

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, NOVEMBER 27, 1875.

NEW SYSTEM FOR VENTILATING AND CLEANSING
DRAIN PIPES IN BUILDINGS.
We illustrated, not long ago, a new form of floodway for buildings, intended to drain off water from floors deluged either through leaks in the supply pipes or through the means adopted for extinguishing fires, and so to prevent injury by water to other portions of the edifice. The inventor of this ingenious device, Mr. John H. Morrell, of New York city, has lately patented, through the Scientific American Patent Agency, another invention of equal and perhaps greater utility, and one which will commend itself to all who appreciate the necessity of an economical supply of water and the complete prevention of the escape of noxious sew or gases from the drains and sinks of a dwelling. The dan ger of these foul emanations carrying as they do the germs of typhoid and diphtheria cannot be too sorcibly im pressed upon the public; and since of late numerous severe cases of disease, directly trace able to the miasma, have been prominently brought to gene ral notice, inventions tending to improve the sanitary ar rangements of residences possess a present and timely interest.

Mr. Morrell's device, of which we give engravings in detail herewith, involves ar rangements both for ventila ting and for cleansing the sinks. By means of a reser voir, from whish distributing pipes lead to the various re ceptacles, the rain water which falls on the roof is col lected and conducted to the various traps or closets, or water may be supplied to said reservoir by a pump or an other convenient means, Uti lizing the rain water however, lizing the rain water, howeve is mentioned here in advance because such employment vir tually renders the apparatu automatic. That is to say, supposing the house to b closed and empty, the system of pipes will serve as ventila tors; and when a fall of rain occurs, they will then serve to fill the treps, thus supply ing the water evaporated from the latter, and, besides, wash ing them out, so that the very frequent occurrence, of an un occupied house becoming filled with foul gases from its drains receiving no attention is thus rendered practically impossible. There are variou other advantages of Mr. Mor rell's plan, which will be found noted in properplace in the following description
The large pipe, A, Fig. 1, is the sewer conduit, which it is proposed to lead up through the roof, and to provide with
an open top and cap above, B is a reservoir, which receives ventilation of its interior. the pipe, C, connected with a suitable pump or roof or from In Fig. 1 the mouth of the tube which connects the reservoir with the roof is shown covered by a cap and grating. In case this opening is frequently liable to be obstructed by snow and ice, another arrangement, shown in Fig. 2, which exhibits the reservoir and its parts on a larger scale, is employed. The supply pipe, C , would be used fo water, and ventilation gained by the curved tube, D , in connection with a register cover. It will be observed that this tube, D, is made of sufficient size and hight not to be impeded by ordinary de posits of snow or ice, and that it is al ways open for ventilation, whether the register cover be
 Fig. 6

MORRELL'S SYSTEM OF VENTILATION AND CLEANSING DRAIN PIPES.
open or not. But as a security against the obstruction of the register, the inventor proposes to use a double walled box or hood, placed above the register, as in Fig. 8. The warm air which collects within the hood, directly above the register, will always keep the latter free from ice or snow. The water supply pipe, C, has a check valve to prevent back flow of water or gas. At E, in the reservoir, is attached a pipe for carry ing off the water to any portion of the building where it may be needed. F is the overflow pipe, so arranged as to conduct off all water which rises above its orifice in the reservoir, directly to the trap of a water closet, in monner shown bir
the dotted lines connecting Figs. 2 and 3; so that the water, after filling the trap, passes off by the pipe G, to the water, nstead of leading the pipe directly to the trap, it may as in ig 1 , ig. 1, portion parg to the, en and portion passing to the trap and thence to the sewer pipe, and I, Fig. 1, there to be again divided and led to other receiver, I, Fig. 1, there to be again divided and led to other traps, and
so on to as many sinks as may be desired. The above deso on to as many sinks as may be desired. The above described arrangement is such that, in addition to cleansing the traps whenever there is a down flow of water, the system, when its pipes are empty, offers through the latter a free exit for foul gases, so that the fourfold advantage is gained of a storage reservoir, a distributing reservoir for water, a water closet trap supply and pipe cleaner, and a ventilating apparatus. As we have already pointed out, the action is auto matic, and therefore no care or attention is necessary, thus
adding still another and important advantage. To facilithe ventilation of the system during the down how the water, the curved roof pipe, in Fig. 2, is extended as shown at J , through the interior of pipe, F. At con venient points, openings are made in it for the upward escape of the gases. It may also extend down through other pipes and chambers, eventually connecting with the sewer pipes and it may also be led to the traps, as shown in Figs. 2 and 3. The same arrangement of inner and outer pipe may be carried to a water closet basin, as represented in Fig. 5, so as to ventilate the same. Instead of using double pipes, as to ventilate the same. Instead of using double pipes, single pipe may be employed having a partition, as in Fig 4, one side being for ventila con and the other for a wate conduit. Fig. 6 shows the ap plication of the double pipes to distributing pipes and branch es, a rise, K, being formed just at the points of junction, in order to divide the water equal ly into each branch. Fig. 7 represents the application of the double pipe to urinals. In Fig. 1 is also illustrated the floodway drain referred to in the initial paragraph. L is th sunken receptacle, beneath the floor and covered with a gra ting. In this the water collects, and then by theinelined pipe at M , eserpes into pipe.

For further information ad dress or apply to the inventor 475 Fourth avenue, comer 32d street. New York city, where a person will be ready to show the entire invention, now in ful operation, in a building nea by

A Physiological Problem.
A rather curious problem for physiologists is engendered by experiments recently tried by M. Ponchet upon a puppy. It is the general opinion that the brain of an infant, when the yes are first used, or that of a person born blind and afterward restored to sight, is un able to translate correctly the impressions conveyed from the retina by the optic nerve. The individual has no idea, it is asserted, of relative distances, nor of the relative physical characteristics of bodies, but only learns the same through practice, and therefore it is to be expected that the sudden estoration of sight will result n a kind of optical confusion, which is only reduced to order fter lepse of time M Pon chet's experiment, however, seems to negative all this for as ar as the use of one eye is oncorned, that is to say, if a person, blind in one eye, regains sight therein, and at the same time loses vision in the former perfect organ, the newly acquired sight is exactly as good as that lost, and the new eye requires no education whatever. The eyelids of one eye of a puppy, immediately after birth, were surgically treated so as to cause them to grow together, completely of course shutting off vision from the organ. The animal as it grew used but the single eye until it was four months old, when the good eye was similarly closed and the eyelids of the other opened. Although the left eye had never been used, and although it served as the sole means of sight, not the slightest difference could be detected in the actions of the animal. It recognized objects or avoided obstacles with perfect facility, and, in brief, the most careful examination failed to prove that the dog experienced any different sensations from those to which it had become accustomed.
The subject is interesting in view of the theory which already exists of there being corresponding points in both retinas, from which vibrations are transmitted to the brain.

Srientifir fimeritam.

MUNN \& CO., Editors and Proprietors. published weekiy at
NO. 3 ' 7 PARK ROW, NEW YORK.
A. E. BEACH.

TERMS

Oue copy, one year, postage included.
Clubrates
Ten coples, one year, each $\$ 2$ 70, postage included..
Over ten copies, same rate each, postage included
my By the new law, postage is payabele in advance b
subscriber then recelves the paper free of charge.
ubscriber
Nore.-Persons subscribing will please to give their full names, and Post
Office and State address, plainly written. and also state at which time they wish their subscriptlons to commence, otherwise the paper will be sentfrom he recetpt of the order. When requested, the numbers can be supplied from January 1st, when the volume commenced. In case of changing resi-
dence, state former address, as well as give the new one. No changes can dence, state former address, as well as give

VOLUME XXXIII., No. 22. [New Series. 1 Thirtieth Year.
NEW YORK, SATURDAY, NOVEMBER $27,1875$.

Contents. (Illustrated articles are marked with an asterisk.)	
en and oxygen in...... ${ }_{3}^{341}$ Inventions patented in England. Iron 345	
Aniline red on	
telopes.....i................. 313 Lighthouses, floating.	
1cks, red (57)	
eat, auxillary* 338 Pin Ph, a	
	\% Post
ene	
Dreamng si............. 3ts saros, the (s)....	
omy in use, etc...	
s certificate, an (64)...: 347 Spectral ines and atomic	
ne, lead on an (63) 377 Stream line theory the (20) 346	
gine, thumping in an (ii)....... 346 Tellurlum in Chill.....i. 387	
隹e, water in an (18)	${ }^{346}$ Trees, inclination of (40)........ 347
rna	
es under pressure (53) $\ldots \ldots \ldots . .{ }^{347}$ 347 Varnish for electromagnets (50) $\ldots . .347$	
Horse power (3) tion coil, a new 346 Wells, tublag for (16) Injection of nutritious substances 342 Wool mineral	

tHE GULF STREAM AS A HEAT CARRIER.

The Gulf Stream finds a sturdy champion in the author of 'Climate and Time," Mr. Croll, of the Scottish Geological Survey. Dr. Carpenter, who has a theory of his own, goes out of his way to belittle theinfluence of the Gulf Stream as a modifier of climate, calling the stream a mere rivulet compared with the (theoretically) grand surface drift of tropical water into the North Atlantic: whereupon Mr. Croll resorts to the logic of fact and figures, and demonstrates the enormous influence which the body of warm water, entering the Atlantic through the Straits of Florida, must have in mitigating the climate along its subsequent path. Mr. Croll's argument is presented at great length, proving beyond a doubt that,so far from being currently overestimated, the thermal effect of the Gulf Stream is vastly greater than has ever been suspected hitherto.
The observations of the United States Coast Survey, in re, gard to the breadth, depth, and temperature of the streame were many and careful. Unfortunately, however, no observations were made to determine precisely the velocity of the current at all depths along any particular section; consequently, while the mean temperature of the stream may be determined with considerable precision, it is impossible to make an accurate estimate of the volume of the current. From the limited data afforded by the records of the survey, Maury considered the volume of the stream to be equal to that of a stream 32 miles wide and 1,200 feet deep, flowing at the rate of five knots an hour. That would give a flow of
$6,165,700,000,000$ cubic feet an hour. In his "Physical Geography." Sir John Herschel estimates it as equal to a stream 30 miles wide and 2,200 feet deep, flowing at the rate of four miles an hour, that is, having a volume of $7,359,900,000,000$ cubic feet an hour. More recently Dr. Colding estimated its volume at $5,760,000,000,000$ cubic feet an hour. From the same data, Mr. Croll, some years ago, determined its volume
to be equal to that of a stream 50 miles wide and 1,000 feet deep, flowing at the rate of four miles an hour, or considera-
bly less than the lowest of the foregoing estimates. To obviate any possibleobjection on the ground of overestimating the volume of the stream, Mr. Croll calculates its heating capacity on the basis of a velocity of only two miles an hour, according to which the flow would be $2,787,840,000,000$ cubic feet an hour, a little over one third of Herschel's estimate. The average temperature of the surface water in the Florida Channel, for the whole year, is 80°. The bottom temperature, according to Dr. Carpenter, is 60°, which would make the mean temperature about 75°. Mr. Croll thinks this estimate much too high, an error arising from an un derestimate of the sectional area of the stream. Believing that the current extends to a depth where the temperature is below 60°, he calculates that the mean temperature of the stream is not over 65°. In its passage to the arctic regions, the water is cooled down to about 30°. Assuming that part of the return current, by the way of the Azores, is fed from the water of the Gulf Stream proper (not entirely from the larger current further east, discovered by the Challenger ex pedition, and considered by Captain Nares to be an offshoot of the Gulf Stream), a considerable portion of the stream is not cooled below 45°. Altogether, however, Mr. Croll thinks he cannot be overestimating the cooling of the water in fixing the average minimum. temperature at 40°, thus allowing for the loss of 25° of heat while the water is making its northern journey. At this rate each cubic foot of the watermust transport from the tropics to more northern latitudes upwards o $1,158,000$ foot pounds of heat. Consequently the total quantity of heat transferred daily by the entire stream amounts to $77,479,650,000,000,000,000$ foot pounds.
The effect which this vast amount of heat must have in mitigating the climate of the regions to which it is carried can best be estimated by comparing it with the amount o heat received from the sun by the same areas.
According to the observations of Sir John Herschel and M. Pouillet, the sun pours down upon every square foot of the earth's surfaces at right angles to its rays about 83 foot pounds of heat a second: this allowing for no absorption of heat by the atmosphere. M. Pouillet estimated the loss of heat by atmospheric absorption to be 24 per cent of the mount received from the sun. Mr. Meech (Smithsonian At the latter rate of absorption there would remain $64 \cdot 75$ foot pounds of heat a second to fall on each square foot of the earth's surface when the sun is directly overhead. On the equator at the time of the equinoxes, the sun shines daily for twelve hours. Were it to remain at the zenith all this time, its heating effect per square foot would be 2,796,768 foot pounds. Not so remaining, its effect is less in the ratio of 1 to $1 \cdot 5708$; so that each square foot of the earth's surface at
the equator, under the most favorable conditions, receives the equator, under the most favorable conditions, receives
$1,780,474$ foot pounds of heat during the twelve hours from $1,780,474$ foot pounds of heat during the twelve hours from
sunrise to sunset. A square mile receives $49,636,750,000,000$ foot pounds. As we have seen, the Gulf Stream carries from the tropics daily $77,479,550,000,000,000,000$ foot pounds, or as much as falls upon $1,560,936$ square miles at the equa-

Mr. Meech estimates the quantity of heat received from the sunannually, by each square mile of the frigid zone, taking the mean of the whole zone, at 0.454 of that received at the equator: consequently the heat conveyed by the Gulf Stream is equal to that which falls on an average of $3,436,900$ square miles of the frigid zone, or nearly $\frac{2}{5}$ of its entire area: this, assuming that the percentage of heat absorbed by the atmosphere in polar regions is no greater than at the equator. If the obliquity of the sun's rays is allowed for, it appears
that the Gulf Stream conveys not far from half as much heat that the Gulf Stream conveys not far from half as much heat
as the sun furnishes to the entire area within the arctic circle.
The mean annual quantity of heat received from the sun in temperate regions, per unit of surface, is to that received by the equator as $9 \cdot 08$ to 12 . Consequently the Gulf Stream furnishes as much heat as the sun gives to an area o $2,062,960$ square miles in temperate regions. Since the are of the Atlantic from the latitude of the Straits of Florida to the arctic circle is only about $8,500,000$ square miles, it fol lows that the quantity of heat conveyed to that region by the Gulf Stream is to that received from the sun by the same area as 1 to $4 \cdot 12$: in other words, very nearly one fifth of all
the heat possessed by the water of the Atlantic within those the heat possessed by the water of the Atlantic within those
limits,even supposing that every sun ray is absorbed thereby limits,even supposing that ever
comes from the Gulf Stream.
To assert that this enormous reinforcement of the normal heat supply of the North Atlantic is without sensible effect upon its climate is simply absurd. To Mr. Findlay's assertions that the inability of the Gulf Stream to affect the climate of England is self-evident and needs no calculations, Mr. Croll retorts with calculations from Mr. Findlay's own data, most effectually disproving his rash assertions. Mr. Findlay says, for instance, that all the water passing through the Florida channel will not make a layer of water more than six inches thick a day over the space which the stream is sup posed to cover off the coast of England. Mr. Croll replies that a layer of water six inches thick, cooling 25°, will give out 579,000 foot pounds of heat per square foot. The amount of heat received from the sun in the mean latitude of Great
Britain, 55°, taking the mean of the sun's heat for the entire year, is $1,047,730$ foot pounds per square foot a day. Consequently -Mr. Findlay's layer of water must give out an amount of heat equal to more than one half of all that is received from the sun. But assuming that the stream should leave the half of its heat on the American shores, and carry to the shores of Britain only $12 \frac{1}{2}^{\circ}$ of heat, there would still main a heating power of 289,500 foot pounds per square foot
or more than a fourth as much as the sun supplies in that atitude.

THE PATENT DRIVE WELL.

This consists of a small tube driven into the ground by means of a hammer, until water is reached. A pump is then applied to the tube, and the well is complete. It is the in ention of Colonel Nelson W. Green, of Courtlandt, N. Y. patented by him May 9, 1871, but discovered and put into ase by him in 1861 while he was serving in the United States army. It has been brought into use all over the worla, and one of the most valuable of inventions. Nearly all the dwellings at the famous watering place of Oak Bluffs, Martha's Vineyard, are supplied by this means with water, ncluding the Sea View Hotel. At the latter establishmen a six inch pipe is driven down 22 feet into the ground; and uch is the abundance of the supply that a steam pump of qual bore, running constantly for eighteen hours out of wenty-four, never lacks water, which is pure and excellent. There appears to be a fresh water lake or stratum under the whole island, at about the above depth. When the drive whole island, at about the above depth. When the drive
well tube is sunk to 27 feet, it strikes salt water. If the well well tube is sunk to 27 feet, it strikes salt water. If the well
tube is sunk in the salt-water-covered bottom, a few rods out tube is sunk in the salt-water-covered bottom, a few rods out
from the shore, the result is the same; fresh water is found at about 22 feet, and salt water at about 27 feet. The drive well patent has been a subject of litigation for several years. The owners are at present conducting an important litigation gainst W. \& B. Douglas, of Middletown, Conn., who are alleged to be infringers. Nearly a year has been occupied in taking testimony, which reaches three thousand pages of foolscap, while the costs so far are estimated at upwards of a hundred thousand dollars. The case is before the United States Circuit Court, Brooklyn, Judge Benedict presiding.

CEREALS AND THEIR CHEMICAL VALUE.

Wheat, oats, rye, barley, and Indian corn are cereals which yield to men all the principles which build up the human frame. Some other plants make fat-forming matter; some merely afford acids, which assist the digestion of food Among the latter are the various fruits, particularly the grape, so much recommended to the invalid, the acid of the grape being the active agent. But in wheat and its compan ions of the field, namely, oats, barley, and rye, we meet with every substance necessary for the staff of human life. W will first glance briefly at the constituents of the cereals, and ascertain something of their properties.
If we take a grain of wheat or other cereal, and burn it in gas flame, we find that only a portion of it is consumable The unconsumable portion that remains is termed the ash which is the mineral or inorganic portion. The consumable portion is the organic or combustible compound of vegetable matter, the proportion being 94 per cent of principally vege table matter, and from 1 to 6 per cent of mineral matter The organic constituents of wheat, oats, etc., are: The woody fiber, next comes the starch, then the sugar, gum, and oil, and after these the two nitrogenous substances, the albu men and the gluten, which contain large quantities of nitrogen, these latter being the flesh-forming substances in wheat the others are the fat-forming substances; and the mineral ash contains the constituents which are necessary for build ing up the structure of man. Let us examine these bodies n their proper order
If we take a piece of paper or wood, or almost any organic substance, we find that it contains a very large quantity of woody fiber. Hemp and flax also contain large quantities of his fiber, which is the back bone of the plant. Starch is a white, glistening substance which will not dissolve in water although it will mix with it in small quantities. Potatoes, wheat flour, and oatmeal are chiefly composed of starch. Sago and tapioca are pure starch. To detect the presence of starch, put a little iodine into the substance to be tested if it turns blue, chemistry will at once tell you that starch is present. To detect the presence of iodine, you have only to get a similar reaction, by applying starch; and although there are many different forms of starch, which may be dis tinguished by the microscope, it may always be detected by iodine. Gum and sugar are also present, as we have already stated, but the quantities are so small as to call for no special remark. Albumen exists not only in the vegetable, but also in the animal kingdom. The white of an egg, for instance, i ntirely pure albumen. It is met with in flesh, and is the commencement of the formation of muscle. One of the chief characteristics of albumen is its coagulation by heat The coagulation may be easily effected by chemicals. Fo instance, nitric acid will do it; and although albumen and gluten are both nitrogenous substances, gluten cannot thus e coagulated. Both are found in wheat. Gluten is of a very tenacious character, and makes good birdlime. Oil is chiefly found in many seeds of plants, generally in the outer portion of them. In making wheat flour, we ordinarily throw away that which we ought to retain, that which is the source of the development of the bony structure, namely, he woody fiber, and keep the starch.
Of the mineral or inorganic matter of cereals, water is 14 er cent, while the principal constituent of wheat, phosphoric acid, is present to the extent of 40.91 per cent, potash being $31 \cdot 30$, and silica ouly $9 \cdot 71$. The silica of wheat is identical with the widely diffused silica of sand and flints, and is combined in cereal products with alkali, in which it is soluble. Silica, taken alone into the system, would pass right through; and to secure its assimilation to the human body, it must be connected with potash or soda. But it can be recovered from its solutions by putting nitric acid in the mixture ; it at once separates in the form of solid flint. The ash of wheat contains nearly 10 per cent of this substance It may be seen in the glaze on straw, and some plants are
almost entirely composed of silica. Phosphorus and lime are the chief bone-making elements in cereals, bones being nearly one half composed of phosphate of lime; and artificiel phosphates of lime are largely used as manure for wheat. There are two kinds of phosphate, soluble and insoluble. The insoluble phosphate takes years to decompose; there fore, in order to grow wheat by it, it must be converted into soluble phosphate, such as the superphosphate, faniliar to our agricultural readers.
Plants require two kinds of food, vegetable and mineral, or rather organic and inorganic, as the former constituents are also to be obtained from animal matter; and the inorganic matter is found in the soil and in the air. But altogether, growing cereals must be supplied with nitrogen, carbon, silica, and phosphoric acid ; and without these, no pro fitable crops can be obtained.

WHEN IS WATER UNFIT TO DRINK

There is perhaps no question more important to the inhabitants of many cities, nor one which more severely taxes the resources of applied science, than the determination of the fitness or unfitness of a water supply. The difficulty arises from the fact that, in some cases, a water may have taste, smell, color, and a considerable amount of foreign matter, and at the same time be drunk with little or no injury : while another water, which is agreeable to the taste, limpid, colorless, and with little foreign matter, may yet con. tain abundant sources of disease.
The literature of the subject shows that there are two The literature of the subject shows that there are two
classes of thinkers, one of which puts great faith in the efficlasses of thinkers, one of which puts great faith in the effi-
cacy of natural agencies to bring about the purification of cacy of natural agencies to bring about the purification of
polluted streams, the other which contends that the only safe polluted streams, the other which contends that the only safe
plan is to reject water which has ever been contaminated by plan is to reject water which has ever been contaminated by
sewage, etc. The evidence elicited by the Royal Commission on the water supply of London is that principally quoted by both classes, and cannot be regarded as conclusive. The rapid extension of our knowledge in this branch of sanitary chemistry is such, however, tliat we may anticipate greater certainty in these matters, and imparts great interest to some recently published methods of investigation. Anyone who refers to analyses, made a few years back, will find that it was deemed sufficient to give the character and amount of the mineral substances contained in the water, while the organic and volatile substances were expressed in a sum total, no attempt being made to determine their precise character. But, except in cases where the mineral substances were positively deterious or excessive in quantity, this did not settle the ques tion. Of late, the greatest attention has been paid to the or ganic constituents, and the analyses state what amount of putrefiable matter is present. A careful determination is also made of the amount of ammonia, and of nitrous and nitric acids. These are regarded as the forms which the organic matter in large part assumes after it has passed through the putrefiable stage, and indicate therefore the degree of previous contamination.
But it is said, and with truth, that all these things may be known to a wonderful degree of nicety, and yet there may be substances present capable of rendering the water alto gether unsafe for drinking. It is urged that the living organism is exceedingly sensitive to substances whose capacity for injury is fatal, even when presentin amount so small as to render their weighing, and even detection, impossible. But of late, the fauna and flora of water courses have been studied, with a view of learning what assistance they could be in the matter, and the results are highly encouraging.
It has long been known that dissolved oxygen played a great part in the purification of streams, and was the principal agent by which putrefiable substances were broken up and converted into harmless inorganic compounds. A recent essay by M. Gerardin, to which the prize was awarded by the Paris Academy of Sciences, contains some striking results obtained by the abovementioned methods of investigation. To ummarize, these methods were:

1. A determination of the amount of oxygen held in solution. 2. An observation of green plants and aquatic mollusks. 3. A microscopic examination of algæ and infusoria It is claimed that the results obtained by these three methods were identical, and that, where the water was clear, with bundance of fish, watercress, etc., the water contained a correspondingly large amount of oxygen; while in places where the dissolved oxygen was small, fish and the higher types of aquatic plants were wanting, and certain low forms of vege table growth had taken their place. The river Vesle in France from Rheims to Braisne was taken as the field of observa tion. It was studied over a distance of $37 \frac{1}{3}$ miles, during which it received the sewage of one large town (that of Rheims, the daily flow of which amounts $4,180,000$ gallons) and other impurities. Above Rheims, the water (which was ciear, wholesome, and with abundance of fish, charas, watercress iris, etc.) contained 066 cubic inch in 61 cubic inches of water. In passing through a suburb above Rheims, the Vesle received the refuse of some dye works, which colored the water: and in place of the fish and watercress, sparganium simplex makes its appearance. At a point where the water had received the contents of the five principal sewers of Rheims, the water was thoroughly polluted and contained but 0.03 cubic inch of oxygen in 61 cukic inches. Two species of alga, the biggiatoa alba and the oscillaria natans, were developed largely, the latter to such an extent that the whole surface of the sluggish water was covered with a thick blackish coat.
This coat was seemingly so solid that animals and even men have rushed on it, mistaking it for terra firma. Above the mill at Macan, where the oxygen had increased to 0.45
cubic inches, the two varieties of algoe mentioned above had disappeared, and the bed of the Vesle was covered with a
long whitish alga, called hypheothrix. long whitish alga, called hypheothrix.
At Compensé mill, the oxygen had increased to 0.5 cubic inch, the hyplteothrix had almost completely disappeared, and the sparganium simplex was again abundant. Below this point the amount of oxygen increased, and with it a corresponding change took place in the vegetation until, at Braisne, the water contained 0.66 cubic inches of oxygen per litre, all traces of pollution had disappeared, and fish and watercress flourished.
From this it would appear that a properly aerated and pure water showed, when polluted, the amount of pollution by a corresponding diminution of oxygen, by the appearance of sparganium simplex, spirogyra, hypheothrix, biggiatoa and ossilaria, and a progressive improvement by a corresponding increase of oxygen, and the appearance of these plants in reverse order. It remains for us to apply and extend this knowledge to our own streams. Fortunately, the means are not wanting, since the great monograph on the fresh water algo, magnificently illustrated with plates, by Dr. H. C. Flood, which was not published by the American Philosophical Society,has been recently printed by the Smithsonian Institution.

THE FAIR OF THE AMERICAN INSTITUTE.

After a succéssful exhibition, the fair has closed. The display, remarkably good in the early weeks, improved as tardy exhibitors gradually added their contributions, until, during the closing days, every available foot of space was filled with a variety of articles certainly esceeding in interest, if not in numbers, those presented at the fairs of several preceding years. The venerable Institute, we think, needed the new life which evidently has been infused into it, to rescue it from the state of respectable fossilism into which it was rapidly lapsing. Its fairs, herefore, have been conducted more on the principle of advertising a few steady exhibitors, and furnishing a chronic yearly grievance for a very large number of others, than as an instructive and attractive exhibition for the general public. The energy which has characterized the management of the fair just over has worked a great change for the better; and since the favor of the public has been courted by means well calculated to win the same, it is to be hoped that the substantial rewards thus fairly merited have been received
During our last stroll through the building, we noted a few novelties which have recently been added. Of these, we give brief descriptions below : Captain J. B. Stoner, of life-preserving-suit fame, exhibits three huge models of

floating lighthouses

or telegraph stations. These are large floats made in differ ent ways, some being tanks, others being stages supported on buoys. It is proposed to moor these in deep water, and o connect them with the submarine cable, so that ships reaching them during their voyages may be able to transmit intelligence to their owners or consignees. A superstructure of light and strong construction is raised on the floats, and is suitably built either for a lighthouse tower, fog whistle, or any other purposes desired. Whether these peculiar craft can be moored at sea so as to withstand heavy weather is questionable; but it seems that the system of large floats with houses built on them might serve better for hospital purposes thair the old hulks which have been devoted to that end in the Quarantine Station near this city.

A NEW PIN
is exhibited, which will become quite popular, we think, for many purposes, on account of the impossibility of its working out of the fabric in which it is placed. It is made of a piece of ordinary wire sharpened at both ends. One extremty is then turned down and wound spirally for a couple of urns about the shank. When the pin is inserted, a slight twist given to the bent end causes the sharp point on the spiral to catch and enter in the cloth. The inventor has not only devised the pin, but some very ingenious machinery for its manufacture. One apparatus cuts off the wire, sharpens the ends, and throws the piece into a hopper, whence it passes into another machine which produces the spiral. The rate
of production of the pins is about 200 per minute. Mr. R. W. Huston, of Brooklyn, N. Y., is the inventor.

We mentioned, last week, the
mineral woor
made of blast furnace slag, which a mistaken foreign contemporary announced as a new German invention. Specimens of this material have been exhibited at the fair, manufactured under the Player patent, granted in this country in 1870. The wool weighs about 30 pounds per cubic foot, and is sold at 2 cents per pound. It costs about 5 cents per square foot of surface, 1 inch in thickness. It closely resembles genuine wool, but is of much shorter fiber, and is somewhat gritty. From a report of tests made by a committee of the Franklin Institute, we learn that, when used as felting, the mineral wool retains heat somewhat more than one tenth longer than common felting. The material is entirely indifferent to dampness and fire, and does not decay.

NEW Cesspool
is exhibited, in which the novel feature is a stirrer, shaped ike a propeller blade, and placed horizontally near the bottom. It is mounted on a vertical shaft, which terminates in
a crank handle above. During a rainfal, when water is escaping rapidly through the sewer pipe leading out of the cesspool, the crank is turned first one way and then the latter is carried into the sewer. It is stated that by this
means, cesspools can be rapidly and effectually cleansed, without manual labor.

a capping machine

for affixing the metallic caps to jars, is a useful invention for druggists, grocers, and others who put up large quanti ties of bottled goods. The cap is placed in position over the cork, and the top pressed against a die, which, being supported by a spring, yields, allowing swiftly revolving smoothers to act upon the cap, behind the rim of the bottle mouth, and press it neatly in place. Various sizes of dies are used for different bottles. A gross of caps are easily attached in about fifteen minutes.

artificial honeycomb foundations,

prepared by Mr. John Long, a well known apiculturist of this city, are a novelty, and one which, it seems. may be productive of considerable economy in the cost of securing honey for the markets. It has been estimated that the actual cost of a pound of comb is equivalent, at least, to that of twenty-five pounds of honey; and beekeepers cannot without considerable loss, afford to melt down any combs that can be used to advantage. Mr. Long makes comb foun dations of pure bleached wax, and from these the bees raise their cells on an amount of feed which ordinarily would not induce them to build comb at all. The foundations, it is said, make white delicate guides. They are very easily fastened in the boxes, and honey stored in them has been ship. ped long distances without damage either through leakage or fracture, and the bees seem to like the improvement Thus even the honey bee has become the patron of a pat ented invention

SCIENTIFIC AND PRACTICAL INFORMATION

fermentation from inorganic substances.

M. Mairet communicates to the French Academy of Sci nces a curious experiment which, from the extraordinary re sult, leads to the belief that either the author has failed to take into account some circumstances not noticed, or else tha a discovery of importance, worthy of further and careful in vestigation, has been made. He says that he mixed acetate of potash, nitrate of potash, and phosphate of soda together, all being in aqueous solution. At the end of a few days, the acetic acid appeared to be destroyed, nitrogen was disengaged, and the liquid contained only carbonate of potash and phosand the liquid contained only carbonate of potash and phos-
phate of soda. The action may be compared to a sort of phate of soda. The action may be compared to a sort of
fermentation in the case of the acetate, and more especially fermentation in the case of the acetate, and more especially
since it was accompanied by the development in the liquid since it was accompanied by the development in the liquid
of a glassy substance, similar to that which sometimes accompanies the fermentation of sugar.
gas from dead animals and sewage.
A process of making gas from dead animals, sewage, and ther refuse, which recently received a very favorable report from a commission appointed by the authorities of Breslau, Germany, has been subjected to extended practical tests and proved a failure. The material produces less than half the gas than is evolved by an equal quantity of coal; it costs twice as much, and requires a special combustible; and the gas is so full of impurities as to render its purification both difficult and very expensive.
discovery of tellurium in chill.
For a long time tellurium was found only in Transylvania ut of late years deposits of it have been discovered in Tur key, and in Colorado and Nevada. Recently the element has been found in Chili in the shape of tellurate of silver or tellurate of lead.

the english 81-tun gun eclipsed

According to the Kölnische Zeitung, Krupp is making pre parations for the construction of a 124 -tun cannon. This enormous gun will throw steel bolts weighing more than $2,200 \mathrm{lbs}$. each, and will require a load of powder weigh ing 400 lbs . It is estimated that the projectile will pierce at a distance of 3,200 feet the heaviest plates, of 23.8 inches thickness, now used on the English ironclads, and that its extreme range will exceed seven miles and a half.

A NEW adulteration of port wine.
This new adulterant, unlike many others, is easily detected by non chemists, and is in some cases dangerous, especially when partaken of by the feeble, delicate, and convalescent. It is an artificial coloring, which, Shuttleworth says, consists of a mixture of azalin and magenta red. The aniline colors, objectionable in themselves, are the more dangerous because they not unfrequently contain arsenic. The adulteration is detected by shaking the suspected wine (and all cheap wines are to be suspected) with an equal volume of amylic alcoho (fusel oil). If the wine is genuine port, the amylic alcohol remains colorless; but if adulterated, it dissolves out the coloring matter, and itself appears of a purple red color.

THE coarse long hair from the neck of an old chamois, if drawn between the finger and thumb from the root to the point, becomes positively electrified, but if drawn in the repoint, becomes positively elion it becomes negatively electrified.

A PIECE of wood cuit from a tree is a good conductor; let it be heated and dried, it becomes an insulator; let it be baked to charcoal, it becomes a good conductor again; burn it to ashes, and it becomes an insulator once more.
R. H. H. send us the following recipe for staining light wood in walnut color: Take asphaltum varnish 1 part, tur pentine 3 or 4 parts, linseed oil 1 part, and Venetian red ground fine in oil to suit. This will impart to light wood a good imitation of walnut, so that it can hardly be detected.

THE HEMATITE IRON MINES OF ENGLAND.

 The creation of a new field of iron manufacturing industry in Cumberland and Lancashire, England, is mainly due to the success of the Bessemer steel-making process, for which the hematite ores of that district, although long ne glected, are found to be especially suitable. The town of Barrow-in-Furness has grown out of this important trade, and many other busy scenes are largely increasing their population and resources. Landowners and farmers are investigating the strata which underlie their possessions, and companies for raising iron ore and bringing it into market, as well as for manufacturing the metal on the spot, are becoming very numerous. The geological features of the ore bearing formations are full of interest, and they are generally well defined, and prospectors look upon them as certain indications of the presence of metal.We publish herewith sec tions of the Montreal mines of West Cumberland, distant about five miles from Whitehaven. They are the property of Mr. John Stirling, and are situMr. Jon a band of munta stone, which extends from Eremont to Cleator Mor egremont to Chis Moor. On the ear formation are found slates, the basic rocks of the district, on the edges of which, up. turned, the limestone reposes. To the west of the limestone are the coal measures, brought into contiguity with the limestone by a large fault, bearing nearly east and west.
The limestone is in many places capped by the millstone grit; and it is between this latter group of rocks and the underlying limestone that many of the iron deposits in the district are found. The form they assume in this position approaches that of a bed. Other deposits in the limestone are found lying by the side of the large fault, which brings the limestone and coal measures into contact. Among the deposits in the latter position is the one which constitutes the greater part of the Montreal mines, a section of which is shown in Fig. 1. An other set of deposits occurs in shallow basins in the limeshallow basins in the covered only by the stone, covered only by the
boulder drift, or, at most, with boulder drift, or, at most, with a very thin shell of rock. To that description belong the remainder of the deposits worked by the proprietor of the mines under notice ; a section of one of these last is given in Fig. 2.
The method of working the Montreal mines is partly shown by the drawings. When the shafts have been put down to a sufficient depth, a level is put out a few feet below the top of the ore, and when that level has been continued to a sufficient distance, say five or six fathoms-that is, supposing the foot of the shaft to be on ore, as in the case is, No. 1 shaft, Fir. 1-levels are put off on each side of No. 1 shaft, ig. 1-lovels are put off on each side. From hese, other levels are put off in their turn; and so on, until the whole of the deposit at that hight has been opened by a sort of post and stall system of working. The size of the levels-or rather workings, as they are called-is variable; they are sometimes 30 feet wide and about 20 feet high, but as a general rule they are only about 12 feet square in section. The size of the pillars also varies very much, according to the nature of the ground. Sometimes they are very large, consisting almost entirely of rock; but where the ore is not interfered with, or mixed up with limestone, they are from three to five, or even six, fathoms square.
While the first hight of workings is being wrought out in the manner described above, the second is commenced about five fathoms below the first, and carried on in much the same way. A third and fourth hight may also be put out, if he size of the deposit renders such a course advisable, to he size of the deposit renders such a course advisable, to e worked in the it is ble fourth hight has been thought of, it is probable that a great many of the pillars in the first hight, and perhaps in the second also, have been taken away, and the roof allowed to fall in. Unless this extraction of the pillars is accomplished in a very systematic manner, it is more than probable that a great many of them will become buried in the débris of the fallen roof; in which case drifts, timbered as they proceed, have to be driven through this fallen rubbish for the purpose of reaching the ore. If much ore is extracted in this way, a very large amount of timber is required, as the ground, when once thoroughly broken up, brings such an enormous weight on to the timber by which the drifts are kept open that it very frequently requires to be repaired.
The output of the Montreal mines is now 250,000 tuns per
annum, which is the largest turnoutof any mine in either the annum, which is the largest turnout of any mine in either the
Whitehaven or the Furness district. The area is about 1,000 acres, of which nearly half is ore-bearing ground. The total number of hands employed above and below ground varies from 1,000 to 1,200 , figures which give an idea of the importance of the enterprise. There are altogether twelve shafts, of which three are now in process of sinking, while the remaining nine are in active operation; the greatest depth at present attained is about 75 fathoms. In addition to the shafts there is an open working from half an acre to an

on might effective preventive; but as the use of that wee pon might lead to disagreeable complications, that plan, to ether with the scheme of an india rubber car, capable of are more civilized than we are in Russia, for there they have a rule that no more people can enter a car than there are seat vacant; the same excellent regulatiou is enforced in some Paris omnibuses. Sometime in the distant future we ma have a similar regulation; but until that happy period ar rives, it behooves us to consider the best means for amelio ting the present unfortunat state of affairs.
To Mr. Cevedra B. Sheldon a gentleman thirty-onetimes a patentee through the Paten Agency connected with this pa per, is the public indebted fo the happy idea shown in our engraving, for relieving the standing committee in horse cars, who heretofore have had to ride for miles, wearily hang ing to a greasy strap, and whose toes woefully attest the solidity of the conductor's pedal extremities as that individual bell punch in hand, ruthlessly tramps up and down the narrow passage.
Mr. Sheldon's invention pro vides extra seats, arranged as shown in the engraving, to be folded under the main seat when not in use, and to be readily shifted into position in front of the main seat by means of suitable standards. The standard is bolted to a riser a little below the main seat, and is so shaped that it supports the auxiliary seat far enough forward to be out of the way of the passengers legs. The standard has locking joint for holding it up and a lug for maintaining th and a lug for maintaining the seat level. The seat is pre vented from oscillating; an when folded, the top side turn inward so as to be protected from dust. The mechanism is exceedingly simple and strong, and may be modified in various ways to meetdifferent requirements.
The device is one which might be added to both stree cars and stages, with profit both to the passengers and to the owners. It would prevent the crowding of the passage, and would increase the seating capacity of the vehicle probably one half. The companies worked

SHELDON'S AUXILIARY CAR SEAT
The fact is pretty generally recognized that, so long as there is an available inch on which a foothold can be got, either inside a street car or on a platform, people will endeavor to

occupy that space, and there they will remain, clinging to strap or bar, in positions uncomfortable both to themselves and to those whom they crowd. Nothing short of a sentry with a sharp bayonet, stationed at each end of every car, will
who manage our public conveyances would do well to put themselves in communication with the inventor. His address is No. 7 State street, New York city.

sait.

Hall's Journal of Health thus sums up some of the many uses of salt: "It will cure sick headache, make cream freeze, make the butter come, take inkstains out of cloth of any kind, kill wens, kill worms, make the ground cool ; so it is more congenial to celery, cabbage, etc. It will ease the itching pain caused by irritating skin diseases, like hives, itch, etc. It will produce vomiting or stop it, as you like; and many other things too numerous to mention. All pure salt will do this to a certain degree, but sea salt is the mos effectual in its action."
Salt is a most remarkable and highly useful substance; but we think that our cotemporary will find, on practical trial, that the article will not do all that is above claimed. For example, salt will not make cream freeze, it will not take inkstains out of cloth, and probably will not do more than one or two of the other things abovementioned.

Tunnel at Rio de Janeiro.

The Brazilian Government have under favorable consider ation a project by Mr. Bucknall for connecting the north and south railway system of the empire with the capital, by a tunnel, under the narrow entrance to the bay of Rio de Janei ro, between the capital and the submarine city of Nitheloy, a ro, between the capital and the submarine city of Nitheloy, a
distance of about two miles. The preliminary investigations distance of about two miles.
clearly demonstrate the practicability of the undertaking clearly demonstrate the practicability of the undertaking;
and its important bearing on the future of the country will be apparent to those acquainted with the commerce, railway system, and topography of that part of the empire. Mr. Peter W. Barlow, C.E., has gone to Rio, commissioned to conduc the survey and prepare the necessary plans and estimates.
Corn-fed hens do not lay in winter, for the simple reason there is no albumen material in the corn. When wheat is given to them, there is fat enough in it to supply all that is needed for the yolk, and albumen erough to make the white, and lime enough to furnish the shell; it does not thus seem difficult to understand why corn-fed hens should not lay, as they do not, and why wheat-fed hens should lay, as ther do

SETTING BOILERS.

This subject seems to be generally neglected by writers on the steam engine. When a boiler is to be set, the ordinary plan is to send for a mason and entrust the work to him, without giving any specific directions. The result of such a course can easily be foreseen, and an examination of numerous boilers shows that there seem to be no rules for setting them that are adopted as standards. The practice of boiler makers, who furnish the necessary irons for setting boilers in brickwork, is also quite varied; so that a mason, however experienced he may be, cannot always do the work in the best manner possible. In view of these facts, it may not be amiss to devote a little space to the description of the best methods in use.
I.-THE BOLTS AND CASTINGS.

The irons usually employed in setting a boiler in brickwork are: The front, tie bolts, bearing bars, grate bars, supports, damper, connection, and chimney doors.

The front, shown in Figs. 1 and 4, should be made liight enough to extend above the top of the boiler, so that the side walls and back can also be built up and the boiler covered on top. For the sake of cheapening the price of the fixtures; top. For the sake of cheapening the price of the ixtures, some boiler makers furnish a low front, so that, when the boiler is set, the top is left uncovered. Although this plan reduces the cost of the fixtures and setting, it is the dearest
in the long run, since there is a great loss of heat by radiain the long run, since there is a great loss of
tion from the uncovered portion of the boiler.

The supports for the boiler may be of two kinds, a single support at the end for a boiler of ordinary length, and intermediate supports for a long boiler. The best form of support for the end of a boiler is shown in Figs. 2, 3, 5, and 7. The boiler rests on a cast iron saddle, B, which is supported on rollers, C, the latter resting on a plate, D, on the brickwork. By this arrangement the boiler is free to expand and contract under changes of temperature. Sometimes the boiler is supported by lugs, D, Figs. 2, anchored in the side walls

but this should only be done in the case of very short tubular boilers, and the roller support is preferable for every case. Very long boilers require to be supported at intermediate points. This is commonly done by means of suspension rods, which can be adjusted by nuts, but this practice is by no means commendable. When a fire is made under a long boiler, the bottom becomes more highly heated than the up per portion, so that the boiler tends to take a curved form

If rigid suspension rods are used, this curving is prevented and in many cases fracture occurs, or the boiler is said to break its back. Mr. Head, an English engineer, has devised a form of suspension rod, which is easily constructed and effective. This is represented in Fig. 7. The suspension rods, E, are attached to a plate, D, on the boiler, and, instead of being rigidly secured by nuts to the guard, F, have stiff volute springs, G, which keep the boiler in proper position when cold, the rods having lugs, e, to check the action of the springs at the proper point. Of course, when the boiler is heated, the springs will allow it to be drawn down, and it will return to its normal position when cooled. If the weight of water in the boiler is considerable, suspension from the top might produce distortion of the circular form; and to counteract this, a piece of angle iron, H, may be secured within the boiler.
Tie bolts are often used to connect the two side walls. The ordinary form is represented in Fig. 6, the bolts passing through castings, B, which act as large washers.
The damper is generally a slide, as shown at E, Fig. 3, which is placed at the junction of the back connection or connecting flue with the chimney. Openings should be left large enough to permit a person to enter the back connection and chimney, and these are closed by the connection and chimney doors.

The bearing bars are for the supports of the grate bars. The front bearer is of ten cast on the front, or bolted to it, and the back bearer is laid on the bridge wall. In the case of long grates, an intermediate bearer is required, which is an chored in the side walls, and supported on the middle on bricks, if the grate is also very wide. It is better, however, instead of using one wide furnace, to divide it by walls or arches into several narrow ones, both for convenience and economy in firing. Wide furnaces have sometimes been di vided in this manner, after the boilers were set, producing a considerable gain of efficiency. The arrangement of the boiler front fixes the position of the grates, or their distance below the boiler. There is not a great deal of difference in the practice of boilermakers, with respect to this distance, which is usually between 18 and 24 inches-generally nearer the former figure.

It is obvious that the iron front can be dispensed with, if desired, and the boiler sustained on brickwork alone. This is quite frequently done, but the plan does not appear to possess any special advantages, since, if the setting is properly performed, it will be quite as expensive as if the iron front were used.

II.-THE BRICKWORK.

The general arrangement of setting for a plain cylinder boiler is shown in Figs. 1, 2, and 3, and calls for little remark. In the engravings, the top of the boiler is covered with brickwork; but it is a very common plan to run up the walls to a sufficient hight, and fill in the space with dry earth or sand. Whichever course is pursued, the brickwork should be carried up high enough around the boiler to make a tight joint, so that none of the heated gases can escape. It will be seen that an arch is turned to form the bridge wall. This, however, is a matter of no importance; and if is more convenient, a horizontal bridge wall can be built, care being taken to leave the proper opening between the wall and the boiler for the passage of the products of combustion. An
average value for the proper area over bridge wall is three twentieths of the area of the grates; and though in practice this area is very differently adjusted by different masons, the best results are obtained when the area is an approximation to the figure given above.
In the engraving the grate bars are set level. They are frequently dropped a little at the back, on account of some supposed advantage in firing. There is no objection to this practice, and it is extremely doubtful whether any benefit is derived from it. It will be seen that the front is secured to the brickwork by bolts, which are built into the wall, with large washers on the ends. The boiler front, the side walls, and the bridge walls should be lined with fire brick set in fire clay. If any pipes are brought from the boiler through the brickwork, openings should be made for them, closed with iron doors, so that they shall be readily accessible for exami-

nation and repairs. It is better, however, to attach the pipes to the front or back of the boiler, where they need not be built in.
The setting suitable for a tubular or flye boiler is shown in Figs. 4 and 5. Here the products of combustion, instead of passing from the back connection to the chimney, return

through the tubes or flues to the front connection, A, and thence pass to the chimney by the flue, E . The engraving shows one of the best arrangements of fronts for this kind of boiler.

In Fig. 6 is shown what is probably the best manner of setting a boiler in brickwork, namely, with double walls and an air space, A, between, to prevent loss of heat from radiation. It is much more expensive than the ordinary setting,

and m
iII-FURNACES FOR SAWDUST.
There are several patent furnaces for burning sawdust and tan bark, which are said to be very economical and efficient; usually, however, in a sawmill it is more important to get rid of the sawdust than to burn it with great economy, and
in such a case the furnace represented in Figs. 7 and 8 will answer every purpose. The boiler should be quite short, and the grate surface and area over the bridge wall should be about twice as great as for coal. A peculiar form of grate bars, known as cone grates, shown in the engravings, should be employed. These bars can be obtained from almost any builder of portable engines. The furnace should be set back some distance from the front, as shown in Fig. 8, leaving a flat plate, on which the sawdust is first piled, and gradually pushed upon the fire as it becomes dry. It is generally well to have at least two distinct furnaces, which can be fired alternately. It is also necessary to have a bigh chimney or a forced draft.

v.-THE Chimney

The chimney may be constructed either of iron or brickwork, and as high as is convenient. It should be at least from 40 to 50 feet for good effect, and can, of course, have its hight increased to advantage. It is well to make the chimney with the same internal cross section throughout. It is generally considered that the circular section is better for a chimney than a square or rectangular section, and the inte rior should, of course, be made as smooth as possible. Chimneys are frequently constructed with double walls and an air space between, forming two distinct chimneys, the inner one of which is lined with or often wholly constructed of fire bricks. The cross section of a square chimney should be at least seventeen one-hundredths of the grate surface of the boiler, and for a round chimney, thirteen one-hundredths; but it is a good plan to make the chimney somewhat larger than this, since, if it is too large, it is easy to close the damper, but, if it is too small, the remedy is not so easily applied.

Contegipoudente.

A Lost Art Re-Discovered and Patented in America. [From the following letters, furnished by a Detroit correspondent, it appears that, a hundred and fifty-five years ago, in 1720, in the quiet old town of Ross, Herefordshire, Eng., an ingenious individual, John Kyrle, celebrated in Pope's " Elegy " as the " Man of Ross," established a system of watersupply for that town, which from that time to the present has been uninterruptedly in use. The distinctive feature of this system consists in forcing water by pumps into the street mains, so as to supply the town with water under such pressure as may be required. At the Ross works the ordinary pressure for many years has been 45 lbs . per square inch.
On March 2, 1869, the United States Patent Office grants a
patent for the same system, as a new invention, to Birdsill patent for the same system, as a new invention, to Birdsill Holly, and gives him a still broader claim in a re-issued patent, August 2, 1870. It would seem that the broad claim must now be abandoned. But the ingenious valves and the detem will doubtless remain good.-EDs.]

To the Zuchitar of the Scientific American:

There has been a great deal of controversy here about the Holly system of waterworks: Mr. Holly claiming that no one but himself can build waterworks pumping direct into the mains and keeping a pressure on them, as he holds letters patent from the United States for the same. Now, as I understand the law of patents in the United States, a patent will not be granted, and if granted will not be sustained, if the object sought to be covered by patent has been in use before. I have always contended that the "Holly system," so-called, was older than Holly himself.
You have no doubt read Alexander Pope's elegy on the Man of Ross (Mr. John Kyrle); and in thinking over this pumping work, I remembered having seen in my youth some very old pumping works at Ross, in Herefordshire, England, and, believing that they were on the same system as this under dispute, to make sure I wrote to the Mayor of the town of Ross, describing the Holly system to him, and have received his reply; and I would like to see it published (for the use of waterworks contractors and builders) in the Scientific American, which I believe all such persons read. The let. ter is as follows:
Dear Sir:-As I was born in this town in 1812, spending the greater part of my 63 years here, I am enabled to give the information you require. I purchased the waterworks in 1849 and still own
them. They were established by the "Man of Ross" about 1720 , and have undergone but little modification until now, when steam power is supplemented. As you know, then the water wheel was about 11 feet diameter and 30 inches wide; it drove two six-inch plungers, and was direct-acting or without reservoir, exactly the same arrangement as you describe. It is so now, and I know of but ditle advantage in storage, except from intermittent sources of hat it is 94 feet aboverhe plungers, so that I have more than three atmospheres at the works. I pump from the river.
Ross, October 12, 1875 . S. B. Wall, Mayor.
You see by this that this system has been in use to our certain knowledge 155 years, and this should nullify any such claim as that made by the Holly Waterworks Company. Detroit, Mich.
W. Pendry, M. E.

Silvering Glass.

To the Editor of the scientific American

Having had occasion to silver some small plates of glass, I tried several formulas. In some I found the silver solution so weak that it required repeated applications to give an opaque deposit. In others, the silver was so strong that there appeared to be a waste. After trying several modifications, I found that the following works very finely, giving a heavy deposit by a single application:
No. 1. Reducing solution: In 12 ozs. of water dissolve 12 grains Rochelle salts, and boil. Add, while boiling, 16 grains nitrate of silver dissolved in 1 oz . water, and continue the boiling for 10 minutes more, then add water to make 12 ozs .

No. 2. Silvering solution: Dissolve 1 oz. nitrate of silver 10 ozs. water; then add liquor ammoniac until the brown precipitate is nearly but not quite all dissolved ; then add z. alcohol and sufficient water to make 12 ozs .

To silver: Take equal parts of Nos. 1 and 2, mix thorough ly, and lay the glass, face down, on the top of the mixtur while wet, after it has been carefully cleaned with soda and well rinsed with clean water.
Distilled water should be used for making the solutions. The dish inchms of each will silver a plate 2 inches ${ }^{2}$ little larger than the plate. The solutions should stand and settle for two or three days before being used, and will keep good a long time.
New York city.
D. C. Chapman.

The Relation between Spectral Lines and Atomic weights.
To the Editor of the Scientific American:
The following facts, disclosing an intimate connection between the Fraunhofer lines of the solar spectrum and the atomic weights of the substances whose glowing vapors they represent, will, if confirmed, prove of the highest importance and interest. Being desirous, on this account, of bringing them at once to general knowledge, I send you the following condensed statement, which I hope you will pub lish:
-The Fraunhofer lines of hydrogen gas are, according to Angström's wonderfully accurate measurements (given in millimeters, a millimeter being 0.3937 of an inch)

0.00041012 mm .
 0.00043400 mm .
 0.00048606 mm .

Their distances from the shortest wave lengths are conse quently :

$43400-41012=0 \cdot 00002388 \mathrm{~mm}$.

$48606-41012=0.00007594 \mathrm{~mm}$.
$65618-41012=0.00024606 \mathrm{~mm}$.
Referring these distances to 0.00041012 , the shortest wave length, as a common standard of value, the figures obtained are:
$0.00041012: 0.00002388=17 \cdot 1742$ $0 \cdot 00041012: 0 \cdot 00007594=5 \cdot 7247 \times 3=17 \cdot 1741$
$0 \cdot 00041012: 0 \cdot 00024606=1 \cdot 9082 \times 3=5 \cdot 7246$
being to each other as $1-3-9$. Supposing the quantity expressed by 1.0982 mm . to represent 3 units of a certain meas ure of length, the distances of the H lines increase as the squares of $3: 3-9-27$.
The H molecules of the solar atmosphere which give rise to these lines consist of ponderable matter; and (the mechanical force of the luminous impulses having been so recently demonstrated by Professor Stokes) the inference is that refraction, the angles of which are measured and expressed by the wave lengths, is the function of the energy proper to the different constituent particles of the luminous molecules: that these particles are held together by attraction, the common property of matter, decreasing inversely as the squares of distances.
On this supposition, the attractive forces of the H molecule proceed from a center where they are at their maximum; and the distances between the different constituents being known, the value of their attractive energy can be calculated from the constant relation between attraction and distance. To the distances 3-9-27 correspond the respective forces $\frac{1}{9}-\frac{1}{27}$; and a unit of force, by which the values of attraction of all solar substances can be measured and compared, is represented by the length of shortest waves. In dividing the atomic weights of the substances whose spectral lines are known by the length of their shortest waves, and converting the result into chemical weight by taking the quotient obtained for $\mathrm{H}=1$, the values are as follows :

Atomic weight.	$\begin{array}{c}\text { Shortest } \\ \text { wave length. }\end{array}$ $\begin{array}{l}\text { Divided } \\ \text { by } 2438 .\end{array}$
$\mathrm{H}=1 \cdot 00$	$0 \cdot 00041012=2438=1$
$\mathrm{Ca}=40$	$0 \cdot 00039330=101704=41 \cdot 72$
$\mathrm{Fe}=56$	$0 \cdot 00039330=142385=58 \cdot 4$
$\mathrm{Al}=27 \cdot 3$	$\cdot 0 \cdot 00039128=69240=28 \cdot 4$
$\mathrm{Mn}=55$	$0 \cdot 00039882=137907=56 \cdot 6$
$\mathrm{Ti}=48$	$0 \cdot 00041631=115299=47 \cdot 3$
$\mathrm{Cr}=52$	$000042532=122261=50 \cdot 15$
$\mathrm{Ni}=58$	$0 \cdot 00044020=131758=54$
$\mathbf{M g}=24$	$0 \cdot 00044805=53565=22$
$\mathrm{Ba}=137$	$0 \cdot 00045241=302823=124 \cdot 21$
$\mathrm{Co}=59$	$0 \cdot 00045303=130234=53 \cdot 4$
$\mathrm{Cu}=63 \cdot 4$	$0 \cdot 00046510=136315=56$
$\mathrm{Zn}=65$	$0 \cdot 00046790=138919=57$
$\mathrm{Na}=23$	$0 \cdot 00049825=46137=18$.

Notwithstanding the differences, the figures of the last column so closely correspond to the atomic weights that the inference of a near relationship between the spectral lines and atomic weights seems irresistible. When the extreme faintness of the lines in the portion of the spectrum of the greatest refraction is taken into account, some of the difference may not unreasonably be attributed to the existence of shorter waves than those quoted. The definite proportions between differences and atomic weights point to this. Thus 18.9 is nearly $\frac{4}{5}$ of 23 ; the line corresponding to the atomic weight of 23 is 0.00040900 ; if this line, which really exists, should prove to belong to Na , the test would be decisive. The importance of the conclusions to be derived from the existence of such relations is apparent. The evidence of atomic molecules, when brought within the reach of scientific investigation, and their dependence on the genral law of gravitation, would disclose the inner constitution of matter, the nature of chemical affinity and valency, and the nature of electricity and magnetism; and it would be instrumental in the solution of many problems.
San Francisco, Cal.
E. Vogel.

Poisoning by strychnine

To the Editor of the Scientific American:
I have seen in your issue of September 14 an account of the death of Dr. J. O. Hill, of Ithaca, N. Y., by strychnin, as described by S. J. Parker, M. D.
I once happened to receive a similar dose of strychnin, in the year 1853; but as I knew the remedy, I was cured, being promptly attended to by Mr. Gregson Harrison, who applied the means discovered by Dr. Crace Calvert, in 1852. The remedy is: To counteract strychnin, and cause it to be brought away by vomiting (if it has not been taken more than 30 minutes), pour down the throat $\frac{1}{2}$ grain of nitrate of soda every 20 minutes until vomiting takes place. The pa tient will then sleep about 40 hours, and awake all right. The sensations caused by strychnin are first slight pains in the back of the head, then extreme cold in the toes, trav eling up to knees; then cold in the fingers, traveling to the ottom of the breast bone. John Pearson.
Chorlton-on-Medlock, Manchester, England.

Specific Gravity and Dimensions of Molecules

To the Editor of the Scientific American:

W. B. M., whose letter appears on page 244 of your current rolume is laboring under a great mistake in asserting that the lightness of a substance is not evidence of its possessing larger molecules, and that, if this were true, it would at once dispose of the atomic theory.
I am at a loss to know what he is hammering at. He says "Take absolute alcohol (specific gravity 0.8°) and you will find that, to two similar glassfuls of water, you will be able to add more alcohol than water before nverflow." In this he is correct, and this disproves his argument.
But he is also mistaken as to specific gravity of absolute alcohol. Absolute alcobol has a specific gravity of 0.7939 when combined with water at its maximum density, ($39 \cdot 4^{\circ}$ Fah.), water being 0.999:.
I stated that the specific gravity of absolute alcohol is 0.7939 and of water 0.9991 , making a difference of 02052 in the specific gravity, showing that the molecules of alcohol are considerably the larger. Now let W. B. M. take 100 ounces of alcohol of 80 per cent (specific gravity 0.8631), and 104 ounces of water, and he will just have 200 ounces of diluted alcohol possessing a specific gravity of 0.9510 , and a strength of 40 per cent. It will be seen that 4 ounces have disap peared, consequently the molecules in the mixture must be of less size than those in alcohol of 80 per cent.
He says that, in the case of heavy liquids, the heavier the liquid, the greater the volume which may be added withou altering the apparent volume. Let him try mercury, and the result will be the same as if he had added an equal vol ume of water.
I have not as yet experimented with mercury, but I have with simple sirup; and I find less contraction caused than with water. I should like again to hear from W. B. M., and hope in his next he will be more explict. Instead of attempting to overflow a glass, let him employ a given volume of each liquia, and ascertain the resulting volume of each; in this way he can easily find what the greatest contraction caused by combination of liquids is
San Francisco, Cal.
Pro Bono Publico.
oths and Yarns. A patent has been taken out in France by M. A. Huet fo compositions with bases of glycerin and soap, with or with-
out the addition of an antiseptic, for the purpose of cleansing out the addition of an antiseptic, for the purpose of cleansing
any textile matter. Glycerin, says the inventor, has the proany textile matter. Glycerin, says the inventor, has the pro-
perty of being soluble in all proportions of water, and also of perty of being soluble in all proportions of water, and also of
dissolving nearly all the substances which water itself disdissolving nearly all the substances which water
solves, such as salts, soaps, and metallic oxides.
Starting from this point, M. Huet, after many experiments, arrived at the following composition for wool, which he calls soluble ensimage :
Neutral glycerin at 28°
Soap.
Solution of oxide of mercury.
Solution of oxide of mercury

The sulphates, quinine, carbonic acid, etc., might be used as the antiseptic. But the antiseptic is not always necessary in winter, when there is no fear of fermentation, for instance for fermentation requires 77° to $86^{\circ} \mathrm{Fah}$., and then takes months to establish itself. The solution must be well mixed and filtered.
M. Huet says that he has found, after careful tria's, that, by substituting his composition for the oils and fatty matters in ordinary use, the necessity for cleansing cloths dur ing manufacture was entirely done away with, and that they may fulled at once, without any previous preparation; and thus the danger is avoided of the tints being injared by long contact with the fuller's earth and the alkalies which are often obliged to be added to the earth in order to saponify the oils or other fatty matters. When it is necessary to get rid of size, a simple washing in water will remove both it and the glycerin composition at once.
In other branches of manufacture the yarns must be cleansed before weaving them, in which case also plain wa ter will remove the composition at once. The inventor therefore, claims for his method great economy in time and
The proportion of glycerin to other matters in the compotion may be varied according to the nature and fineness of the wool, but that given above is the average amount.
The strain on belts is always in the direction of thei length : and therefore holes cut for the reception of lacings should ke vval, the long diameter being in line with the belt

PRACTICAL MECHANIBM.
 by Josita rosb $\overline{\text { Number XXXVI, }}$
 IINING OR MAREING out

We now enter upon an entirely new and distinctive part of the machinist's art, namely, the marking work out by lines upon its surface, indicating to what shape and size it requires o be cut. When a piece of work has to be exactly duplica ted in large numbers, as in the case of a sewing machin he labor of marking out may be entirely dispensed with by he employment of special chucks and tools, adjusted to suit the requirements of the case; but in all other cases, especially upon large work, the marking-out must be performed, and should be executed with great exactitude, for a variation of the thickness of a line gives the thickness of two lines to file off, entailing upon large surfaces an enormous loss of time. Suppose, for example, a large pillow block to be marked out the thickness of a line too small, and the brasses to be marked out the thickness of a line too large: when both were cut to the lines, the labor of fitting them togethe would be unnecessarily increased by one third. Nor is this all the mischief, for the inaccuracy of workmanship tha will mark off to the thickness of a line too large will sometimes mark off to the thickness of a line too small; and th consequence is that, after a few such experiences (and conse quent spoiling of the work), the machine hands will leave ae lines on each side of the work as a witness, thus giving the thickness of four lines to be filed off in fitting. Now it

Ng. 167

is pertectly true that, in most cases, it is practicable and customary to use gages or calipers as well as the lines; but there are numerous instances in which that cannot be done. Nor is it atall times desirable, because the lives, correctly marked, may be suf. ficiently correct for the purpose, as in the case of cutting down a surface requiring to be finished but not fitted
 to anything. Take, for another instance, the stem of a double eye, having an offset, as shown in Fig. 161, at A. In this case, the lines being accurately marked, the proper amount of offset and of thickness, at A, may be more easily obtained by working to the lines than by any gaging or measuring.
A marker-out, as the operative is termed, should not only be one capable of great exactitude in his measurements, but should also be an expert workman at the lathe, vise, planing machine, and drilling machine; because it is by his lines that the work is chucked, and hence he should know the very best method of chucking or holding the work in each of the machines. Furthermore, a line over and above those necessary to define the outline of the work is often necessary for use as an assistance and guide in chucking it. Upon the truth of this lining, in many cases, will the truth of the finished work depend, and even in those instances where the method of chucking will correct any inaccuracy in the mark-ing-out, the usefulness of the latter is almost entirely destroyed, because the lines will become entirely removed on one side, and left fully in on the other side of the work. If, however, the marking-out is performed reasonably true, one of its main elements of usefulness consists in that it denotes is chere is sufficient excess of metal upon the piece of work to permit of its being cleaned up all over. But if there is any one part of the work scant of metal, as is sometimes the case in forgings of unusual and irregular form, the markingout requires to be very true, and may be made to just save a piece of work that otherwise would have been spoiled. By accommodating the marking to some spot or place in the work, which will only come up to the full size by throwing the whole of the rest of the lines towards the opposite side of the work, a costly piece of forging may be saved from the scrap heap. And again, in castings where the surface appears spongy, showing the presence of air holes keneath the surface, or in forgings where the surface may indicate that a weld is not perfect upon one side, the whole of the marking-out should be performed with a view to take off as much metal as possible on the faulty side. In other work there may be a part very difficult to turn or plane on account of the conformation of the job; in which case the marker-out, foreseeing such to be the case, will so place the lines as to give as little to come off that particular place as possible, disregarding the excessive heavy cut or amount of metal which it may be necessary to cut off other and more acces sible parts of the work. There are many other considera tions, which need not be hereenumerated, all tending to show that a marker-out should be a master hand at the various branches of his business, and possess much judgment and experience

The tools necessary for marking-out operations ara a true flat surface plate, having its edges squared true, which plate is usually of cast iron, and enough larger than the size of the work, both in length and breadih, to admit of th.' use all round the work, of the scribing block illustrated in Fig. D, n a previous issue (page 133, Vol. XXXI.), supposing the elnee or scriber there shown to be extended horizontally Th eordinary L and T squares, and a flat one of each kind
as shown in Fig. 162, are required. We have next the beve square, shown in Fig. 163, A representing the stock, and B

the blade, the latter being provided with a slot so that it ma be extended to any required distance (within its scope.) on either side of the stock. C is the rivet, which is made sufficiently tight to permit of the movement by hand of the blade, and yet it must hold firmly enough to be used withou moving in the stock. Instead of the rivet, C, however, thumbscrew and nut may be employed, in which case, afte the blade is set to the required angle, it may be locked in th stock by the thumbscrew. For the angles of nuts and othe hexagonal work, we have the hexagon gage shown in Fig. 164. The edges, A B, form a hexagon gage, and edges, C D form a square, while the edge, E , serves as a straight edge

All these tools should be made of cast steel, the blades being made of straight saw blade, so that they will not be apt to permanently set from an ordinary accidental blow ; while on the other hand, if it becomes, as it does at times, necessary to bend the blade over to the work, it will resume its straightness and not remain bent. To cut saw blade without causing it to split, as it is apt to do, especially in cutting out narrow square blades, it should be cut by gradu ally centerpunching it on both sides till it is completely perforated, when a flat chisel may be employed to nick between forated, when a flat chisel may be employed to nick between
the centerpunch perforations, the whole operation being performed lightly and repeated until the plate is completely severed.

Mug.16.5.
We next require a pair of long and a pair of short legged compasses, the latter of which should have an adjustable leg, as shown in Fig. 165. A is the adjustable leg, which passes through the split clamp, B, and is locked therein by tightening the screw, C, the object being to always use that leg as the marking one and the other as the pivot, and to lower it as it wears from grinding, thus keeping the compasses of their original length, and for the further purpose of lengthening out the adjustable leg when one of the faces of the work stands much below the level of the other, as we shall find, in some of our examples, will be the case. For long distances, to which compasses would be inapplicable from their excessive size and weight, trammels, shown in Fig.166, are employed. A A A represents a bar of square steel; or for very long trammels, wood may be used. B represents a head fastened tightly to one end, and through B passes the leg or pointer, C , which is thus adjustable as to its projecting distance, as B can be fastened in any position by the thumbscrew, D. The head, E , is made to a good

sliding fit upon the bottom and two side faces of A AA; bu at the top, there is sufficient space to admit the spring, H H which passes through E , as denoted by the dotted line. F is the leg screwed into E, which is locked in position by the humbscrew, G. The head, E, is thus adjustable along the whole length of the bar or rod, A A A. The object of the spring, H H , is as follows: If the head, E , were made to fit the bar, A A A, closely on all four sides, the burrs raised upon the tcp side of the rod, $A A A$, by the end of the thumbscrew, G, would be likely to impede its easy motion. Then again, when the sliding head, E, had worn a trifle loose upon
the bar, A A A, and was loosened for adjustment, it would be liable to hang on one side, and only right itself when the screw, G, brought it to a proper bearing upon the under side of the bar, A A A; and thus tightening the head, F, would alter the adjustment of the point. The spring, $\mathrm{H} H$, howver, always keeps the lower face of the square hole through E bearing evenly against the corresponding face of the bar, so that tightening the screw, G, does not affect the adjustment, and furthermore the end of the set screw, bearing against the spring instead of against the top of the rod, pre vents the latter from getting burred. The flat face, I I, on the leg, C is placed there to prevent the thumbscrew, D from raising burrs, which would prevent C from row B, hrough B. The points of all compasses or trammels should be tempered to a straw color, as should also the points or ends of the set screws or thumbscrew

FORK SCRIBERS.
For marking small circles, there is no tool equal to a fork criber, such as shown in Fig. 167, which represents a piece

of steel wire flattened out at the ends and filed to the points, A B, the distance between them being the radius of the circle they are intended to scribe or mark. These tools may be used to advantage to mark circles $\frac{8}{4}$ of an inch and less in diameter, the sizes varying by sixteenths of an inch, and the points being hardened to a brown or straw color.

A Pocket Gymnasium.

The profits from patents on small inventions are practially illustrated by the recent introduction of an elastic tube, about 2 feet long (not unlike a small india rubber garden hose), fitted with a plug of wood at either end, and a cord running loosely through the tube, fastened at each end by a knot to the plug, to prevent injury from the flying ends of the tube in case of breakage. The object of this invention is to furnish a portable exercising device, which is inexpensive, and is designed as a substitute for the more complex and costly health lift apparatus. A patent was secured through this office for the invention last June, and we are informed that the demand for the device has become so great that the manufacturer finds it difficult to meet it, thus confirming what we have repeatedly stated, that there is always a ready sale for small patented inventions. The article referred to is advertised in another column; and for persens of sedentary habits, or ladies and children needing physical exercise, we would recommend a trial of the new pocket gymnasium.

Makarofts Mats.

As a substitute for sails in stopping leaks in ships, Lieu enant Makaroff, a young officerserving in the Russian navy, designed a mat of peculiar construction. The Makaroff mat has for its basis a closely worked structure of rope about $\frac{8}{8}$ inch in diameter, made of the finest hemp, while the matlike surface closely resembles that common to all mats of the kind used for street doors. The texture of the mat is won derfully close; and as the whole is treated with a waterproo composition, it may be regarded as practically imperneable to water. The hairy side of the mat is that applied to the ship's side, and it is stated-and we see no reason to doub the statement-that these mats may be dragged over jagged edged holes in iron plates without sustaining any injury.

Pneumatic Pontoons.

Knapp's open-bottom pneumatic jacks or pontoons are at tached by chains passing under the wreck, and the chaining is ingeniously effected by means of a small tube passed under the wreck, through which a float and line attached to the cable is drawn. Compressed air is then admitted to the pon toons, which instantly give the lifting power. The advan tages of this system consist in easy management and the pos tages of this system consist in easy management and the pos
sibility of being used in exposed situations; and it appears to be extensively patronized.

French Patents.

In 1874 there were taken out in France 5,746 patents : 4, 202 for fifteen years, 54 for ten years, 32 for five years, 283 for eign patents, and 1,175 extensions of former patents. The objects for which patents were taken out were in the follow ing order for number: Chemical industry, including foods and drinks, machinery, textile industry, agriculture, domes tic appliances. The average number of patents per annum in the ten years before the Franco-Prussian war was 5,800 .

Donkey Street Cars.

A little girl, daughter of an American officer now in the service of the Khédive, Egypt, writes home that they use passenger donkeys in the city of Cairo, instead of street cars. The donkeys are not much larger than good sized dogs. I you wish to ride, you straddle a passing donkey; the Arab driver follows and, when you get off, collects your fare, then looks out for
plenty of air.

IT is proposed in France, by the telegraphic administration, to encourage the introduction of private wires, and to offer such inducements that no great factory and no rieh man's house in the country will be without its wire.

CAVENDIsH showed that nitrogen and oxygen in air formed mixture only, but that the passage of electric sparks pro result.

COMBINED HAND AND SLIDE LATHE.
We illustrate herewith a very useful combination lathe, constructed by Messrs. Low and Duff, of Dundee, Scotland, and exhibited by them at the recent Exposition at Manchester, England. The tool is specially adapted, says Engineering, for small brasswork, etc., and it is fitted with a reversing motion for tapping.
In Fig. 1 the tool is shown as arranged when fitting the key or plug of a gas joint with the slide. This operation having been performed, the set screw, A, is loosened, an the slide moved on the circular table to the back of the lathe, the hand rest being brought round into the position which the slide occupied. The barrel of the joint is then put on, the hole drilled and tapped at the ond for the small screw, and the niece of work finished without bein piece of work finished without being taken out of the chuck. The slid s so mounted that it can be readil set to any desired taper, and the ta
ble on which the slide and hand rest ble on which the slide and hand rest are mounted is moved up to a stop, so that, when the slide is once set to any desired angle, it can be moved out of the way and brought back again without requiring further set ting, so long as the same class of work is being gone on with
For work which requires to be mounted between centers, a loose head is provided, this head being shown swung down out of the way in Fig. 1, but in use in Fig. 2 where the plug of a largecock is be ing operated upon. Altogether this machine is a very compact and handy one, and it appears capable of getting through a large quantity of work.

Hypodermic Injection of
 Nutritious Substances.

Dr. Krüg, a physician in a private lunatic asylum, gives an account of a trial of
which he has recently
C. E., aged fifty-seven, a Hungarian proprietor, has been in an asylum at Ober-Döbling since 1868, and for the pur pose of suicide had often refused all food, so that for twen-ty-seven months at a time he had to be daily fed by means of the tube; of late he has been more inconstant in his re fusals, sometimes eating even abundantly, and at others allowing himself to be fed. On January 18, however, he be. gan again to absolutely refuse food, and so continued, with the exception of one day, to the 24th, when it was resolved to feed him by the tube as heretofore; but all attempts to pass this proved fruitless, such violent coughing and irritation did it cause, so that the patient became breathless and cyanotic. Even when the tube was got into the stomach, the fluid injected was immediately expelled again by its side ; o that the whole procedure inducing so much suffering roved useless. As ten cass had elapsed without his taking any food, with the exception of some soup once, it was resolved to try the subcutaneous injection, under the hope that a slight quantity of nutri ment might be so supplied, so as to ward off danger to life and perhaps exert a favorable impression on the patient when he found his resistance unavailing. Olive oil was the sub tance injected, the syringe employed holding 0.9 cubic inch. To the sy ringe was attached a thin caoutchouc tube, terminated by the canula of an rdinary subcutaneous syringe. so rit movements of so hat the move patien id not derange the working of the apparatus. One or two syringes full
were injected daily, being from 0.9 were injected daily, being from 0.9 o 1.8 cubic inches of oil. At first each syringe-full was thrown into five apertures, but afterwards into three, or even only two. The oil passed, drop by drop, out of the canula, so that at first an hour, and afterward half an hour, was occupied in th emptying of each syringe. This slow procedure rendered the injection painess, and prevented reaction, which s well as pain, was caused when the jection was made too whenthe joction waid hrown into oo much fuid thrown into one spot. for he foot, some in the belly, and other in the sides. Some effect was produced upon the patient's moral con dition, so that he partially abandoned his opposition to food. Thus, during thirty nine days, he completely fasted during nine, ate voluntarily during ten, and was supported by the injections during the other twenty. It was not possible to weigh him, but his general appearance was not changed for the worse. With some occasional exceptions, when the injections were resumed, the patient gradually abandoned his esistance, and at last ate in a natural way, the experiment lasting altogether about two months. The chloroform odor,
characteristic of fasting persons, disappeared soon after the first injection.

Salt for Domestic Animals.
Salt is not only a mild aperient or deobstruent, but it oper ates, to some extent, as a tonic. It is a very great rectifier of the acidity of the stomach when taken in proper quantities; and it not only renders very palatable food which would be disagreeable and insipid without it, but it keeps the functions of the stomach in a healthy state and often alleviates ,

are kept in pasture where there is much clover (trifolium pratense), they usually have a great hankering after salt ; and if they can have access to it, they will go and lick, more o less, several times during the day; and they will consume just enough to rectify the acidity of the stomach, and keep them from bloating. Many a farmer has lost a fine animal in consequence of bloating, which one pound of salt would have kept in good health.

High Speed Brake Trials.
In consequence of a statement made by one of the principal of ficers of the Midland Railway Com pany, England, with reference to the collision at Kildwick, to the ef fect that the engine driver of the mail train would have been able, with he means at his disposal if travelin the rate of 50 miles if traveling top his of hour, to phis train in 400 yards, certai brake experiments were lately made in the presence of Captain Tyler, on he Derby, Castle Donnington, anc Trent line. There were four trials. In the first of these experiments all avail able means were used to stop th rain, namely, tender brake and on uard's van brake at raar of train ap plied, sand used, and engine reversed ad steam acainstit with the Le Cha olier tap open. The gradient wa vel; the train the tal wigh vel, 102 tur 7 cwt weight of hich was 102 tuns 7 cwt. 2 qr., wa running at the rate of 49.9 miles pe hour when the brake was applied The result was that 54 seconds were occupied in stopping the train, which, after the application of the brake, ran a distance of 807 yards. In the se cond experiment all available mean were used except reversing the en gine; gradient 1 in 330 up and level speed 49.9 miles; time occupied, 60 econds; distance run 843 yards. In the experiment all available mean vere used, and when the engine was
IMPROVED HAND AND SLIDE LATHE.-Fig. 1. the effects of debility and disease. The trueway is to have tub of salt placed where cattle, horses, and sheep, can have access to it at all times, whether they are in the pasture or in the barnyard. Then, when the appetite calls for a lick or two of salt, they can go and get it, at the very time it is most needed, and when it will exert the most beneficial effect on digestion or on any part of the system.
A good plan is to keep salt in a small tub or strong watertight pail, in the pasture during the pasturing season, and in the yard during winter. Animals will not consume as much when they are supplied with it in this way as they will when they are salted once or twice only during a week. It is slovenly and wasteful to throw salt on the ground for animals, and especially for sheep, as they will of ten waste half as much as they consume
For salting sheep, drive three or four high stakes around

IMPROVED HAND AND SLIDE LATHE..-Fig 2.
pail, or small tub, leaving one side only so that they can thrust their heads separately into it. For cattle and horses, encircle the tub with a lot of boulders as high as the top of it, or drive a half dozen strong stakes around it, letting them extend above it a few inches, to protect it from being pawed to fragments. If the tub is watertight, in case it should rain in it there will be nothing lost, as they will lick the salt water as readily as they will the salt; and should the water evaporate, the salt will remain. When sheep or neat cattle

號, the time; gradient, 1 and 220 down, speed, $52 \cdot 5$ miles; tim occupied, 55 seconds; distancerun, 867 yards. In the fina oxperiment all available means were used. When reversing the engine the steam was first shut off, then the lever pulled into back gear, and then steam was turned on again as in first experiment; gradient, level ; speed, 52.5 miles; time, 50 seconds; distance run, 787° yards.. The weather was fair, and the rails slightly greasy. Captain Tyler, in his report to the Board of Trade, states that the engine driver of the mai train, who at present awaits trial on a charge of manslaugh ter, could not have acted so promptly as those who, on th experimental train, listened for the word of command. He adds that, instead of 400 yards, 800 yards should have been stated as the distance in which, with the assistance of th guard, he could have stopped his train. From this it appear that, at almost 50 miles an hour velo city a urain will run nearly half mile after the brakes are applied.

Dotting Pens.

An ingenious little apparatus for assisting in mechanical drawing, has been patented by its inventor, E. O Richter, a watchmaker in Chemnitz Saxony. In machine drawing, pro jections, and the like, the drawing of dotted, half dotted, or stroke lines is mechanical task, the wearisomenes of which this apparatus is designed relieve An upright plate slidin o relie. An has plate, sliding the par, hich which carries the pen point. A sprin keeps the pen close to the paper. The wheel is kept in position by an ad justable plate. Wheels of various patterns can be used for producing a mixture of dots and strokes, the length and variations of which cor espond to the indentations on the circumference of the wheel.

Nickelization.

In Plazanet's process a bath is used of 87.5 parts sulphate of nickel, 20 sulphate of ammonia, 17 citric acid and 1,350 of water A bath much sed in France is formed of a solutio 4 parts of nitrate of nickel in 4 iquid ammonia and 150 wat which 50 parts of sulphate of soda have been dissolved Using a moderate weak current the operation is at an end in a few minutes. There is no need to interrupt it by taking th objects out and brushing them. When the film of nickel is of sufficient thickness, the objects are withdrawn from the bath and dried with sawdust.

SHINGLE roofs can be made doubly durable by giving them coat of thin oil before they get wet.

THE ANTELOPES.

Among the widely extended family of deer, the tribe of the antelopes is especially worthy of attention. The name is generally considered to be synonymous with grace and beauty; but the race is so varied by climate and locality that some of its members resemble the horse in size and the goat in configuration, while others are wild and untamable. The sable antelope, for instance, has horns three feet long; it is exceedingly handsome, being quite black on the back and sides, and white on the belly. The gemsbok is a very fierce animal, defyirg even the African lion to combat; and the nu (called wildebeest by the Dutch settlers of the Cape of Good Hope, its native place) has the appearance and gai of a horse. The largest ante of a horse. The largest ante-
lope is the nil ghau, which lope is the nil ghau, which
much resembles an ox: and much resembles an ox: and closely allied to it is the beau tiful eland, which has been domesticated at Moor Park England, and is a very hand some creature in the fields. It fattens well, and is mos excellent beef. The smallest antelope is the madoqua (anti loper saltrara), the most di minutive of horned animals carcely larger than a rabbit But for beauty the gazelles must be allowed to carry of the palm. This genus varie in different countries, those of Egypt and Asia being well known for their gentle docility. They are the favorite domestic animals among most oriental nations. Their eyes are mild and lustrous "brightly bold and beautifully shy," as Byron well de. scribes them. Our illustration shows the brown Indian antelope, one of the tallest of the genus, and remark for its fleetness Its legs ar for lis formed its legs are inely formed and exceding ly muscular, and the body has
no superfluous weight on it; no superfluous weight on it;
and it is very strong in the and it is very strong in the lumbar regions and the hind legs. There is little doubt that many species of antelope could be domesticated in this country. In summer they would be sure to thrive, while a little care in winter would protect them from the inclement weather, and the trouble would be amply repaid by the beauty of the denizens of the park and paddock.

THE SAMBUR.
The sambur or rusa deer (rusa Aristotelis), found in most of the large jungles surrounding the hill ranges throughout India, is considerably larger than the Scotch red deer, and more powerfully built. A full grown stag averages from 14 to 15 hands at the shoulder, and his hind quarters are as well shaped as those of a high caste arab, whereas the Scotch red deer generally falls off low behind, and is more or less cat-hammed. The head is beautifully formed the forehead being broad and massive, while the line of the face is straigh and the muzzle very fine The eyes are very larg and beautiful, bein fringed with long black eyelashes, and the sub orbital sinus-which is very conspicuous - ex pands greatly when th animal is excited. The horns of the sambur var very much in their devel opment, according to th district in which they are found, some being long and slender, while others are massive and short. The horns are rather upright, having two short brow antler only, and at three year old two points at the ex tremities of each beam as shown in the engrav ing. Sometimes the in ner and sometimes th outer tine of the termin al fork will be found the longer; and occasionally, but rarely, three tines are seen at the summit of the beam. The horns of a mature stag average 35 inches in length from base to tip, having a circumference of 11 inches round the burr at the base, and 8 inches at the thinnest part of the beam: but some antlers greatly exceed these dimensions. The color varies slightly, but is usually of very dark slate mingled with gray, nearly black about the face and points, and a light buff between the haunches and underneath. The hair immediatelynext to the jaw is longer than on any other part of
the neck; and when the animal is alarmed or excited, it stands on end and forms a kind of ruff, sometimes called the mane. The hinds are smaller than the stags, and of a lighter color; and both sexes have canine teeth in the upper jaw.
Old stags, during the rutting season, in October and November, are extremely vicious, and may be heard all over the forest, calling to each other. When they meet they engage in savage conflicts, sparring with their fore feet and butting each other with their antlers, like the American deer

Wagner's Free Institute of Science
This institution, situated at the corner of Montgomery

THE BROWN INDIAN ANTELOPE.

venue and 17 ch street, Philadelphia, was founded and en dowed by Professor William Wagner, formerly the confiden tial manager of Stephen Girard, and was incorporated in 1855.

In the large lecture room of the Institute, there are delivered, nightly, free lectures upon scientific subjects; while at the monthly meetings, recently inaugurated, there are presented exhaustive reports of progress in science and the arts, besides practical exhibitions and explanations of recen and meritorious novelties of interest, machinery in motion, etc. The programme for the autumn course of lectures is as follows: Mineralogy, William H. Wahl, Ph. D; Physics Professor J. Child; Anatomy and Physiology, C. C. Vander beck, M.D. ; Botany, Henry Leffman, M.D.; Philology, R. beck, M.D. ; Botany, Henry Leffman, M.D. ; Philology, R
Grimshaw, Ph.D. ; Elocution and Oratory, Professor J. W mittance. Practical Eagineering of the small economies, the great
themselves."-Paper Trade Journal.
terested in. At the first meeting, there were over a thou interested in. At the first meeting, there were over a thou-
sand in the audience, while many were unable to gain ad-

Economy in Use and Manufacture.
How to save in cost of manufacture is thus suggested by James C. Baylis in a paper before the New York Society of

We are very near the maximum of economy as regards the cost of power. We can build boilers that will evaporate ten pounds of water for every pound of coal burned under them ; and when it is attempted to economize still farther i is found that the interest upon the increased cost of the boiler amounts to more than the value of the coal saved. It is doubt ful if any important improve ment is possible upon the Corliss engine gear, or the Cornish cataract double-head valve Steam jacketing has not yet, in this country, received the at tention to which its import ance entitles it; and with this, and in clothing with felt and other non-conducting substances, there is room for pro fitable experiments. For the next half century we must look to economy in little things for the cheapening of the cost of manufactured products.
Among the attainable economies not generally carried to their ultimate application, the saving of fuel is the most pro minent, and it is one of the most serious drawbacks to our industrial prosperity. Waste of fuel results mainly from bad firing. In an experiment made with different men, each with the same amount of fuel th the same amount of fuel, the best man ran the engine 56,00 revolutions, and the poorest
28,000 revolutions. A few 28,000 revolutions. A few years ago, the best engin driver in Great Britain, and who was always in request at competitive trials, was a lad 13 years of age. This boy could run an engine longer with given amount of fuel than any other engineer in the country and the fact is suggestive. The next, after economy in the cost of power, is the task of economizing skilled labor. An important plan is to employ unskilled labor to supplemen skilled artisans. The proper careof tools is always attendfd with an important economy. In small establishments this seldom receives due attention. As a rule, a tool belongs to whoever happens to have it. Consequently, no one is re sponsible for it. There is great waste of lubricating oil; and above all, in our manufactores; time and material are waste for want of proper system. System should begin with the building of the or If wing ourselve to ta of the ofll

THE SAMBUR AT BAY
Shoemaker, and others. The monthly meetings are in charg of Dr. Wahl and Professor Grimshaw. At the initiatory meeting, there were presented to the public, for the firs time in Philadelphia, the Brayton ready motor, the National Timber Preserving Company's new process (shown on a huge log), and some dozen other interesting novelties. Drs. Wah and Grimshaw are desirous of hearing from inventors, pro ducers, and manufacturers throughout the country, who ar hus offered an excellent opportunity of bringing before large and practical audience whatever novelty they may be

Utilizing Cobwebs. Cobwebs have been ap plied to various uses The delicate cross hair in the telescopes of sur veying instruments are fine webs taken from spiders of species that are specially selected for their production of an ex cellent quality of this material. The spider, when caught, is made to spin his thread by toss ing him from hand to hand, in case he is indis posed to furnish the arti cle. The end is attached to a piece of wire, which is doubled into two par allel lengths, the distance apart exceeding a little the diameter of the in strument. As the spider hangs and descends from this, the web is wound upon it by turning the wire around. The coils are then gummed to the wire and kept for use a required About a century ago, Boa of Languedoc suc ceeded in making a pair of gloves and a pair of stockings from the thread of the spider. They were very strong, and of a beautiful gray color. Other attempts of the same kind have been made; but Reaumur has stated that the web of the spider was not equal to that of the silkworm, either in strength or luster. The cocoons of the latter weigh from three to four grains, so that 2,304 worms produce a pound of silk; but the bags of the spider, when cleaned, do not weigh above the third part of a grain.-Appletons' Cyclopadia.

A NEW CHROMATROPE

by president henry morton, ph. d., atevens institute of TROENOLOGY, HOBOKEN, N. J.
T'here are a number of phenomena, related more or less to that illustrated by the seven-colored rotating card known as Newton's disk (phenomena, in other words, involving the composition of colors and persistence of vision) which it would be desirable to illustrate by means of a transparen apparatus and a magic lantern, rather than by an opaque disk of large size viewed directly. In fact, for twenty year or more, Duboscq has been making several chromatropes of this character. One of these consisted of a Newton's disk made of sectors of colored gelatin, mounted between two thin disks of glass, which were rotated by a small centra pulley, over which passed a barrel moved by a large driving wheel. Another consisted of t wo disks so painted as to pro duce by their opposite motion the appearance of undulatory movements in certain spots of light. These were diven by a cord carried continuously round the driving pulley and both the device disks. This chromatrope, when rapidly moved, developed by persistence of vision a figure of luminous chainwork, in a way which illustrated the phenome non of persistence of vision very satisfactorily. Another of these chromatropes illustrated Faraday's observation of the toothed wheels rotating in opposite directions. While all o these were good of their kind, there yet remained something to be desired, as regards rapidity of rotation, solidity of ma chinery, and clearness of vision.

Wishing to employ many of these and other illustrations at a lecture on color which I delivered at the Academy o Music in Philadelphia, I applied to Mr. George Wale, of the firm of George Wale \& Co., instrument makers to this insti tution, and he made for me the instrument which I have found very admirable in in its effectiveness and durability, and will now describe

Fig. 1 shows the arrangement of parts, with an addition to be presently described
The large wheel, A, is made of brass, with a rectangular groove on its periphery, into which is sprung a flat ring of thick sheet rubber. This gears by friction into the smaller part of the pulley, D, and this gives to it a high velocity C is a handle and H the axis, clamped in a slot in the frame so that it can be brought nearer to D to increase the driving friction.

The chromatrope disk rests on the larger part of this same pulley, and also on the other two pulleys, D and N. It is thus readily driven at a high speed by its edge, the grooves of the pulleys in which it rests being covered with thin sheet rubber.
The entire field of the chromatrope is thus clear and un obstructed by any belt, pulley, or the like. In order readily to change the design disk of the chromatrope, the pulley, \mathbf{N}, is held by a spring and can thus be pushed back so as to release one disk and admit another
The design disks used in this apparatus may be multiplied ndefinitely, but those at present supplied are the following:

1. Newton's color disk. This consists of seven sectors, red, orange, yellow, green, blue, indigo, and violet respec tively. This and the other color disks are made of pieces of stained glass, cemented with Canada balsam to a disk of plate glass, and so admirably fitted that the effect on the screen, even, is of the most perfect finish. Their richness, regularity, and accuracy of color surpass anything which has ever been produced by painting
2. Disk illustrating Young's theory. Six sectors of red, green, and violet are here arranged, and when rotated they produce white.
3. Disk illustrating Young's theory, Professor Rood's design, showing that green and violet produce blue. This consists of various partial sectors, arranged as shown in the accompanying engraving, Fig, 2, third circle. Here we have a number of sectors, of which the large are colored green and the smaller violet. The shaded portions are black. When such a disk is rapidly rotated, we have on the outside a ring of green, so far as to the portion where the violet sectors begin; then we have a ring where both green and violet occupy the field in succession, and thus by persistence of vision blend and give their resultant impression; lastly, where the green sectors end, we have a circle of simple violet. In the case of this disk, the combined color obtained by the union of the green and violet is a light sky blue.
4. Disk illustrating Young's theory, Professor Wood's design, showing that red and green produce yellow. This is arranged on exactly the same principle as the previous one, except that the smaller partial sectors are made of red glass in place of violet.
5. Disk illustrating the fallacy of Brewster's theory, Pro fessor Rood's design, showing that blue and yellow do not produce green. See Fig. 2, fourth circle.
This resembles the foregoing, except that the eight sector re entire, and consist alternately of blue and yellow glass and when rotated produce white light.
6. Disk illustrating persistence of vision, being the present writer's design of the chameleon top.
This is shown in position in Fig. 1. The disk, E, is of ard rubber, with an opening eccentrically placed, over which is supported, between three small pulleys,L, the glas evice disk, B R.
If, while this disk is rapidly rotating, the finger is made to touch lightly the little wheels at a single point of their revolution, it will cause them to move slightly so as to rotate the device disk, R B W, very gradually. This is placed, as we have seen, eccentrically to the large disk; and having on it the irregular design shown in Fig. 3, in which R is red lass, B blue, and W white or transparent, it will, by the slow rotation described, have one color after another shifted into the center of rotation of the large disk, and alsn the
combination of colorsin circles outside of the center will be changed. Thus: Suppose, in the first case, that the positio

Fig. ?.

Fig. 4

of the disks is indicated by Fig. 3, the largest dotted circle representing the large disk, and W, B, and R being the white, blue, and red parts of the device disk. In this case the: white occupies the center of the large disk, and thus the rotation of this leaves the portion included in the small central circle always white. Outside of this, how ever, it is evident that, in the ring between this smallest circle and the next oce; white, red, and blue will be carried in succession by the rotation of the large disk over the field, and thus, by persistence of vision, a blending of these three will occupy this ring-shaped space. Moreover, since the proportion of the colors will vary concentrically, this wil not be a flat, but a shaded ring. Thus, just beyond the mallest circle white will predominate, while just inside the ext circle there will hardly be any white.
Again, between this second circle and the outermost, ther will be a similarly graduated ring, red and blue with no white.
Now suppose the small disk to rotate so as to shift the red portion into the center of the large disk, as shown in Fig. 4 Here evidently, when the large disk rotates rapidly, we shal have, by persistence of vision, a red center within the small circle; between this and the next circle a ring of combined red and blue; then a narrow ring of red, blue, and white; then a broad graduated ring of blue and white.
The shifting of the center is of course accomplished grad ually, and thus the figure on the screen passes imperceptibl rom change to change in countless variety, and with beauty of effect that hardly admits of description. The pro minent idea suggested to most is that of an ever-opening and
changing morning glory, or of a fountain of light and color changing morning glory, or of a fountain of light and color, from whose center wells out a succession of colored waves
chasing each other outwards until they are lost on the margi chasing each
of the basin.
At the suggestion of Professor C. A. Young, of Dartmouth College, a further development was given to this chromatrope. The pulley wheel, D, in place of having one groov to drive the glass disk, was made a little broader and fur nished with two grooves. The outer one was cut a little deeper than the other, so that it would act as a wheel of less radius and communicate a slightly lower velocity to the glass disk it drove. The other pulleys, D^{\prime} and H , were each made of two independent wheels.
Two disks, being placed in this arrangement, would there fore rotate in the same direction with high but slightly un equal velocities, so that one would, as it were, travel slowly over the other. The inner one of these disks was painted with a design, and the outer made part black and part white (that is, clear). The clear part,exposing in succession differen parts of the design, produced corresponding changes in the means by which this result was obtained is a very admirabl characteristic of the plan.
Other designs have been made by Professor MacCord, of the Stevens Institute,for driving disks in opposite directions, and indeed this fundamental idea of Mr . Wale, of driving the device disks directly by friction on their edges, seems to ope the way for quite a number of developments of this piece of apparatus.

Cleansing Goods by Naphtha

Naphtha is being used as a cleansing agent for furniture carpets, clothing, etc., at an establishment recently opened in this city. The process consists simply in placing the article to be cleaned in a bath of the hydro-carbon and there leaving it for a couple of hours. Huge vats are used, capable of holding several barrels of naphtha at a time; and in these, sets of furniture or rolls of carpet are secured so as to be en-
tirely submerged in the liquid. No preparation of the goods is necessary, and the naphtha seems to exercise no deleteri-
ous effect upon varnish or gilding, uponglued joints, or upon the finest silk or satin fabrics. Dirt and grease are entirely eradicated, the latter sinking to the bottom of the vats, from which it is from time to time removed in the shape of a thick ellowish mass. Moths are of course totally destroyed.
Several fine sets of furniture were shown us, which had been treated by the naphtha process. They appeared like new so far as the fabrics were concerned, and there was no discernible smell of the fluid. The process is patented. The principal item of expense is the evaporation of the aphtha; but this being allowed for, the cost of cleansing is somewhat less than that incurred in the ordinary mathod ollowed by the clothes-scouring establishments. It mey be dded that naphtha does not act upon linen or cotton, and is practically available only upon animal fibers.

A NEW INDUCTION COIL

Mr. C. F. Brush, M. E., communicates to the Engineerin and Mining Journal a description of a novel induction coil de signed by him, an engraving of which, in section, we give here with. The three eighths inch iron rod, A, is secured by a collar and nut in the base, B, and serves as a support for the core, C, which is composed of about 1,200 iron wires (No. 20 gage) made perfectly straight and carefully annealed. This core is covered by four layers of paper saturated with paraf fin, then one layer of the primary wire, D, which is of copper one eleventh inch in diameter and 90 feet in length, then six layers of paper, and, finally, the second layer of wire. The latter is not covered but is wound with a narrow strip of pater between the consecutive turns, the object of this of paper between the consecutive turns, the ober
being to economize space. A hard rubber tube, incloses the being to economize space. A hard rubber tube, E , incloses the
primary wire, and is 12 inches long, $2 \frac{1}{2}$ inches in internal diamprimary wire, and is 12 inches long, $2 \frac{1}{2}$ inches in internal diam-
eter, and $\frac{1}{8}$ inch thick. It is held by the pieces of wood, F, eter, and $\frac{1}{8}$ inch thick. It is held by the pieces of wood, F which also support the core. The secondary wire is 30,000 feet in length, is wound in eight sections, $1,2,3,4$, etc , and covers 8 inches of the tube, as shown. Sections 1 and 8 con tain 35 layers of wire each; sections 7 and 2, 55 layers each and sections $3,4,5$, and 6, 67 layers each. This arrangemen places most wire around the middle portion of the core, wher ts inductive force is greatest. The consecutive layers of wire in each section are insulated from each other by te hicknesses of unsized paper saturated with melted wax nd the concutive turn of wire in each layer are insur nd for by being wound with a and wo-hundredtbs of an inch between them. The wedge-shaped pace betw en the sections is filled with paraffin, which in ulates them, and the exterior of the sections is also covered with the same material, until the shape of the apparatus becomes as shown. The secondary wire begins with section 1, and forms the outside layer first; thence it pesses from layer to layer until the innermost one is reached, there it crosses over to section 2, where sections 1 and 2 touch each other, and forms the innermost layer of section 2, thence rom layer to layer until the outside one is reached ; thence it passes to section 3. forming the outside layer first, and thu it proceeds until it ends in the outside layer of section 8 .

The advantages of this arrangement, as regards economy f space, is obvious. No insulating material being required between the sections, where the wire passes from one to the other, none is used. But as the quantity of wire, and conse quently the tension of the induced electricity, increases di rectly as the distance from this point toward the opposite dges of any two contiguous sections, so the thickness of araffin increases until finally it is thickest of all where in sulation is most needed. A space of one eighth of an inch between the innermost layer of the sections and the tube, D, is filled with melted paraffin, which, together with ih rubber tube itself, forms the insulation between the primary nd secondary wires.
The object in using the secondary wire bare is economy of space. It is a mattér of the greatest importance that the hole of the secondary wire be placed as near as possible to he magnetic core, E, as the inductive force of the latter va ies inversely as the square of the distance from its axis. The same amount of silk covered wire would occupy at leas double the space, and would, consequently, average a much reater distance from the core.
The condenser used with this coil consists of two hundred and forty sheets of tinfoil, five by ten inches, arranged in the

November 27, 1875.]
sual manner, and separated by single sheets of varnished paper. The break piece is Foucault's automatic, in which the rupture of the current occurs at the surface of mercury covered by a layer of absolute alcohol. It is operated by separate electro-magnet, which, however, is in connection with the primary wire of the coil. The instrument is pro vided with a communicator by which the primary current tarted, stopped, or reversed at pleasure.
The performance of this coil is quite extraordinary for an nstrument of such small size. When operated with two cells of Bunsen's battery, it gives sparks three and a half nches in length; and with one large cell of the Grenet battery, three inch sparks are obtained. The sparks are very dense, and are attended with numerous and brilliant ramifiations.

DECISIONS OF THE COURTS

United States Circuit Court.---Eastern District of Michigan.
el register.-charles l. hawes v s. william w. antisdel [In equity.-Before Longyear, J.-February, 1875.] In order to defeat a patent on the ground of want of novelty, the pro
of prior use or pravious knowledge must be such as to estabysh the fact
clearly and satisfactorily, and beyond a reasonaole doubt. early and satisfactorily, and beyond a reasonable doubt.
Where the proofs are econtraidctory, mere preponderance is not sufficient
o sustan the alegaion. The preponderance in such case must be such as
oremove all reasonable doubt.
oro

 The prots showed that the complainnant perfected his invention and pat
Thtting paper
Tinto practical use as early as in Mlay, 1866 , and it was to that date the proofs

 まaw wewevi

William Allen DMPROVED CORN HUSKER. shaped tool, with a pointed top a little in advance of the cutting ip arrath a sliding table to feed the corn ears up to the tool. The object is to remove the shucks without the loss attending the
to leave them prepared for use without the stubs.

NEW CHEMICAL AND MISCELLANEOUS INVENTIONS

IMPROVED CIGAR box
Charles S. Brown, Baltimore, Md.-The object of this invention is to provide a cigar box better adapted to preserve the cigars from dampness, and so constructed as to allow the quality and brand of revenue stamp. It consists in a tight sheet metal box, having its end walls slightly elevated and formed into beads, in combination with a glass cover contained into a suitable frame, which, when the box is to be shut, closes in between the said beads, which clasp and firmly secure the cover so as to render any other form of fastening unnecessary.

IMPROVED OPERA CHAIR.
Ira Chase, New York, and George M. Ball, Green Point, N. Y.The new feature in this device consists in telescopic bracesattachee to the lower part of the support and to the edge or the seat. These
fold back out of the way when the seat is turned up, and at the fold back out of the way when the seat is
same time form a strong and durable support.
improved hunting jacket.
Henry L. Daigre, Alexandria, La.-This coat contains the requiaites for hunting, distributed in a neat and convenient manner over the body. In the skirts are game pockets, having side gus-
sets and bottom nettings. Within the game pockets are separate pockets of smaller size for the empty shells. The game pocket have covering flaps, which may be thrown up and attached to but tons for exhibiting the result of the day's sport

IMPROVED EGG CARRIER.
Wendelin Weis, St. Paul, Minn.-This inventor proposes to cheapen and simplify egg-carrying devices by doing away with the hinged covers or sheets which separate the horizontal trays and providing the lateral partition strips of the egg cells with broad eggs in an equally secure manner.

NEW WOODWORKING AND HOUSE AND CARRIAG BUILDING INVENTIONS.

improved wagon wheel scraper
Norton Sage, Pekin, Ill.-In order to keep the tires of wagon
wheels free from sticky mud, in this invention there is provided a heels free from sticky mud, in this invention there is provided a -shaped scrapers, which accommodate themselves to the rim o the wheel, no matter in what position the latter may be
improved scroll-sawing machine.
Jerome H. Plummer, Brooklyn, N. Y.-The new features in this machine are a reciprocating saw frame (attached to a table extenframe. The extension has a curved arm, which supports a shelf for holding tools. The machine in general is compactly built an well adapted for foot power.
improved childpren's carriage.
Ernst Krueger, New York city.-This relates to a novel and in
genious construction of the body, which has a flexible bottom genious construction of the body, which has a flexible bottom
stretched by lazytongs frames. The axles are similarly extensible, stretched by lazy tongs frames. The axles are similarly extensible,
and the whole is adapted to be folded in its longitudinal axis so a and the whole is adapted to be folded in
to be conveniently packed for storage, etc

NEW MECHANICAL AND ENGINEERING INVEN TIONS.

machine for packing tobacco in boxes.
James B. Farrar, Cary, N. C.-This invention relates to an improved It consists in an intermittently revolving belt provided with seats in which the bag holders are placed, containing the bags and the bag shapes. As the belt revolves, the flared ends of the bag shapes pass beneath an automatic and adjustable feeding appa-
ratus, which delivers into the bags a requisite amount of the to ratus, which delivers into the bags a requisite amount of the to-
bacco. The bag holders and bag shapes then pass in their seats in the belt from the rotation of the latter beneath the vertically moving plungers, one of which settles the tobacco in one bag shape while the other packs the tobacco in the preceding bag. At the same time that the packing plunger descends, two lifters automatically rise and withdraw the bag shapes, leaving the filled bags and bag holders to be removed, and the later prepared for insertion at the other end of the belt.

IMPROVED CAR COUPLING
John H. Johnson, Brooklyn, Mich.-The new feature in this is a fulcrumed side lever attached to a vertically swinging drawhead which last may be set and worked at any hight tor coupling. Ther
are also devices to prevent the escape or detaching of the links. IMPROVED LEVER POWER.
Henry C. Bell, Edina, Mo.-A vibrating lever is provided with notches or sockets, adapted for receiving the links or chains which vibrated on a central pivot, so that the hoisting chains are alternate ly slackened and subjected to strain, each chain being shortened when slack. The operation of alternate slacking and straining is continued until the shortening of the chain has raised the object to the desired hight. This application of power is utilizable in a larg number of ways.

IMPROVED DEVICE FOR CHANGING SPEED

Joseph W. Mead, Dupont, Ind.-Instead of the cone pulleys an belts now in use, a conically faced disk is proposed, located on th driving shaft that transmits the power by conical friction wheels to
a similar conically faced disk of the shaft to be driven. The shaft of the friction wheels are hung to boxes of a sliding and spring acte frame, and the wheels are adjusted by suitable lever mechanism. IMPROVED SEWING MACHINE.
Josiah Glines and Noel W. Stiles, Postsillle, Iowa.-The novelty
here is a shuttle carrier mounted on a pair of cranks, and operated by a crank on the driving shaft in such a manner that the shuttle travels in a true circle without revolving on its own axis, and thu
 importance to sewing machine manufacturers, and we would espe cially commend it to their attention. The effect of swinging th twisting the thread, but also saves friction and prevents noise The mechanical device used is at once ingenious and effective.
improved tobacco-cutting machine.
Augustus A. Hagen, New York city.-For cutting tobacco in
rapid and easy manner, this inventor suggests a new machine hav rapid and easy mannor, this inventor suggests a new machine hav-
ing a cutting knife, to which a diagonal shear cut is imparted by compound slide mechanism.

IMPROVED NUT FASTENING
Robert C. Watson, Maysville, Ohio.-An eye stud is formed on plate. Said plate has holes to fit over the nuts, and its other end is connected at the middle of the joint, where it meets another similar plate fastened to the other end of the fish plate. The two plates are fastened on the stud by a split key, so that they can be readily put on and taken off.

IMPROVED WINDMILL
John Cook, Harlem, Ohio.-In this the crank-shaft bearing is connected to the horizontal beam which supports the machine in a simple and efficient way by means of stirrups or yokes. Another new
feature is a joint in the beam for the tail vane to swing around out feature is a joint in the beam for the tail vane to swing around ou
of the wind when it blowstoo strong, in combination with a weighted lever for keeping the vane in the wind.

NEW HOUSEHOLD ARTICLES.

improved fluting iron
W. F. Fisher and A. C. Brown, Bremond, Tex.-The invention consists in a hollow smoothing and glossing iron, in which a fluting
iron is inserted, the latter being also hollow to adapt it to receive heating block, so that the several parts maj be, so to speak, nested thus economiziog space, material, and the cost of manulature, an comb
improved carriage curtain fixture
Daniel R. Knight and John M. Ripple, Waynesborough, Pa.-This invention relatesto certain improvements upon the carriage curtai fixture for which letters patent No. 166,114 were granted July $2 \pi, 1875$
and it consistsin the improved construction of the roll, the method 0 attaching the curtain thereto, a stop device for adjusting and regu lating the hight of the curtain, and the means for fastening the sides of the curtain.

IMPROVED LANTERN.
Patrick J. Clark and Joseph Kintz, West Meriden, Conn.-A yok attached to a metal cap above the globe holds the latter to the lan tern, while allowing said globe to rise and fall. There are new de vices for concentrating the air on the flame, and for the ready ad mission and securing of the burner. The invention is quite simpl
and easily constructed.

IMPROVED PAN
John C. Milligan, South Orange, N. J., assignor to Lalance \& Gros ean Manufacturing Co., New York city.-The object here is to ena ble pans to be made of thinner and lighter metal than is ordinarily
the case, without detaching from the wearing quality, and also to increase the capacity of the utensil. The middle portion of the bot tom has a downward deflection, and, on the part outside of this, leg or studs are attached.

IMPROVED FOLDING CRADLE
John Weich and John Jefferys, New York city.-The bottom of the cradle is hinged to one side so as to turn up. The ends are each made in two parts hinged together, and are also hinged to the sides, The rockers are pivoted at one end, and secured at the other by
movable pins. With this construction the cradle may be folded so as to require but little space, and be compact in form.

IMPROVED CURTAIN FIXTURE.
Rudolph J. Pospisil, Chicago, Ill.-This is a curtsin roller turning in spring brackets, bearing on its ends, and having cords wound in
opposite directions around each end, to raise and lower the rollers. The cords are uuided in front hooks of the brackets. An illustrate description will be found on page 306 of the present volume of the Sientific American.

IMPROVED STOVE.
Robert S. Bostwick, Jackson, Mich.-The air passes upward be tween the fire pots, from side channels into an air chamber, an then mixes with the smoke and fire gases from one flre pot. The sheet of air that is thussupplied to .the top of the fire produces the more thorough combustion of the fuel and a higher degree of heat The unconsumed smoke and gases of combustion are conducted by
suitable passages downward to pass between cap and fire pot, and then in upward direction to the chimney.

IMPROVED FOLDING CHAIR
James H. Bean and Richard W. Box, Pulaski, N. Y.-In this chai de seat, which is pivoted to the back part, and the hind legs slid ing side lugs on the front legs, when the seat is thrown in position or use. This is a simple and strong article, easily packed and wel uited for camp use

IMPROVED CURTAIN FIXTURE.
George C. Mathers, Louisville, Ky.-This invention is an improve ment upon that for which a patent was granted to the same inven go on the same axis both the friction pulleys over which the cor passes, and in locating them above the grooved pulley which is a ached to the end of the curtain roller. The result is an econom the wall or window casing, thus rendering its operation easier, and the appearance of the fixture more attractive as a whole.

NEW BOOKS AND PUBLICATIONS

appleton's American Cyclopedia, Vol. XIII., "Palestine" to
"Painting." In Sixteen Volumes, $\$ 5$ each. New York city D. Painting." In Sixteen Vol

The thirteenth volume of the revised edition of this work has lately bee ccompanies an article in which due reference is made to the latest explors tions and archrological discoveries in that interesting portion of the glohe. The article on "Plants" is very full, and is copiously illustrated with exce lent engravings and a chart showing the distribution of plant life over th orld. Among other notable articles are those on "PPaper,"" Paris,
'St. Paul," "Patagonia," "' Persia" (with map), "Phonography", (a St. Paul,"" "Patagonia," "Persia" (with map), "Phonography"' (a omy" (by that eminent writer, Henry Carey Baird, of Philadelphia), and
" Patent Law, "the last article being by Hon. E. T. Drone. The volum " Patent Law," the last article being by Hon. E.
is fully up to the high standard of its predecessors.

Inventions Patented in England by Americans.

mpiled from the Commissloners of Patents' Journ
From October 19 to october 23,1875 , Inclusive. Air Comprissing Enaine, rtc.-E. Cope et al., Hamilton, O. ttaching Buttons, etc.-D. Heaton, Providence, R. I. bale Tie.-T. H. Murphy; New Orleans, La cutting Out Table.-J. Herts, New Y
Diamond Holder.-J. W. Branch, St. Louis, M
Grindine Machinery, etc.-J. W. Blake, Jersey City, N. J.
Gead Trap.-F. N. Du Bois, New York city,
Lead Trap.,-F. n. Du bois, New York city.
Printina Inking Apparat ob.-a. Campbell,
Printing inging apparatus.-a. Campbell, Brooklyn, n. y.
Raibing and Delivering Grain, eto.-W. H: Brown, New York city Raising and Dilivering Grain, ero.-W. H: Brown,
Rbrigerrator, etc.-L. C. Cattell, Cleveland, Ohio.
Wa trr Meter.-D. W. C. Taylor et al., Brooklyn, N.
gusimess and tetrgual.
The Charge for Insertion under this head is One Dol-
lar a Line. If the Notices exceed Four Lines, One Dollar and a Half per Line will be charged

Shoe-Peg Machinery, as follows: Sawing and Heading Machine, with 36 in. taper-ground saw. Price $\$ 135$. Baldwin Pointer. 8 rolls, good as new. Price \$137. Baldwn Splitter, with ratchet-feed. Price $\$ 40$. Boring Baldwn Spitter, with ratchet-feed. Price $\$ 40$. Boring Lathe, for cutting out knots. Price $\$ 25 . \quad$ Bleaching Furnace and Fan, 18 in. Price $\$ 35$. New Steam Dryer nd fixtures, containing over 600 feet $3 /$ in. plpe, copper oovered, and made in the most thorough manner 5 -bushel size. Price $\$ 375$. Screens, good order. Price $\$ 37$. Or, if all the above are wanted by one person, will put in he seven machines for $\$ 740$ cash. If desired, will se the hangers, pulleys, and shafting used to drive same, at diameter, 46 feet long, and one $13 / \mathrm{in}$. diameter, 24 feet ong. This machinery is all in good order, ready to start with a few slyght out and titions costing but little day, an With a few slight additions, costing but little, the capa- cltv could be doubled. For further particulars, address S. C. Forsaith \& Co., Manchester, N. H.
 . C. Forsaith \& Co., Manchester, N. \mathbf{H}
 . Wanted-The best Power Matching Machine in he market. Send circulars and capacty of machines to
 22 years old-Inventive mind wants to work in machine shop. A. G. C., Lock Box 54 , Lawrence, Kan. Cutler's Pocket Inhaler, patented through the sale, In a given time, than any medical Instrument ever invented. Read advertisement in this paper, and send for a circular. Lumbermen say, after using R. Hoe \& Co.'s Chisel tooth saws manymonths, that they would not accept a solld tooth saw, with flles and tools to keep it in order, if given free. They will run no other saw. Wanted-A business man with $\$ 10$ to $\$ \$ 0,000$, t manufacture the best gothic chairs, secured by Manufactory and machinery now in operation; or I I will sell part or all of the patent. F. W. Krause, 72 West
 Washington St., Chicago, m. 1 Horse Engines $\$ 60,2$ horse $\$ 100$, without boil ers, at T. B. Jeffery's, 253 Canal St., Chicago, Ill. The American Standard of Bolts and Nuts (Chart) Price \$1. Address E. Lyman, C.E., New Haven, Conn.

 The London M'f'g Co., 246 Grand St. N. F. are the best in t"Amongst the live and progressive institution
of the day is Geo. P. Rowell \& Co's Advertising Agency No. 41 Park Row, New York. The establishment is so ystematized, and their fact
public is sure of belng
s
25 per cent saving in fuel or extra power guar-
anteed to steam engines by applying the R. S. Condenser. , Wanted-A first class Pattern Maker. H. B
smith, Smith ville, Burl. Co., N. J. Single, Double, and Triple Tenoning Machines
of superior construction. Martin Buck, Lebanon, N.H. Patent for Sale-An Acrobat performing all kinds
of motions on a harrel or ball. A new Toy. F. C. Wanted-A Sorby-Browning Micro-Spectroscope,
new or 2d hand. H. A. Sprague, Charlotte, Me.,U.S.A. To Iron Manufacturers-Wanted Iron Saw Blade
for sawing marble. Send price. Boyd \& Chase, Har for sawing
We call attention of Amateur Workers in Fanc
Woods to the advertisement of Messrs. Geo. W. Read Co., on page 349, who
Fancy Woods on hand.
A First Class and Energetic Machinist wants to
go into Business of any kind. Any one knowing of an go into Business of any
opportunity, please addr
Dies and Punches-R. Woodman m'f'rs the Best.
50 Sudbury St., Boston, Mass. Manufacturers of Fancy So Sudbury St., Bos.
Lathe Wanted-Foot motion, screw-cutting, finely
fitted. Address Screw Lathe, Herald Offce, New York. Gothic Furnace, for coal and wood, heats houses
Traction Engines, good order, for Sale cheap-In-
ternationalChemical Works,10th St., Hunter'sPoint,N. \mathbf{F} Double-Entry Book-Keeping. Simplified. The most successful Book on the subject ever published.
Cloth, $\$ 1$. Boards, 75 cts. Sent post paid. Cataloguefree.
D. B. Waggener \& Co, 424 Walnut St. Philadelphia, Pa.
Bolt Headers, both power and foot, and Power
Hammers, a specialty. S. C. Forsaith \& Co., ManchesHammers,
ter, N. H.
Main Driving Belts-Pat'd improvement. Address
er cIrcular, Alexander Bro's, 412 N. 3d, Philadelphia, Pa. Electric Burglar Alarms and Private House An-
nunctatoras ; Call, , Servants' \& Stable Bells; Cheap Teleg. For Sale, cheap-One. 60 H.P. Boiler, 40 Engines
and Bollers. Address Junius Harris, Titusville, Pa. Steam and Water Gauge and Gauge Cocks Com-
ined, requiring only two holes in the Boller, used by all oiler makers who have
Hand Fire Engines, Lift and Force Pumps for fire Hotchkiss Air Spring Forge Hammer, vest in the
market. Prices low. D. Frisble \& Co , New Haven, Ct. "Pantect," or Universal Worker-Best combina-
Hon of Lathe, Drlll, Cricular, and Scroll Saw. E. 0 . Chase, 7 Alling Street, Newark, N. J
ToManufacturers-Purt Lubricating Oil, Sample
Package (24 gals.), $\$ 7$. Send to Geo. Allen, Franklin.Pa. Educational Lantern Slides-Send for Catalogue
o Prot W.A.Anthony, Cornell University,Ithaca, N.Y. Hotchkiss \& Ball, Meriden, Conn., Foundrymen
and workers of sheet metal. Fine Gray Iron Casting nd workers of sheet metal.
o order. Job work solietted.
For Sale-Second Hand Wood Working Machin-
ery. D. J. Lattimore, 31st \& Chestnut St.. Phila ., Pa. Price only $\$ 3.50$.-The Tom Thumb Electric Tel-
egraph. A compact working Telegraph Apparatus, for sending messages, making magnets, the electric light,
sent peration by any lad. Includes battery, key, and wires Neatly packed and sent to all parts of the world on re-
cetpt of price. F.C. Beach \& Co., 246 Canal St.,New York. Peck's Patent Drop Press. Still the best in use
Address milo Peck, New Haven, Conn. All Fruit-can Tools,Ferracute W'ks,Bridgeton,N.J

Brass Gear Wheels, for Models, \&c., on hand and
made to order, by D. Gllibert \& son, eq12 Chester st., Phill delpha, Pa. LList free.) Light manufacturing soilictted
American Metaline Co., 61 Warren St., N.Y. City Genune Concord Δx lee-Brown,FHisherville,N.H. For Solid Emery Whels and Machinery, send
the Union Stone Co., Boston, M M ass, for circalitr Faught's Patent Round Bralded Belting-Th
Best thing out-Manuractured onil by $\mathrm{C} . \mathrm{W}$. Arny ,
 Diamond Tools-J.Dickinson,64 Nassau St., N.Y Magic Lanterns and Stereopticons of all sizes and
Views illustrating every subject for Parlo musement and Public Exhibtions. Pays well on smal assauntst., Tew York.
Temples and Oilcans. Draper, Hopedale, Mass. Water, Gas, and Steam Goods-New Catalogue
packed with Irrs order of goods, or malled on recelpt or The "scientific American" Offce, New York, is ng litle buttons on the desks of the managers, signala
re sent to persons in the various departments of the are sent to persons in the various departments of the
establisment. Cheap and efrective. Spiendid for shops, fices, dwellings. Works for any distance. Price $\boldsymbol{q}_{6,}$ the good Battery. F. C. Beach \& CO., 246 Canal St., Ne For best Bolt Cutter, at greatly reduced pren
ddress H. B. Brown © Co., New Eaven Conn. The Raxter Ensine-A A8 Page Pamplet, con
aning detal drawings of all parts and full particular ow ready, and will pe malled gratis. W. D. Russell Hydraulic Presses ind Jacks, new and secon
Land. Lathes and Machinery for Polisting and Bumling etel Spinining Rings. of a Superior Qualy
vilie Splinimg RIng Co.. Whitingylile, Mase
For best Presses, Dies, and Fruit Can Tools, Blis
Willams cor. of Hymouth and Jay, Brooklyn, V . Y . Solid EmeryVulcanite Wheels-The Original Solid
 ard Beltng, Packlng, and Hose. Buy that only. The
beest is the cheapest. New
York
Belting and Packing For Solid Wrought iron Beams ete., see adver
Hsement. Address Union Iron Mill, Ptibburgh, Pa or lithograph \&c.

O.C. W. will find directions for utilizing old tin cans on p. 319, vol. 31.-G. A. B. and W. M.
will find directions for bluing steel on p. 123, vol. will ind directions for bluing steel on p. 123, vo
31.-S. M. T. can transfer engravings to glass b will find a good recipe for making black ink McL Will find a good recipe for making black ink on p
203, vol. 29.-L. L. L. will find directions for solde ngiron and brass on p. 251, vol. 28. -F. S. can ex terminate mothss from carpets. by the process de-
scribed on p. 388, vol. 29.-J. S. will find directions or making gun cotton on p. 282, vol. 31. Cellu loid is described on p. 23, vol. 33.-T. M. W. will
ind directions for silvering mirrors on pp. 267, 331 , nnd directions for silvering mirrors on pp. 287, 331,
vol.31.-S. C. can mount chromos, etc., by follow gig the directions on p. 91, vol. asing the recipe iven on \mathbf{p}. 155, vol. 26.-B. A. C. will find a recipe for a depilatory on p. 362, vol. 32.-G. will find
good recipe for stove polish on p.219, vol. 31 .
(1) A. McC. asks: What is the best speed
for the bucket of an overshot water wheel? Our or the bucket of an overshot water wheel? Our wheel runs at the rate of 10 feet per second. Some
millwrights claim that if we reduce the speed one half we will get double the power out of the same
are oositively without more data; but in general, the speed of the periphery of an overs.
more than 5 or 6 feet per second.
(2) T. J. C. asks: What is the best way joining logs together, to form a boom? A. For or inary cases, chains answer very well, if the log
re kept in position by piles, driven in pairs, at in are kept
(3) S. C. B. says: I intend using a perma placing it on a level, requiring the horse to wort in harness instead of on an inclination? My own lews are that the horse will work more easily on
he level, which distributes the labor upon hisleg nearly equally, whereas the other plan overtaxe the hind ones. A. Probably the matter can only be settled definitely by experiment. Some inclin ow part of the weight of the animal to act against an resistance. We imagine some of our reader e would be glad to hear from them. The tread ower is not ordinarily as efficient as the leve ower, in which the horse walks in a circle o arge diameter; and for a perman
better to call in the aid of steam.
(4) H. H. A. asks: What kind of oil should be used as a base to mix with powdered slate to
paint a roof with? A. Linseed oil is the best to use, and
(5) H. C. E. says : 1. I have a boat, 21 fee ong by 7 feet 6 inches beam, drawing 12 or 15 inch es of water. I built an engine $3 x 5$ inches, with a
ink motion. Is the engine large enough for th oat? A. Yes. 2. have arge enough inch feed pipe an 4 inch exhaust. Is the exhaust too small for th ogine? A. It will answer very well. 3. What
ize of propeller should I use? A. of 18 or 20 inch es diameter, $2 \Varangle \frac{2}{2}$ feet pitch. 4. What size of boiler is What is meant by the pitch of a propeller? t is the distance it would move the boat, at eac revolution, if it worked in an unyielding medium
(6) C
(6) C. A. A. asks: Is it any benefit to a rub What is the bet \mathbf{A}. Quice the contrar
What is the best way to treat posts to make the
ast? A. It is recommended to dip them into tar.

Are small vertical engines, with cast iron flues,
as safe as those with wrought iron tubes? A. We do not understand what you mean by the flues of an engine; but if you refer to the boiler, the rought iron tubes are preferable.
(7) E. F. asks: Is there anyway of setting glass in skylights? A. To make a good skylight,
use iron bars and adopt a steep pitch; 45° is none use iron bars and adopt a steep pitch; 45° is none
too steep. Purchase your putty or cement of the too steep. Purchase your putty or cement of the patent vault light manufacturers of this city. If
you wish to repair a skylight, use the same kind of ce
bars.
(8) S. H. D. asks: How can I take a coppe ounter die from a brass die? A. Takea plaster Pariscastfrom the die. and use it as a mold, melt ing two
fluxit.
(9) A. L. C. asks: What percentage of sea
ater is salt? A. Ordinary sea water contain It is said cent, by weight, of salt.
It is said that Pythagoras knew how to predict a clipse by means of the saros. What is a saros A. It was an ancient astronomical p

I want to build a model ship 6 feet long. Ca ou give me some rules that will assist me in shap ing the hull? A. Get a drawing of the lines me well designed ship, and work from that.
(10) J. M. H. asks: By what process can finelyground fintglass be incorporated with Babbitt or other metal for lining boxes, for heavy
machinery running at high speed? The object i machinery running at high speed? The object i
to prevent the heating and rapid wear of the jourto prevent the heating and rapid wear of the jour-
nals. A. We know of no process, and we thin nals. A. We know of no process, and we ths
that the mixture would cause the bearings to
(11) G. E. P. says: Some time ago you dis cussed the proposition that the top of a wheel of
wagon in motion moved faster than the bottom. is there any formula for computing ho $\%$ much aster the top moved than the bottom, or than the hub? A. At the highest point the velocity is twice he velocity is zero.
(12) A. H. asks: In making bell metal about 77 copper to 23 tin) I have been in the habit employing a flux composed almost entirely of
me. Over 5 per cent of the metal is burnt up me. Over 5 per cent of the metal is burnt up,
and the slag will sometimes be an inch thick in the and the slag will sometimes be an inch thick in the
bottom of the reverberatory furnace. Is there a fux which will effectually separate the metal from il impurities? A. Use a little borax or sal ammo
(13)
(13) C. A. B. asks: What will remove,from ction of of a brick building, the oozings or colpeter, for if it were the rain would remove it, it eing very soluble in water. If it is an insoluble alt of lime, try a little dilute muriatic acid, an
(14) G. F. says: 1. I have a six horse hori ontal engine; it makes a slight thump which I a is $1 / 4$ inch higher than the center of the cylinder would that cause a thump? A. The shaft bein out of line is most probably the cause of the thump . I am running a line shaft at 120 per minute, and In engine at 75. Could I economize by putting a arger pulley on shaft and running the engin proposed increase of revolutions will prove econo mical, providing the wearingsurfaces and the proportions of the various parts are large enough to sustain it. The thump would, however, increas with the speed.
(15) R. R. Z. asks: What will dissolve hai ish wool mixed with small pieces of bone? dish to retain the ammonia. I want to use it in
drill as a fertilizer. A. Ammonia can be obtaine rom bones, etc., only by a process of destructiv distilation. It does not exist, in any quantity, in he bones themselves, but is formed when the

(10) W.

6) W. H. M. and M. L. L. say : We wan and penetrates in the earth to the depth of 15 feet Will galvanized tubingprevent the salt water from mingling with the fresh without the joints being crewed or soldered together? A. If you strike a
pring of fresh water, the tubing you speak of spring of fresh water,
will answer very well.
(17) S. G. asks: How can I extract the oil rom kip pieces without injury to the leather,
hich is to be used for heels for shoes? A. Try isulphide of carbon.
(18) A. says: The supply pipe from the oilers to a horizontal engine is 75 feet long and 1 inches diameter, It connects to the steam chest
by an 8 inch pipe, 15 feet long. The cylinder is 40 nches in diameter, and of 48 inches stroke; it ha waste pipe from each head, that runs along on feet into 2 feet of water. The engine worked waer while working a heavy train of rolls. Partie ere say she drew the water from the flywheel pit hrough the waste pipe. I say not, as there was 60 ight? A. You are right, according to the account ondensing one.
(19) B. F. G. asks: Is there anything that will dissolve shellac besides alcohol? A. Shella
(20) W. C. asks: 1. What is the stream verring the non-resistance made to a new theor fect fluid to bodies moving through it, by Profes for Froude, in a lecture which you printed about three weeks ago. That singular theory was called
the theory of stream lines; butit was only alluded
riefly expressed, in the Professor's own words, a
ollows: "A submerged body traveling a t steady peed through a stationary ocean of perfect fluid will experience no resistance.
How deep in the water can a dredge operate
A. It might not be safe to fix a precise limit, as it generally found that,when dredging ought to b
one, machinery can be designed to do
(21) A. B. says: I heated equal parts of test tube, which I drew to a point, but I could not produce an oxygen flame. What was the reason . Oxygen, by itself, is not inflammable. Try exygen will cause it to burn very brilliantly.
(22) T. C. asks: How can rosin be purified for violinists' use? A. Treat the powdered rosin
with a mixture of 6 parts cold alcohol and 1 of ther; dissolve the residue in boiling alcohol, and evaporate this solution to dryness over a wate ath. If the residue be now melted, it yields, on (23) H. D. M. says : I assert that as high a that 45 or 50 the highest speed ever made. Which is right ? A speed of 70 miles an hour has frequently been made in England for short distances. Some of the rains are timed to run at nearly 60 miles an hour (24)
(24) M. S. J. asks: What liquids can I use to dissolve white chalk, so as not to destroy any of
the properties of the chalk, but leave it in a liquid tate? A. You cannot dissolve chalk and leav its properties unaffected. Rub up precipitated halk with a little gum water.
(20) J. P. S. says: As I am about to build hial vault, can you give me some information a how the inside of the vault should be built, an ault is usually built into the side of a. bank o arth, in such manner as to have the floor thereo one step or so above the ground in front. A me um size would be 12 by 18 feet on the ight $101 / 2$ feet and cover with a semi-circula rch. Construct the receptacles for coffins at the back end of the vault; these may be about 2 nches high, 28 inches wide, and 8 feet in depth Make the bottoms or shelves of these receptacle placing the first slab upon the floor of the thick, howing its thickness above the floor; build th pright partition walls of brick in cement, and nches thick. Make the slabs wide enough to serv or two compartments each, there being four in he width of the vault. This will give you fou er curve of the The curve of the crown, making eighteen in all ith the blue stone or slate, into which facing cut groove, and insert a closing slab of marble o ther stone to close each opening. Pave the space front of the cells as a vestibule with stone Which may be fine marble tiling, if so required The entrance door may be cossed with either a aken out. The exterior mas be faced with gran te and the walls coped with the same; but the to eeds only to be cemented so as to shed the wate covered with mold, and laid with grass sod.
(26) C. D. B. says: I have a compound com osed of the following ingredients: Venice tur pentine, sweet oil, lard, and beeswax. What chea dance, that will not injure the skin, can ill have to counteract the objectionable odor b he addition of some agreeable perfume.
(27) E. D. S. asks: Is there any substanc hat will serve better than good sponge for filter ng a $\frac{1}{16}$ inch stream of water? The chamber fo merely the floating particles. A. Try a carbo merel
filter.
(28) G. C. asks: Would the Cornish or ouble beat valve be suitable for an engine with 30 nch cylinder and 42 inch stroke, making 65 revo
tions per minute with a pressure of 80 lbs ? Th eason for wanting to adopt it is that the engin as frequently to be worked by hand, with ful pead of steam. A. If the
(29) A. T. B. says: We make steam in ou pressure of 50 or 60 lbs . to the inch. Would the me fuel make more salt if no pressure were ca ried in the boilers? A. If there be no pressure in ho water could be conveyed away from the boil rs. If steamis to be circulated to any distanc he steam through the pipes.
(30) F. F. T. asks: Which would be th mical as regards fuel, to run an engin erally, that 160 revolutions per minute? A. Ge
(31) D. M. M. asks: How can I re-japan nd add boiled o 10 gallons, red lead and litharge each 7 lbs., drie and powdered white copperas 3 lbs ; boil for ours, then add of dark gum amber, fused, 8 lbs hot hnseed oil 2 gallons. Boil till the mixture is (32) E. H. says: I. I want to build a 20 orse power water wheel, and to have the bucket corn elevator. What would be the best material to fasten the buckets to? A. An endless chai . How can I calculate the horse power obtained . In the absence of any given conditions, we rom the dou how to calculate the power excep號
(33) H. E. K. asks: How are buckskin
gloves, etc., eleaned? gloves, etc., eleaned? A Wash them in lukewarm
soft water, with a little Castile soap, oxgall, or bran tea, then stretch them on wooden hands, rub
them with pipe clay moistened with beer, let them dry gradually, rubbing them from time to time so that they do not lose their shape in drying.
(34) G. asks: What are the ingredients of bue or mercurial ointment? A. Take prepared
lard 1 1b., mercury 1 lb, prepared suet 1 on. Rub lard 1 lb., mercury 1 1b, prepared suet 1 oz. Rub
them together in a marble mortar till metalic globules cease to be visible.
(35) A. H. H says: In your answer to G. L.
B. you say "the recoil of a rifle is felt before the B. you say "the recoil of a rifle is felt before the
bail leaves the barrel," which means, I suppose, ball leaves the barrel,", which means, I suppose,
that the recoil comes before the ball passes out of the gun. Not being satisfled with this answer, I made a few experiments, and the results do not fully agree with you. I tried an experiment as
represented in the engraving. The rite I used

cells cannot be depended upon to furnish a steady
current for any length of time. Their constancy current for any length of time. Their constancy,
however, may be somewhat increased by causing ir to bubble through the solution. Renew the so on, and brighten the conne
(44) J. W. asks: 1 . What is in the porous
cup of a Léclanché battery ? cup of a Léclanche battery? A. Peroxide of
manganese. 2. If the magnet of a relay become manganese. . In the magnet of a relay become
partially magnetized, is there any way of drawing the magnetism out? A. Careful annealing is the onls permanent way.
(45) J. C. L. asks: What is salt of steel intended by this term.
(46) G. W. F. says: I am building a smal nagnetic battery, and do not know how to ar-
range the wire to derive the currents from it. Can you help me? A. Make an ivory or hard rubber
ring to go on the shaft, to this ring fit
 brass, and fasten the two together
with screws; after which saw through the brass ring on opposite sides and in the direction of its are then to be soldered to the
semi-cylindrical pieces of bras semi-cylindrical piecese of brass,
and two stiff springs, to wrich
ched for terminals, are made to press
had telescopesights and a hair trigger,and weighed
altogether $7 \% /$ lbs. Caliber was 0.4 inch ; the ball was $11 / 8$ inches long, and 70 grains powder was block, B , high enough to bring the barrel, D , parallel with the table. At C, , fastened a yoke 4
inches long at right angles with the barrel, D, to inches long at right angles with the barrel, D, to
keep the gun from turning over on one side when it was discharged. The stock rested on the table ar $\begin{aligned} & \text { at } \text {; and be, as shown at } G \text {. I Ifred three shots, and }\end{aligned}$ in Fig 2 have marked them 1, 2, I I the remored the wedge and fired three more shots, marked 4,
coil was so great that the rifie left the table entirely. You will see
that there is only $11 / 2$ an inch difthat there is only $1 / 2$ an inch difference in the location of the
bullet. By moving the gun back bullet. By moving the gun back
on the wedge $3 / 4$ inch, the sights are on the lower shots; and when on the table they are on the up-
per ones. Distance was 60 feet. Why is it, if the recoil takes place before the ball leaves the gun, that there was not more difference
in the shooting? A. The explanation of these experiments is probably somewhat as follows: As soon as the explosion of the powder occurs, pressure is exerted in the barrel tending to impel the ball forward, and the gun backwards. If there is anything, such as a human shoulder, at the end of the stock, the recoil is felt at once; and if theshock is considerable, it is apt to injure the ac-
curacy of the aim. If, however, the gun is free to move backward, as in the experiments made by our correspondent, it will commence to move at the same time that the ball does, under the influence of the same pressure; but being many times
heavier than the ball, the latter acquires the velocity due to the pressure in a much shorter interval, and is out of the barrel when the gun, under
the action of the same force, has just moved the act
little.
(36) S. S. asks: Please give me a recipe for crystallizing alum on a wire basket. A. Dissolve as much powdered alum in hot water as the water
will hold; then suspend your wire basket in by a thread, and let it cool.
(37) W. H. asks: Does water, placed in a fying the air? A. No; butit prevents the excessive dryness of the air, which is very injurious to health.
(38) J. F. says: I have a gutta percha pocket drinking cup, and I broke one of the rings; can
you tell me if there is any way to mend it? Glue would not hold it. A. Melt together equal parts of gutta percha and pitch. Apply hot.
(39) P. H. asks: Is there any method by which scale can be prevented from forming on the
insideof a tubular boiler? A. The means of prevention vary with the qualities of the water. Unless the nature of the impur
cific can be recommended.
(40) D. T. S. says: I have noticed that in this section the willow trees all lean to the north. Can you tell me why? A. We think it is simply
indicative of the average direction of the wind. indicative of the average direction of the wind.
Young willows grow quite rapidly, and their yielding nature makes them very sensitive to the slightest breeze.
(41) I. H. B. asks: How can I fire a charge with a battery A. Solder a short piece of very thin platinum wire to copper wires leading from be effected; place the platinum wire in powder or other explosive substance, and, when the proper moment arrives, include the battery in circuit. It is doubtful if one cell will be sufficient, certainly that of the battery, is very low. A large bichromate cell without p
ter than a Grove.
(42) F. M. asks: Can air be heated by elec-
(43) G. F. B. says: The last two batteries I have made have not been successful. I use zinc
and carbon plates. My solution consisted of sulphate of mercury 1 part, bichromate of potash 2 parts, sulphuric acid 4 parts, water 15 parts. When I first put the solution in the batteries, I got a very
strong current of electricity; but after 15 or 20 strong current of electricity; but after 15 or 20
minutes' use, it got very weak, and, after using a few times, the batteries would not work at all The liquid turned to a greenish color, and there What is the matter? A. Single fluid bichromate
against the latter.
(47) O. P. askis; 1 . Is there any metal that
can be permanently can be permanently magnetized? A. Yes, tem-
pered steel. 2. How is it done?-A. By enclosing it in a helix in which a powerfulelectric currentis circulating, or by rubbing it several times from its middle point to the ends with a permanent or an site ends of the charging magnet for the different halves of the magnets to be charged.
(48) E. G. A. asks: Are there any cases on rod, when the rod, being tested, was found to be in good order, or (in other words) its resistance was smali ? A. We do not recall any at this moment; but as more or less electricity continually traverses all rods, cases might be found. Sometimes a very
heavy charge destroys the efficiency of the rod; the defects, however, are usually apparent in such cases.
(49)
(49) J. A. R. asks: What is the reason that in electro-silverplating the silver blisters on the apt to blister and come off when the objects are not properly cleaned. 2. Where can a work on el-ectro-silverplating and gilding be bought? A.
Works on electro-deposition are obtainable at Works on electro-deposition are obtainable at al.
most any of the large bookstores. Sprague's "Elmost any of the large bookstores. Sprague's "El-
ectricity: Its Theory, Sources, and Application"
(50) C.
(50) C. J. M. asks : 1 . Can you give a recipe for varnishing the coils (outside) of an electro-
magnet? A. Shellac is good, and is often used for magnet? A. Shellac is good, and is often used for
the purpose. 2. In laying wires under carpets or other dry places, must the wires be insulated? A It will answer to use uninsulated wires if the or dinary battery current is employed. Such wires are, however, apt to cause much annoyance by
getting together and thus interrupting the cir getting
cuit.
(51) J. W. E. asks : Is there any remedy for dreaming? A. When the digestive organs are in
good order, and there are no external noises or other circumstances to excite dreams, sleep is seldom disturbed in this way; but any troubles in painful dreams, more or less intense. Keep your body in health, and your rest will probably be un-
interrupted. interrupted.
(52) F. J. asks: What ingredients can we put into flour paste, for uniting two or more steam ? A. We do not know.
(53) K. asks: Suppose that a gas, condensed erating mixture to a considerably lower point than another quantity of gas likewise condensed, but which is at the ordinary temperature of the surrounding atmosphere. Will the frst or cooled gas in expansion possess an appreciably greater
capacity for absorbing caloric than the non-recapacity
frigerated gas? A. The gas which had undergone the greatest refrigeration would, upon the expansion to its original volume, absorb the g
amount of heat, other things being equal.
(54) F. M. asks: What roots are used in medical practice, which have the property of giv-
ing a jet black color? A. Extract of walnut peels and shells, copperas and nutgalls are employed for staining black. We know of no
single root that will give a satisfactory black tain.
(55) K. says: I saw in a recent issue of your wished to obtain a colorless solution of salc of copper. If he will take strong aqua ammonice, short time he will have a salt of copper in solution which, while exposed to the action of air, will be of a fine blue color, but, upon corking the bottle airtight, in a few hours will become colorless, until again exposed to the air, and so on. A. Our
observations with regard to the ammonio-cupric oxide do not sustain yours.
(56) W. K. asks: Can lighting gas be made from nightsoil and dead animals, the gas be
ing used, and the residue employed for fertilizaingused, and the residue employed for fertiliza-
tion? A. We think the gas would not be rich enough in hydrocarbons to be employed, and the
residue would probably be badly carbonized.
(57) J. O. M. asks: Why are bricks made in Philadelphia so much richer in color than those
made in Albany? A. It is due to the large pro portion of red oxide contained in the material.
1. How is red oxdde of lead made? A. It is ob-
tained by roasting litharge at atemperature tained by roasting litharge at a temperature of about 5000° in contact with the air. 2. How is red oxide of iron made? A. The coarse pigment in
obtained by pulverizing and igniting the red or obtained by pulverizing and ignimng ter reared
brown hematite. The finer grades are prepared by precipitation of a solution of ferric sulphate or chloride with excess of ammonia, and washing, drying, and ign
thus produced.
(58) S. S. S. asks: What is the most durable paint to put on a steam pipe? A. There is a
black varnish, made from petroleum, which anblack varnish, made from petroleum, which an-
swers as well as anything of which we have knowswers as well as anything of which we have know-
ledge. We have received so many inquiries on ledge. We have received so many inquiries on
this subject that we think it would be well for manufact
columns
(59) S. H. B. says: 1. I want to make a steam engine boiler, to be3 inches by 4 inches and inches 1ong. Would copper nearly as thick as
cardboard do for the boiler? A. Yes. 2. Would a mixture of zinc and pewter do for the cylinder? A. Yes. 3. Is there any danger of a boiler bursting that is made of such copper? A. You should
put in a safety valve. 4. Please explain how the put in a safety valve. 4. Please explain how the
steam gets from steam chest to cylinder. steam gets from steam chest to cylinder. moves. .5. How large must I make the different parts of the engine? A. Get a good drawing of
engine, and proportion the parts from that.
(60) F. D. says: 1. I have invented a to where it it to an iron foundery. 2. Is there much clinker formed in the furnace of steamers, and how is it removed? A. With some kinds of coal a great
amount of clinker is formed. It is generally reamount of clinker is
moved with a slice bar.
(61) P. L. V. H. says: My son, aged 19, is desirous of becoming a skillful engineer in the merchant marine; he has worked at the machine tics, understands the theory of the steam engine, both marine and land, and can furnish testimonials as to characterand ability. What course should he take to become fitted for the position of chief engineer on one of our large ocean steamships? A. His best plan will be to enter the merchant ser-
vice in as good a position as he can obtain, and vice in as good a
workhis way up.
(62) R. K. asks: Is there a machine for tance from the shore? A. There is a sand a disin the from the shore? A. There working on the principle of the steam siphon. Such pumps were used in making the excavations for the Brooklyn bridge.
(63) W. Y. says: A friend says that when an engine is on the center the live steam port should be open. I say it should be shut. Who is
right? A. Ordinarily it is advisable to have the steam port slightly open when an engine is on the 2. He says that the right name for the crank pin is the wrist. I say the crank pin is correct who is right? A Both terms are correct, that is to say they are both sanctioned by general usage. The term wrist pin, however, is more general in its application than crank pin.
(64) E. N. says: I have run a stationary engine for 13 years, but have no certificate. What
should I have to pass an examination in to obtain should I have to pass an examination in to obtain
one? A. It will depend upon the local laws of Apply to an inspector
(65) R. W. asks: 1. What is the proper area of steam passages for small engines up to 6
inches diameter? A. Make the area of your ports inches diameter ? A. Make the area of your ports
one eighth that of the cylinder. 2. When the dione eighth that of the cylinder. 2. When the di-
ameter of cylinder, stroke of piston, and pressure are given, by what rule do you determine the make? make? A. Calculate this
formed. See p. 33, vol. 33 .
(66) H. J. E. asks: I. How should wax be preared for waxing stove patterns,and how should it be applied? A. Get the best beeswax; then slightly heat the castings, and rub them over with the
wax, wiping off the surplus wax with a piece of soft rag.
(67) T. P. says : 1. I have to use a round cast iron sleeve, 9 inches long and 214 inches in diameter, with a square $11 / 4$ inch hole through the
center of the same. The foundery where I now center of castings uses common sand or clay cores, which leave the corners of the holes rough. The are liable to warp. Is therenot some better plan? A. Have the sand cores faced with plumbago. 2 Could an iron bar be prepared and used as a core, An iron bare cannot be used. 1. How can I polish steel
fine filing, use emery cloth, then crocus, and finally rouge or polishing powder. 2. Is there any liquid used after polishing
(68) B. F. S. asks: How shall I fill and pol. ish church pews of ash, trimmed with walnut ?
A. The best way is to French polish them. See p. 11, vol. 32.
(69) P.D. says: In "Practical Mechanism," Joshua Rose says, of the boring bar with the adjustable cutter head, that 1 even though the bar may run out of true by rea-
son of either or both of the centers being misplased, or even though the bar itself may have become bent in its length. I should infer from this that he means to say that any other form of a boring bar would bore an oval or other irregular hole in similar circumstances. I claim that no form of boring bar will bore an unround hole by reason of being bent in its length or running out of true.
The cutter that is farthest from the center will do all the cutting, but at the same time it will de scribe a true circle. A.A boring bar with a fixed
head will bore a round hole whether the bar runs
out of true or not, providing the carriage carrying the work travels in a line with the center line beif the the centers on which the bar revolves: but case the runs out of true with the shears (as in case the back center of the lathe is set to one
side), the hole bored will be oval, although the cut-
(70) C. in a circle.
(70) C. F. asks: How can I extract the gold
from emery paperwhich has been used to polish from emery paperwhich has been used to polish gold? A. If the paper be treated with a little mer-
cury, the latter wlll remove all the gold, with cury, the latter wlll remove all the gold, with
which it forms an amalgam. If this anaalgam be subjected to a strong heat in a small iron retort (the beak of which or its connection should dip beneath the surface of some cold water,) the mercury will be vaporized, and, distilling over, be condensed in the water, leaving the gold behind in the
retort. Avoid inhaling the mercucial vapor. It is very pernicious.
(71) F. H. F. asks: Please give me a rule enter of the hole in the eccentric, and then set the compasses to within balf an inch of the extreme circumference of the eccentric part, and mark a line clear across ; then find the center of that line, and draw a line from it to the center of the shaft hole, which line will be the throw line,on which a ceuter should be marked at a distance of ing from the center of the eccentric hole; and from these centers mark circles of the required diameters to suit the shafl and the strap. All the marking should be done on the plain and not on the hub side of the eccentric.
(72) D. S. C. asks: How can I mix aniline red to put on leather, so that it will not turn dark when it is varnished with shellac? A. The dark-
ening of color is probably due more to the substances used in tanning the leather than to the varnish. The common solvent is a mixture of equal
(73) F. L. H. says: There is a gentleman at this place who uses old keresene barrels to put the vessel thoroughly, after which it can be used for packing pork and other things, without causing them any injury. The cider seems to have an action on the oil, if added to a portion in a bottle. Please tell me the chemical action by which this result is obtained. A. If this method is successful, itprobably dependsupon the slight solubility of the oin in the cider.
tained
(74) A.K.says, in reply to G.A.F.: It is very ikely that calamine has been found in Oregon, as Territory. But only a wet analysis will determine it.
(75) J. G. says, in answer to C. A.'s query
as to the force of gravity deviating the ball from its direction of projection: This is always so, ex ceptwhenthat direction is vertical. In fring at of elevation must vertical line, a certain amount tance through which the ball will fall (onaccount of its weight) between the instants of leaving the barrel and striking the object.
Minerals, etc.-Specimens have been received from the following correspondents,and axamined, with the results stated:
B. C.-It is Prussian blue.-T.L.-It is red hematite, a good iron ore, but it contains considerable
silex.-W. P. C.-The name of the plant is agios tuberosa, a genus in the natural order leguminosce. Its common name isground nut or wild bean. The tubers are edible, but their value as food has not
been determined. The brown-purple flowers are been determined. The brown-purple flowers are fragrant, and the plant is quite common in moist thickets in New Jersey.-L. B. D.-It is a fine crys-
tal of sulphuret of lead or galena.-H. W. C.-It is lead ore of good quality.
J. P. O'C. says: I am tending a steam hammer, the weight being $4,000 \mathrm{lbs}$, including drop and
piston. The inside diameter of the cylinder is 18 piston. The inside diameter of the cylinder is 18
inches, and the hammer has a drop of $31 / 8$ feet. How many lbs. will it strike withoutsteam on top, and how many lbs. will it strike with 90 lbs. of ing 112 lbs. is supported on an inclined plane, the gradient of which is 1 foot in 2 , by a force which acts along its slope. What is the magnitude of this force, and what is the pressure on the plane,
friction not being taken into account ?

COMMUNICATIONS RECEIVED.

The Editor of the ScIENTIFIC American acoriginal papers and contributions upon the followoriginal paper
ing subjects:
On the Interstellar Space. By ——, and by T. H

On Whistling. By H. B. \mathbf{N}.
On the Washington Monument. By J. M.
On Skinning the Rhinoceros. By N. G. P.
and

HINTS TO CORRESPONDENTS.
Coriespondents whose inquiries fail to appear should repeat them. If not then published, they
may conclude that, for good reasons, the Editor may conclude that, or gor always be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such questions, when initials
only are given, are thrown into the waste basket, only are given, are thrown into the waste basket,
as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by mail, if the writer's address is given.

Hundreds of inquiries analogous to the following
are sent; "Whose is the best foot power scrol He sent; "Whose is the best foot power scro
aw? Who sells books on pottery, glass, etc. Whose is the best machine for making wood crews? Who sells steam engine indicators Whose is the best ice machine?" All such in the column of "Business and Personal," which is specially set apart for that purpose, sub ect to the charge mentioned at the head of tha column. Almost any desired information can in this way be expeditiously obtained.
[OFFICIAL.]
INDEX OF INVENTIONS os winoz
Letters Fatent of the United states wore Granted in the Week ondins October 26, 1875.

d EACH BEARING THAT DATE.

Alarm, electric. J. T. Bedford.
larm and fastener, burglar.J. J. Woolsey. Alarm, burglar, C. and J. B bum, photograph, C. D. Mo8 nch r tripper, E. Robbins.........
Annealing metals, J. H. Warrington ntiseptic composition, H. Gahn auger, earth, J. Minick Bath, portable vapor, G. W. Brosius Bedstead fastening, S. D. Futler Bedstead, invalid, A. J. Good win... Binder, temporary, W. H. Bennett ird cage, D. F. Burns Hind, inside, T. Fetherst
Blind slat operator. struin
俍 incrustation compound, J. M. Wishart Boiler, tubular, I. Barton..............
ox, wooden, Rosoorg and Kaw Buckle, harness, J. C. Smithe uilding, metallic frame for, E. Gruwe ung and vent, H. B. Cornish arner, lamp, J. H. Fouch Buttons, ornamenting, R. H. Is aldy, tea, R. Mainer............ an. oill, Kuessner and Jr an opener, R. Smith tar coupling, J. Harris... Car coupling, F. L. Small Car coupling, J. B. Smith.. ar window, railroad, A. Brandon Cars, lighting railway, J. Stor arbureter, H. J. Hyams. arriage juck, Z. McDonal. arriage seat, S . Gilzinger asting door plates, mod for, Dodge and Smith astings, making. W. Harnsworth Chair, rocking, A. Be hair, rocking. J. H. Tra Cigar mold, H. Voltz
igar mouth piece, U. Reinisch
Clasp for wearing apparel, E. Osgood. loth-winding machine. S. C. Dickin ompre s, hydraulic, E. D. Meier Cooler, lard, J G. C. Lee.. oooler. milk, W. R. Scotield. corn marker, T. B. Kirk ornstalk cutter. S. Bea
orset, S. B. Ferris
Cotton chopper, McMeekin and Hunt
. L. Toole..
Cradle, E. F. Gazzam
Cradle, J. Sprengard
curtain fixture, H. L. De Zeng
Curtain fixture, W. H. Sparks
Cutter bit, A. Streit..............
Door hanger, E. U. and W. Door spring, D. R. Lewis.
Double tree clip, W. Beckert...
ovetailing machine. L. Atwood
redging bucket, C. J. Sa
Drill, rock, W. R. King (r)
Drill, rock, Seddon and McFaul
ggs, desiccating, w. o. stoddar thar, water, J. H. Van Dyck
mbossing machine, S. Rogerson
ngine, rotary steam, ,. C. Johnson Engine, steam, S. B. Frank
aucet, W. C. North...... eather duster, J. L. Litt ire arm, magazine, A. Burge ire dog, D. S. Hale
fre escapes, folding stair for, T. Garrick. luting machine, , Scharid
Furnace grate, H. W. Gradge
Gaiters, button, A. Kenny....
ame counter, Fey and Pein.
as apparatus, R. H. Ramsey
as, illuminating. J. W. Beat
Grain binders, J. Garrard. Hobbs
Gran
Grain drill feed, E. Morgan.
Harrow teeth, H. M. Williams

Harvester, C. W. Levalley...............
Heater and boiler, T. H. Harrington... Heater, feed water, Andrus \& Wallace.......... feel-trimming machis Hook, snap, C. B. Bristol
Horse power, W. I. Gran
Horseshoes, ice nail for, H. M. Patterson
Hydrant, Pease \& Campbell Indicator, revolution, C. H. Phinney Inkstand, S. Darling. ack for pressing, e. H. Gardner Journal box, P. Durns
Key hole guard, La Blan
Kiln, drying, D. Bonnell
Lamp, G. W. Vernon
Lamp extinguisher, J. G. Hehr .
amp-lighting apparatus, H. Iden
lamp trimmer, H. L. De Zeng
oom, hand, J. E. Gillespie.

oom stop motion, Kent \& Moore

Lounge, folding, N. H. Borgfeldt
Mabricator, W. P. Stephenson.......
Mcrble, artificial, W. C. A. Roettger
Murking wheel, H. Holt (r).
Match safe, E. H. Whitney
Match sticks, cutting, J. S. Fagley Millstone spindle trannerer ${ }^{\text {C }}$ A. Eshelm owing machine, D. H. Gage onler, S. S. Newton
Ore, treating quicksilver, J. P. Slevekin
Organ, octave coupler, s. J. Crockett Packing box and crate, H. M. Simon Packing, piston, C. R.
aulock, B. Wallmann
Pan, cake, r. G. High.
Paper tube machine, N. Keely
Planter, corn, B. King.
lanter, corn, A. M. Sout
Planter, seed, J. W. Simpson..
lastering safety plate, G. A. Thurston
Plow attachment. G. M. Todd........ Plowshare die, etc., W. M. Wats
Postage stamp, C. F. Steel....... Power, motive, Brettel \& Lind
Press, cotton, D. s. McBryde.. Printing press, C. Wells Printing press bearing, Potter \& Pulley or gear wheel,
Pump box, J. Dillon. rump bucket, E. J. Dunba Railway, elevated, J. Westcott...
Railway joint fastening, L. Chilso Railway joint fastening, L. Chils
Railway rail joint, G. E. Dering. Raillay raill joint, w. H. Hornum
Railway rail joint, w. H. Robinson Railway rail joint, W. H. Robinson
Rallway switch, w. L. Lamborn... Ratchet wheels, click for, E. H. Perry...
Refrigerator, E. S Bitner............. Refrigerators, E. B. Smith. Revolvers, safety catch for, c. w. Hopkins (Saddles, stirrup for riding, J. C. aw set, w. Burge Scaffold, traversing, D. R. Kell screw taps, machine for cutting, H. Boyd
Scythe snaths, bending, Russel \& Birner seed and guano distributer, A. H. Simm Sewing button holes, J. T. Jones..........
Sewing machine caster, T. B. Garretson. ewing machine, bag, H. P. Garland ewing machine driver, J. Bolton. Shirt, C. M. and J. C. Ball Skins, dressing, R. Hart....
Smoke stack heating appara mut machine, D. Pease Socket coupling, A. S. Wadle Soldering process, M. A. Richardson Sole fastenings, nail for, L. Goddu
Spinning machine. J. P. Hillard... Spirit level, and straight edge Spoon holder, Babbitt\& Beach. Stair for fre escapes, folding, T. Garric Stamp, perforating, W. G. Brow Stench trap, dry, J. H. Boschen......
Stone, artificial, w. H. Whittemore Stove, H. E. Spurrier........
tove and furnace, P. Klotz , P. Klotz.... Stove, heating, Z. Hunt...
Stove, heating, J.Van ..
Stovepipe shelf, J. Christy
Stove, reservoir cooking, E. Card.........
Sugar cooling and draining, J. G. Angell Suspender, S. K. Ellis
syringe, w. P. Clotworthy
Tiregraph. fire alarm, S. Chester.
Tire upsethng mach, w. Holdswort Track clearer, J Doman Tray for beer glasses. etc
Trunk, A. v. Romadka.
Turbine wheel, T. H. Clark Umbralla runner, J. M. Burkert Vhicle axle, G. Beck.
Vehicle springs, S. Gilzinger Velocipede, F. S. Seagrave Ventllating buildings, L. D. Satterlee. Wagon, dumping, D. E. Davis Wagon,dumping, A. A. Hoch............
Wagon, infant's parl Jr, B. J. Harrison Wagon spring. W. F. Whitney Wash tub wringer, A. W. Caldwell. Washer, steam, M. Howe....................
Washers, machine for spring, J. Washers, machine for spring, J. W.
Washing machine, P. A. Downer. Washing machine, P. Lieber.. Water wheel, A. W. Haag.. Water wheel, reversible, A. W. Lindley ind wheel, A. J. Beckley Window screen H. B. Walbridge

$5,314 .-$ W. A. Stephens, Succasuna Plains, N. J., U.S. S.
Making wrought iron direct from the ore. Oct. $\mathbf{3 0} 187$ 515-T. Thornton. Salthurn, Eng. Door and gat
closer. Oct. $30,1855$. . Wallace, Se

$$
\begin{aligned}
& 30,1875 . \\
& - \text { G. P. Ref }
\end{aligned}
$$

Fuller. Holyoke. Mass., U. S. Machine fo

$$
\text { king water, gas. and sewer pipes. Oct. } 30,1875 \text {. }
$$

$$
\begin{aligned}
& \begin{array}{l}
\text {,319.- } \\
\text { Oct. Gill, } \\
\text { Oct. 30. 1875. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text {, }, 328 .- \text { E. } 185 . \\
& \text {, Sutherland. Shelburne. Ont. Macl }
\end{aligned}
$$

$$
\begin{aligned}
& \text { churning. Nov. 2, , } 875 \text {. } \\
& , 323 .-E . \text { E. Hargreaves, }
\end{aligned}
$$

$$
\begin{aligned}
& , 324 .-J . \text { W. Lefferts, Baltimo } \\
& \text { edge trimmer. Nov. } 1875 . \\
& , 325 .- \text { C. E. Hill, NNw York }
\end{aligned}
$$

$$
\begin{aligned}
& \text { edge trimmer. Nov. 2, 1875. } \\
& 5,325 .-C . E \text { E. Hill, New York city, U. S. Structure for } \\
& \text { piers, wharves, foundations, etc. Nov. } 2,1875 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { cutting hoops. Nov. , 1875. } \\
& 5,323 .-W \text {. Sesmour, Johnst }
\end{aligned}
$$

$$
\begin{aligned}
& \text { fold clamp. Nov. 2, } 1875 . \\
& \text { 5,329.-G. B. Thurber, Upton }
\end{aligned}
$$

$$
\begin{aligned}
& \text { water and air pump. Nov. 2. } 1875 . \\
& 5,330-\text { W. D. S. Moncrieff, Glasgo }
\end{aligned}
$$

$$
\begin{aligned}
& 5,330 \text { - W. D. . . Moncrieft, Glasgow, Scotland. Loco- } \\
& \text { motive car for tramways. Nov. 2, } 8875 . \\
& 5,331 \text { - W. H. Milliken, Sacramento, Cal., U. S. Trac- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5.332.-J. Elliott, Kittering. Eng. Sewing machine nee- } \\
& \text { dle. Nov. } 2,1875 . \\
& 5,333 .- \text { w. P. Widdifield, Slloam, Ont. Car brake. Nov. } \\
& 2.1875
\end{aligned}
$$

$$
\begin{aligned}
& \text { ting hoops. Nov. 2, } 1875 . \\
& 5,3: 7 .- \text { F. W. Bartlett, Buffalo }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ing hoops. Nov. 2, } 1875 . \\
& \text {,3.7.-F. W. Bartlett, Buffalo. N. Y., U. S. Generating } \\
& \text { and purifying ozone Nov. 2, 1875. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { and purifying ozone Nov. 2, 1875. } \\
& 5,338 \text { - C. A. Henmicke, Mitchel, Ont. Bending stuf }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5,339-D. Cameron et al., Galt. On } \\
& \text { planing machne. Nov. } 1875 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { planing machine. Nov. 2, } 1875 \text {. } \\
& \text { 5. } 340 .- \text { J. H. Connor, Brockville, Ont. Washing ma } \\
& \text { chine. Nov. } 2,1875 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { chine. Nov. 2, 1875. } \\
& \text { o. } 341 .-\mathrm{F} \text {. J. Chubb, Gu }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1875.- } \\
& \text { 5.342. - M. M. Eames, Alba } \\
& \text { the reduction of ores. }
\end{aligned}
$$

$$
\begin{aligned}
& .342 .- \text { R. M. Eames, Albany, N. Y., U. S. Process fo } \\
& \text { the reduction of ores. } \\
& 5,343 .- \text { E. E. O. Warner et al., De Kalb, Ill., U. S. Bak }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5,343.-E. E. O. Warner et } \\
& \text { ing pans. Nov. 2, 1875. } \\
& \mathbf{5}, 344 .- \text { T. Booth, Toronto }
\end{aligned}
$$

2afuetititurents.

Enoravinos may head advertisements at the same rave tisements must be received at publication office a 31 More sitctations for bookkepers an

THE USE OF STEEL FOR CONSTRUCTIVE Purposes. Method of Working and Apopying and
esting Plates and Bars. By J. Barba. Translated from
ne trench.) With a Preface. By Alex. L. Holley, C.E.

W. H. SuITH \& CO, Proprietors,

Cotton Seed Huller.

D. Kahnweiler's Celebrated Patent. for Oil Mills and
Plantation. Used bever Mill in Nevo Oleans and oth-
ers. Grinds and cracks corn \& peas. 120 center St., N. Y . For

THE SIMMONS

Scale and Sediment
Collector

se adrese
SIMMONS SEDIMENT COLLECTOR CO,
Indianapolis, Iud
Todd \& Rafferty MachineCo.

November 27, 1875.1"

(W)
 ${ }^{2}$ A. F. CUsMAN, Hartura, Conn CARPENTER'S MANUAL.

 PABITER'S MANUAL.

CATEARK \& COMPANY'S PATENT SELF-COILING, REVOLVING STEEL SHUTTERS

 brainard Milling Machines all siviee
 PATENT SCROLL SAWS.

 GARDINER'S PATENT Centring, Attachment,

R. D. STATE SPITNG7エアID, O send for circular and price-list.

sian end for Pamplet and

 FINETOOTS

PATENT
Planing and Matching

 10

 RTANT FOR ALL CORPORATIONS AND DF'G CONCERNS. - Buark'M Watchman',
Detector capabe of accuratif contronting the

 Barnes' Foot-power scroll
Saws and Lathe Saws and Lat the

 Amateur Workers in FANCY WOODS
 Geo. W. Read \& Co.,

8,000 in Use Blake's STEAM PUMPS

Friction Clatches for V-Pulleys.

 NEW DRAWING PRESS \& OTHER TOOLS.
STILES \& PAREER PRESS CO., MIddetown, OTIUI
W ITHERBY, RUGG \& RICHARDSON, Man

HAIR-FELT----HAIR-FELT.
BOILERS \& PIPES.

 TRARE NiNGIE.

 sent. for Price Lust and Cir
sular. Herrman \& HERCHEL RODP M'F'G. Co., $\begin{gathered}\text { Dayton, Ohto }\end{gathered}$ INDIA RUBBER,

IIACHINERY

IRON \& WOOD WORKING MACHINERY E EVERY DESCRIPTION
Cold Rolled Shafting. HANGERS, PULLEYs, COUPLINGGs, BEL TING,
©C. Send for Inastratea Catalogue and PICe List.

GEORGE PLACE
t21 Chambers \& 109 Reade sts. N. Y. Cits. Stone and Ore Breaker

 EAGLE FOOT LATHES,
 Planing \& Matching,
 Bradley's Cushioned Hammer

Machinists; Tools,
 NIAGARA STEAM P P UMP

WHIPPLE'S
Patent Door Knob.

- M1 FiF' Machinery.

Adtertisemencs,
 Engravingqs may head advertisements at thessame erate vertisements must be reccived at pubbication offtce as early as Friday morning to appear in next issue.
 Knifeshorber, Cen Opener,
N FILES ARE USED ON HOE'S CHISEL

WIREMORE

 THE EXCELSIOR DRX LEVEEL;
 NICKELPAATING BATTERIES,

FREE

 100 page Book and samples ofRubber Rooring.
Complete

State where you saw this notice
Pyrometers, $\begin{gathered}\text { For showing Heat ot } \\ \text { orens, Hot Blast Plpes. }\end{gathered}$

IRON P YRITES free r, Ont Arsenc, in quan intes, caeap. Box 20 , brock

 Corrugated Iron
 THE

CHRISTIAN
 UNION.

REV. HENRY WARD BEECHER. Editor.
Ellinwood's author zed verbatim reports each week or
Mr. Beecher's
Sermons in Plymouth Church.
All his literary productions, including the characteristic
"STAR PAPERs," will be glven. Serial Stories by
Rev. Edward Everett Hale, D.D.,
hon. Albion W. Tourgee,
Judge of the Superior Court of , North Caro
Iina, (Author of " Toinette,"
\&c).
Mrs. Harriet Beeceer Stowe,
(Author of "، Uncle Tom's Cabin,
A Comprehensive Family Religious Newspape Terms $\$ 3.20$ per year, postage prepaid
ne New and Unusual Terms to Agents. Cash Commissions and Competitive Premiums \$2,000 Given Away
Send for particulars.
HENRY M. CLEVELAND, Publisher. HORATIO KING, A8s't Publisher.
R. $\mathrm{HoE} \&$ CO.S CHISL ToOTH SaWS ARE

Mill FurnishingWorks

Just Out.

WRIMLILSS

AND

 RECIPEScompled from the
§rientific American
A n Illustrated Hand-Book of Practical Hints and Suggestions for Mechanics, angineers, Farmers, Horkmen generally.
and Work

Edited by Park Benjamin.
Contents
DEPARTMENT OF MECHANICS. Master-Tools, accurately represented. How to make Machine Tools. Hints for Casting, Forging, Tempering, etc. Trade Secrets and Wrinkles. The whole supersed by Joshua Rcse
DEPARTMENT OF ENGINEERING. The management, construction, and repair of Boller Engines, Valves, Shafts, Belts, Pulleys, and Hanger Brief rules for practice, etc., prepared by Mr. .. H.
Borx. Also, New Paper on Testing Metal, expressly written by Prof. R. H. Thorsto
pervises the entire Department.
DEPARTMENT OF PRACTICAL TECHNOLOGY.
Supervised by Prof. P. H. Vandir Wexdr. m.d Metallurgical Operations; Cements and Glues; Painting
and Varnishing; Making simple Instrument., etc and Varnishing; Making simple Instrument., etc., etc,
Hundreds of Rectpes for every varitety of Industrial Work.

DEPARTMENT OF THE FARM.
How to construct Farm Buildings. The Dairy. Hints
for care of Stock, about Manures, Plants, Vege ables, Trees, Farm Machinery, etc., etc.
DEPARTMENT of the HOUSEHOLD Cleansing Processes of all kinds. Window Gardens, Destruction of Vermin. Care of China, Glass, and Fur-
niture. Papering Walls, Stmple Remedies etc, The volume comprises 250 pages, is printed on fine paper, with gilt edges, and is of large pocket-book form, fexible covers, neatly ornamented.
Malled, post paid. on recelpt of $\mathbf{\$ 1 . 5 0}$. 1 copy Scientific American, 1 year, and 1 copy Address
H. N. MUNN,

Publisher, P. o. box 772 ,

HARTFORD
STEAM BOILER Inspection \& Insurano COMPANY.

$\triangle B T F O R D$, OONN

The PORTER-ALLEN ENGINE. POSITIVE-MOTION VARIABLE CUT.OFF.
Rend for a circular to CHAPIDPISTON SPEED.
CHARLES T. PORTER,
Harlem, N. Y. City.

Steel Tribe Cleaner.

 COVERING
 W. C. DUYCKINCK, Railway, Machinists' and En gineers' Supplies,

 Schlenker's Stationary Revolving - Die Bolt Cutters, manufactured by the HOWARD IRON WORKS, BUFFALO, N. Y.

The Standard-Best Stock-Finest Finish antratoturd only bx
D. arthur brown \& CO, Fibherville, N.H. andin-Permanent steel magnet

DITCHING and EXCAVATION RANDOLPH'S BTTCHER ANDEXCAVATOR: Stmple

 T DYERS AND MANUFACTURERS.

THE BEST INJECTOR
For Locomotive and stationary Bo
FRIEDMANN'S PATENT.
Over 15,000 Now in Use Here and in Europe

NATHAN \& DREYFUSS, Sole Manufacturere
D OGERS' TANNATE OF SODA BOILER

Portland Cement

Excelsior Do Your Own Printing

Presses
THE SOUTHERN STATES EXPOSITION

SAMUEL MU LLEN, GENERRALSDPERRINTENDENT.
Executive Committe
JAMES I. DAA, BALDWIN, Charman;
W. B.' SCHMIDT

It ti the aim of the Board of Conmsissonersto make
a thorough Exposition of the Agricultural and Mectant
cal Products of the Southern States, Mexico and Central

SHINAchinery ol lmproved Sty les for mathys

 MUREIL
IRON PIANTHRS,

PORTLAND CEMENT

T HOMAS'S FLUDD TANNATE OF SODA-

 Man \& Co's Patent Offices.

Established 1846.

The Oldest Agency for Soliciting Parents in the United States.
IWENI P-EIGHT FEARS EXPERRIENOA.
MORE PATENTS have been eeoured through this ageney, at home and abroad, than through any other in the world
They employ as their assistants a corps of the most erperienced men as examiners, specification writers, and
dracomen that can be found, many of whom have been ae ected from the ranks of the Patent Offloe
SIXTY THOUSAND inventors have avalled ent vention, and procuring their patents.
MUNN
Somantifio Anersions, continne to the publeation of the confer with incerions, continue to examine invention assignmenta, attend to filing applications in the Patent Office payingthe government fees, and watch each case atep b tep while pending before the examiner. This is done ngough their branch office,corner F and 7th Streeta, Washpatents, trademarks, and and file caveats, procure deaign (prepared by the inventor or other attorneys), prooure copy Hights, sttend to interferencos give written oplinions on astters of infringement, forsial copies of patents: in fac in Sorelgn countrie
Patents obtained in Oanada, Eingland, France, Belgiom termany, Russia, Prussia, Spain, Portugal, the Britise solonies, and all other countries where patents ar
granted.
Copies of Patents.

Persons desiring any patent issued from 1886 to Novem ber 26,1867 , can be supplied with official copies at a rea ngs and length of specifications.
Any patent issued since November 27, 1867, at which ume the Patent Office commenced printing the drawing and specifications, may be had by remitting to this office $\$ 1$ A copy of the claims of an y patent issued since 1886 wil be furnished for ${ }^{1} 1$
Wove, and state name of patentee, title of the same date of patent.
a speoian notioe is made in the Bolisititio Ancirions on inventions patented through this $\Delta g e n c y$, with the cold and readence of the patentee. Patents are ofte sold, in part or
Δ pamphlet of 110 pagee, contalning the laws and fall dr pertaning axolualvely to Forelgo Patents, stating costs in arh conn try, time cred, eto sent tree Addrees MUNN \& OO..
Pablishera soientirio amerioas 3y Park Row, N. Y.

or the

SCIENTIFIC AMERICAN, OR 18\%. II THE WORLD.

THIRTIETH YEAR

VOLUME XXXIII-NEW SERIES
The publishers of the SCIENTIFIC AMERICAN beg to announce that on the third day of July to be the aim of commenced. To render the con tents of the new volume more attractive and use

To tho
To the Mechanuc and Manufacturer No person engaged in any of the mechanical pu suits should think of doing without the SCIRNTIFIO angravings of new machines and inventions which cannot be found in any other publication.
The SOIRNTIFIC $\triangle M E R I C A N$ is devoted to the nterests of Popular Science, the Mechanic Art ares, Inventions, Agriculture and the industrial pursuits generally; and ins is val Manufactory, but also in the Household, the L orary, and the reade Reon. TERRMS
One copy, one year (postage inaluded)....... $\$ 3.20$ One copy, three months (postageincluded).. 1.00 One copy of Scientific american for one
year, and one copy of engraving, " Men
of Progrese"
10.00
year, and Dine
year, and one eopy of "Science Record"
for 1875.......................... - 5.20
Address all letters and make all Poat 0mee a ders and drafte payable to

MUNNI \& RO.

