling press answers the pur pose well. The result is tha the parts in contact with th sand paper surface are rough ened or rendered matt, offering pleasing contrast to the po ished surface of the picture and in this consists the no velty.
"Paper lace and various tex tile and other fabrics can b substituted for sand paper, o metal plate could be en graved to produce any pa tern. Many substances wil suggest themselves to the ex perimentalist, and variety o ornamentation can be easily devised by altering the shap f the mask. For my ow part I prefer sand paper to most other substances. An degree of fineness of surfac may be got by this means, an by slightly shifting the posi tion of the mask and putting through the press after each alteration
"I think that ornamentation when produced by merely al ering the texture of the sur face, is of a much more refined character than when gold o color is applied for the sam purpose. Theplanheredescri bed has been found thoroughly workable with little troubl nd less expense as one san aper mask will impress pat number of surfaces its renewal is most easily ma naged. All I can say to pho ographers. more than this; is to advise them to-try it." Edioard Dunmore, in the Bri tish Journal of Photography

Alleged New Cereal

 A new cereal has been grown in the State of Oregon and thus far no one has been able to classify it; for while it bear a general resemblance to wheat, yetits stalk, mode of growth and heavy filaments cause it to be taken for rye or barley by the most experienced farmers. The grain was originally discovered in the stomach of a wild goose, by a farmer rom seven to ten stalks spring from one root, and attain a ight, when ripe, of four and a half to five feet. They ar very thin, compact, of a bright straw color, and extremely hard, as if they contained a large quantity of silex.The thread on a $\frac{8}{8}$ inch gas pipe will sustain a weight of 5, 000 lbs., $\frac{1}{2}$ inch, $7,000 \mathrm{lbs}$., and $\frac{8}{4}$ inch, $9,000 \mathrm{lbs}$., so that chandeliers cannot readily be shaken from their supports.

Frientific Ammrican.

MUNN \& CO., Editors and Proprietors. published weeziy at
NO. 37 PARK ROW, NEW YORK.

o. d. MUNN.	А. е. вEACB.

TERMS.
One copy, one year, postage included..
CIUbRates.
Ten coples, one year, each 8270 , postage included...
By the coples, same rate each, postage included........ subscriber then recelves the paper free of charge.
Notr.- Persons subscribng will please to give their full names, and Poss
Office and Still ofice and State address, plainly written. and also state at which time they the receipt of the order. When requested, the numbers will be sent from from January 1st, when the volume commenced. In case can be supplied from January 1st, when the volume commenced. In case of changing rest-
dence, state former address, as well as give the new one. No changes can be made unless the former address is given.
volume Xxxiv., No. 1, [New Series 1 Thirtieth Year.

the scientific american supplement

 For the Week ending January 1, 1876.
table of CONTENTS

III.

${ }^{\text {IV }}$ CHEMISTRY- Analysis of Substances for
v. METEOROLOGY. Climate of the thatial Epoch.-On the Laws on Iowa County Meteorite.
 cal Society.
VII. LESSOVS IN MECHANICAL DRAWING. By Professor C. W. Mac

VIIL- -1 CE . SAALIING .

 COMBINED RATESbe gen
of spon
Remi
Rem
 by postal order. Addres

MUNN $\& ~ C O ., ~ P U B L I S B E R S, ~$
37
Park Row,
ary Single coples of Supplimpat sent to and

etheric force and weak electric sparks.

It was long ago observed that, under certain conditionsor example, when a large number of sparks succeed each ther from the conductor of an electrical machine or from Ley den jar-a spark sometimes appears which differs in marked degree from ordinary electric sparks. It is less in tense in illuminating power, less loud, produces a weaker sensation, and, when the space over which the spark passes is not too small, the center of the spark appears dark. The distinguished investigator, Professor Reiss, who first suc ceeded in producing these sparks at will, calls them "weak sparks.
The apparatus used by Professor Reiss consisted of Holtz machine with a 15 inch plate, electrodes $11 \frac{1}{\mathrm{f}}$ inche
jars being in commupication with the electrodes and the out sides with each other. After the machine had been put in full action, the rotation of the disk was lessened and the
positive electrode gradually withdrawn from the negative positive electrode gradually withdrawn from the negative
one. At first a stream of strong sparks passed between the electrodes, becoming less numerous as the distance increased When the electrodes were about an inch and a half apart weak sparks appeared, with an occasional strong spark, as separating the electrodes still further, strong zigzag sparks appeared, and with further separation the electricity was dissipated in the ster and brush forms. Occasionally weak sparks are produced with a single jar, but not, as yet, at will.
The characteristic of the weak spark is an exceedingly small momentary flash broken by a perfectly dark spot, variable in size and in position, but always nearest the negative electrode. The negative part ends in a sharp point the positive in several points, and is often bent aside, the two parts seldom lying in a straight line. The color of the spark is reddish; and though far weaker than the strong spark, its light is intense enough to be visible in full day light. The sound of the weak spark is as unlike the crack ing noise of the strong spark as that is unlike the sound mitted by the brush discharge, making it possible to disinguish weak sparks by ear even at a considerable distance Another remarkable peculiarity of the weak spark is the narrow range which the adjustable electrodes may have while producing them. Strong sparks, brushes, and the glow may be produced with variabledistances between the electrodes, but not so with weak sparks. Professor Reiss speaks of producing with his machine strong sparks, varying as much as five inches in length, but weak sparks appeared only when the electrodes were separated 21 or 22 lines. A few weak sparks were also obtained both above and below the electrodes, together with a large number of strong sparks, indicating that, in order to obtain weak sparks, not only is a certain electric density required, but also a particular arrange ment of the density on the electrodes.
From these and other experiments, Professor Reiss con cludes that the weak sparks present a new (that is, newly recognized) form of electric discharye, a form relating especially to discharges of the least electric density.
These observations are of special interest just at this time aasmuch as the phenomena in question were at first though by us to correspond with those to which Mr. T. A. Edison pplies the name otheric force. The truth is that the two set f phenomena are distinct and apparently unrelated.
Thus far all attempts to generate the Edison "etheric orce" by means of an apparatus such as Professor Reiss employed have been fruitless. It has been produced only by means of an interrupted current from several electropoion ells, using a vibrator magnet or an electro magnet operated on by an ordinary telegraph key, the current following wire connected with the core of the magnet or with a piec of metal within the magnet's sphere of influence. The rce manifests itself as a spark when the wire is rubbed r gas pipe is piece of metal, as a knife blade; or when two carbon point are brought in contact in a dark box, one carbon being con ected with the wire leading to the magnet, and the whole ap paratus being carefully insulated to exclude inductive elec ricity. Sparks are also obtained when the conducting wire is ubbed by a lead pencil or a piece of metal held in the hand and even when the wire is rubbed by its own free end. Th onducting wire does not require to be insulated. It may be ed through water, wound around large bodies of metal, or railed along the ground, yet the sparks appear. One rain ight Mr. Edison led the wire from the vibrator out of doors, across the sidewalk, up and down the block in the gutter, through which a torrent of water was pouring hence by an alley way to the rear of his laboratory, and thenc p stairs to the floor above, where the sparks were distinctly lustrated in carbon points in a dark box. (This bis rator was connected by means of a wire with the cere ystem of gas pipes of Newark, whereupon signals were ransmitted, without other connection, to his house in a dis ant part of the city. These experiments, however, do no prove that any 'force" traversed the wire or the gas pipe as the force might, by short circuit over the tadle, hav reached the carbon points.
The hypothesis that etheric force, so-called, may be a ne or hitherto unrecognized mode of slectric action is suppor ed by the appearance of the spark, which resembles that of alvanism of moderate tension; by its preference for meta ic conductors; by its rapid motion, its velocity for short dis hough but slightly, by electric non-conductors.
It differs from electricity-especially inductive electricit to which its sparks were at first attributed-in that its sparks are different in appearance and effect. They scintillate, and equire the actual contact of the points at which they ap pear. It differs from electricity in general in its entire inde pendence of polarity. It does not require a circuit. It doe not require insulation. It will not charge a Leyden jar. I fails to affect chemical compounds which are extremely sen sitive to electricity, as, for example, iodide of potassium. It has no effect upon electroscopes or galvanometers. It is not felt upon the tongue, and causes no contraction in that mos sensitive of all tests, a galvanoscopic frog. In Dr. Beard's experiments, the force was passed through a frog, causing no contraction; yet the same frog contracted in response to alvanic current from one cell, after it had overcome a re sistance of over one million ohms, or about 75,000 miles
elegraph wire. This absence of chemical and physiological ffect is probably owing to the extreme facility with whic he force traverses the substances experimented with: mee ing little or no resistance, the force passes on unchanged where electricity would be wholly or partially transmuted in to some other mode of motion, resulting in chemical o physiological action Substances which strongly resist the assage of electricity-glass, hard rubber, etc.-have much ess influence upon "etheric force:" so much less that such non conductors of electricity may be practically regarded as ood conductors of the new force
Enough has been said to show that Professor Reiss and Mr Edison are pursuing two widely different lines of investiga tion. So far from being identical, the phenomena are at va riance in every particular: the cause of the one being statical lectricity of low tension, and the cause of the other-etheri Corce, as Mr. Edison calls it-being, if not a new and dis inct phase of force, as he suspects, at least a new and hith to unstudied phase of electricity. In either case, Mr. Ed son will rank with the most fortunate and eminent of sci antic discoverers.
Since the above was written, Mr. Edison has sent us the ment
To the Editor of the Scientiflc American:
I have ascertained that the slight contractions in the legs of a galvanoscopic frog, upon the passage of the etheric cur ent through it, were not caused by electricity, but by the
ransmission of mechanical longitudinal vibrations by the el ectrical vibrator over the conducting wire, as was proved by a tuning fork and by a resined pad. In fact the tuning fork, uring vibration, would produce contractions when held on nch away from the frog. When the etheric current was passed through the wire and frog, without the transmission
of mechanical vibrations, not the elightest effect was pro duced, although the frog exceeded in delicacy any of those previously tested.
Further experiments in other directions have been made which resulved in rendering the phenomenon more inexplica ble. An uninsulated wire proceeding from the source o power (highly insulated, of course) was taken into the street any laboratory by another door, and up to the floor above the ne where the enerator was, Excellent sparks were draw from that end of the wire, although the ground the wir from that en of the wire, although the
laid on was wet, it having rained all night.
Newark, N. J., December 8, 1875.

TO ENGINEERS

With the opening new year, we have the satisfaction of being able to command in our SUPPLEmENT a greatly in reased amount of space-no less than sixteen large page very week-to be devoted, as heretofore announced, to sci ntific topics of the greatest value and utility to our readers. We especially purpose to make the Engineering De artment of the Scientific american Supplement as ull, complete, and valuable as possible: to this end we invite Engineers to send us for publication, whenever the can, full copies of engineering plans, with detailed drawings and specifications, of new engineering or mechanical enter prises, mechanisms, and public and private works, of nota le character or design. These we shall engrave and pub ish when possible, giving due credit to the parties who avor us.
All plans and drawings should exhibit the scale to whic hey are made; and care should be taken in the specification to give, accurately and fully, all principal dimensions. Pa pers thus forwarded to us will be carefully preserved and re urned on request
The amount of fresh and important engineering informa tion furnished by our Supplement in the course of the yea will be very extensive.

POWERFUL EXPLOSIVES.

The recent disaster at Bremenhaven, Germany, in which so many persons lost their lives, calls public attention to the reat danger attending all explosive preparations in whic nitro glycerin is the active ingredient
Dynamite, called giant powder (infusorial earth and nitro glycerin), dualin (sawdust saturated with nitro-glycerin and saltpeter), lithofracteur (dynamite with coal, soda, saltpeter, and sulphur), vulcan powder (a product similar to litho-frac eur), rend-rock, and many other compounds before the public nder various names, which derive their explosive force from itro-glycerin, are especially dangerous, and should not be llowed to be stored or transported, except under special con ditions; for although, when freshly made, they are not so liable to explode by friction or slight concussion as the terri ble liquid to which they owe their potency, they are all o hem exceedingly sensitive to decomposition, excited by change in temprratare which is followed by generation o heat, and is the fororunner of spontaneous combustion
Professor Draper, in one of his works on popular science tates that Nobel was led to the experiments from which re sulted dynamite by the fearful explosions of nitro-glyceri t Aspinwall, San Francisco, Sydney, North Wales, and else where; and he adds that M. Guyot, a French chemist, has shown that the nitro-glycerin may exude from its absorbent, and, saturating the paper of the cartridges and boxes, reas sume the state in which it is readily exploded by a sligh blow
Nitro-glycerin has a sweet, pungent, aromatic taste, but produces a violent headache if placed upon the tongue or even allowed to touch the skin at any point; thus those toring with it or its compounds suffer excruciating pain. also freezes at a very high temperature (30° to 40° Fah.) order to explode it. This operation, on all the compounds alluded to, causes the nitro-glycerin to exude; and if they

\mathscr{B} cientific American.

are not quickly used, decomposition is liable to set in. And if once the absorbent yields up its nitro-glycerin, and the compound becomes moist, it will explode by a slight jar or shock. (See W. N. Hill, "On Certain Explosives.)
At this time, when engineering operations of vast extent are in progress and in contemplation, it is useless to expect that the employment of such materials, dangerous as they that the employment ever be discontinued; and it becomes the duty of scientific men to look for some more controllable explosive. Such a preparation is found in pulp-compressed gun cotton, whose density is 62 lbs. per cubic foot, and it is considered six times as strong as gunpowder.
Vast strides have been made in improving this material by Professor Abel, of England, in the last few years; and his patent process enables him, it is stated, to manufacture it with perfect safety, and to transport and explode it in a wet state, and even store it under water without deterioration.
The English War Department recently appointed a special commission, composed of nine well known officers and gentlemen, to inquire into the whole system of manufacturing, storing, and using the different known explosives. In arranging the substancesia the order of relative danger, they gave them thus: Nitro-glycerin, gunpowder, dynamite, lithofracteur, and, lastly, compressed gun cotton. "The investigation," writes a member of this special commission to the
London Times, in April of this year, "was entered upon London Times, in April of this year, "was entered upon
with a certain amount of prejudice against gun cotton, ariswith a certain amount of prejudice against gun cotton, aris-
ing from the catastrophe which occurred at Stowmarket in ing from the catastrophe which occurred at Stowmarket in
the year 1871 A careful inquiry into the circumstances, however, conclusively showed that it was not the result of accident, but that it was caused by the wilful and malicious act of some person, possibly not aware of the grave consequences of this criminal proceeding."

I feel," the writer continues, "that any one who will read the able and erhaustive report of Major Mujendie, R.A., on this subject must arrive at this conclusion ;" and he further adds that
" the improved gun cotton is manufactured by an entirely wet process throughout, the last stage being the formation of disks or short cylinders of various diameters by hydraulic pressure, in which state they contain 18 per cent of mois ture, which is increased by the addition of water to 25 per cent, for the purpose of securing uniformity and a larger margin of safety, and because the gun cotton in this state can still be exploded, but only under special conditions ap plied by an expert. This fact was not known till some time after the date of the explosion referred to, it then being the practice to dry the disks and to store and transport them in that condition. In that state gun cotton cannot be exploded oy any collision, however viol nnt, even by a rifle bullet fired into it; nor even intlamed, unless it is enclosed in strong hermetically sealed cases, so that it might be transported by railway if some simple precautions were taken. In the damp state, as exclusively offered for transport, and without the appliances alluded to above, it cannot even be ignited, much less exploded, either by a spark, by heat, by friction, or by a collision, even if it resulted in the extreme case of the con tants of a locomotive fire box being emptied upon a truck full of gun cotton; while, if exploded surreptitiously, it must be the act of a skilled malefactor, provided with the neces-
sary appliances of dry gun cotton, waterproof materials, special detonaters, patent fuze, or electrical apparatus, and thor oughly acquainted with the modus operandi.
The result of the English investigation caused England Germany, and France to adopt the use of gun cotton for tor pedoes, submarine mining, and in the water shell, the two former governments manu facturing their own, while France has made a large contract with a company (manufacturing under Abel's process in England) to supply it. Walter N. Hill, chemist to the U. S. Torpedo Station, Newport, R. I., in his " Notes on Certain Explosive Agents," in speaking of gun cotton, says: "By the method of Abel, a perfec washing is obtained; and in addition, the material is prepared in a form convenient to use and yet perfectly safe. For
blasting, demolitions, torpedoes, etc., the pulp-compressed blasting, demolitions, torpedoes, etc., the pulp-compressed
gun cotton is an admirable agent. Wet compressed gun cotgun cotton is an admirable agent. ${ }_{\text {ton }}$ is the safest of all explosive agents ; it is not liable to be fired by a spark or a flame, nor affected by blows, friction, or other rough handling. The transportation of gun cotto presents no special difficulties, since there is no danger of leakage, neither is it sensitive to blows. In England, man of the railroads transport it as readily as other freight."
In selecting an explosive, and considering its advantages and disadvantages, too often the health of the employees is taken least into consideration. The smoke from gunpowcaused by the fumes of nitro-glycerin, or even by touching it or any of its compounds, must be most injurious to the health. Dr. Angus Smith, F.R.S., in his report to the Enhealth. Dr. Angus Smith, F.R.S., in his report to the En-
glish Parliament, says, in reference to gun cotton, that, owglish Parliament, says, in reference to gun cotton, that, ow-
ing to its freedom from smoke: "In every trial in which the ing to its freedom from smoke: " In every trial in which the
effect on the senses, or the breathing, and, as far as we can effect on the senses, or the breathing, and, as far as we can
judge, on health, was considered, gun cotton has come off with the highest character. I feel much confidence in speak ing thus highly in its favor."
The value of life and health should be considered by all those who have it more or less intrusted to their power, as in the case of mining operations, where the owners or managers decide upon what explosive shall be used on thei feel justified in calling artention to Professor Abel's much needed invention, which has been tested and vouched for by so many high authorities.

On November 15, 90 miles of new rail ways were opened in Italy, including that from Tuoro to Chiusi.

THE PLUMBER'S HARVEST TIME.

Now is the season of gloomy forebodings for the luckless city tenant. A very large number of houses in this city have been built simply to sell; and while their construction is frequently bad, the owners often insist upon putting in plumbing hat is perhaps a shade worse than anything else. We have seen nearly a whole ceiling drop in a new house, because a plumber had forgoten to make a connection between a waste pipe and a bath tub. This is a specimen of a state of affairs in which constant trouble with the water arrangements is to be expected, and which cannot be guarded against even by average care. The occupant may find that his street pipe will freeze early in the winter ; and if he seeks a reason, he will discover that the builder, in cutting into the rock which underlies very many New York up-town streets, has only blasted out the cellar, and the authorities have made a trench in the street deep enough for the mains; but the intervening ridge of rock between the dwellings and water mains is left, because it was expensive to remove it. The supply pipes are curved up over it to reach the house, and, of course, the uppermost part of the curve is far within the frost line of the ground, and sometimes close to the surface; and the freezing of that pipe is a necessary consequence. Another favorite plan of builders is to supply three houses from one connection to the main, a cheap dodge to avoid tapping the large pipe and ripping up the street for each house. The central house has a straight pipe, and the houses on each side have branches therefrom. The beauty of this is that, when the central pipe freezes near the main three households are deprived of water instead of one.
With good plumbing work throughout a house, there is no take proper precautions to actidents, if the occupant will take proper precautions to prevent them, or if, in event of casualties happening, he inform himself as to what invention
has done since last winter to help him out of his dilemma. The simplest way to prevent pipes freezing when water is abundant is to let the water run in a fine stream constantly from one of the faucets. If there is a strong head of water in the upper stories, open the kitchen faucet wide at night, and drain all the pipes through the house above, shuting off the water from the street for a few minutes during the operation. In this way, the house pipes, being empty, cannot freeze; and the water. turned on again, will maintain a constant circulation from the main to the faucet, which, as before stated, should be left partially open. There is usu ally a stopcock located near the kitchen sink, which can be urned so as to prevent the water re-asconding above th itchen floor. If the house is warmed with a furnace, an tands between other occupied houses, the chances of th pipes in the walls being frozen is verys slight ; but if the house
nest door is empty, and the pipes are carried up on the wal hrough which no heated chimneys run, then freezing is uite probable.
When a pipe from the street freezes, the range fire should eat once extinguished, as otherwise the water back will bither blow up, or be burnt out: in the former case serious damage is possible. Last winter, the plumbers dug up the streets, and built fires over the supply pipes, and wen through other operations, which generally resulted in a bil of from eighty dollars to one hundred dollars. At the pres ent time, if an invention which we recently examined prove as useful as appearances indicate, the cost of such proceed ing will be greatly reduced. The apparatus is a smal team boiler, heated by a pan of charcoal beneath it. Th hot water-not steam, as in this machine a constant supply of water against the ice is found to thaw the same quicker paradoxical as the fact may appear-is foreed into a smal rubber tube, the end of whish has a metallic tip, and around which stout copper wire is spirally wound. This wire is hel a a coil in a rotating wire cage, and freely unwinds as it is pushed into the pipe. When the end meets the ice, the pushing by hand is stopped, but is continued by an ingen rally before it by the continual stream of hot water issuing from the end of the pipe.
We might add that there is still an excellent field for avention in other devices of the same description; and at he same time we might suggest, to inventors already in pos ession of similar patented apparatus, that now is the time to bring them to the notice of the people.

THE ANALYSIS OF COW's MILE.

The universal complaints as to the quality of the milk sold in cities, which is almost universally diluted with water make the diffusion of knowledge on the subject of great im portance to the public health.
There is an instrument used called a lactometer, which is nothing but an hydrometer, such as is used to ascertain the strength of distilled liquors, etc. ; but for use in milk it is specially graduated from $1,000^{\circ}$ to $1,050^{\circ}$ or thereabouts, and it indicates the specific gravity of water, in which it sinks deepest,at $1,000^{\circ}$,and that of the heaviest milk at $1,032^{\circ}$. The specific gravity of milk may vary from $1,026^{\circ}$ to $1,032^{\circ}$; if i is less than $1,026^{\circ}$, it is certainly diluted with water, and bove $1,032^{\circ}$, it has been thinned of its cream, as the pre sence of cream makes the average gravity of the milk lighter.
Therefore, if milk is skimmed and watered both, the lacto meter gives no satisfactory indication; and it is surprising that the instrument has not been rejected by practical persons long ago.
Unfortunately, there is no test by which the quality of milk can at once be correctly determined. The comparativ transparency may be considered to be a better test than the gravity, as it will show if the milk has been skimmed, as well as if it has been diluted with water, but its indications
are only approximate. A better way is to let the milk settle, at a moderate temperature, in a tall cylindrical glass; in 24 hours the cream will have collected on the top to the thickness of one fifteenth part of the hight of the milk. if the milk is pure; if the milk has been skimmed or diluted, the cream layer will have less thickness. This operation, however, takes 24 hours before any result can be arrived at besides, it indicates only the quantity of the butter, and not the proportions of the other ingredients, nor the presence of adulterants ; so that a regular chemical analysis is the only reliable method.
The best analytical method is that of Brunner, which takes only 25 minutes to accomplish. The milk is placed in a glass vessel, and the gross weight of milk and glass is as certained with a good balance; then 60 or 90 grains of the milk is poured into a shallow metallic capsule of about $2 \frac{1}{2}$ inches diameter, the exact quantity being determined by ascertaining the diminution of weight of the glass vessel and its contents. Then 450 grains of pure fine quartz sand is added, which, however, must have been cleaned from dirt and fine powder by rubbing in a sieve; and the sand and milk are mixed with a small spatula, so that the milk is absorbed and the whole appears like a uniformly moist sand. Then the capsule, with sand and spatula, is again weighed, and evaporated on a water bath at 212°, being continually stirred after fifteen minutes, the capsule is removed and cooled, and the loss of weight ascertained. It may be well to heat the capsule again for 5 minutes, so as to see if any further loss of weight can be observed; but this will rarely be found to be the case. The loss will be theamount of water contained in the milk. and this must be no more than $78 \frac{1}{2}$ per cent. Good cow's milk contains from 77 to 78 per cent of water and if more than $78 \frac{1}{2}$ per cent, say 79 per cent, is found, it certain that the rilk has been watered.
But as refinements in the art of adulteration may have taught the addition of solids, such as sugar, boiled starch, etc., the next test is to correctly ascertain the amount of but

For this purpose, 300 grains of the milk is mixed with half its weight, 150 grains, of charcoal powder, previously cleaned from dust in a sieve; the mixture is dried by mod erate heat (from 150° to $160^{\circ} \mathrm{Fab}$.), and then placed in a glas tube about 2 feet long and of $\frac{1}{\frac{1}{2}}$ inch diameter, drawn ou tits lower end to a narrow opening, which is closed with plug of cotton, to prevent the charcoal from falling through The tube is then suspended in a vertical position, and about 450 grains of ether, or of sulphide of carbon, is poured in his will flow out at the bottom, charged with all the dis olved butter. To secure a complete dissolution of the but ier, the ether is poured back through the charcoal in the tube once or twice, and finally 450 grains pure ether is added in small portions, to wash away the remaining butter-charged ether ; and at last a mixture of 1 part ether and 3 parts alcohol is passed through. All these fluids are collected to gether and evaporated in a porcelain dish, and the butter btained is measured by weight. It should not be much grains of milk, it should be from 10 to 15 grains. But milk ill vary as to butter perhaps more than as to other ingre dients; and it may be considered certain that a proportion of butter of 2 or even $2 \frac{1}{2}$ per cent indicates certainly that the milk has been skimmed, while a proportion of 3 per cent eaves it doubtful whether the milk is pure or has been tam pered with
When the amounts of water and butter in the milk are ound to be normal, it is scarcely necessary to ascertain those of the casein and milk sugar, the tests for which are not so simple. The quantities should be nearly $4 \frac{1}{2}$ per cent of casein and 4 per cent of milk sugar. The other ingredients are chiefly calcium phosphate, $0 \cdot 23$, and potassium chloride, $0 \cdot 14$ per cent; and phosphates of magnesium and iron, with chloride of sodium, are each present in quantities of 0.04 per ent or less.
It is evident that, if adulterants have been added to con cal the dilution with water or the skimming, the above de scribed analysis will show them, either by an excessive quantity of dry residue or by a deficient quantity of butter.

dangerous playthings.

Another factory for the manufacture of toy torpedoes has exploded. The circumstances of the disaster are of no mo ment to any one except the unfortunate victims, and the wner, who is fortunate in escaping similar mutilation. Not
withstanding the average boy's devotion to snap and bang it may be questiontd whether the pleasure afforded by play tings of the explosive sort is anything like a sufficient re compense for the risk attending their production, storage, and use. It has been suggested that the sale of such things should be prohibited and their possession made punishable by fine. The suggestion is sensible and timely. The Cen ennial year, with its intensifications of Fourth of July fervor is upon us, and the popular demand for fireworks threatens to be excessive. It would be a good thing for the country at the beginning of its second century to putaway such child sh things, and adopt a less dangerous mode of manifesting he spirit of jubilation, political or other. Surely our inven ors ought to be able to devise a simple contrivance to serve as a substitute. It is worth trying for, as a public benefac tion as well as for the millions that are in it!

The lagging of steam pipes was lately considered by the Sociéte Industrielle de Mulhouse, France. The president, M. Forey, acknowledged that cork was a good non conductor of heat, but it was costly. The most efflcacious covering, says M. Forey, consists of straw laid length wise, about 1 inch thick, round the steam pipes, tied with string, and covered with tarpaulin or cloth tarred after fixing.

IMPROVED VERTICAL WOOD-BORING MACHINE.

 We recently published an engraving and description of wood-boring machine of English manufacture. The apparatus was a good representation of superior English work manship, and therefore the improvements included in its con struction may be fitly contrasted with those embodied in the latest similar machine of American make, of which we now give an excellent engraving. The points of difference show we think, a preponderance of advantages on the side of our own production, of which the reader can judge for him self by comparing the description of the English machine already published with that which followsThe American has a frame strongly constructed of a hollow column, heavily braced by I-shaped web ribs, and a broad base, well calculated to resist jarring and trembling. The table is also strongly made, and is adjustable to any angle or position. It can be raised and lowered by means of a rack and pinion, turned on its axis, and can be tightened at any length by a simple turn of the handle, which closes a long split bearing. The table proper can be inclined at different angles, and the upper part may be moved out or in, revolved, and adjusted. A cone pulley of three steps enables the operator to run the machine at three different speeds, for large, medium, or small sized machine augers. It has a commodious self-returning treadle, which requires very little power to bring the auger bits to the necessary depth.
Holes can be bored, at any angle, from $\frac{1}{3}$ of an inch to 3 inches diameter, and from $\frac{1}{4}$ of an inch to 12 inches depth. An adjusting stop on the connecting rod gages the depth of the hole. The rests on the table can be adjusted for straight, square, oval, circular, and bent work. The idler pulleys (which are frequentls a source of trouble in such machines) do not need re-adjusting for different hights of the countershaft from the machine. The manufacturers direct special attention to the facility with which a number of holes, with variations of angle, can be accu rately bored. In the slots the radius rately bored. In the slots of the radius brace one or thay in such a way that the table can be swiveled from a horizontal plane to either side; and, as the table slides forward and back ward, and can be turned on its axis, it is obvious that, in a piece of timber, a number of holes can be bored which differ in angle and place without moving the work about. The machine is adapted for boring short as well as long pieces of material, and will do the work, it is claimed, with great ease and rapidity. The countershaft with cone pulley, as shown in the engraving, may pulley, as shown in the engraving, may
be set on the same floor with the machine, or attached to the ceiling, so that chine, or attached to the ceiling, so that
the belt may pass from either side, in the belt may pass from either side, in
an inclined direction or perpendicularly. The tight and loose pulleys are of 9 inches diameter, $3 \frac{1}{2}$ inch face, and should make 250 revolutions per minute.
The machine obtained the first premium at the Cincinnati Industrial Exposition.
Patent applied for through the Scientific American Patent Agency. For further particulars address the manufacturers, Messrs. Bentel, Margedant \& Co., Hamilton, Ohio.

IMPROVED SHOW CASE.

There exists, at the present time, among those who pur pose exhibiting goods at the coming Centennial, an increas ing demand for simple and portable devices adapted to holding articles while displaying the same to good advantage. It is probable that there will be a very large number of small exhibits, in the shape of the handiwork of individuals or of spэcimens and samples of various productions, which must be well protected from possible handling. For neat show cases, after the style of construction of that here illustrated, there should be a ready market, as many exhibitors will find it no small convenience to be able to box up their show cases with their goods, and thus be assured that their display will be well secured and arranged.
The advantages of the invention, which is represented in perspective in Fig. 1, are that it is composed of a number of easily detachable pieces, which allow of its being packed into small compass, and which, when set up, form a strong case, the joints of which cannot work loose through the effects of dampness.

As shown in the sectional views, Figs. 2 and 3, the posts, A, are attached to the bottom of the case by screws,
and in their sides grooves are formed to receive the ends of the panes of glass. On the under side of the top and on the upper side of the bottom are fastened small strips, which also have grooves to receive the edges of the glass, and besides serve to brace the posts in position. The top is also attached to the posts by screws, and by removing it the glass may be easily disengaged, the doors which are hinged to the rear part of the bottom taken off, and the whole case thus separated into several portions. The device thus constructed,

VERTICAL WOOD-BORING MACHINE

those not constructed to take apart. The case may be made of any shape-upright, octagon, or round. The posts and strips can be produced in long pieces, like molding, and polished and finished before being cut. The bottom may be molded with a " frizzer," and the top made with machinery similar to that used for manufacturing sashes. The case may be taken apart and cleaned or repaired without disturb ing the contents. If preferred, instead of screws being used to connect the top and bottom to the posts, poles may be made through the latter, and bolts passed through and

Stlck to Your Business.
There is nothing which should be more frequently im pressed upon the minds of young men than the importance of steadily pursuing some one business. The frequent changing from one employment to another is one of the most common errors committed, and to it may be traced more than half the failures of men in business, and much of the dis content and disappointment that render life uncomfortable. It is a very common thing for a man to be dissatisfied with is business, and to desire to change it for some other, which, it seems to him, will pro a more ucrative employment; but in nine cases out of ten it is a mistake. Look round you, and you will find among your ac quaintances abundant verification of ou assertion.
Here is a young man who commenced life as a mechanic, but from some cause imagined that he ought to have been a doctor; and after a hasty and shallow preparation, he has taken up the saddle oags only to find that work is still work and that his patients are no more pro fitable than his work bench, and the oc cupation not a whit more agreeable.
Here are two young men, clerks; one of them is content, when his first term of service is over, to continue a clerk till he shall have saved enough to com mence business on his own account the other can't wait, but starts off without capital, and with a limited experience, and brings up, after a few years, in a court of insolvency, while his former comrade, by patient perseverance, comes out at last with a fortune.
That young lawyer, who became dis heartened because briefs and cases did not crowd upon him while he was ye redolent of calf-bound volumes, and had small use for red tape, who con cluded he had mistaken bis calling, and so plunged into politics, finally settled down into the character of a middling pettifogger, scrambling for his daily bread.
There is an honest farmer who has toiled a few years, got his farm paid for, but does not grow rich very rapidly, as much for lack of contentment mingled with his industry as anything, though he is not a ware of it. He hears the won derful stories of California, and how fortunes may be had for the trouble of picking them up: mortgages his farm to raise money, goes away to the land of gold, and, after many months of hard toil, comes home to commence again at the bottom of the hill for a more weary and less successful climbing up agrin.
Mark the men in every community who are notorious for ability and equal y notorious for never getting ahead y notorious for never getting ahead, and you will usually find them to be hose who never stick to any one busi ness long, butare always forsaking their occupation just when it begins to be profitable.
Young man, stick to your business. It may be you have mistaken your calling; if so, find it out as quick as possi ble, and change it; but don't let any uneasy desire to get along fast, or a dislike of your honest calling lead you to abandon it. Have some honest occupation, and then stick to it; if you are sticking types, stick away at them; if you are selling oysters, keep on selling them; if you are at the law, hold fast to that profession: pursue the business you have chosen persistently, industriously, and hopefully and if cher , paris of you it will appear and turn to accoun in that as well as or better than in any other calling; only, if you are a loafer, forsake that line as speedily as possible for the longer you stick to it, the worse it will " stick" you.

Animal intelligence.
A retriever dog, whose owner was working in the garden of the Bath Institution, lately killed a favorite cat,a frequenter of the same grounds. Having committed the unprovoked murder, the dog deliberately took the cat in his mouth, carried it some distance, dug a deep hole behind some bushes, and, after depositing the cat therein, carefully re. placed the earth; and had he not been observed, there would have been no eviobserved, there would have been no evi-
dence of the crime. Shortly after, the dence of the crime. Shortly after, the
dog lost his life by poison, probably a

HASENRITTER'S SHOW CASE.

set up with fancy nuts outside. This would give a still|penalty for the offence
tronger joint.
Patented August 31, 1875. For further particulars regarding sale of patent or portions of same, address the inventor, Mr. Robert H. Hasenritter, Hermann, Gasconade county, Mo.

AN alloy for locomotive whistles which will give a good clear sound is made of copper 80 parts, tin 18, and antimony 2.

In the neighborhood of Bath, a gentleman possesses a pair f carriage horses, one of which evinces more than ordinary intelligence when his own ends have to be served. If the horse hears, even in the distance, the very first movement of a mowing machine, he connects the sound with fresh grass, and at once taps with his hoof at the boarding of the stall to summon the coachman for a supply. At first this is done

¥゙rivatific Americau.

gently, but if time passes he imperatively demands attention, or it is doubtful if the stable would contain him. The coachman lives adjoining the stable, and, much to his discom fort, the horse sometimes has imaginary wants during the night, and repeats the some process; and at whatever hour this occurs, the coachman is under the necessity of getting up to attend to him.-Nature.

SCIENTIFIC AND PRACTICAL INFORMATION.

sound made visible.

A sound writer, called an opeidoscope, is a new invention. On the end of a two inch tube is pasted a piece of thin rubber or tissue paper. In the center of this is fastened a piece of looking glass, one eighth of an inch square. Hold this end in the sunand the other end in the mouth, and sing or speak in it. The ray of light reflected from the mirror falling a white surface describes curves and patterns differing for every pitch and intensity, while the same conditions give uniform results.

BROMOFORM IN COMMERCIAL BROMINE.

Reyman found a specimen of bromine to be contaminated with 10 per cent of some foreign substance boiling from 176° to $329^{\circ} \mathrm{Fah}$. He found it to consist largely of bromoform, and he recommends to test every specimen of bromine for bromoform. Too small a percentage of bromine in water saturated with bromine (is well as the characteristic odor of bromoform, which is particularly strong when the bromine is mixed with a solution of iodide of potassium), and the separation of iodide, which can be decolorized by hyposulphite of soda, are sure proofs of the presence of bromoform in bromine.

minting inh that can be bleachei

The ordinary printing ink, as our readers well know, is made from the finest kind of carbon, namely, lamp black, mixed with oil, and is proof against air and all bleaching ageuts. The only method by which it can be removed from the paper on which it has been printed is mechanical. In the manufacture of white paper from old newspapers, the difficu!ty of removing the ink is considerable. We learn from Dingler's Journal that Kircher and Ebner have invented a new kind of iron ink for printers' use, which resembles our writing inks. Iron is dissolved in some acid, such as sulphuric, muriatic, or acetic, and one half of the solution oxidized by nitric acid, after which the two portions are mixed and the black proto-sesquioxide precipitated by means of soda or potash. This precipitate is filtered out, well washed, and mixed with equal parts of a solution of tannic and gallic acids, which produces a beautiful blue black or pure black pigment. This pigment is well washed and dried, and then mixed with linseed oil varnish, forming an excellent ink for letter pressas well as for lithography, wood cuts, and stee! for letter pressas well as and
Paper printed with this ink can be bleached by putting it into a bath of pure water to which 10 per cent of caustic soda or potash has been added. It is left there 24 hours; then put into a rag engine, cut fine, the pulp thrown on a cloth and a!low to drain, washed with clean water to which 10 per cent of hydrochloric, acetic, or oxalic acid has been add ed, digested 24 hours, and again used for making paper.
hydrosulphite of soda in the indigo vat.
Dr. Reimann, in his Fürber Keitung, gives the following account of his observations on the use of the new hydrosul. phite of soda indigo process, during his tour through Belgium. At Verviers it is in successful use, effecting a large saving of indigo. In Simonis's dye house, 12 lbs. of indigo are saved on every 40 lbs. Peltzer has had like success. The only disadvantage is that the process is patented in France, Belgium, and the terms on which the patentees allow dyers to use it are exorbitant. It has not been patented in Germany, and dyers there are free to make use of it, reaping the whole advantage without any expense, and yet it seems not to be in use there.
caving of a coal mine.
At Wilkesbarre, Pa., recently, the walls of a large coal mine caved in. Fortunately the miners were notified of approaching trouble, and all escaped. Huge boulder are said to have been thrown out of the mouth of the tunnel by the compressed air as if they had been pebbles, and the shock of the crash was like an earthquake. The hollow chambers reechoed the dismal sounds, and, taken altogether, the scene was one calculated to intimidate the heart of the hardiest miner in the land.

Where to Look for Arsenic in Cases of Poisoning.
Observations of great toxical importance have lately been made by Scolosuboff (Soc. Ch. August, 1875) with reference to the distribution of arsenic in the tissues of animals in cases of poisoning. Contrary to general belief, he finds the arsenic specially condensed in the nervous tissues. The experiments were made with dogs, rabbits, and frogs. Dogs bear large doses of arsenic readily, taking without difficulty fifteen to eighteen times the quantity which, weight for weight, would
be fatal to man. A bulldog took for thirty-four days gradube fatal to man. A bulldog took for thirty-four days gradu-
ally increasing quantities of sodium arsenite in his food, rising from 0.075 grain to 2.2 grains a day. The results of the poisoning were acute and quite marked. Calling the amount of arsenic feund in 0.22 lb . of muscle 1 , that in the
same weight of liver was 10.8 ; brain, $36: 5$; spinal cord, 37%. same weight of liver was $10 \cdot 8$; brain, $36 \cdot 5$; spinal cord, $37 \cdot 3$. A dog of $24 \frac{1}{5}$ lbs. weight was killed by subcutaneous injection of sodium arsenite, in 17 hours. The arsenic from the brain while in the liver and muscles only traces could be detected.

A GEOMETRICAL PROBLEM

A correspondent recently proposed a neat little geometri cal problem, which has been investigated with interest by several correspondents. We give the problem and solution n full.
Problem.-A square being given, it is desired to draw circle passing through an arch and tangent to the two oppo site sides.
Let ABCD be the square, and let the circle be required to pass through the angle, C , and be tangent to the sides, A D and $A B$. Draw the diagonal, $C A$; it is evident that the center must be in this line, as every point in it is equidistant from the sides, AD and $\mathrm{A} B .{ }^{4}$ Draw a line perpendicular to AC, and produce it until it intersects, through (1, the pro

longations, $A E$ and $A F$, of $A D$ and $A B$. We have then a triangle, FAE, of which the sides, AF and AE, are equal, and in which we have only to inscribe a circle, according to the well known rule of bisecting the sides. The line, AC, bisects already the right angle in A , and by bisecting the angle at F, by the arcs at G, drawn from the points, M and N , as centers, on the line, F G, we obtain (by'the intersec tion of this line with the line, AC) in H the center of the circle, of which HC will be the radius. The circle drawn with this radius will of course pass through the angle, C , of the square; and being the inscribed circle of the triangle, AEF, it will be tangent to all its sides, and therefore to AD and AB , the sides of the square, ABCD .

AN ADDITION TO THE NEW CHROMATROPE.

Since writing the notice of the new chromatrope which ppeared in your journal for November 27, I have made a modification in one of the disks, which gives a very pleas ing effect and considerably increeses the range of illustra tion of the instrument.

Taking the disk alrea dy described as illustrating Dr. Young's theory of color, and which coneach of red, green, and each of red, green, and out by pasting over the glass a piece of black pa glass a plece of black pa per cut out in the man er shown in the accom panying engraving. 'The he colors of the adjacen sectors, K for red, etc., and the shaded portions are those where the glass is uncovered, the solid black indicating the paque paper
When the disk, so prepared, is rotated in the usual way, we have the following effect: In the center we have a circle of white produced by the union of all three colors; next to this a circle of red, the green and violet being here stopped out; next to this again a circle of yellow produced, by the union of red and green, the violet only being here obscured hen a circle of green, then one of blue, then one of violet ad lastly one of purple.
A similar method may be applied to the demonstration of he fallacy of Sir David Brewster's theory, which assume red, yellow, and blue as the subjective primaries.

Pneumatic Telegraph Tubes.

The Western Union Telegraph Company is about to lay pneumatic tubes between the main office of the company and the Broad Street office in this city. Already the pipes and valves have been completed, and the engine is under way If the weather proves favorable, it is the intention to have the tubes in working order by January 1, 1876. There will be two tubes, each of which will consist of a lead pipe hav ang $2 \frac{1}{4}$ inches inside diameter, encased in iron pipe having a protection to the lead. The cylinders of the air pumps for compressing and exhausting the air in the tubes have a diameter of 35 inches. Messages from the main office will be dispatched by means of compressed air through one of the tubes, while those to be returned to the central office will pumps, and valves all being placed in the central office The carriers are made of gutta percha, covered with fel cloth, the forward end being sulficiently enlarged to fill the tube and thus prevent the passage of air in either direction beyond the carrier. It is estimated that the time occupied in sending a message from the central office to the office in Broad street, distance about \ddagger of a mile, will be about 25
seconds, while the arrangements will be such that one car rier, if necessary, can immediately follow another.

Useful Reciper for the Shop, the Household.

and the Farm

A thin film of tin may be applied to iron wire, to give the ame the appearance of silver. The wire is first placed in hydrochloric acid, in which is suspended a piece of zinc. It s afterward placed in contact with a strip of zinc in a bath of tartaric acid 2 parts dissolved in water 100 parts, to which are added tin salt 3 parts and soda 3 parts. The wire should emain for two hours in this bath, and then be polished.
The following will give a good idea of the relative strength of various substances: Made from the best steel, a rod $\frac{1}{4}$ inch in diameter will sustain before breaking 9,000 lbs. ; soft steel, 7,000 lbs. ; iron wire, 6,000 lbs. ; good iron, 4,C00 lbs. ; inferior bar iron, 2,000 lbs. ; cast iron, 1,000 to 3,000 lbs. ; copper wire, 3,000 lbs.; silver, 2,000 lbs. : gold. 2,500 lbs. : tin, 300 lbs. ; cast zinc, 160 lbs. ; cast lead, 50 lbs . milled lead, 200 lbs . ; box or locust. wood, 1,2C0 lbs. ; toughest ash, $1,000 \mathrm{lbs}$. ; elm, 800 lbs . ; beech, cedar, white oak, pitch pine, 600 lbs . ; chestnut and maple, 650 lbs . ; poplar, 400 lbs . A useful rule for converting the weight of one metal into another is as follows: Wrought iron into cast iron, multiply by 0.928 ; into zinc, by 0.928 ; into steel, by 1.010 ; into brass, by $1 \cdot 082$; into copper, by $1 \cdot 144$, and into lead, by $1 \cdot 468$.
The following may be used for reckoning the shrinkage of castings in inches in a foot, except where otherwise noted: In locomotive cylinders, $\frac{1}{16}$ inch ; pipes, $\frac{1}{8}$;girders, beams, etc. $\frac{1}{8}$ in 15 inches; engine beamsand connecting rods, $\frac{1}{8}$ in 16 inches; in large cylinders, say of 70 inches diameter, 10 feet stroke, the contraction of diameter is $\frac{8}{8}$ inch at top; $\frac{子}{2}$ at bot tom; in length $\frac{1}{8}$ in 16 inches. In thin brass, the shrinkage is $\frac{1}{8}$ inch in 9 inches; in thick brass, $\frac{1}{8}$ in 10 inches; in zinc $\frac{1}{4}$ in a foot; in lead, 1^{5}; in copper, same; in bismuth, ${ }^{3}$. nd in tin, $\frac{5}{32}$.
Molesworth gives the following rules for warming and heating buildings by steam: When the external tempera ture is 10° below the freezing point, in order to maintain a temperature inside of 60°, one superficial foot of steam pipe is needed for each 6 superficial feet of glass in the windows; the same for every 6 cubic feet of air escaping for entilation per minute; the same for every 120 feet of wall, roof, or ceiling; 1 cubic foot of boiler is required for every 2,000 cubic feet of space to be heated. A one horse power boiler is sufficient for 50,000 cubic feet of space.
An easy way to drive screws into hard wood is to file a fla about \ddagger inch long on the side of the screw beginning at the point. This cuts the wood and forms a thread in the same way that a tap does. The screw follows and holds well
Dies for use in stocks should be made as follows: Supposing the dies to be for use on bolts of an inch diameter, first fil hem to the stocks, then place between the faces a piece of $\frac{3}{6}$ inch steel; fasten the whole in the stocks and drill a hole the proper size for a tap of the correct pitch, but $1 \frac{1}{5}$ inches in diameter. Then tap the hole with a $1 \frac{1}{8}$ hub or tap having a thread on it of the requisite pitch, taking care to sive the dies a full thread; then cut out the clearance places, tc. Dies made thus will cut steadily, easily, and true, and are not liable to break. The advantage of this plan is that the dies will cut in the center of their width, the sides of the threads serving as a guide at the very first cuttaken, which would not be the case were they cut by an inch hub or tap.

Condensed Beer

Mr. Lockwood describes, in the Journal of the Society of Arts, his patent solid or condensed beer. Beer is taken at its best condition; its alcohol is separated and saved by a method of gentle distillation in vacuo, and the residue is con ensed in a vacuum pan, like milk; when finished, it is en closed in hermetically sealed packages, the alcohol first bein added to it again, and acting as a preservative. The fermen tation, which was present in the beer when it was taken, is uspended by the heating, and the condensed beer remain ound in this condition, apparently for any length of time, a some exists that has now been kept for nearly two years. When re-made by adding water, it is not wort, but real beer having all its flavor and alcoholic strength, and lacking only ffervescence, which can be quickly imparted by reviving he suspended fermentation for a short time in order to de velop sufficient carbonic acid gas to give it the required briskness; or it is fit to drink immediately, if charged witl carbonic acid gas, like aerated water.

' The Times'" on Sewer Gas.

The Now York Times gravely objects to the plan of venti lating sewers by connecting them with the draft of furnaces The remedy is "obviously defective," it avers; "if for no ther reason, from the fact that under certain conditions urnace does not bake and thus disinfect this air.
Consequently "each furnace would be an ingenious ma chine for scattering through the housethemost deadly gases And though, when in full blast, the heat of the furnace would destroy their morbific properties, yet on a mild day with a low fire, we should have sewer gas, pure and simple hrough the whole house.'
For ingenious misapprehension, the paragraph we have quoted could scarcely be surpassed. It seems incredi ble that one could be so dull as to suppose that an emi nent " scientific authority" would propose to supply our ho air chambers from the sewers; but the Times seems to have achieved that distinction : which shows how needful it is to be explicit in making even the most simple and self-eviden propositions. Had the high scientific authority taken the precaution to stipulate that the sewer gas should pass into he fire and not into the air pipes, the opposition of the Times might not have been aroused.

IMPROVED SCROLL SAWING MACHINE.

Another one of those small and comparatively inexpensive machines, which are so useful to amateurs and for general light woodworking purposes, is illustrated in the annexed engraving. It is a new foot-power scroll saw, the advantages of which are principally to be found in an improved and simplified construction
The table is provided with a horizontal rear extension to which the reciprocating saw frame, A, is pivoted. The arrangement of the frame will be readily understood from the illustration. The connecting screw rod, at its rear end serves to draw the front extremitios of the arms apart, thus tightening the saw clamped therein. To the rear of the extension, a curved arm, B, is attached, which carries a plate conveniently located for holding the oil can and necessary tools. Arm, B, has a slotted recess at C, which serves as a guide for the upper bar of the saw frame A band spring may be interposed between sai bar and the arm, to assist the upward motion of the frame and prevent the contact thereof with the upper part of the recess. Beneath the table is a short arm, D, and a slot therein guides in similar manner the lower bar of the frame. This arm is extended downward and is forked to hold the shaft, E, of the gear which receives motio from the wheel and treadle shown. A small fly wheel on shaft, E, assists the rotation of the same, and the crank disk and rod on the fron end form the connection with the saw frame and impart reciprocating motion to the same. The arrangement of the legs with the table is obvious from the illustration, and forms a rigid and substantial support. The machine is adap and substantial support. The machine is adap
ted for fret sawing, and for the cutting out of ted for fret sawing, and for the cutting out of
brackets and similar ornamental wooden arti brack.
Patented through the Scientific American Pa tent Agency. For further information relativ to sale of royalties or of patent, address the in ventor, Mr. Jerome H. Plummer, 1,276 Pacific street, Brooklyn, N. Y.

Activity is Not Always Energy.
There are some men whose failure to succeed in life is a problem to others, as well as to them selves. They are industrious, prudent, and economical; yet after a long life of striving, old age finds them still poor. They complain of ill luck. They say fate is almys against them. But luck. They say fate is alays against them. But the fact is that they miscarry because they have
mistaken mere activity for energy. Confounding mistaken mere activity for energy. Confounding
two things essentially different, they have suptwo things essentially different, they have sup-
posed that, if they were always busy, they would be certain to be advancing their fortunes. They have forgotten that misdirected labor is but a waste of activity. The person who would succeed in life is like a marksman firing at a target; if his shots miss the mark, they are a waste of powder. So in the great game of life, what a man does must be made to count, or it might almost as well have been left undone. Everybody knows some one in his circle of friends, who, though always active, has this want of energy. The distemper, if we may call it such, exhibits itself in various ways. In some cases the man has merely an executive faculty, when he should have a directive one; in other language, he makes a capital clerk, for himself, when he ought to do the thinking of the business. In other cases what is done is not done either at theright time or in the right way. Energy, correctly understood, is activity proportioned to the end.

IMPROVED SAW FILE GUIDE

The annexed engraving represents a new apparatus for guiding the file, during the operation of filing saw teeth, iu such a manner that exactly the same pitch and bevel shall be imparted to each tooth. This is done by suitable indicating devices below described, which also admit, on the sew being refiled, of forming the on the saw being refiled, of forming the the beginning.
The saw is secured in a wooden clamp as shown, and held in a vise. The clamp has grooves on each side and extending its entire length, these serving as guides for rods on the lower part of the frame or saddle, A. The latter may be freely moved along the grooves, and is by them maintained in uniform position as regards the saw.
The sliding frame holds a graduated circle, B, by means of lugs on one side and a set screw, C, on the other. The guide rod, D, passes through apertures in the circle as shown. It will be seen that the latter can be adjusted so that any mark on its peribe adjusted so the man its periphery coincides with a fixed mark on the rame, and thus the file, which is connected with guide rod, may be set so as to impart
any desired bevel to the teeth, this being any desired bevel to the teeth, this being
denoted by the graduations on the circle. denoted by the graduations on the circle.
The file is supported in the arms attached The file is supported in the arms attached
to the guide rod, its end being inserted in a to the guide rod, its end being inserted in a hole in one and a screw clamp holding it to the other. By loosening the screw, the file may be turned so as to give any desired pitch to the saw teeth. At E is an indicator of simple construction, which shows the pitch at which the file is set,and thus
allows of easy resetting to the same inclination at any futur time, as when using a new file or another corner of the same time,
tool.

By some changes in a part of the device,this guide is mad applicable to circular saws, in which case the guide rods sliding in the grooves of the clamp, are made of proper curve The invention is quite simple; and we believe it will prove a very useful and handy implement for mechanics, since by its aid the not very easy operation of saw-filing is greatly simplified. In fact it is only necessary to set the guide at the proper pitch and bevel, and leave an apprentice or boy to do the manual work.

PLUMMER'S SCROLL SAWING MACHINE.
Patent now pending through the Scientific American Pat ent Agency. For further information, address the inventor, Mr Elias Roth, New Oxford, Pa.

Now Use for Rats.

Rats are not generally supposed to be of any particular use in the economy of Nature, unless it be to eat up refuse, make a noise, or haunt the subterranean cavities of large cities. A occasion, proved that the rat as an operator in case of broken wires may be turned to good account. It was necessary, says the Popular Science Monthly, to overhaul a cable o wires inclosed in iron tubes. A certain length of the cable had to be taken out of the tube, and the men commenced hauling at one end, without having taken the precaution to attach to the other a wire by which it might be drawn back after inspection and repairs. The question arose how the cable was to be restored to its proper place. The inspector invoked the aid of a rat catcher, and, provided with a large rat, a ferret, and a ball of string wound on the Morse paper

ROTH'S SAW FILE GUIDE.
et was then put in, and off went the rat again, until he sprang clear out of the flush box. One length of the cable was thus safe, and the same operation was commenced with he other; but the rat stopped short a few yards from the pipe, and boldly awaited the approach of the ferret. A sharp combat ensued, but after sundry jerks at the string the combatants separated, the rat making for the other extremity of he pipe, carrying the string through and relieving the inspector from his anxiety.

The Electro-Magnetic Mallet.

Dr. Edwin T. Darby, in a paper read before the Pennsylvania State Dental Society, states that the priority of invention of this useful implement belongs to Dr. William G. A. A. Bonwill: but a contest is pending between this gentleman and Mr. George F. Green, who claims the priority. The practi cal uses and value of the instrument are set forth by Dr. Darby as follows
"It is purely automatic in its action. Its power or force is entirely distinct from anything physical or individual, except the will of the operator and the touch of his educated finger. No more physical force is required to manage it than would guide a pen or hold a pencil. The dentist may stand or sit at his chair hour after bour, atd feel no greater fatigue than would naturally result from restrained position or concentrated thought. One who has not used it, nor become thoroughly accustomed to it, can little understand the vast amount of physical force others are saving them selves by its use. It was my fortune to obtain one of the first, nearly or quite four years ago and although great improvements have been made upon it since, I look back upon those four years of comparativeiy active duty, feeling that I should at times have given way, and perhap been obliged to abandon my practice, but for the assistance which the electric mallet has rendered me. So great is my appreciation of it, and so confident am I of its great value, that I fear, were I obliged to discontinue its use, I should fall fa below that standard which, as we justly claim, should characterize the operators of the presen day.
' Nor is a labor-saving instrument only: it is a time saving invention. Seneca taught that time is the only thing of which it is a virtue to be cove tous. Too lightly, as a rule, do we estimate the value of time in our operations; our field for use fulness is limited. Our course or stadium has its bounds at no distant future; and he who is mos successful, who accomplishes most for himsel successful, who accompliskes moses for he those who seek his services, is who
and for the knows best the value of each moment, and systematizes hi work and adds to his appliances such things as help bim to expedite his operations-never sacrificing quality for quantity, excellence for rapidity. The length of time $1 e$ quired to thoroughly pack the gold in most cavities is lessened at least one half by the aid of the electric mallet. I profess not to have acquired that degree of manipulative skill that enables me to fill all cavities with lightning like rapidity, but in the great majority of instances one eighth of an ounce of foil can be thoroughly consolidated in from 60 to 70 minutes. The inventor, I believe, professes to do the same in 30 or 40 minutes. The instrument when in use makes more or less noise, and the sensation upon the tooth is peculiar, and suggests pain, if it does not actually produce it. One of the best arguments in proof of its painlessness is the fact that our patients not unfrequently go into a deep sleep and awake to find the operation nearly or quite completed The blow produced by the electric mallet is sharp and quick, and does not jar the tooth like the hand mallet or the Snow and Lewis automatic. The operator must be skilled in its use otherwise he may allow the mallet to strik the filling several times in the same place whereas but one blow is needed. My own experience and observation has been tha less injury to the tooth and lining membran has followed the use of the electric malle than formerly attended the use of the hand mallet or even hand pressure.
"The instrument as now made requires little or no adjusting, and with care may be used for years without the least expendi ture for repairs. The total loss per week is not more than ten or fifteen cents; and if the battery is thoroughly cleansed once in ten days, which may take fifteen or twent minutes' time, and can be done just as nice ly by an office boy or student, it is all tha is required in that direction. I know of no better battery than a three or four celled Bunsen, with well amalgamated zincs. They can be used for years by simple replacing a zinc which may in time become eaten, or a carbon which may have gradu ally dissolved. More easily managed than steam or water power, electricity has made its way into our profession, and is daily performing for those who use it a service drum, he repaired to the opening in the tube. The flush boxes were opened, and the rat, with one end of the string attached to his body, was put into the pipe. He scampered reached the middle of the pipe, and there stopped. The fer-

which entitles

 motors.'AQUAFORTIB, applied to the surface of steel, produces a black spot; on iron, the metal remains clean

ダientific Americar.

COMPOUNDING STEAM ENGINES.

The controversy as to the possible economy of compound angines has been long ago settled; and the advantages of the additional cylinder and pistor to de operated by the steam exhausted from the first engine, have been proved beyond any doubt. But the oconomy is nut derived, as some of our correspondents seem to think, from using steam twice; for whether the stear asses through one cylinder or forty, the difference between the pressure of the steam at its entrance to the first cylinder and its final exhaust into the atmosphere is the sole power which the engine can exert. The low pressure, larger cylinder added to an engine, while it discharges its steam at a lower tension, creates a certain amount of back pressure in the first or smaller cylinder; and there is, therefore, no positive gain of power in a compound engine. But the larger cylinder enables that little understood and most important property of steam, its elasticity, to be much utilized : so that it may be said that the addition al cylinder is equivalent in result to a very effective cut-off.
valuable to the manufacturers of gas, either as an enricher valuable to the manufacturers of gas, either as an enricher
or a substitute for coal gas. The time is not very distant when a large majority of the gaslight companies now using coal exclusively will use some petroleum in connection with it to increase its candle power, and to enable them to more completely utilize all the gas-making power of coal; but this result has been much retarded by the mistaken notion tha ${ }^{+}$ the addition of a petroleum vapor to a coal gas was all that was necessary. We speak of this now because the attention of the whole gas-making fraternity has just been again called to the subject of petroleum gas, in the discussions of the American Gaslight Association at its recent meeting in New York.
We know from correspondence with many gas manufac turers in different sections of the country that nothing but a fear of being drawn into large expenditures for new plant without positive guarantee of success, prevents the introduc tion of petroleum gas. We have' no axe to grind in fur thering the interests of any special process, but for the benefit
ever. He says he has been to Vermont and learned the art completely. He suggests that $\$ 5,000$ shall be deposited by eacb party, the winner to donate that amount to some desig nated charitable institution. Now, Doctor, down with your ducats.

Gastronomic Curiosity

a We daresay that there are a great many people who, if asked whether they could or would partake of so toothsome a dish as a broiled quail on toast once a day for a month, would stare at the questioner in astonishment and express an earnest desire to be afforded the opportunity. And yet we can positively venture the assertion that not one person out of a thousand would continue the diet for a fortnight. This is not because of the quantity of meat, because any one's or dinary dinner aggregates an immensely larger amount, nor is it due to a surfeit of one particular kind of food, for roast beef might be eaten every day for a year with relish. The difficulty lies in the flavor of the meat. Delicious as it is as

COMPOUNDED BEAM STEAM ENGINE.

A great many engines in England have recently been converted into compound engines, and the methods of doing this are numerous, and their merits are widely discussed. A novel arrangement, designed by Messrs. J. Bagshawe and Son, of Batley, Yorkshire, England, is represented in the annexed engraving, and there are several features in it which deserve notice. One is that the change involves the addition of a high pressure cylinder, the engine being of the condensing type. The cylinder is 13 inches in diameter and of 56 inches stroke; and it is so inclined that its piston is parallel with the connecting rod when the crank is exerting its maximum power. The old cylinder was $23 \frac{1}{2}$ inches in its maximum power. The old cylinder was $23_{\frac{1}{2} \text { inches in }}^{\text {diameter and of } 46 \text { inches stroke. Other advantages claimed }}$ for this system of compounding are the attainment of great for this system of compounding are the attainment of great strain on the foundations. It is stated that, since the additional cylinder was added, the engine has been run with no caps on the bearings which carry the beam on the pedestal and no deviation from regularity in working could be detected, the two pistons, by their contrary motions, keeping the whole engine steady.

Petroleum Gas.
The attempt to manufacture a good substitute for coal gas from petroleum has been made by at least a hundred different persons within the last five years, as the records of the Patent Office prove. That nearly all these attempts have been made with no knowledge of the chemistry of gas-making is equally apparent from the processes for which patents have been claimed: most of them being based upon the well known fact that atmospheric air, when passed through petroleum, especially the more volatile parts of it, becomes saturated with its vapor, and burns readily with a clear brightlight. Most of these inventors seem to have concluded that in reaching this result they have produced a substitute for coal gas, and their inventions have been pushed into the attention of both the consumers and the manufacturers of gas with much energy. We have no desire to condemn their processes, which are excellent in their place, but it is a mistake to imagine that a simple carburetted air is
of the petroleum trade we wish to see the best process ${ }^{\text {an }}$ occasional delicacy, if it be eaten daily for ten days or adopted. This we feel certain must be a process that yields, not a vapor-easily condensible and rapidly deteriorating by passage through long stretches of pipe-but a fixed gas, no more liable to these objections than the average coal gas. It must also be a process that utilizes the maximum gas-pro ucing power of the petroleum. The quantity of gas and its candle power which it is possible to get from a given quality of petroleum can be ascertained with as much exactness as the same things concerning a tun of Westmoreland coal, and it will be found far easier to reach the maximum in using petroleum than in using coal
But while seeking in this way for the best process, car should be exercised not to adopt one that claims to do too much. We have seen statements of the results obtained by some processes in which the gas claimed to have been made from given quantities of petroleum would actually weigh more than the petroleum itself. We should look with dis rust on such processes.
"There is nothing that succeeds like success," and this is the last and best test that should be applied to a petroleum gas process. If one can be found already in successful operation, which has met and overcome the objections which best one to adopt.-American Manufacturer.

Practical Spiritualism.

Dr. E. P. Miller, an intelligent physician of this city, has become an avowed and ardent advocate of th \rightarrow " spirituality" of the Eddy tricksters of Vermont. The doctor is so certain of the heavenly power of one of the Eddy female performers that he has publicly offered a challenge or test exhibition, under a wager of $\$ 5,000$, that her "manifestations" are genuine, and agrees to leave the matter to the decision of a committee of t welve persons, to be mutually chosen by him self and the acceptor of the challenge. Mr. W. Irving Bishop, of this city, has accepted the challenge, undertakes to prove that the woman is a fraud, and further, agrees to re produce all the "materializations" and "manifestations" that she may produce, without any spiritual assistance what
hereabouts, it becomes excessively nauseating. The fles seems to acquire a rank and bitter flavor; and if the diet be persisted in, thestomach revolts and rejects the food. Why his should be so, we have never heard scientifically explained but it is probably due to some medicinal effect of the mea which shows its results, through regular dosing, just as do some kinds of physic, which, if taken once or twice in small quantities, are imperceptible to the system, but which, if administered regularly in the same amounts for lengthy periods, act powerfully on the constitution
Be this as it may, an individual named O'Donnell, who lives n Madison, Ind., has brought himself into notice by accomp'ishing the hitherto unparalleled feat (on a wager) of ating thirty quails in as many consecutive days, and this without any inconvenience or disgust. The case has at racted some attention from the medical fraternity, and sun dry individuals are making Mr. O'Donnell's marvelous stomach the subject of extensive bets. It is now reported that he is to undertake the delectable task of repeated and prolonged meals of raw oysters and brown sugar: a proces which might fitly terminate in a gastric malady which would annihilate the much abused stomach and its owner a the same time.

Milk Dlet.

"I find oy experience," says Dr. E. N. Chapman, "that ime water and milk is not only food and medicine at an arly period of life, but also at a later, when, as in the case of infants, the functions of digestion and assimilation have been seriously impaired. A stomach taxed by gluttony, irri tated by improper food, inflamed by alcohol, enfeebled by dis ease, or otherwise unfitted for its Guties, as is shown by the various symptoms attendant upon indigestion, dyspepsia diarrhœa, dysentery, and fever, will resume its work, and do it energetically, on an exclusive diet of lime water and miik. A goblet of cow's milk, to which four tablespoonfuls of lime water have been added, will agree with any person however objectionable the plain article may be, will be friendly to the stomach when other food is oppressive
and will be digested when all else fails to afford nourish ment. Of this statement I have had positive proof in very many cases.
"The blood being thin, the nerves weak, the nutrition poor, the secretions defective, and excretions insufficient, the physician has at hand a remedy as common as the air, and as cheap, almost, as water. In it all the elements of nutrition are so prepared by Nature as to be readily adapted to the infant or the adult stomach, and so freighted with healing virtues as to work a cure when drugs are worse than useless."

FFor the Sclentific American.」

Expansion and Contraction by Change of Tem

 :perature under Great Sirain. It is well known that metals expand or contract by the rise or descent of temperature, according to coefficient found by careful experiments and laid down in the books but it appears that the amount of this effect of heat and cold can only be correctly determined beforehand in cases wherethe metals are under no great strain of extension or expanthe metals are under no great strain of extension or expan-
sion. If this is the case, a deviation from the accepted coeffsion. If this is the case, a deviation from the accepted coem
cients must be expected. This has been forcibly illustrated in the case of the great steel bridge in St. Louis, Mo., with its arches of 500 feet; calculations and allowances were made for expansion and contraction by heat and cold, through a range of $140^{\circ} \mathrm{Fah}$., and the difference to be expected in the elevation of the center arch of the upper chord above the City Di rectrix, from the hottest day of summer to the coldest day of winter, was calculated to be about 18 inches. Ever since the completion of the bridge, the hight of the center piers of the top chords of the arches above the City Diractrix has been noted almost daily, at temperatures which have ranged from 92° to 15° Fah. ; and it was found that, between the temperatures of July 20 (the hottest day of last summer) and January \mathfrak{g} (the coldest day of last winter), there was a difference in heat of 106° Fah., and a difference in hight of 0.692 feet, or nearly $8_{1} \frac{5}{6}$ inches. The actual effect upon the structure, it will be observed from this statement, is much less than the calculated effect (which, for a variation of 106°, should have given a difference in hight of nearly 14 inches) The difference is explained to be due parily to the protection afforded by the roof of the bridge, and partly to the fact that the iron work is painted white, thus lessening the absorption of heat. But we observe that, in the case of the Victoria Bridge, at Moitreal, the expansion in summer and contraction in winter is in perfect accord with the calculation; in this bridge, however, the expansion is only longitudinal, and is not counteracted by any strain; while in the case of the St. Louis bridge acted by any strain; while in the case of the St. Louis bridge
the expansion has to overcome the immense strain exerted the expansion has to overcome the immense strain exerted
by the weight of the structure itself and the load upon the by the weight of the structure itself and the load upon the
arch, which increases as the secant of the angle which the arch, which increases as the secant of the angle which the
chords, drawn from the center, make with the perpendicular; chords, drawn from the centtr, make with the perpendicular;
so that for an arch with slight elevation in the center, the strain becomes very great, and often surpasses the actual weight many times. This strain has to be overcome by the expanding iron, and there is no wonder that it cannot fully overcome it on the St. Louis bridge, of which the weight is very great, the arches being among the longest in the world. In constructing the Niagara suspension bridge, the amount of extension of the wire cables by heat was taken as the basis of a calculation of the amoant of sinking of the center of the bridge in summer, and its elevation by the contraction of the cables by cold in winter, and it was here also found that this elevation by contraction was less than the calculation gave ground to expect; for here the material acts under an immense strain, which counteracts the contraction of the cables to a certain extent, in the same manner as the extension of he steel arches in St. Louis is counteracted by the strain.

Ostrich Farming.

The cultivation of the ostrich for its feathers is becoming quite an important industry in Algeria and also at the Cape of Good Hope. A well conducted ostrich farm requires plenty of space, proper pasturage, water, and shelter for the birds in stormy weather. The principal food given to the young is lucern, with thistles and tender herbs, and grasses indi genous to the country. Old birds are fed on more matured shrubs and plants, the leaves of which they strip off with
their beaks, and also on Indian corn. A healthy bird a week their beaks, and also on Indian corn. A healthy bird a week
old is worth $\$ 50$; at three months it is worth $\$ 75$; and at six months or more, $\$ 150$. Feathers are plucked from the ostrich when a year old, and each year's crop is worth about $\$ 35$. At five years, the breeder begins to pair his birds, each yielding from eighteen to twenty-five eggs in a season. An ostrich chick is about the size of a small barnyard fowl, and begins to pick up food as soon as hatched. In spite of its bad reputation, the ostrich is found to be an exemplary parent, both the cock and hen sitting on the eggs, turn about. It is said that, when a nest full of eggs has been laid, the old birds invariably place one or two of them outside the nest, o be reserved as food for the chicks when hatched. They are thus frequently given a fair start in life, in a state of ature, miles away from a blade of grass or other food. In onfinement has not been found necessary to make such provisions for the chicks, as they thrive excellently well on tender herbs. The young ostriches are generally tame, and to a certain extent tractable; but as they grow old they are apt to evince a sourness of temper anything but agreeable to those who have them in charge. As they are liable to sudden fits of jealousy, resulting in furious conflicts, the old birds have to be kept in separate paddocks surrounded by wire fencing.
As the feathers are picked, they are sorted according to their quality and purity of color. The pure whites from the
wings are called bloods; the next quality, prime whites ; af er which come firsts, seconds, and so on. The tail feather pound in the wholesale market. The lowest grades fetch pound in the wholesale market. The lowest grades fetch
less than $\$ 1$ a pound. The quality of the feathers produced ess than $\$ 1$ a pound. The quality of the feathers produced
by tame birds is fully equal to the best collected from wild by tame birds is fully equal to the best collected from wild
birds, and the general average is much higher. Notwith irds, and the general average is much higher. Notwith and largely experimental enterprise, ostrich farming has been found an agreeable and profitable industry.

Spontaneous Combustion of Coal.

In his address recently delivered to the Newcastle-on Tyne Chemical Society, the president, Mr. Pattinson, made the following observations on the subject of the spontaneou combustion of coal in ships: "There has lately been a con iderable increase in the number of cases of fire arising from his cause. From statistics collected by Mr. R. Cooper Run dell, and given by him in a report to the Underwriters' Asso ciation of Liverpool, it appears that, taking the number of vessels carrying upwards of 500 tuns of coal which have sailed from the United Kingdom for ports south of the equator during the first nine months of the years 1873 and 1874, the number of casualties from spontaneous combustion was 23 , or about 2 per cent of the total number of vessels, in 1873, and 50 , or about 4 per cent, in 1874. The statistics further show that the fires are not confined to one kind of coal, but have occurred in most, if not all, kinds exported from all parts of the United Kingdom. The theory which attributes spontaneous combustion to the presence of pyrites in the coal is consistent with the resently increased number of cases, if we consider that, owing to the extraordinary demand for coals and the high price of labor, the coals were more likely to be shipped without being so carefully freed from brasses or iron pyrites in later years than they were formerly. On the other hand, Richters has pointed out that, in the kinds of coal he experimented with, the coal which contains most pyrites is not that which is most liable to spontaneous combustion ; and his researches have shown that atmospheric air is rapidly absorbed by coal, and that the oxygen thus absorbed probably afterwards combines with the organic con stituents forming carbonic acid and developing heat. In all probability the heat which gives rise to spontaneous combustion is developed both by the oxidation of iron pyrites as well as by the oxidation of the carbonaceous constituents of the coal; and that in the holds of vessels, where large car goes of coal lie unventilated, or but imperfectly ventilated, this heat accumulates, and may ultimately be high enough to set fire to the cargo. The whole subject requires further investigation, and the royal commission now formed will, no doubt, not only elicit valuable information as to the causes
of these sad disasters, but also suggest means of preventing of these
them."

TIMELY SUGGESTIONS.

Every Employer should present his workmen and appren ces with a subscription to the Scientific American for the coming year.
Every Mechanic and Artisan whose employer does not ake the
Now is the time for old subscribers, whose subscriptions xpire with the year, to renew.

Now is the time for new subscribers to send $\$ 3.20$ and comnce with the new year.

Now is the time for forming clubs for the new year
It will pay any one to invest $\$ 3.20$ for himself, his sons, or is workmen, for one year's subscription to the Scientific american.
It is easy for any one to get ten subscribers at $\$ 2.70$ each nd for his trouble obtain the splendid large steel plate en graving, " Men of Progress," worth $\$ 10$.
It is easy for any old subscriber to get a new one to join taking the paper.
It is no more trouble to remit $\$ 6.40$ for two subscriber han $\$ 3.20$ for one. The sender gets a copy of Science Re cord, or of Wrinkies and Recipes, as he may prefer, for his trouble.
If any one wishes specimens of the paper to examine before subscribing, tell him to write to the publishers, and en close 10 cents, and it will be sent to him by return mail.
If handsome name lists and prospectuses are wanted to ssist in obtaining subscribers, send to the publishers of this paper.
Binding.-Subscribers wishing their volumes of the Sct ffice. Price $\$ 1.50$

NEW BOOKS AND PUBLICATIONS.

The Elements of Graphical Statics, and their Application to Framed Structures, with Numerous Practical Examples, together with the Best Modes of Calculation and New and Prac-
tical Formulæ. By A. Jay Du Bois, C. E., Ph.D. With an Atlas of 32 Plates. Price \$5. New York city: John Wiley \& Son, 15 Astor Place.
We recently revieved Dr. Da Bois' urst, volume on the graphice nethod as applied to prohlems in statics, and commented on the value of the system
in all calculations of strength of construction, strains on materials, in all calculations of strength of construction, strains on materials, etc.
The volume now before us contains an extended series of examples, many of them involving the higher mathematics, all of which are treated hy the
graphic method. To the labors of German scholars and engineers we are sentation and diagnosis of the many diffleulties which occur in the engineer's practice; but we do not hesitate to give Dr. Du Bois the whole credit or his laborious and successfu attempl to render populart this useful branch of practical mathematics. The two volumes are complete in themselves, and are very handsomely gotten up.
perusal of the engineering profession.
abor in Europe and america, a Special Report on the Rates of Wages, the Cost of Subsistence, and the Condition of the Working Classes in Great Britain, Germany, France, Belgium and Other Countries of Europe, and in the United States an British America. By Edward Young, Ph.D., Chief of the United States Bureau of Statistics. Washington, D. C. : Govern ment Printing Office
Dr. .
creditable contribution to the pyramid of statistics, the compilation and publication of which are, among the mantas of contemporary politicians. The book commences with the expulsion of Adam from the Garden or Eden, races the labor question down to. the time of Jacob's seven years' serviade to Laban, gives some minute detals of the condition of the workin he feudal ages; then the subject is pursued into comparatively recen imes, and carried down to the reign of George III. The facts as to the ecent condition of the peasantry and laborers in Europe are very volumious, and have been procured with great expenditure of labor; and the dvantages enjoyed by the American artisan in busy times are fully dis played. But this information, which should be the most valuabie part of
he work, is only carried down to $1872-1873$, and is silent as to the causes of the existing stagnation, and the deplorable condition of our working classe t present. The book is chiefly useful as an historical work, as it throws no ight on the labor questions of the year $18 \% 5$.
the Dynamical Law of Horse Power of Steam bollers. By John W. Nystrom, C.E. Price 25 cents. Philadelphia, Pa.: J Pennington \& Son, 127 South Seventh street.
Our readers are famillar with the difflculty of rating a boiler at its proper orrespondents that there is no formula for the horse power of a boller. Mr. Nystrom has addressed himself to the subject, and now publishes some valuable rules and formulee, from which we hope shortly to make some exracts that will be of use and interest to engineers and the public generally he Scientific Monthly, a Magazine devoted to the Natural Sciences. Volume I, No. 2. Price $\$ 3$ a year. Toledo, Obio E. H. Fitch, Editor and Proprietor.

A valuable addition to our contemporary sclentific literature. Dr. Fitch well known as an enthuslastic naturalist and an able writer, and his name
Ill be a guaranty for the:excellence or the new serial, of which the number now before us is a promising specimen.
Volume I, No innal of Microscopy and Popular science. craft Publication Company, 37 Park Row
This irst issue of a montily publication gives indications of an excelle, and useful periodical,: which will, we believe, disseminate practical infor mation on the most fascin
its success and large sale.
Strength of Beams under Transverse Loads. By Professor W. Allan, formerly of Washington and Lee University, Lexington, Va. Price 50 cents. New
Another valuable contribution to engineering literature. It is No. 19 of Mr. Van Nostrand's Science Series, a collection of manuals unfformly excel ent and remarkably cheap.
The Ironmongers' Diary and Text Book. Issued by the Pro
prietors of the "Ironmonger," prietor
street.
A very usefull diary, supplemented some tables and rules especially val chen \& Tyidn's Cataioge similar goods.
plies. Baltimore, Md : 16 German street, Tools, and Sup plies. Baltimore, Md. : 16 German street.

DECISIONS OF THE COURTS

 New York.\qquad
 - Before Shipman, J-Decided October
motion for provisional injunction. The rights and duttes of compliers of books which bare not original in
helr character, but are complations of tacts rom common and unlversal their character, but are compinations of ractis from common and universal
sourceos of inorrmation, of which books, ilrectories maps, gulde books
road books, statistical tables, etc., are the most familiar examples, are well
settled.

United States Circuit Court--- District of Massa

 chusetts. Rollstone Machine works et al., Defrendants.
equity.-Beiore Shepley, J.-DecIded October27, 1875 .

Inventions Patented in England by Americans.
[Compiled from the Commissioners of Patents' Journal.]
Alloy.-O. Holden, New York city
Autographic Printing.-T. A. Edison, Newark, N. J.
Blind Rack Pulley.-N. Thompson (of Jirooklyn, N. Y.), London, Eng. Boiler Flue.-L. b. Halsey ϵt al., New York city. Carburetting Air.-E. J. Daschbach, Pittsburgh, Pa.
Carding Feed Apparatus.-G. S. Harwood, Boston, M Carding Ferd Apparatus.-G. S. Harwood, Boston,
Car sprine, etc.-W. H. Porter, Bridgeport, Conn. Detaching Horses.-J. W. Glover, Mount Savage, Ky.
Dietetic Food.-C. Morfit (of Baltimore, Md.), London, England. Electronagnetic Machine, etc.-D. F. Kimball, New Yorkcits.
Embossing Leater, btc.-R,Lee (of Philadelphia. Pa.), Huddersfield, Eng
Engine, mtc.-C. C. Wolcott, Washington, D. Embossing Leather,etc.-R.Lee (of Philadelphia,
Engine, etc.-C. C. Wolcott, Washington, D.c. Excavator.-P. H. Strsker, New Brunswick. N. J
Fare Register.-G. Lander, Pittsburgh, Pa Fare reaister.-G. Lander, Pittsburgh, Pa.
Filiter, etc.-F. Clibborn, Philadelphia, Pa., Floodways.-J. H. Morrell, New York city FLoodways.-J. H. Morrell, New York
Fog Horn.-F. Brown, New York city. Fog Horn.-F. Brown, New York city.
HARvestre.-S. Johnston, Brockport, N. Y.
Hose Pipe Coupling.-A. J. Morse, Boston, Mass. Hulling Grain.-G. L. Squier, Buffalo, N. Y.
Hydratuic Dredge.-W. H, Newton, Citcago Hydratlic Dredge.-W. H, Newton, Chicago, Ill.
Knitima Machinery.-C. J. Appleton, Elizabeth, n. J. Lamp.-L. A. Presby, New Y ork city
Life-Shying Garment.-T. Richard Motor.-G. W. Manson, Washington, D. Organ.-A. T. Rousseau, Boston, Mass.
Padlock.-W. Orr et al., Brooklyn, N. Y.
\qquad Printing Press.-A. E. Redstone, olakland, Ca
Printing Press.-F. W. Grifith et al., New Yo Printing Presss.- - F. W. Grediftithe, ot alk., New York city. Quorts.-A. H. Cramp (of New York city), London, Railway Vehicle.-H. D. Faulkner, New York city.
Raw Hide Shoe Tip.- Natlonal Boot Tlp Co., Boston, Mass, Raw hide Shor tip.- -ational Boot Tip Co., SEwing MAChine.-A. S. Dinsmore, Boston, Mass.
Spark Arrester.-D. I. Proctor, ,Gloucester, Mass Steam Pump.-J. W. Blake, Jersey City, N.
Stop Valve.-J. S. Leng, Brooklyn, N. Y ent M, Morrell,:New York cit
zacent Smeticau and foreigy zatents.
NEW CHEMICAL AND MISCELLANEOUS INVENTIONS.
IMPROVED REED ORGAN
George Blatchford, Mitchell, Canada.-This inventor constructs a resonant chamber, in combination with an organ. The eeat of the chamber commences at the front of the instrument immediately under the key board and key frame, and extends backward in pro portionate to the elevation of the organ. The advantages claimed are an improved quality of tone; the tone is more easily harmo ized with the human voice ; greatly increased volume of sound; it emoves or prevents that disagreeable quality of tone which so often characterizes reed organs.

IMPROVED MOTH TRAP
Benjamin F. Daniel, Quincy, Fla.-Above the lower bee entrance is a sliding cover through an angular orifice, in which the moth enters after the bee entrance is closed. The insect is led by a tube into a compartment from which there is no access to the hive. The
upper bee entrance is similarly arranged. This device is cheaply made, and claimed to be efficient and useful

IMPROVED PIANOFORTES
Ernst Gabler, New York city.-Two patents are here included. The new-feature in the first invention is an improved agraffe bar,
by which the sounding of the strings at the bridge of the wrest by which the sounding of the strings at the bridge of the wrest plank is obviated, a more prolonged, clear, and bell-likeringing tone obtained, and a rigid locking of the agraffe bar throughout its The bar is interposed between the wrest plank and the plate, and retained in rigidly fixed position by the plate as produced by the pressure of strings thereon.
The samo inventor has also patented an isolating agraffe for grand and square pianofortes, by which the same results are obtained and the annoying influence of the action of the hammers prevented rom being transmitted to the string plate and wrest plank, whil without screws is obtained.
improved reversible lock buckle.
Lyon Lewine, Brooklyn, N. Y.-This device is a buckle for trunk straps which holds the strap tightly until the latter is released the straight edge of which the strap binds.

IMPROVED SUSPENDER.
William Stokes, New York city, assignor to himself and Henry Heath, Brooklyn, N. Y.-In this device the ordinary button strap paises through a slot in a metal case, and acts on a follower sus-
tained by a spiral spring therein. The invention will probably be found more durable than the usual elastic webbing.

IMPROVED BRAIDED JEWELRY.
William W. Alden, Providence, R. I.-This inventor proposes new style of gold jewelry, which he produces by braiding wire o ny shape in cross section, by suitable machinery. He claims tha very elegant o
manufactured.

mproved carboy

Alexander H. Fatzinger, New York city, assignor to himself and James McFarlane, North Bergen, N. J.-Many serious accidents rosive chemicals, through careless handling. To obviate this danger, the above inventor has devised a carboy box, having a neck guard with corner recesses for securing the detachable lid, provided with vertical corner pieces. The carboy is carried by folding handles, that are retained in horizontal or vertical position along
the encasing box by suitable bearing strips. When the carboy has the encasing box by suitable bearing strips. When the carboy has the handles are swung down in vertical position along the box, so as to be out of the way.
improved type-writing machine
Lucien S. Crandall, New York city.-The new features of Mr. nd paper feed arranged in connection with a series of type bar The latter are provided with more than one type, and operated by sscillated finger levers in such a manner that, according to the lackward or t'orward motion of the same, two adjoining types are printed on a common center. These centers may be increased in proportion to the type by definite vibrations of the platen, pro nious, and its manipulation would seem to be easy.
mproved apparatus for drafting Tamors' patterns.
Friedrich h. Ulrich, New York city. -This invention is based on Friedrich A. atomical proportions of the different parts of a o, and includes a system of measuring that indicates the deviation from the normal form, the measures to be plotted by a series of
squares corresponding to the proportions of thebody. There is also n apparatus with graduated and adjustable parte, for deflning and drafting eaid measures.

IMPROVED ELECTRIC GAS LIGHTER
Octave A. A. Rouillion, Brooklyn, N. Y.-This consists of a couple of platinum wires for closing the circuit and producing the parks for lighting the gas. The time are so contrived that the act of any manner, and at cone sact causes auch movement of one on the other that the current is broken and closed several times by the passage of the roughened surfaces. By this means, numerous sparks are produced, making an efficient lighter.

IMPROVED PAPER WEIGHT.
Eduard Dressler, Gablonz, Bohemia, Austria, assignor to Alfred
J. Ostheimer, Philadelphia, Pa.-This invention consists in a paper weight formed of a glass block having a rounded concavity in it lower side. The effect of the concavity is to refract the rays of
light, and thus cause a picture cenfented beneath to appear in relief.
improvement in bellows attachment for rocking CHAIRS.
Edgar E. Sell, Charleston, S. C.-This is an ingenious way of making the motion of a rocking chair produce a current of air Which fans the occupant, thus keeping him cool at the expense of
little exertion. The device mainly consists of two bellows, the broad ends in opposite directions. Above these are bars, which are attacked to the rockers. Rocking forward compresses one bellows, and rocking back the other; and suitable tubing conducts the draft to the operator.

NEW TEXTILE MACHINERY.

IMPROVED LOOM SHUTTLE CHECK AND BINDER. Seth Tebbetts Hurd, Gonic, N. H., assignor to himself and Thomas Sanderson, La wrence, Mass.-This invention relates to a shuttle binder and other devices which serve as a substitute for the ordinary shuttle box; also, to the picker rod and to new connections
between the binding flager shaft and the dagger shaft. Drawing are necessary to convey a clear idea of this mechanism. It will

NEW HOUSEHOLD ARTICLES.

MPROVED CLOTHES POUNDER.
Ezra Crowell, Belfast, N. Y.-This inventor improves the device patented by him December 22, 1874, by making the piston hollow, with an opening in its side and perforations in its lower head, and providing it with a movable band, having a corresponding opening
in its side, to adapt it to operate as an automatic soap applier when the machine is in use.

NEW AGRICULTURAL INVENTIONS

IMPROVED TOOL FOR BENDING BALE HOOKS.
Benjamin R. Springsteen, Schodack Lanking, N. Y.- This is an mprovire hooks used by farmers for baling hay, straw, manner, the wire hooks used by farmers for baling hay, straw, etc. It is
used for twisting the wire blank, and is provided with a raised shaping piece, and bending jaws back of the same, which are piv-
oted to a base plate that is hinged to the main piece, to be swung oted to a base plate that is hinged to the main piece, to
over the raised part for imparting the final hook shape.

IMPROVED ADJUSTABLE BACK HOLDER.
Henry W. Clark, Red Bluff, Cal.-This inventor improves upon the device patented by him July 27,1875 , so as to render the semicircular spring that receives the edge of the sack easily removable,
to be replaced by one larger or smaller in accordance with the size to be replace

MPROVED HORSE POWER.
George W. Gordon, Beverly, Ohio.-The improvement relates to with a lever and rod for adjusting the drum to bring it into or out of engagement with an arm or arms projecting from a rotary sbaft to which the sweep is attached. The advantage of this arrangement is that the horse can be constantly traveling, so as to avoid the delay and labor of stopping and starting.

IMPROVED GRAIN DRILL
James C. Daman, Elk Point, Dakota Ter.-The upper ends of the plates which govern the discharge openings for the seed pass out through holes in the hopper, and are secured to a shaft, so that by Upon one end of the shaft is placed a pawl, which is secured in place adjustably. The engaging end of the pawl is held down upon the teeth of one or the other of two ratchet wheels by a spring. One of the ratchet wheels is made smaller than the other. The larger ratchet is designed for feeding oats, barley, and the other larger grains, and the smaller ratchet for feeding wheat and other
smaller grains. When the machine is in use, spring plates open wide enough for the desired quantity of seed to pass out, and then close and yield wheel. The feed with either ratchet is regulated by loosening the set screw and adjusting the shaft to give the plates an opening sufficient to pass out the desired amount of seed. An index is marked upon the p
dropped.
improved horse hay rake
William H. Ryer, Margarettville, N. Y.-The dischargers or clearers, for forcing the hay out of the rake teeth when the latter are raised, are reinforced in their connection with the axle by metal
supports, to prevent the breaking of them at the junction with the axle. The rake head is pivoted to the axle at the top and in the vertical plane of the axis of the wheels, and the teeth are arranged so that the points run directly under the connection with the arle,
and are thereby more accurately gaged by the wheel to uneven and are

IMPROVED REVOLVING DROPPER.
John Johnson, Perry, Ill., assignor to himself, William T. Smith, and Thomas H. Ward, of same place.-This is an improved dropper the cut grain, to allow it to drop to the ground without being disarranged and tangled. The mechanism for this purpose is new and ingenious, and mainly consists of a vibrating apron and revolving
double apron in connection with suitable levers and holding dedouble
vices.

MPROVED FURNACE FOR DESTROYING INSECTA.
William F. Woolsey, Breckenridge, Mo.-This firnace destroys
insects by burning them with a heated furnace in a furrow plowed insects by burning them with a heated furnace in a furrow plowed in the ground around the field from which the insects scek to eswhich the insects have been arrested in their along the furrow, in being contrived, in form and condition of its surface, so that the Λ
cannot get out after getting in. The furnace consists of a little respond with the metal contrivance formed in cross section to cor grate, draft, and escape passages, and also with a deflector in the upper and middle portion to cause the heat to act on the sides, so as to throw it off upon the sides and bottom of the furrow to the best advantage as the furnace is drawn along the furrow.

NEW MECHANICAL AND ENGINEERING INVENTIONS.

improved car coupling.

Thomas A. Watson, Bentonville, Ark.-In this device there is a rawhead with coupling link secured thereto, to be coupled by the formard of the opposite drawhead. The later is provided with ith the drawhearm, and is dropped by the contact of the same houlder of a top extension of the drawhead, and slides in a slot of the same.
improved gas apparatus.
John H. Eichholz, Brooklyn, N. Y., assignor to himself and Horace A. Green, N. Y. city.-The aim here is o supply a simple, cheap, minating gas of hydrogen and the vapor of hydrocarbon substances, to enable consumers to find ready and cheap apparatus for making their own gas. The device consists of a furnace and oven made of a sheet metal case and fire brick lining, in which are retorts for the oil in one set, and another set for steam, contrived in a simple way,
for graduating the heat to the different substances, according to the for graduating the he

improved fluid meter.

Berthold Huber, Brooklyn, N. Y.-This is a fluid meter composed of a circular flexible pipe and a roller, the roller being pushed around on the pipe by the fluid in passing from the inlet to the outcontrivance of the pipe so that the roller may travel on includes a all around, and an arrangemant of the roller by which to connect the recording mechanism in a simple way.

IMPROVED CAR COUFLING AND BRAKE.
Frank M. Campbell, Crow Wing, Minn.-This is a novel arrangement of self-coupling apparatus, also contrived for uncoupling
without attention from the attendant, in case a car falls through or Without attention from the attendant, in case a car falls through or files the track; and it also consisis of a brake contrivance so con-
nected with the aforesaid coupling that the brakes are let free by the coupling; and thrown on the wheels by a spring whenever the coupling disconnects.
IMPROVED GOVERNOR AND CLT-OFF FOR STEAM ENGINES. Martin D. Miller, Oswego, Kas., assignor to himself and James T. Pierson, of same place.-A hollow revolving and reciprocating valve which spiral ports is placed in a case having similar ports, brove suitably connected by gearing with the engine, and is also swiveled to a rack which by a pinion is governed bs a friction gearing on the
governor spindle. On the latter is a frame, carrying rollers which move on a concave plate through which the spindle passes, and which operate in such a manner that on the least change of motion of the engine the friction gearing is thrown into engagement and the valvethus suitably regulated.
improved compound for lining machine bearings. Lebbeus W. Lathrop and Theo. A. Weber, New York city.-We ave recently examined the practical working of the new lubricatarticles on the late Fair of the American Institute as being there exhibited. The substance is principally finely pulverized grapbite which heretofore has been mixed with other materials and formed into a mass, from which linings were made for the boxes. A recent ing of materials, except in the now journals subject to the action of oil or water, and for ordinary use substitutes sheets of cloth and paper, to the surface of which pure graphite is attached by pre-
pared glue. These sheets are cut into the required shape, and are pared glue. These sheets are cut into the required shape, and are
fitted into the boxes as a lining. We have seen counter-shafting fitted into the boxes as a lining. We have seen counter-shafting
and machine tools thus fitted running at ordinary speeds, and spinand macbine tools thus fitted running at ordinary speeds, and spin-
dles traveling at very high numbers of revolutions. No signs of cutting were visible, and the bearings were either cold or showed a barely perceptible warmth. The invention is cheaply made and applied, and apparently does all that is accomplished by more expensive solid lubricants, which require the drilling of holes in the boxes, and which are not, as a rule, proof against water or oil Boxes exhibited to us which had been in use for several months The manufacturers are the Lathrop And no signs of wear within The Ble Bleecker street, New York city.

IMPROVED WATER WHEEL
Samuel C. Lyons, Bennington, Vt.-In this device the buckets are upper ends with outwardly extending lips, to which an inverted conical rim is attached, which encircles the upper edge of the case A top wheel is seated loosely on a support of the wheel shaft, and has arc-shaped buckets, so that the unspent power still remaining
in the water may be utilized by setting the auxiliary top wheel in in the wa
motion.

IMPROVED COMBINED COMPRESSION AND SWING COCK.
Willis L. Brownell, Brooklyn, N. Y.-This inventor proposes to mprove the construction of the ordinary swing cocks by providing of the water independently of the swing faucet, to prevent the said cocks from leaking.

IMPROVED CAR COUPLING
James C. Mitchell, Lancaster, N. H.-When the cars are run together, the end of the entering coupling bar pushes back a coupling plate, which, as soon as the head has passed its lower edge, swings forward, so that the shoulder of the head may rest against the rear
side edge and sustain the draft strain. The front side of the side of said edge and sustain the draft strain. The front side of the
plate which is pivoted in the drawhead rests against suitable shoulders inside the latter

IMPROVED WASTE PIPE TRAP.
Thomas Hudson, Brooklyn, N. Y.-This is an improved valve attachment for stench traps, the object of which is chiefly to allop instant admission of air to supply the smallest vacuum created by
the tendency of traps to siphonic action, and to prevent the gurgling sound frequently produced in the common stench trap. An adjusting weighted valve is arranged in a vent in the trap, which is held closed by the weight, but opened by the formation of a partial vacuum.
improved stage plank and carrier.
William S. Booth, Baton Rouge, La.-This is a frame on which a number of rollers are mounted. By suitable mechanism the roller are rota ove them
mproved steam whistle
Henry B. King and Christopher McKiernan, Paterscu, N. J.-Th new feature in this device consists in inserting a detachable plate
in the throat of the whistle, in which a gage is arranged for govern in the thro

Zusiuess aud Eersoual.

 The Charge for Insertion under this head is One Dol-lar a Line. If the Notices exceed Four Lines, One Dollar and a Half per Line will be charged.
"Wrinkles and Recipes" is the best practical
Handbook for Mechanlcs and Engineers. Hundreds of valuable trade suggestions, prepared expressly by cele-
brated experts and by correspondents of the "Sclentific brated experts and by correspondents of the "Sclentific
American." 250 pages. Elegantly bound and thlustrated. A splendid Christmas gift for workmen
apprentices. Mailed. post paia, for 81.50 . Addre
N. Munn, Publisher, P. O. Box 772, New York city. All Split-Pulleys weighing over 50 Pounds at the same Anished price as Whole-Pulleys. J. Yocom's Foun-
dries, Dr nker St., below 147 N . 2d St., Philadelphia, Pa. Manafacturers of Sheet Metal and Wire Work
wanting a live man, accustomed to all kinds of Die and Tool Making and the ca
54l, Bridgeport, Conn.
 without Injury. 30c. per 1b. E. F. Landis, Sole Agent, Donaldson's Patent Adjustable Key-way and Ta-
per-hole Gauge, Price 88 . Sent free by mall on recetpt of price. Send stamp for circular. Address the Pa
oohn Đonaldson, Fifth St., South St. Louls, Mo. John Bonaldson, Fifth St., South St. Louis, Mo.
Alden Engine, 3 cyl.Com. Balance Piston, doubles
power of Steam! CIrculars free, Farrelly Alden, Pittsb'h. I bave several valuable patents on gang edgers and would like to arrange with a party to manufacture
and sell them in the Southern and Eastern States. Ad-
dress E. C. Dicey, Grand Haven, Mich. Correspondence Solicited.-Letters Patent were
granted to Josenh E.Wilson, of Brazoria, Texas, on Nov. 875, for " Improvement in Screw Propulsion." Supe-
ior canal and river boats and ocean vessels can be thus Every Inventor and Mechanic should have a
copy of the "Indexed Diary." Price 82 , by mant. See notice in " Sclentitic,'" Dec. 18, page 393. Agents
d. Address Erie Pubilishing Company, Erie, Pa. Wanted-Steel Springs $1 / 3 x 3$ in., ranging from
to 18 inches in length. Onawa Iron Works, Onawa, Oowa, m'f'g Patent Universal Boller Tube Expander.
Brass Foundry And Finishing Shop for Sale low. For Sale-Fruit Box and Basket Factory-A
arge Business. L. Carpenter \& Co., St. Joseph, Mich. Wanted, at low price, a good economical Engine,
30 or $40 \mathrm{H} . \mathrm{P} .$, new, or 2 d hard if in in good order. Address, with description and pric
Also, one for sale, 9×26.
It is a fact, which cannot be doubted, that, ever
since Geo. P. Rowell \& Co., the New York advertising agents, commenced business in the advertising agency
line, they have continued to systematize and the business to expand, until at the present time every newspaper
know the firm as well as it dops its own offce, and the
eviathans of advertisng literatur knows the firm as well as it dops its own oftce, and the
leviathans of advertising literature look upon these fa-
clitites for expediting and economiziog thetr work as the neet anchor of their success.- - D. Davenport Democrat.
Wanted-Good2 d h'd 100 H.P. Coriss Condensing
Engine. Send particulars to J. M. \& Sun, Baltimore Md 1,2,\& 3 H.P. Engines. Geo.F.Sbedd, Waltham, Ms Water Meters-Manufacturers of same, please address A. C. Beeson, Petrolia, Pa.
Pat. Gas Burner-Right for Western \& Southern
Stares for Sa e. Address P O. Lock Box 329, Prov..R. See $1 / 2$ of valuable tobacco patent for sale, in our
advertising column s, Amateurs and Artizans, see advertisement, page
413. Fleetwood Scroll Saw, Trump Bro's, Manufacturers, Wilmington, Del.
Fora Self-Acting Trap, to rid out all Rat and
Animal Creation, address John Dildine, Limestoneville, Montour Co., Pa.
Solid Emery Vulcanite Wheels-The Original Solid
Emery Wheel-other kinds Imitations and inferior. CauEmery Wheel-other kinds imitations and inferior. Cau-
tion-Our name ts stamped in full on all our best Standard Belting, Packing, and Hose. Buy that only. The best is the cheapest. New York Belting
Company, 37 and 38 Park Row. New York.
Good little patent for sale. Send 50 cents for
sample and price. John Rupp, 4 Corners, Iowa. Hotchkise our spring rorge Hammer, vest in the
market. Prices low. D. Frible Co . New Haven. Ct. A Bargain-A set of Scientiflc American, from
Vol. 3, old Series, to Vol. 21, New Series-1877 to 1869-33
Vols.,well bound,for 880 . Address A.F.R., Box 773 ,N.Y. Williamson's Tannate of Soda removes and pre-
vents Scale In Botlers. 251 lb . boxes, 2 cents per pound, Water, Gas and Steam Goods-Send eight stamps
or Catalogue, contanting over 400 Illustrations, to Bailey,
Farrell \& Co., Altitburgh. Pa. For automatic Twist Drill Grinding Machines,
address C. Van Haagen \& Co., Philladelpha, Pa Small Engines. N. Twiss, New Haven, Conn. Patent Scroll and Band Saws, best and cheape
n use. Cordeman egan \& Co.. Cinclnanatl, Ohlo. Boult's Panelling, Moulding and Dovetailing Machine is a complete success. Send for pamphlet and sam-
ple of work. B. C. Mach's Co., Battle Creek, Mich. For best and cheapest Surface Planers an 1 Uni-
versal Wood workers, address Bentel. Margedar : $\&$ Co., H milton. Ohio.
For best Presses, Dies, and Fruit Can Tools, Bliss
\& Wrilliams, cor. of Plymouth and Jay, Brooklyn, N. Y. For Solid Wrought-iron Beams, etc., see adver-
tisement. Address Union Iron Mills, Pittsburgh, Pa., for lithograph \&c
Hotchkiss \& Ball, Meriden, Conn., Foundrymen
and workers of sheet metal. to order. Job work solietted.
For Sole Second Hand Wood Working Machin-
ery. D. J. Lattlmore, 31st \& Chestnut St.. Philla., Pa. ery. D. J. Lattimore, 31st \& Chestaut St.. Philla., Pa.
Price only $\$ 3.50$ The Tom Thumb Electric Tel-
egraph. A compact working Telegraph Apparatus, for sending messages, making magnets, the electric IIght,
giving alarms, and various other purposes. Can be putin operation by any lad. Includes battery, key, and wires.
Neatly packed and sent to all parts of the world on reNeatly packed and sent to all parts of the world on re-
cetpt of price. F.C.Beach \& Co., 246 Canal St., New York. Peck's Patent Drop Press. Still the best in use
Address M1lo Peck, New Haven, Conn. Address Mllo Peck. New Haven, Conn.
All Fruit-can Tools,Ferracute W'ks, Bridgeton, N.J. a merican Metaline Co., 61 Warren St., N.Y. City.
ForSolid Emery Wheels and Machinery, send to ForSolid Emery Wheels and Machinery, send
the Union Stone Co., Boston, Mass., for circular. Magic Lanterns and Stereopticons of all sizesand
prices. Vlews 1llustrating every subject for Parlor
Amusement and Public Exhblitions. Pays well on small Amusement and Public Exhibtions. Pays well on small
investments, 72 Page Catalogue free. McAllister 49
Nassau St., New York.

Hydraulic Presses and Jacks, new and second
hand. Lathes and Machinery for Pollshing and Bufflig Metals. E. Lyon, 470 Grand Street, New York.
Spinning Rings of a Superior Quality-Whitins-
ville Splning Rfing Co., Whitinsville, Mass. Faught's Patent Round Brayded Belting-The
seas thing out-Manufactured only by C. W. Ary, 148
North 3d St. Phlladelphta. Ps Bend ior Circnlar. $\underset{\text { For }}{\substack{\text { Fines } \\ \hline}}$ diress H. B. Brown \& Co.. New Eaven Conn. Diamond Tools-J.Diokinson, 64 Nassau St., N.Y The Barter Engine-A 48 Page Pamphlet, con-
taining detail drawings of all parts and full particulars, now ready, and will be m
8 Park Place, New York.
Temples and Oilcans. Draper, Hopedale, Mass. The "Scientific American" Office, New York, is
fitted with the Miniature:Electric Telegraph. By touchng little buttons on the desks of the managers. signals establishment. Cheap and effective. Splẻndd for shops,
oflces, dwellings. Works for any distance. Price 8 ,

A. K. will find directions for bronzing brass castings on p. 283, vol. 31.-F. J. can put a gold lacquer on tin by following the directious on p.
130, vol. 32. - J. F. will find directions for frosting glass on p. 264, vol. 30.-R. N. will find directions and full directions for cleaning and J. L. wil ind full directions for cleaning and coppering
iron on pp. 139, vol. 31 . The book he mentions is published by Spon, 446 Broome street, N. Y. (1) F. W. J. says: I have drawings of a
punching press, intended to punch a bole $1 / 4$ inch in diameter, through sheet iron $1 / 8$ inch thick. I do not think it will be powerful enough to do the work, and I would like to know what pressure is
required. A. The pressure required will be about required.
$2,500 \mathrm{lbs}$.
(2) C. H. asks: What size of boiler is need d torun a stide valve engine whi cys inches? Kerosene is to be used for heat. Should
the boiler be horizontal or vertical? A. Make vertical boiler, 6 inches in diameter and 10 inche high.
(3) W. B. G. asks: Is there a proper speed for a turbine wheel of any given diameter, a speed mum of water or fall? How is such speed deter mined? What is the probable percentage of ef fective work which can be got from each unit of
theoretical total power exerted by an ordinary wheel? Other things being equal, and the head of water the same, I suppose the power of a wheel to be as the vent space between the inner edges of the buckets, that is, with buckets equally spaced the
comparative vent spaces will give comparative comparative vent spaces will give comparative
power of the wheels. By what rule can I ascertain the foot pounds of power exerted by a wheel face) under a given head of water? I am working center vent 4 feet turbine wheels, in scroll case and with gates of au area not balf that of the venting space between the buckets. It seems to me that the gate first, and the case afterwards, throttle my power so that I get very much less than the same wheel would give me if gate and
case were so large that every bucket would ve case were so large that every bucket would ve
acted upor alike by a solid column of water, and the wheel thus allowed to use as much as its vent-
ng spaces would pass? Is this so? A. You questions cover pretty much the whole theory of urbines, and we could not answer them satisfac torily in our limited space. You will find the the-
ory put in considerable detail in Rankine's "Treatise on the Steam Engine," Fairbairn's "Machinery Engineering."
(4) J. V. says: It is rrgued that working
two steam fre engines with aline of hose attached to each, and the other ends of the hose being at tached to the arms of a \mathbf{Y}, and both discharging from a nozzle $1 / 3$ inches in diameter, screwed to 50
feet of hose fastened to the third arm of the Y, the pressure in the 50 feet of hose into which they
are both working is nearly double that in either of the other hose pipes. I claim that pressure i
about alike in the whole. Am I right? A. We think you bave the right idea.
(5) H. M. H. suys: I am building an iceblack walnut, and lined with this box I wish to cover with felting, 沼 inch in thickness. The outer box is to consist of 1 inch in thickness of blark walnut. Would this make a good family ice box? A. An air space of 2 inches
thickness between the outer and the inner box is hickness between the outer and the inner box
as good for the preservation of the ice as wou'd be a packing with some fllling like powdered charcoal or other material, but the space must be thoroughly airtight. Place the ice near the top,
and the articles to be preserved lower; provide means to catch the drip from the ice-a sheet of zinc, perforated from below with holes to pass air in the bottom to carry off the water. Make the id of the box to contain an air space as well as the sides.
(6) Z. D. asks: If a mian raises vertically
weight of 1,000 lbs., with the uniform velocity of 10 feeta second, by means of a cord and pulley, what would be the tension of that cord? In other words, what stationary weight would give the
same tension to that cord, if fastened to a fixed into account tension of the cord would be about $1,550 \mathrm{lbs}$.
(7) J. K. says: 1. I wish to build an ice tions on p. 251, vol. 31, but the house will only hold

8 tuns. Could 1 make the interior, instead of 6 feet
square, 12 feet square? A. When ice is well packed, the larger the mass the better it can be preserved from melting; a 12 feet cube has been known to keep two years. 2. What percentage is
the melting in an icehouse constructed asstated ? A. The percentage of melting will depend upon the climate, the length of the warm season, an warm winds; bur house in regard to prevailing by careful attention in opening and closing the doors, and regard to light, ventilation, and good
drainage. 3. We cangather ice only 1 or 2 inche raick. Would it pay to flll the icehouse, and the use some freezing mixtures, as stated on $p .330$ ool. 33? A. If you can procure iee 2 inches thick,
vou have only to store it in the coldest weather pour waterupon it as you store it, and it will freeze together in one solid mass.
(8) A. W. C. Jr. says: 1 I have a boat 20 feetlong by 7 feet 6 inches beam, drawing 15 inch-
es of water, and an engine 3 inches by 5 inches es of water, and an engine 3 inches by 5 inches
stroke. Is the engine large enough for the boat? It is a vertical engine. fitted with link motion. A Yes. 2. What size of propeller do I require to
drive the boat 6 or 7 miles an hour in still water drive the boat 6 or 7 miles an hour in still water?
A. Twenty-two inches in diameter, and of thirty inches pitch. 3. Of what dimensions should the boiler be? A. Thirty inches diameter, $31 / 2$ fee (9) F. L. says: I wish to ask some questions about an hydraulic air compress. 1. In the case of
supply pipe supplying water to the cylinders oes it make any difference in the power whethe the supply pipe is larger or smaller, if the hea changed? My impression is that the only differ ence whether it is 1 inch or 2 in diameter is that the machine would work faster with the large pipe
A. There would be no essential difference. Does Keely getany greater pressure by having hi upply pipe so small ? A. The way he produces his oressure is carefully kept secret. 3.If the pressure quare inch would the air compressed in the ai cylinders have? A. The pressure of the air per
square inch would be equal to the pressure on the quare inch would be equal to the pressure on the
piston in lbs. divided by its area in square inches . Given a cylinder and piston, say 10 inches in lameter, with 1,000 lbs. weight on the piston, the Filhders being set upright and filled with water nected by a chamber by a pipe, with what pressure or force would the water issue from the inch nly the ould it be $1,000 \mathrm{lbs}$. per square inch, or nches in the area of the piston? A. The same as the pressure on the same area of the piston. 5 .
Would compressed air let in on the surface of the water (the top of the cylinder being closed) pro duce the same effect as if the pistons were present? A. It would, with the exception that som of the air might be absorbed by the water
(10) J. P. C. asks: 1. Will a 10×10 inches cylinder with 60 lbs. steam turn a two-blade propeller of 4 feet diameter and 10 feet pitch, with 18
inch blades, 150 turns in a minute, or would it be nch blades, 150 turns in a minute, or would it be advisable to use one of 8 feet pitch and make 200
turns? The boat is 33 feet on the keel and of 11 ebeam; she is 5 teet 6 incbes deep. A. It woul be engine faster. 2. Would the boiler require more heating surface for the latter than the former, and how much for each? A. You should have a boiler with about 300 square feet of heating sur
(11) H. L C. says: 1 . I am building a small
ngine of 2 inches boreand 4 inches stroke. What material will wear the best for a cylinder, brass on cast iron? A. Brass will be best. 2. Will an upright boiler of the following dimensions be sufficient to work the engine up to balf a horse power? Boiler is to be 12 inches in diameter and 30
inches long, set in an iron jacket 20 inches in dis meter, with the firebox under the lower end o he boiler, and a spiral flue to carry the hea This would leave 10 inches above the fire for team chamber. A. We think the boiler is of sufficient size. 3. Would it be safe to set the boiler down low, so as to lo
the fire? A. Yes.
112) S. B. asks: What will remove stain rom uncolored leather (saddle flaps) without in juring the leather? The stains are probably grease
(13 E. H J. asks: How can I remove grease from a sealskin cap, which has worked into the
fur by contact with the hair? A. Try a little ur by contact with the h
warm naphtha or benzole.
(14) A. M. \& S. ask: With what can we cix white paintfor marking numbers on woolen
clothing? The ordinary paint rubs off in the course of manufacture. A. Try the following Macerate (in a mortar) oxide of zinc with sufficien gum dammar and turpentine to give the proner
body. This, we think, will obviate the difficulty. (15) J. M. B. asks : 1. Is the racing of maine screw engines attended with any considerable
oss of fuel? A. Yes. 2. Is there a governor in use, which secures uniformity of motion in screw engines? A. We think not. 3. Do differentdepth of immersion cause the screw to race, or is it
caused by its being lifted partly out of water? A. By beinglifted partly out of the water.

1. Can as fine castings be made of bronze as of
type alloy? A. No. 2. Are molds of plaster type alloy? A. No. 2. Are molds of plaster of
Paris as suitable to cast small bronze work in dry sand molds? A. Yes.
(16) A. M. says: A friend and I have an argument which we have agreed to leave to you for settlement. I claim that the ordinary 3 -ported slide valve cannot be lapped so as to use steam ex-
pansively for more than $1 / 3$ the length of the stroke (that is, steam to follow piston $2 / 8$) without putting another valve on the back of the main valve, o
putting another valve on a separate seat. My
friend claims that the common single slide valve can be lapped and made to cut off at any portion of the stroke predetermined on, and can do it jus as well (and not spoil the exhaust) as with the aux iliary valve; only, of course, it cannot be altered
when once set. Which of us is right? A. You
(17) E E. R. says : I notice that Mr. Saw (17) E. E. R. says: I notice that Mr. Saw
yer, referring to Professor Tyndall's experiment, yer, referring to Professor Tyndali's experiment,
says that a person, on putting his ear close to the bar, can hear a click when the circuit is opene 0 feet in open circuit, run by 2 cells of Lockwoo battery. The wire is No. 12, copper. By placing my ear near either instrument, I can plainly hea it is closed. Why is this? A. Place the instrument on a sounding the click on closing circuit With proper conditions, it can be distinguishe both on opening and closing circuit.
(18) H. B. asks: What book could I get, to abtain information in electro-motive power? A Electricity and Magnetism," b Fleeming Jenkin,
(19) J. T. McL. says: The electricity pro duced on an engine, by the friction of a cross bel
100 feet long and 3 feet wide, is considerable. By
holding one hand up within a foot or so of the elt, and with the other touching a gas jet with copper wire, we can easily light the gas, even if the wire is held an inch from the jet. In some onditions of the atmosphere, it is very painful to ome 12 feet or more from the floor. A numbe of persons have received great relief from rheuatic and neuralgic pains and nervous headach nding under this belt on zinc or glass plate wire, collecta part of the electricity from the bel and convey it a quarter of a mile so as to utiliz ?. Yes, but it will cost more to do so than to enerate eleciricity where it is wanted. An ex 9, 9
(20) W. H. H. says : Some time since I or oists in my shop, and left. When in on som found it all placed on two joists; and I took on hird off. Twenty-four hours afterward the jois roke. Why did it not break when all the timbe was on? A. Time is an element to be taken int consideration in overcoming the strength of the
lbers of timber. Two thirds of the load in this case was sufficient to break the joist in 24 hour fter one third had been removed; but a muc horter time would bave sufficed to break it with he whole load upon it.
(21) L. H. C. asks: Is there anything known which will ignite common burning gas by
ontact, besides, of course, electricity and fire? . There are methods, other tban those you men on, known to chemists, by means of which ordi nary coal gas may be ignited. They are, however, hat they are of little practical value Metalli platioum, when finely divided, commonly called patinum sponge, has the property of condensing gases upon its surface. Thus, if a stream of pure ydrogen, or even carburetted hydrogen, be mad impinge on the surface of a little bulb of thi sponge, its combination with the oxygen which it
inds there causes the ball to grow red hot, and ite the gas
(22) J. B. L. says: I have made the telego, and find it well worth the about 18 month aken to make it. Recently, while looking at th moon, I noticed that the edges, especially on the de towards the sun, had a wavy appearance, suc as heat makes in ascending through air. A. Warm and coollayers of air in the atmospbere bend the hat high powers cannot be used except on ver are occasions.
(23) M. E C. says: We have a private tel graph line, 800 feet long, using No. 16 copper wire for double the entire distance, that is, using no ground wires. We have three offices, the wire in each entering the upper stories of the house and
passing, by mears of wire insulated with cotton and wax, to the lower floors. Is it perfectly safe completely insulated with regard to the earth, and therefore I should think that it would not attrac ightning. A. Lightning arresters are employed principally to prevent the wire, forming the coil f the instruments, from being burnt off. Th ne does not attract lightning atall. If, howeve discharge occurs in the immediate neighbor is very much nearer gocd ground (gas, wate pipes, etc.), part of the discharge will follow th wire on ascount of the low resistance of such route. In such a case, the line might be danger ous.
(24
f the l. G. S. says: Is 1 he greater power of ing of the glass only, or is it also the result of chemical process in manufacturing the glass? A. power. A convex lens makes objects appear

A oncave one makes them look smaller.
(25) A. F. H. asks: Will you suggest a
cheap and simple method whereby I may be able to grind lenses suitable for a microscope of high power, also others suitable for use in a telescope? A. There are two kinds of glass used, one very
heavy, called flint, the other light, called crown and with the proper combination of these, the lenses are made achromatic. Any text book of natural philosopby or optics will give you the pro-
portions; and much valuable information may be gleaned from the last four volumes of the Scientific American.
(26) J. P. says: 1. I-herewith send you a
piece of a porous cup. Can you tell me of what substances it is made? It is the best porous cup that I have ever used, as it offers but very little
resistance to the galvanic current. A. The clay in the sample appears to be that ordinarily use or porous cells. The cup was very thin and no over-baked, which accounts for its low resist ing the inside of glass cylinders for electrical ma hines. Can you tell me how it is made? A. The best sealing wax is much used for the pur pose
(27) C. N. W. says: A is a ladder weighing 500 lbs . pivoted at a, and having a lever or prop, s, hinged to it at b. This prop has a wheel, c, atplane, C (inclined 1 in 5 or 8 feet in 40 feet). The power is applied at \mathbf{P} through a rope, d, which
(37) J. V. asks: Why cannot I weld sleigh cess. A. Probably from inexperience.
(38) J. W. B. asks: 1. Is there any differnce in the power of an oscillating and a balance
valve engine, if both engines are of the sam size? A. It ${ }^{2}$ depends on the workmanship. 2. Is
there any way to change the motion of an oscilla there any way to change the motion of an oscilla-
tingengine, as simple as the link motion? A. No ing engine, as simple as the link motion? A. No, none so effective. 3. Are the drive wh
comotives keyed to the axles? A. Yes.
Has the mariner's compass the same po
er water as it has above water? A. Yes.
(39) D. C. B. says: I have an hydraulic ram in operation, working at 8 feet head, by $13 / 4$ inches 300 feet of pipe, 50 feet high. When first put in operation, it worked well, but occasionally the waer runs slowly until very little is obtained

The ram appears to
 labor very heavily, making a loud
vibrating noise in the dwelling
house where the water is delivvibrating noise in the dwelling
house where the water is delivered, even when it is throwing very little water. When it delivers its proper amount, there is only a When working properly, the valve delivers over properly, the ram cline, c, and is attached to the lower end of the day of 24 hours: when laboring heavily, with prop, B. What power will be required to raise the we will explain the method by which you can we wike expesolution. It will first be necessary to and the pressure exerted at the point, b; next find, in the direction of the prop, will balance this pressure; and finally, by the principles of the inclined plane, determine the relation between this force and the weight on the cord, d.
(28) D. R. B. asks: Is there anything that will settle or precipitate dirt in flowing varnish ? Iafter it has flowed varnsh that has a good luster, but fine dirt. A. Thin the varnish down and filter through a small plug of cotton wool
(29) A. H. R. says: I have a small piece of quartz rock, supposed to contain silver. Will you tell me some way to test it? If the rock is pounded up ine and treated with nitric acid, thoroughiy tion be washed, put on to white paper, and exposed to the sun, would it turn dark if it contained silver? A. Grind the rock into an impalpable powder, and digest for some time with nitric acid. Filter the solution through good, clean, white filter paper, in order to remove the undissolved residue. If the solution contain silver, upon thead-
dition of a solution of chloride of sodium (common salt), a heavy, white, flocky precipitate of chloride of silver will form, which will shortly subside, when the excess of liquid may be dccant ed and the precipitate washed with clean cold water. On exposure to lig
change to a dark color
(30) C. D. B. asks: What cheap substance without injuring its healing properties? its odo without injuring is healing properties? A. We altering the chemical properties of the body to some extent.
(31) C. H. D. asks: 1. In what form is ni in the form of compounds containing ammoni and ammoniacal salts, such as urea. 2. Is there any way to ascertain approximately the propor-
tions of nitrogen and phosphoric acid which would be required per acre in a field where cereal are intended to grow? A. Yes. An analysis of a requisite. 3. What properties does air-slaked lim supply to the soil? A. It decomposes part of the organic constituents of the soil, and rendersthe suitable for assimilation by the plants.
(32) C. asks: Is there any chemical compo ition by which the skin may be darkened perma-
nently, without any injurious effect? A. We do not know of any compound that will accomplis this.
(33) E.M.L.asks: Are the following propor lons right ior a small steam yacht? She is 30 fee of an engine with a 5 inch macinder with 6 inche troke. She has a 32 inch 90 rew of 4 fent 2 inche pitch. The boiler is 5 feet high by 30 inches in diameter, and has a low crown sheet with 56 two nch tubes, and is supposed to be an 8 horse boile but we can hardiy keep steam 10 supply the enine. What is wrong? A. You do not send enough ion The proportions are very far. If couch on. The proportions are very fair. If you could pater evaporated by the boiler, you can soon de tect the trouble.
(34) T. J. H. asks: At whut time in the year should I cut timber for wagon lumber, etc., so as to prevent the worms from getting into the lumin which the largest quantity of hard and durable wood can be obtained as free from sap as possible. natural juices are most inactive, and the tree, in measure, dormant. To properly season the wood t is necessary that it should be exposed for abou
35) C. S. asks: How can I find the power of
turbine water wheel? A. By experiment only. Which is the best $t \mathrm{u}$ use with a windmill 12 fe in diameter, a circular or
(36) T. A. L. asks: If I take two locomotive prings of like dimensions, and give one 1 inch segard to strength ? A. The former spring will be rtronger.
the loud vibrating noise, it only delivers about100
ghat shat in the same time. What shall Io to rem gallons in the same time. What shall I do to rem-
edy it? A. The trouble probably arises from the valves getting choked at times.
(40) J. A. S. asks: How are gun springs empered? A. The springs are heated to a blood red, then kept covered with oil and held over a
slow fire until the oil on them blazes freely all slow fire until
over the spring.
(41) J. R. says : 1. I assert that steam can be used expansively to advantage where you do not need the fall power of the engine. I have an power. Cannot I save steam by using it expansively, that is, by cutting off the steam when the piston has travelled one half or two thirds of its stroke? A. Yes. You are right. 2. Is it neces-
sary to have the exhaust portlargerthanthesteam sary to have the exhaust portlargerthanthesteam . Yes.
(42) J. G. W. asks: Can a left hand screw thread be cut with a right hand die, by taking one half of the die and a piece of copper, and cutting
(43) M. F. S. says: A friend asserts that, in belting directly on the face of an engine fly wheel, the most power is obtained from the wheel He says also that the centrifugal force is greater at the face, and of course is transmitted to the belt, and concludes by saying that it is the best known way to belt from the engine. My claim is that, if
the belt were driven from a smaller wheel on the same shaft, that the engine would not vary so much when work was thrown on or off, and the engine would not be strained so much, and consequently would run more easily. My theory is that the leverage is much greater in the fly wheel, and the weight is at the end of leverage, and will thereby causing the engine to run with less strain allowing the fly wheel to check sudden jerks caused by work thrown on. Your decision will be gratefully received. A. Since you both agree to drive
from the fly wheel by belting, the engine will be from the fly wheel by belting, the engine will be,
with the same speed of belt, more pawerful with With the same speed
(44) J. N. T. asks: Please give me recipe utside facket and heating pipes palng th house furnace. A. Use a paint made of red and white lead.
(45) R. F. G. says: I have a saw mill in y wheel 4 feet in diameter. The weight of f yheel is about 400 lbs . I contend that it would improve the power to get a larger fly wheel, say
about 600 lbs. in weight. Am I right? A. No. It would not improve the power.
(46) E. O. asks: What tools are necessary or making a small 2×4 inches engine, the cylinde ew hand-turning tools, drills, scrapers, and files. (47) W. W. K. says: On a recent examina ton of oursteam boilers, we find a substance cor the boilers. It resembles black was and com we presume from allowing our exhe, and come enter the cistern from which we feed our boiler How can we prevent the destructive effects o this deposit? We notice that the braces are a ready being corroded by it. A. The deposit must be analy
mended
(48) H. H. F. asks: How can I bore a long tube in a slightly taper form? A. A very sligh
amount of taper may be obtained by keeping the tube very cold at the commencement and gradu ally increasing the temperature up to $200^{\circ} \mathrm{Fah}$ a he boring proceeds.
(49) R. A. C. says: It appears to me that the most natural and effectual way to brake a ca would be by gravitation, that is, by throwing th weight of the body of car, by means of toggl Jints, on each wheel, the lever running diagonalunning up center, under bottom of car, from en o end, to the windlass on the platform. It could and the cars are pushed together, the pressure ca be utilized and brought to bear upon the wheels, oo that a rolling motion can be changed into a slid tain that a car would not be stopped so quick with all the wheels instantaneously stopped as would if their speed were partially impaired. H
uch a brake device asl mention ever been tried cally useful for railways. The same effect can be roduced by any continuous brake that is suff ently powerful.
(50) F. H. M. asks: 1. Our school building heated by steam. I put a check valve on th he steam $i s$ shut of from part of the valve retards the flow of water back to the boiler and the arrangement does not heat so well. Ca to counterbalance its weight, and obviate thedif ficulty? A. Yes. 2. I have taken the valve out and since that I have discovered several bad leak in the steam joints. Why did they not leak befor pressure of stam? A They were probably the
rot so much worn.
(51) C. B. C. aske: In turning cast or oed without using oil or water? A. Cast iron.
(52) H. S. M. says: 1. I am building an enine to use steam at 500 lbs . pressure per square high for brass or composition connections an valves? A. No. 2. Would it be safer to use mal leable iron? A. No. 3. Which will stand the highest temperature without crumblicg, yellow ass or gun metal? A. Gun metal
(53) J. B. L. says: I am running an 18 feet vershot water wheel and an 8 feetdriving wheel. If I increase my driving wheel to the size of wate
(54) a ask How is the fine coloron caseardened iron, such as on gun trimmings, ob tained? A. Casehardened iron does not present
55) H. W. S. says: I have an engine lathe of 16 inch swing and 5 feet bed. Is it possible to ot over 5 inches in diameter? A. No. It is im

practicable.

Minerals, atc.-Specimens have beel re ceived from the following correspondente,an examined, with the results stated
G. B.'s and J. M. R.'s minerals have not been re eved. H . quantity. No. 2 is carbonate of lime.-J. A. Y. No. 1 is manganese. No. 2 is coral replaced by lex. No. 3 is oncrinite. No. 4 is cyathyphylloid coral. No. 5 is millepore coral. No. 6 is an imperfect fossil replaced by carbonate of lime. No. 8 is Inbite. No. 7. Send a larger rragment.-W. B. H. o mine if there is enough of it.
J. A. S. asks: 1. How are laminated stee uns made? 2. How are stub twist guns made? . How are Damascus gun barrels made?-A. F foot square, sag more, whole, than when sawn into two inch plank ?-S. T. S. asks: How are arificial limbs covered with raw hide ?-D. H. S. Jr
asks: 1. What is the greatest depth of snow hrough which the most powerful locomotive can propel the best snow plow, at a uniform speed, on level straight track? 2. What is the greates feat which has been accomplished by a snow plow
propelled by any number of locomotives? - H. M. propelled by any number of locomotives ?-H. M.
T. asks: How do dairymen skim milk in large T. asks: How do dairymen skim milk in large
quantities? -J . eays: I want to raise a certain weight. I put, on a stationary surface, a wedge wide at the small end, the taper all being on one side, and the other side straight. I move the wedge by means of a screw $7 / 8$ inches in diameter, with 10 tbreads to the inch, with a crank 4 inches long. hat weight can raise by exerting a force of 50

COMMONICATJONS RECEIVED.
The Editor of the SCOENTIFTC Amerrican ac nowledges, with much pleasure, the receipt o original paper
On Crossing the Enylish Channel. By G. W. P. nd by W. H. P.
On the Scientific american. By S. S. B.
On the Dioptric Light. By W. C. G.
On the Hoosac Tunnel. By F. W. G
On Spark Arresters. By C. F. P.
On Spark Arresters. By C. F. P.
On Pumping Water into Mains. By J. A. R.
On Pumping Water into Ma
On a Problem. By G. D. B.
On Lavinout Bquare
B., and by J. W.D.
dso inquiries and answers from the following
G.-C. K.-T. C.-W. M. T.-C. D.-E. A. P.-A. T
-T. B. M. - H. T. B. - J. J. - H. H. - N. F.W.-A.
-J. F. S.-R.

HINTS,TO CORRESPONDENTS.
Correspondente whose inquiries fall to appea may conclude that, for good ressons, the Edito declines them. The address of the writer should always be given.
Enquiries relating to patente, or to the patenta bility of inventions, assignments, etc., will not be only are iner. Al anly are given, are thrown into the waste basket but we generally takepleasure in answering briefly by mail, if the writer's address is given.
Hundreds of inquiries analogous to the following are sent: "Who sells miniature steam engines Where can simple galvanic batteries be bought Whose 18 the best apparatus for projecting th indicators be obtained ?" All such personal inquit ies are printed,as will be obeerved, in the column of
"Business and Personal," which is specially set part for that purpose, subject to the charge men ioned at the head of that column. Almost an desired information can in this way be exped Hously obtained.
[0FFicial.]
INDEX OF INVENTIONS

Letters Patent of the United statew were

 Granted in the week Ending November 30, 187 b AND EACH BEARING THAT DATE.Actd for cement, etc., treating...............
Adrertising, illuminated, W. A. Lillendahi.
Alarm, etc., burglar, G. Hancock... .
Alarm. fire and burglar, C. A. Maxfleld Ant Apple corer and slicer, H. W. Little Baby walker, J. Garcla
Bale tle, A. N. Powell.
Bale tie, Schartan and Gardner..........
Bailing cotton, device for, T. H. Murphy.
Barrel-lifting machtne, A. J. Small.
Bed clothes holder, J Lesh.................. . Billiard table, F. E. Held.
Biscult cutter, A. P. Ash.
Biscult cutter, A. P. Ashbourne
Bonler reeder. automatic,
Boot and shoe, F. O. Ward
Boot tree, G. W. Badger.
Boots, machine for sewing, Goodye
Brick machine, Crabtree \& Melcher
Brick machine, Crabtree \& Mel
Brldge, dra w, M. Vincent.........................
Brushes, securing handles to, J. L. Whiting..
Burner, argand gas, C. D. Gervi
Butter package, H. P. Adams..
Calssons, alr shaft for, W. S. Pope
Camera, E. B. Barer.........
Camera screen, J. F. Ryder.
Car brake, Betteley Snarer.
Car coupling, C. Johnson...
Car platform, B. J. La Mothe
Car starter, E. G. Goddard
Car starter, E. G. Goddar
Car starter, J. D. Plerce.
Car starter, I. D. Pierc
Car starter, D. Wolfey.
Carriage axles, turning
Carriage ax les, turning, J W. Ellis
Carrage. chlld's. A. Ropes......
Cart, dumping G. B Wiestung
Cartridge, G. Smith
Cartriage, blastiog, Smith \& Egge.
hair fastening, L D. Craig.
Chair, folding F. Hick
Chair, folding, F. Hick man
Chair, tllting, L. Heywood
Cleat and hawser clamp, F
Clevts pins, manufacture of, W. J. Lewli
Clothees dryer, T. G. Saint
Clothes dryer, T. G. Salnt
Clothes pyn. H. H. Mason
Coal dust blocks, etc., masing, M. M. Pettes
Cock, stop, and wiste, R.
C oler, mik, B.
Coolers, etc., cover fo
Cotton, device tor baling T.
Counversink, R. J. Welles..
Couplings to shafts, fix
Cultivator, H. H. Dreen
Cultivator, T. J. Lee
cultivator teeth. self-locking, J. Harris
Curry comb. M. L. Slmonso
Digger, potato, N. Rugg.
Dist cloth holder, J. M. Brown.....
Ditching machine, J. E. Landrum
Drilling machine, metal, s. W. Putna
Driling machine, rock, A. Kirk..
Dumplng for graves, J. W. Vannt
Dyelng fabrics, etc., J. Harley........
Earth-boring apparatus, Favis
Eggs, preserving, F. H. L. C. Sacc.
Embrotdering fabrics, R. M. Rose
Engine, caloric, C. Muskov..
EngIne, rotary, J, W
Engine, rotary, J. W. Blodgett.....
Evaporating pan, A. W. J. Mason
xpansive tool, C. Crammer
Exterminator. ant, M. Barihel
Fabris, elastic, Leonard \& Buckley
Fabric, elastic, a. Turner
Fabric, elastic, A. Turner $\begin{aligned} & \text { Fence barb, wire, Brown \& Tubbs. }\end{aligned} . . . ~$
Fodder cutter, T. B. Lamb.........
reezing apparatus, E. C. Tozer.
Furnace for heating ateel, J. B. Armstrong
Furna -c grate, J. B. Larkin.
Furnace, etc., ventliattng, J. A. Young.
Furnace bottom plate, S. Dallar.........
Gas scrubber and condenser, T. C. Hopper.
Gate, swinging and tilting, A. Brinkerhoif
Glassware, mold for, B. Bativewell Jr......
Grain binder, J. J. Atwater...
rate, G. Wellhouse.......
Grist alarm, D. . . William
Hair switch, A. . . Smith
Hame couphing, J. H. Carisisle
Harrow. H. Mell.
Harvester, J. P. Delseseaux
Harvester cutter, P. Howell.....
Harvester rake, H. H. BrIdenthal,
Harvester rake, W. N. Whtteley
arvester seat guard. E. H
Haventilator, N. I. Rees....
Heating drum, J. S. Lewls.
Hinge, J. R. Shield s....
tones pact-closing, C. A. Mil
Honey package, L. Drake..........
Horse yoke. J. Boy er
Horseshoe blank, J. T. Walker
Horseshoe nall machine,
Hose couph1ng, s. White
Hose nozzle
Hose nozzle, J. Toomey.
İe machine, J. M. Beath............
Indicator, station, C. A. Evana.

Ink powder, W. A. Bonney. Koitting machine, Burson \& Nelson
Lamp, J. W. Carte Lamp, J. W. Carter.170, Lamp chimneys, etc.,flaring. T. B. Atterbury. Lamp extingulsher, F. Hartman
Lamp pendant, W. M. Underhili
Lantern, H. Beebe....
Lathe, engine, w Tuck
Lock, sewing machine cove
Lock, time, L. A. Haines...
Lock, time, P. B. Hennessy
Loom picker, H . McManus
Lubrrcating compound, J. F....
Lunca box, Hunt \& Whitehouse
Lunch box, Hunt \& Whitehouse.
Milk pail, Amole...........
Mill, pearl barley, H. s. Nor
Mill, rearling, C. H. Perkins...
Millstone driver, W. E. Sergeant.
Millstone tram and staff, Greenleaf \& Krus
Mop and brush holder, C. B. Clark
Mop head, w. H. Curtis
Motion, converting, W. Dawes
Neck tle fastener, J. Wachner.
Oat meal machine, A. J. Ehrrichson
Oat meal machine, w. Heston........ Oat meal machine, w. Heston....
Ore concentrator, J. v. Pomeroy Ore holst, C. W. Hunt. Ores, treating, Eames \& Patchen
Paint, fire proof, J. Paint, fire proof, J. Dewly
Yaper box, D. K. Osbourn Paper box, D. K. Osbourn.
Paper wagon body, J. W. Ja Perfume fountain, E. Rath. Piano forte action, grand
 Planofortemusic rack, S. Brambech Picture holder, Perkins \& Dodds Pipe joint, B. Jennings.. Pipes, coupling. sections of, Flagler. \& Brown
Planing and matching machine,Doane $e t$ al (r). Planter, corn, A. Hearst Plow, T. E. C. Brinly...
Plow, sulky, G. Moore Plow, sulky, G. Moore.

Press, cotton, W. W. Wallace

Press, oll, C. L. Morehouse Press, portable hay, H. McCar
Press, rotary, W. K. Dantels... Press, rotary perfecting, J. L. Firm.
Propellers, guard for screw, H. Pulp strainer, S. E. Crocker Pump and engine, rotary, R. Patrick Rail joint, H. Weber... Rallway frog, G. Elliot. Razor strop, J. Maxson.....
Refrigerator, B. A. Stevens Ropes, tube for forming. J. Rinek Saddle, pad, S. Herr.. Sash fastener, J. R. Dewe
Sash holder, H. C. Perry Saw gulde, clrcular, Bryce and Gronberg...
Saw mills, log turner for, G. H. Shearer (r) Sawlag machlne, band, w. c. Margedant. Sawing machine, scroll, w. C. Margeda
Nawing machine, scroll, F. D. Smitn screen, L. Fitzpatrick Screws, machine for threading, F,
Separator, grain, C. B. Nichols... separator, grain, C. B. Nichols...
Sewing machine Sewing machine, boot, Goodyear and Hadley. Shears, gage for, J. Lamb.. Sleeve ad juster, A. Perego. Soda water fountain, c. Greiner Spectacle frame, J. W. Stewart Spring, rubber, D. R. Pratt.. Steel, manufacture of chron Stralghtening machtine, Barr. S. A. Atkin..... Thill coupling, B. s. Porter Thill, open, C. H. Matthlessen Tile, C. J. Merrill..
Time detector; watchman's, w. Imbaeuser Tobacco dryer, D. J. Chapin Tobacco dryer, H. R. Farmer.
Tongue support, H. H. Briggs.
Toy pistol, G. W. Eddy
Toy pistol, G. W. Eddy
Type-setting machine, A. C. Richards
Type-writing machine, P. Deming
Valve, cut-oft, W. F. Martin..
Vault cover, J. K. Ingalls.
Vautt cover, J. K. Ingalis.....
vehcle, hand,propelled, w. T
vehicle seat, J. H. Franklin. Wagon jack, C. Gray......
Wash board, W. H. Berger
Water trap supply, etc., J. H. Morrell (r)
Water wheel, I. Mallery.
Water wheel, F. Volgt.
Water works, portable, J. N. Dennisson
Weather strip, D. Doan
Well, packing oil, J. H. Hoffman.
Wheel hub, J. Hyman...
Windlass, J. P. Manton (r)..
Windmill, A. N. Hollembeak.
Windmill, D. L. Oshorn...
Wrench, H. Port....
DESIGNS PATENTED.
8,811, 8,812.-BUTTONS AND StUDs.-T. G. Brown, New-
8,813 to $8,815 .-$ Show CABES.-J. Lollnbeuter et al., st
8,816.-Tobacco Bags.-W. J. Cussen, Richmond, V 8,817.-Cutlery.-J. D. Frary, New Britain, Conn.
8,818,8,819.-Sodi Water Appakatus.-F.H. Shepherd 8,818,8,819.-Soda Water Apparatus.-F.H. Shep
Boston, Mass.

[^0]
On each Caveat....

On Issuing each original
On appeal to Examiners--In-Chle
On appeal to Commissioner of Patents
On application for Re
On an application for Design ($31 / 2$ years).
application for Design (7 years).
n appltcation ${ }^{\text {or }}$ Design (14 years).

Amateur Workers in FANCY WOODS

Geo. W. Read \& Co.,

WRINKLES

RRIECIIPI PE

Compiled from the sCientific anerican.
An illustrated Hand-Book of Practical Hints and Suggentions for Mechanics, Engineers, Farmers, Ho
and Workmen generally.
and workmen generaliy.
The voume comprises 250 pages, is printed on fin The volume comprises 250 pages, is printed on in
paper, with gllt edges, and is of large pocket-book form exible covers. neatly ornamented.
Mailed, post paid, on receipt of $\$ 1.50$.
1 copy
Scientific American, 1 year, Wrinkles and Recipes
H. N. MUNN, Publisher,

37 Park Row, New York City A FRENCH GENTLEMAN, who has long re

W ANTED-A MAN WITH MONEX AS A PARTNEE
in the best Inyention of the Age Adrese
HUGH MOCALIP, Hartaville, Indiana.
$\$ 8$ YOUNG AMERICA GCROLL GAW. Beat
$\$ 5760$ Agents' Pronts per Week

DEAFNESSI Hearingreatored. ARrand Aven Foot Lathes and Scroll Saws.

FOOT LATHES Foon Prul

 Telescopes, Barometers, \&c., \&C. JAMES WU. QUEEN \& CO.,
924 Chestnut Street. Philadelphia, Pa.

 PATENT FRICTION PULLEYS.

Commeriail Ignero,

Merchants contemplating changes in their Partnerships, or the formation of New Ftrms, will oblige by communicating the same to us, that their names may appear correctly in the "Сомarrolal Agencty Registier."
Desiring to have our Records as accurate as pos sible, we will accept the Statements and References of any Merchant, and give the same the most thorough scrutiny.
Bankers, Merchants and Manufacturers will oblige by informing us if in any case their knowledge and experience do not harmonize with our reports. We ask this that we may, by fresh and thorough investigation, correct errors, if any are found to exist.
The "Commercial Agency Register" will be eady for delivery shortly after the frst of January next.

McKillop \& Sphaque Co.
 $\mathbf{W}^{\text {THRERERT, }}$

\qquad

TMPRTANT FOR ALL CORPORATIONS AND

PLANING \& MATCHING, TENONING,RESAWING,SHAPING H. A. Mect

MICRROSCOPES

IFE-LIKE PICTURES, accurate as photographs,
 ATHE WANTED-48 in. Swing, 20 feet Bed
Second hand. Must be ingood order.
THOS. WORSWICK, Guelph, Ont.

 For saLE-One half interest in a Tobacco A MONTH-Agents wanted everyst
Bhere. Busness honorabee and frist
class. Particulars sent free. Addrest class. Particulars sent free. Addresi
J. WORTH \& CO., St. Louis, Mo.
 BOOK WALTER ENGINE
Compact, Substantlal Economical,
and Easily Managed. Guaranteed to

boxlng, at the low price of
3 Horse Power....... $\$ 25200$

.30350
deld, ohio. JAS. LeFFEL \& CO.,

THE UNION IRON MILLS, Pittsburgh, Pa.to our imp atevend Wh of Engineers and Architects 18 calied
ented) in which the componn Beams and Grders (pat-
end fin welds between the ster
 SCIENCE RECORD

SCIENCE ReCORD is a splendid book of 600

 pages, published anof January. Ilustrated with many engravings. Price $\$ 2.50$.THE Volume for 1876
Will be published about
January $15 t h$ Ita

 the following Departments:
CHEMISTRY AND METALLURGY,
MECHANICS AND ENGINEERING,

RURAL AND HOUSEHOLD ECONOMY,
NATERA MEDICA THERAPEUTICS, HYGIENE MATURAL HISTORY AND ZUOLOGY
GEOGRAPLOGY, TERRESTRIAL PHẎSICS GEOLOGY AN'D MINERALOGY,
ASTRONOMY,
BIOGRAPHY AND NECROLOGY.
 eversting and Valuable Book, and ehould have a place in

All the preceding volumes of SCIENCE ReCORD
may be had separately at $\$ 2.50$ each, or $\$ 10$ for the five volumes, 1872, 1873, 1874, 1875, and 1876 . MUNN \& CO., PUblishers, 37 Park Row,
New York cits

CLARK \& COMPANY'S PATENT SELF-COILING, REVOLVING STEEL SHUTTERS

IMPROVED CORK-SOLED BOOTS.

he largest asoortment in the clty For

 Brainard Milling Machines and antivee

Planing \& Matching
 HAIR-FELT---HAIR-FELTT. BOILERS \& PIPES.

P. BIAISDEII \& CO.,

STEEL CASTINGS.

 PATENT
Planing and Matching

COLD ROLLED SHAFTING
Thit tatt that that ghatthn haf Th per cont groater

- LTE marry noisting

 OTIS, BROS. deAY, NEW YORE.

Non-Freezing, Filtering, Automatic

STRAM tRAP.

NIAGARA STEAM PUMP

 Puleys, Sha fting and Hanger a Apecialty.

TA TRT Successfully Treated,

Established 1846,

The Oldest Agency for Soliciting Patents in the United Stater.

TWENI P-NINE YEARE EXPERIEROA.
HORE PATENTS have deen seoured through his agenoy, at home and abrosd, than through any other it They employ as their sedolotants a corps of the most at perienced men as exmminera, specification writers, and ected from the ranks of the Patent Offloe.
SIXTY TEOUSAND inventom have and themselves of Monn Co, ND ince to exo have avalled mons, and procuring their patente
MUNN \& OO., in connection with the pablication of the onantifio Ancirioak, continue to examine invention asaignmentestent to plepare drawinga, speciflosiona, anco paying the government fees, and watoh each case step by tep while pending before the ezaniner. This is don hrough their branoh oflloe,corner F and 7 th 8 treeves, Wad patents, trademgrks, and reissues attend to refected cases (prepared by the inventor or other attorneys), procure copy rights, attend to interferences give written opinions on matters of infringement, formial copies of patentas in faot attend to every branoh of patent business poth in this and in Soreign countries.
A speolal notioe is made in the Botamitio Ancritoar of all inventions patented through this Agenoy, with th sold, in part or whole, to persons attracted to the invention by suoh notioe.
Patents obwined in Oanada, Kngland, Franoe, Belgiam Oermany, Raselis, Prassia, Spali, Portagal, the Brition Dolonies, and all other countries whers natonta \& granted at prices greatly reducecl from former rates. send
for pamphlet pertaining specilly to foreign patents, which states th

Copies of Patents
Persons desiring any patent tesued from 1838 to Novem ber 26, 186, can be pap ngs and length of specifications.
Any patent issued since November 27,1867 , at whic tme the Patent Office commenced printing the drawing and specifications, may be had by remitting to this office $\$ 1$ A copy of the claims of any patent issued since 1836 wl be furrished for $\$ 1$
When ordering coples, please to remit for the same as
above, and state _name date or patent.
obtaining United Staning the laws and full directions for bound Reference Book, gilt edges, contains 140 pages àn many engravings and tables important to every patentee nd mechanic, and is .a useful handbook of reference for rybody. Price 2 in cents, mailed free. Address

MUNN \& OO..

Yablishers soluntifio amierioan,

FUR-LINED

SILK CIRCULARS, OF DIFFERENTSTYLES, PLAINAND
TRIMIED, AND MIDE UP WUTH ED, AND MADE U
SPECIAL CARE.

Seal-Skin Sacques

Holidays.

502 \& 504 Broadway.

H. W. JOHNS, 87 Maiden Lane, N.Y., $\frac{\text { sheathing-paints-steam packing, \&c. }}{\text { Todd \& Rafferty MachineCo. }}$

 THOMAS'S FLUD TANNATE OF SODA-

Elgin Watcoiss.

DECLARED $\begin{gathered}\text { by Rairroad Officers, Engineers, As- } \\ \text { tronomers, } \\ \text { Explorers, }\end{gathered}$ Durable timekeepers in the world.

 Civiniaint

LOW.FRICED EIIERY WHEBLL

THE HEALD \& SISCO Patent Centrifugal Pumps.

 T

 R OGERS, TANTATR OF SODA BOLER $\frac{\sigma^{-2}-\text { send }}{\text { DAPER }}$

Schlenker's Stationary
Revolving - Die Bolt Cutters, HOWARD IRON WORKS, BUFFALO, N. Y.
send tor corcular.

> HARTFORD

STEAM BOILER
Inspection \& Insurance COMPANY.
W. B. FRANKLIN, V. Pres't. J. M. ALLEN, Pres't. J. B. PIERCE, Sec'y.

PORTLAND CEMENT
 IRON PIANERS, NGINE LATHES, DRILLS, \&c. Send for Price Libt,
NEW HAVEN MANUFACTURINGA CO.,
New Haven. Con THE SOUTHERN STATES
AGRICULTURAL AND INDUSTRIA FXPOSITIUN Will be Held on the Fair Grounds, at
New orleans, Commencing February
26, 1876 , and Continuing Ten Days. SAMUEL LU N. MARES, PRRESDRNT. GENERAL SUPRRINTENDENT.

NGINES \& BOILERS.new \&2dh'd. perfectcondition Very cheap. Adaress BINGHAM \& RICH.OH1City.Pa

Jiamond solid smery Wheels.

IRON AND STEEL DROP FORGING.

ETon
 R HOE \& CO:S CHISEL TOOTH SAWS AR

 timilificalturtuth ex Oquppeement:
 倉

$\$ 5$ a year by mail, post-paid. Send 10 cents for Specimen Copy. TO ILLUSTRATE AND DESCRIBE the many interesting themes and objects presented in the Great Centennial International Exposition
of 1876, and also to meet the wants of that large or 1876, and also to meet the wants of that large
class of readers who desire an increased supply of Scientific Information, particularly of the more Technical and Detailed character, we shall issue a special Publication, entitled the SCI-
ENTIFIC AMERICAN SUPPPLEMENT, to be ENTIFIC AMERICAN SUPPLEMENT, to be printed weekly during the Centennial year of
1876 , and, perhaps, permanently thereafter. Each 186, and, perhaps, permanently thereafter. Each number will have sixteen large quarto pages,
issued weekly, printed in the best style, uniform with the SCIENTIFIC AMERICAN, but separately paged.
The SCIENTIFIC AMERICAN SUPPLEMENT, In addition to the special matter pertaining to the International Exposition, will embrace a very
wide range of contents, covering the most recent and valuable papers by eminent writers in ALL the principal departments of science and USEFUL KNOWLEDGE, to wit
1.-Chemistry and Metallurgy.-Embra-
 and the Various Metals, with engravings of New
Apparatus, New Information, etc.
Miechanics and Engineering.-The

3.-Electricity, Light, Heat, Sound.-
 Electric Engines, New and Oseful applications of --Architecture. -Examples or the best New -A rchitecture.-Examples or
Structures, with details and drawin
Address MONN Address MONN \& CO., Publishers, 37 Park Row, New York
-Technology.-New and Useful Invention
and DDsoverites relating to THE ARTS; Improve-
nents inchotograph frinthg, New Implements,
New Machnery New Price esses New Rect

6.-Agriculture, Botany, and Horticul-
6.-Agriculture, Botany, and Horticul-
ture. Mew and Useful Information in nall branches
of A Ericulture. Descriptions of New Plant s, Trees,

with engraving

- Rural and Household Economy.The Latest Information concerning Bullding Mate
rials, New and Valuable Rect pes, and a great varte
to ty of Miscellaneous In formation pertaln ng to
ral and Household affirs-with engraving.
8.-Materia Medica, Therapeutics, Hygiene. - Exhibiting the progress of Medica
Science in various branches; New Medcinal preSctence in various bananches, Now Medicina pre
parations ineor health Applances, and much In-
teresting information.
9.-Natural History and Zoology.-The
 10 \& 11. -Meteorology, Terrestrial Ing Atmospheric and Terrestrial Phenomena, Tra-
vels, Exploration and Disco veries, etc. 12.-Geology and Mineralogy.-The Latest and most Interesting Geological Investigation
and Reports, and New Dlicoveries. 13.-Astronomy.-Recent Interesting Discover les and Information, with Reports of Astronomical
Phenomena, Progress, Ne In Instruments, etc. TERMS:-Scientific A merican Supple

 THE SCIENTIFIC AMERICAN, now in its 31s ear, enjoys the widest circulation of any weekl newspaper of the kind in the world. A new vol
ume commenced January 1,1876. Published week if. Now is the time to subscribe and to form

The Contents of the SCIENTIFIC AMERICAN embrace the latest and most interesting informa tion pertaining to the Industrial, Mechanical, an Scientific progress of the world; Descriptions, with beautiful Engravings, of New Iavention, New Implements, New Processes, and Improved
Industries of all kinds; Useful Notes, Recipes Suggestions and Advice, by Practical Writers, for Workingmen and Employers, in all the various
EVERY NUMBER contains sixteen large quarto pages, elegantlyprinted and illustrated with many engravings. The year's issue contains 832 large including postage, of only $\$ 3.20$ a year to the sub scriber.
Engineers, Mechanics, Telegraphers, Inventors Manufacturers, Chemists̀, Photographers, Physiall Prors, Clergymen, Teachers, anENTIFIC MERICAN most useful and valuable. Its pages eem with interesting subjects for thought, study, new and instructive are an unf As an Instruc new and instructive information. As an Instruc-
tor and Educator, the SCIENTIFIC AMERICAN has no equal. It is promotive of knowledge and progress in every community where it circulates th should have a prominent place in every House old, Reading-Room, and Library
10 cents.

TERMS OF SUBSCRIPTIONS.---POSTAGE
PAID BY US.

One copy Scientific American, one year.... $\$ 3.20$ One copy Scientific American, six months.. 1.60 One copy Scientific American,three months 1.00 copy Scientiflc American, and one copy
for one year, post-paid. ... bot
or one year, post-paid. 7.00
and one copy Science Record........ .. 5.20 tageous premiums to those who form Clubs or procure Subscriptions. A beautifully illuminated

MUNN \& CO.

[^0]: schedule of patent fees.

