

A WEEKLY JOURNAL OF PRACTICAL INFORMATION. ART, SCIENCE, MECHANICS, CIEMISTRY, AND MANUFACTURES.
Vol. XXXII.-No. 21.]
[NEW BERIE8.]
NEW YORK, MAY 22, 1875.
$\left[\begin{array}{c}83.20 \text { per Annum, } \\ \text { Postage }\end{array}\right.$

IMPROVED FULLING MILL.

A new fulling mill, which has lately come into use in many of the largest hat-making establishments in the country, is represented in the illustration given herewith. Hatters, and makers of felted goods generalle, understand the difficulty of making hats or other fabrics out of bodies that have not been well washed, and from which the gum, grease, and soap are not thoroughly discbarged after milling. The goods from the mills below described, having been made much quicker. quit the soap fresh and lively, and, it is claimed, are much more easily and cleanly washed than those prepared in the old apparatas. It is also stated that there is less wear and waste to the : tock, for the reascn that the quicker action to which they are subniitted, and the shorter time during which they are under the operation. allow the goods to remain warm until finished, so that very poor, short, or waste stock, that would be injured or destroyed be injured or destroyed h. the old mills, will go through these without be ing damaged. For th same reason, much less
soap is used.

The construction of the machine is very simple, it consisting in a driving shaft on which are located friction cams, A. These impinge against shoes, B, and thereby lift and let fall the heavy hammers, C, which last work upon the stock. Any wear be tween the faces of the tween the faces of the cams and shoes is taken up by the rod, D, which is set up as required. The hammers by this device are given a much more rapid action than is usual, and at the same time a uniform fall or blow, whe ther the mill be full or nearly empty. The in vention can be attached to any ot the common falling hammer mills by simply removing the tappe wheels and gears. It dis wheels and gears. It dis the floor clean and level, and does away with the disagreeable noise of the old tappets. No more puwer is required than ble noise of the old tappets. No more power is required than
for the ordinary mill, and less room is occupied. Finally, it for the ordinary mill, and less room is occupied. Finally, it produces one millich in ald device now produces work, and,
same time in which the old in addition, turns out much better work
For further information, apply to the Patent Fulling Mill Company, Middletown, N. Y.
PROCEEDINGS OF TEE NATIONAL ACADEMY OF SCIENCES
The regular spring meeting of the National Academy of Sciences opened at Washington, D. C., on April 20, with Professor Joseph Henry in the chair. At a business session with which the proceedings began, five new members. Professors R. E. Rogers, Asaph Hall, Alpheus Hyatt, Joseph LeConte, and Mr L. H. Morgan were elected, after which the regular reading of and debate upon papers presented was commenced. The subjects thus far discussed are not of extraordinarily popular interest; and in fact the learned treatises are rather more ponderous than practical. Our usual brief abstracts will be found below.
Professor Elias Loomis
storms and spells of weather,
said that the progress of storms is not uniform during the day,either in different years or different months. It a ppears that the average velocity of gtorms from 4.35 to 11 P . M. is about 25 per cent greater than during the remainder of the day. This excess varies for differenc months, ranging from 14 to 32 per cent. The maximum diurnal velocity is at about 8 P. M. During the three years last past, the most rapid progress of a storm center observed on one day occurred on
February 221874 , being 1,280 miles, or $53 \cdot 3$ miles per hour ;
the least velocity occurred August 21, being 228 miles, or 9.5 miles per hour.
From other investigations, it appears that, when the course of a storm is most northerly, the axis of the rain area is inclined to the storm's path, nine degrees toward the south; but when the course of the storm is most southerly, the axis of the rain area is inclined to the storm's path only four degrees. Professor George Davidson sent a letter to the Secretary
Under the head of sudden thermometrical changes, Pro containing recommendations for the next transit, the princifessor Loomis stated that the quick fall of temperature which pal of which was that, to get the best results, observations frequently succeeds a great storm should be ascribed to the should be made from great and isolated elevations, where the resting papers read was that of Professor Marsh on the
small brains.
In dinoceras, the lar gest manmal of the eo cene, nearly equal to the elephant in bulk, the brain was comparatively the smallest in any known mammal, being not large than in a tapir. Brontotherium, of the miocene, which was about as large which was about as large as ainocerts, had a brain everal times as great, nd with the hemisphere better developed. In th mastodon, from the plio cene, the brain had great ly increased in size and convolutions, and in a species of this genus from the post tertiary the brain was nearly as well deve loped as in the living ele phant, but not quite a largo. A similar increas of brain caparity wa shown in the horse fa shown in the horse family, from orchippus o the eocene, through meso ippus of the miocene pliohippus of the pliocene to the existing horse; the same brain growth was shown from the tapiroid eocene mammals, through the miocene and pliocene rhinoceroses, up to those of recent times, and also or the suilline and rumi nant mammals. In th
atmospheric disturbance is a minimum.
One of the most inte
diffused or unsteady, by the cessation of any undulation across the center of the ligament or black drop. The times, both of formation of drop and tangency of limbs, depend on the definition, the first being earlitr, and the latter later, the worse the definition. The same care and attention should be devoted to external as to internal contacts. he made from great and isolated elevans, where the T. atmospheric

[^0]

monkers, carnivora, in sects, and rodents, the udden descent of the same law of development of the brain holds equally true so
udden descent of the atmosphere whose temperature at the me is unusually low.
Professor J. P. Lesley followed with an interesting sketch of the second geological survey of Pennsylvania, which he concluded with a description of the structure of the valley of the Schuylkill, showing that the river had in course of time cu a channel for itself through a mountain 1,500 feet high.
the report of the metric commission
detailed progress during the past three years, and referred more especially tu the metrological congress in Paris. Since the completion of the standards, the casting of which has been described in detail, a conference has heen called of the nations interested, and this body convened in Paris about a month ago. It has been agreed to establish an international bureau of weights and measures, having its seat in Paris, to be charged w.th tho care of all the delicate apparatus which has been employed in the constructinn of the standards, and to make future comparisons and verifications.

Professor A. Guyot read a paper on the
catseill mountains,
in which he stated that the names given to several of the peaks were wrongly applied. On measuring hights, be found to his surprise that several of the mountains exceeded 4,000 leet in hight.
Professor Simon Newcomb, on the

transit of vends,

remarked that the only phase of internal contact which it is worth while to observe is that of true contact. When the definition is sharp and steady, this phase is marked by the breaking or formation of the thread of light; and when it is

DRAPER'S FULLING MILL.

 ral holds equally true, far as the speaker had continued his investigations, and in the higher of these groups the changes since the eocene were nost remarkable.Mr. Justice Bradley, of the United States Supreme Court, submitted a communication on
a froject for cianging the civil year,
in which it is proposed to make the civil year correspond with the solar year. For the present century the first day of the year would fall on December 21, and the sun would arrive at the cardinal points on the first days of January, April, July, and October respectively.
English Agricuitural Machinery at the Centennial. The English manufacturers of agricultural machinery do not propose to exhibit their products at the Centennial. The reason is that our duties on the importation of foreign devices of this character is from 30 to 40 per cent, and hence is practically prohibitory. As there is no paying trade for the goods in this country, manifestly the producers have no incentive to exhibit, and hence they decline to incur the expense to make a show " to please and instruct others," which will be of no benefit,as they think, to them.

A canal project has been formed by which it is hoped to connect the mouth of the African river Betta, on the Atlanconnect the mouth of the African river Betta, on the Atlan-
tic, with the northern bend of the Niger at Timbuctoo, a tic, with the northern
distance of 740 miles.
IT is said that sugar barrels and boses can be kept free from ants by drawing a wide chalk mark around the top near the edge.

§rieutific ghmerican.

MUNN \& CO., Editors and Proprietors.
NO. BYBHBHEDEEELITAT PARK ROW. NEW YORK.
o. D. MUNN.
A. E. beACH.

One copy, one year, postar TERS.
One copy, bix montis, postage included...........
CIn
ne R atos :
22 70, postage included
Over ten coples, same rate each, postage included..
cir By the new law, postage is payable in advance
Bubscriber then recelves the paper free of cnarge. Notr. -Persons subscribing will please to give thetr fall names, and Post Offce and State address, plainly written, and also state at which time they
wish their subscriptions to commence, otherwise the paper will be sent fro Wish their subscriptions to commence, otherwise the paper will be sent from
the recelpt of the order. When requested, the numbers can be supplied from January hat, when the volume commenced. In case of changlig rest dence, state former address, as well as give the new one. No changes can
be made unless the former address is given.

VOLUME XXXII., No. 21. [New Series. 1 Thirtieth Year.
NEW YORE, SATURDAY, MAY $22,1875$.

SCHOOLS OF OBIERVATION.

With all their changes for the better which the work of our primary schools has undergone of late years, it is still ingeniously perverse in its methods and barbarous in its aims; almost hopelessly so, for so great is the conversatism, the inertia rather, of these schools that they not only withstand any radical improvement from within, but make such improvement all but impossible in the higher schools also.
Every college professor-still more every teacher in Every college professor-still more every teacher in scientific institutions-complains that the youth who come up to him for instruction have been, as a rule, so sense and intellect by a vicious preparation, so fits of thought, that more time has to be spent undoing and redoing the work of the lower schools than is left for genuine college work. Thas the whole weight of the elementary college work. Thus the whole weight of the elementary
school system, and it is great, bears dead against the imschool system, and it is great, bears dead against the im.
provement of the upper schools, wherein unfortunately all educational reforms have to begin.
Hence we see the colleges tardily adapting their work to theneeds of the times, the high schools tardily following the example of the colleges, and the primary schools bringing up the rear a century or so behind: behind the colleges that is; they are twenty centuries behind the discovery and announcement of their proper work by thinkers independent not a a break wit the tradition of ther school in the land that approaches in $i \leqslant s$ mode of operation the ideal of youthful culture set down by Plato: not one that does not violate, more or less atrociously, the primary requirements of young humanity in its entire scheme of operation. And yet we flatter ourselves that our schools exemplify the finest fraits of modern civilization!
We marvel at the logical blindness of our forefathers, who sought for personal freedom, yet could not see the absurdity of trying to erect a free government on a foundation which had slavery for a cornerstone. To those who shall celebrate the second centennial of our country's existence, we of to-day will probably appear quite as illogical in educational as they were in political matters. We know what should be done, yot submit to the habitual performance of the opposite. We
brag about the school of marine observation which Agassiz mot up at Penikese, and say: "That is the way a school
should be conducted." We cry " well done" and "Goe observation to be camped next summer at Cumberland Gap, looking upon such enterprises as the proper outcome of the best system of public education in the world. And we are blind to their biting satire upon our entire work of instruction!
Just think of it. We take our children at the age when observation is instinctive, when every sense is keen and hungry, the whole world fresh and new, and every object and phenomenon a challenge to their curiosity: when "wha speech, and " what are you?" "what can I do to you?" "what can you do to me?" the language with which they approach all things: we take them at this stage and-aid and encourage their attempts to master their environment No a bit! On the contrary we shut them up, literally as well as figuratively, at home and in school. "Don't bother me with so many questions!" is the mother's response $t o$ incessan queries. "It isn't polite to ask questions" is the reproof a child gets when it turns to strangers for the gratification of a curiosity, suue to be impertinent if unwisely repressed where it should be wisely guided. "That has nothing to with your lesson: attend to jour book" is the teacher's re-
ply when the eager child wants to know about something ply when the eager child wants to
The fruitless quest is not long persisted in. The mind, even of adults, soon wearies of rebuffs; and the naturally bright and observant child, under such treatment, soon settles down to a listless indifference to all but a narrow round of facts and phenomena, or wisely keeps his observations and doubts to himself. If studiously inclined, he studies books, gradually learning to rely on otherpeople's experience and to seek for knowledge of the world through the distort ing medium of words. Language becomes the only instrument of intelligence or culture; and his powers of original perception, at first undeveloped, end by being stultified by years of unobservant going to and fro. And then we set before him the happy chance of becoming one of the twenty-five or fifty lusky fellows who are permitted to supplement their
college life with a six months' training in a school of obcollege life
Give to Agassiz and Shaler all credit. The Penikese and Cumberland Gap schools are germs of a new life, destined, it is to be hoped, to develop downward till, by the time our great-grand-children are ready to go to school, the whole schon system will be leavened. But to ourselves we must reserve unlimited discredit for permitting such a" reform" to be possible. Schools of that sort are properly not the crown but the basis of a sensible educational system. What they propose to
do should be made unnecessary by the work of every primary school, for childhood is the time for cultivating the art of observation, when everything in Nature and Art is new and open to discovery: not after a quarter of a lifetime has been
spent in habitual inattention to all save books, when a spent in habitual inattention to all save books, when a
shadowy familiarity has bred such contempt of common things that the would-be observer has to resort to the wilder ness or to the bed of the sea for objects to excite his dormant curiosity.

THE ANTIQUITY OF LIFE

When Lyell and the rest of the uniformitarian school of geo logy began to attribute all geological changes to the protrac ted operation of the influences now remodeling the earth' surface-sunshine and showiers, rivers and seas, arctic frosts and tropic heats,slow risings and sinkings of the earth's crust with their attendant quakings and volcanic outbursts, the
growth of vegetation and the slowly accumulating deposits growth of vegetation and the slowly accumulating deposits
of coral polyps and other forms of animal life-it was objected that time was too short for such proceedings. Men had searcely begun to question Usher's six thousand years of Biblical chronology, and their imaginations were incapable of spanning monotonous milleniums marked by no catastrophes. The Niagara could not have carved its six mile gorge at its present rat
operatlons

By Darwin's day, such objections were worn out. Men had become accustomed to granting hundreds of milleniums for the periods of the geologist; yet they stood aghast at th demand for more. Geology had been modest in its require ments compared with the rising science of biology. Allow-
ance was asked,'not merely for the geologist's rock-recorded ages, but for gaps in the record for pages destroyed, and fo measureless periods during which no records were kept in
parts accessible to man. Darwin's theory called for an extension of time compared with which that of the geological record was small; and his opponents refused. A theory, they said, which requires such boundless concessions of time cannot possibly be true.
Now we learn that, whatever objections may be urgad against the evolution tbeory, lack of time for the slow development of creation is not one of them. The soundings of the Challenger expedition give a clue to ages of life whose duration dwarfs to insignificance that of the periods between the Lower Silurian and the present, the limits formerly set for the duration of life upon the earth. The addition of the ras periods covered by the deposition of the many thousand feet
of Cambrian and Laurentian rocks, with their shadowy traces of Cambrian and Laurentian rocks, with their shadowy traces
of life, does not bring us sensibly nearer the beginning; nor is the light they hint of any guide to a comprehension of the swarms of living things which sported in the waters of those primeval oceans, or inhabited their shores.

We have given elsewhere a resumé of the grounds on which Professor Wyville Thompson and his colleagues base their belief that the red clay, which covers such vast areas of the deeper ocean beds. is a residuum representing less
than two per cent of the mineral matter of the microscopic animal and vegetable life which inhabits those waters; and that it is identical with the basic clays of the extensive azoic formations known as slates, schists, and even gneiss and gran ite. If this position is sustained, as there is reason to expect i will be, by further observation, the antiquity of life surpasses the most extravagant demands of biologists; even the oldest known rocks, the fundamental granites as they have been considered, cannot be taken as sufficiently ancient to mark the time when life first made its appearance on earth. We must say of the organic as Hutton did of the inorganic world: "We find no vestiges of a beginning": for the far ther back we go, the vaster are the measures of life's duration, and their number is countless.
The slow development of a thousand feet of coraline lime. tone covers a period not incomputable, however vast. Some thing like an approximate estimate can be made for the time required to deposit a thousand feet of sand in a lake bed or along a sea coast. But what arithmetic can number the ages required for the deposition of thousands of thousands of feet of the basic material of rock which at most can repre sent in its mass not much more than the hundredth part of the mineral constituents of animal and vegetable life, so minute and so distributed that it barely tinges the deep sea water with a shade of green?
If the great deposit of red clay, now forming in the eastern valley of the Atlantic, were metamorphosed into slate and then upheaved, siys Professor Huxley, it would constitute an azoic rock of enormousextent; and yet that rock is now forming in the midst of a sea which swarms with living beings, the great majority of which are provided with calcareous or silicious shells and skeletons, and therefore are such as, up to this time, we should have termed eminently preservable He might have added that the sea whose bed is so barren in organic remains lies between continents abounding with highly organized animal and regetable life, with ancien cities, imperishable p.ramids, and countless other traces of a higher than animal existence. Yet were the present conti nents submerged with the supposed elevation of the azoic sea bed, the geologist of that period might say-as our geologists have been used to say, under similar circumstances"the earth was void of life when these slates were laid down!'
Who shall say that higher forms of life could not have in habi.ad the shallow seas and the dry lands surrounding the deep seas wherein our "primary" rocks were deposited? Who shall say that the vestiges of higher life discovered in the comparatively r'cent " fossiliferous" strata afford any thing like a complete history of life on earth, or deny to the student of biology unlimited time for bringing about the re sults he olserves

DANGEROUS HOUSES

Four deaths from diphtheria, recently occurring in Brooklyn have attracted the attention of the healte enthorities of that city to the condition of the house in which they took place. The report which a sanitary committee made upon the dwell especial period when moving is everywhere in progress The house in question was new, and damp in every room from cellar to attic, for there appears to have been no effort made to dry the walls. This is precisely the condition of scores of dwellings into which families have entered on the first of this month; and unless proper precautions be taken further cases of illness and death will bo the cost of neglect If any reader of this journal,therefore,finds himself locate in a dwelling on the walls of which the moisture condenses in beads, as on the outside of an ice pitcher, or the rooms o which cause a chilly, damp, sensation, with a strong odor of plaster, or any portion of which does not, on wall, ceiling, or floor, feel perfectly dry to the hand, let him, as he values his own life and that of his family (or hopes to escape from rheu matism, lung and kidney diseases, and the like) start fires at once. Better waste a few tuns of coal than pay five times the amount in doctors' bills or a still greater value of the money in suffering. Build a big fire in the furnace and in every grate, and keep all up night and day; and if the weather admits, throw open the windows and doors, but keep out of the drafts. The object of the fires is to dry out the walls, not so much to warm the rooms for comfort. Then as the weather becomes warm, let all go out but the furnace, retaining that until its use becomes a discomfort.

We offer these suggestions to persons who have already moved into new houses, but of course it is much wiser no to enter a dwelling that is not thoroughly seasoned. In all cities, blocks of houses are constructed, of the flimsiest materials, in incredibly short spaces of time, for spring occu pancy. Many of these have been frozen from top to bottom during the recent severe winter; and instead of the watir drying out, it has remained in the walls in the condition of ice. In an ordinary three-story house, 30,000 gallons of water are absorbed by the brick and mortar used in the construction and this immense quantity must all or nearly all be got rid of before they are safe as dwellings.

THE COMING ARCTIC EXPEDITIONS

The arctic exploring expedition which has been projected by the English government, and which for some time past has been fitting out, will, it is stated, sail from England on or about the first of June. Two vessels, the Alert and the Discovery, commanded respectively by Captain Nares and Commander Markham, have been rebuilt so as to be im mensely strong and fully capable of withstanding the severes ice nip. The sides are composed of three thick skins of solid oak, each five inches through, and iron girded tiers of beams run all around the interior, which is finally lined with
a sheathing of plank covered with thick felt. Nothing which the most experienced arctic voyagers could suggest has been omitted in preparing the vessels for their arduous service, so that the failure, of the Polaris and of the other expeditions which were despatched in a condition far from that required by the exigences of the undertaking, is not likely to be repeated.

The route to be followed is directly to Cape Farewell, the most southerly point of Greenland, thence to Cape Shackleton, in 74 degrees north latitude, and through the ice in Melville Bay to the open sea at Sinith Sound. The Alert will push northward as far as possible, and then go into winter quarters, preparatory to sending out parties poleward in the spring. The Discovery, on the other hand, will not proceed beyond Newman's Bay, in 83 degrees north. Her she will winter, carry on such scientific observations as are
possible, and be prepared to open up communications in the possible, and be prepared to open up communications in the spring with the Alert, and also with a third ship, which will be sent out from England with fresh supplies and to bring back the news.
The total sum appropriated by Parliament for the expedi tion for the first year is $\$ 493,100$. The anticipated subse quent expenditure per annum is placed at $\$ 65,000$. From these figures it will be seen that the difficulties are to be grappled with in earnest, and with every aid which Science can suggest and ample appropriations procure. The person nel of the expedition is composed of officers and men who life, and who, besides, will maintain that rigid military dis life, and who, besides, will maintain that rigid military dis-
cipline, the absence of which contributed so greatly to the ill cipline, the absence of which con
success of the unfortunate Hall.
This makes the thirty-third expedition sent in quest of the North Pole since 1848. The first ten were made by British sailing men of war; and the balance included merchant ves
sels and steamers, specially chartered from both the United sels and steamers, sp
States and England.
A Swedish expedition is also now being fitted out by a well known merchant named Dickson, of Gottenburgh. Professor Nordenskjold will accompany it, and the start will be made from Tromsoe carly in June. The course proposed is by northerly point) north easterly, to explore this unknown por tion of the polar basin.

PATENT LITIGATION IN ENGLAND AND THE UNITED states.
Under the present law of Great Britain, patents are granted to every applicant who chooses to pay the fees, without any official examination as to novelty. All the patents are printed and the applicani, or his agent, makes his own examination or none as he prefers.
Some people hold the theory that this plan of granting patents, without official examinations, must be bad, necessa
rily leading to many itigations, which would be avoided i rily leading to many litigations, which would be avoided int. But this theory is in practice, fallacious. Mr. W. Lloyd Wise,of London, in a recent paper on the sulject,shows that the total number of common law and chancery cases litigated per annum in Great Britain is, in round numbers, 30,000 , ou of which only eight are patent cases.
In this country, by reason of our system of official exami nations, we have a species of patent litigation totally unknown in England. As nearly as we can estimate, there are between ten and fifteen thousand cases annually, that are litigated, to a greater or less extent, before our Patent Office authorities. To search up answers to litigants, to cut down their claims, attend to hearings, write out and record de cisions, and maintain the legal paraphernalia, necessary for the adjudication of our twenty thousand applications for patofficials, fed and supplied at a cost of about six hundred officials, fed and supplied at a cost of about six hundred
thousand dollars per annum. This represents only the government side of the litigations. On the opposite side the ap plicant must either appear in person, or employ a solicitor and the aggregate amount of time, labor, and money thu spent, is quite large
Having passed the ordeal of Patent Office litigation, the American patentee is then in the same situation as the Eng lish patentee, who went through no such operation: namely both patentces have the privilege of litigating in the courts, where alone the validity of their patents can be finally set tled.

DEADLY BALLOONING.

The names of ('roce-Spinelli and Sivel, two of the most daring and successful of French aeronauts, are now to be added to the long list of those who have laid down their lives in the cause of Science. In company with M. Gaston Tissandier, they attempted to ascend to a higher altitude than had ever beforebeen reached. At 29,000 feet elevation all three men became unconscious. The balloon soared higher and higher and then descended. Tissandier regained his senses on reaching
dead from suffocation.
This voyage which has resulted so disastrously was the second of two recently projected by the French Society of Aerial Navigation. During the first, which was safely accomplished, the balloon was kept afloat for twenty.three hours, and a number of interesting observations of natural phenomena of the atmosphere were obtained. The aeronauts,
during the second ascension, were to test the atmosphere at the highest possible altitude, make experiments for car bonic acid, conduct spectroscopic observations, and in general to obtain scientific data relative to the upper aerial region
believed possible, through the respiration of oxygen, to enable the investigators to exist in a highly attenuated atmosphere, previous ascension of Croce-Spinelli and Sivel to a hight of 25,000 feet, described in these columns a year ago.
The balloon Zenith started on its voyage from Paris at 1 P. M., on April 15. It shot directly upward, reaching the hight of 21,000 feet in a very few minutes. At this elevation Tissandier says: 'My companions were pale; I felt weak, but inhaled a little of the gas, which somewhat revived me. We still ascended." In response to Sivel's request, he acquiesces in throwing out ballast, and three of the nine eighty pound bags of sand were emptied. "All at once," he con tinues, "I found myself so feeble that I could not even turn my head. I wanted to exclaim 'we are at 8,000 yards,' but my head. I wanted to exclaim "we are at 8,000 yards,' bu
my tongue seemed paralyzed." Tissandier then faints-bu revives and finds the balloon falling rapidly. Greatly alarmed, he arouses Sivel, who has fallen into a stupor,and the latter seizing the respirator, inhales large quantities of oxygen. Shall we go up ?" exclaims Tissandier ; '" yes," replies Sivel gaily, "and happy the one of us that returns." Sivel be comes intoxicated with repeated doses of oxygen, and in his exhilaration throws over the respirator, besides the baliast and number of the instruments. Again the Zenith soars a a oft and Tissandier, as he lapses once more into stupor, reads from the barometer an altitude of 20,000 feet. Spinelli aud Sivel, he states, were still conscious, though apparently incapable of any exertion. How high the air ship ascended will be known when the test barometers are examined by the French Society. When Tissandier awoke, two hours later, the balloon was fall ing at a fearful rate. He hurriedly cut away the grapnel and other articles which had escaped Sivel,checking the speed and then, on attempting to rouse his companions, he found both stone dead, their blackened faces and blood-suffused mouths denoting their struggles against the suffocating at mosphere.
There is no definite period stated by the survivor at which he surmises the death of his comrades took place. Tissandier was the weakest, physically, of the three,and his loss of consciousness at an early period undoubtedly saved his life Glaisher and Coxwell, at Wolverhampton, Eng., in 1862, as tude of 37,000 feet; butthis record cannot be regaided as accurate, inasmuch as it was only by superhuman exertion that Coxwell was enabled to open the valve by pulling the line in his teeth, and both aeronauts had so far succumbed to the cold aud rarefied air as to make their observations under such conditions not very reliable
Itis sad to chronicle that two such men as the deceased ost their lives fruitlessly, but we see no other conclusion. Their death does not fix the limit of human existence in the hights of the atmosphere, and the most that can be gained will be the indications of the test barometers, and the knowledge that the aeronauts died before the marking sbown was made. The fact of a semi delirious state being produce that gas as a life supporter in rarefied air,in cases where a person requires his wits about him. It certainly was of little use in the present instance, as its effects caused Sivel to throw overboard the apparatus-probably while deprived of self-control -and thus to abandon the only means of safety in the highe regions which, by lightening the balloon, it was his object o reach.
Les Mcnles, in commenting on this unfortunate casualty points out that the way of avoiding similar disasters in fu ure is to render the means of respiration completely auto matic. Either the aeronauts should have been provided with dresses similar to those of divers, or, as suggested by M. Toselli, the car of the balloon should be a metallic cylin der, perfectly airtight, into which, or into the dresses, small pump, easily worked by hand, should forie air un
til a constant pressure is obtained, sufficient to maintain life

THE LAWS OF STORMS.

When the United States Signal Service was organized and first began to attract attention, it was claimed that any law especting the motion and direction of wind and storms was learly beyond the grasp of the human mind. But now, in all large cities and in many country towns, the "probabili ies" and weather maps are eagerly scanned every morning,
reatly to the advantage of all classes; and seamen closely greatly to the advantage of all classes; and seamen closely watch the cautionary flags displayed-as occasion requires-
from the frequent signal stations along our whole coast. from the frequent signal stations along our whole coast.
They have learned the lesson of giving careful heed to thes monitions. Though the whole work of the Signal Serrice is interesting as a fairy tale, we propose at present to call at ention only to scme of the deductions of Professor Loomis respecting storm laws. This savant commenced his investi gations in 1872, and has reported his results at three severa meetings of the National Academy of Sciences. The las which has just adjourned, and a report of whose proceed ngs will be found on another page.
It is now fully accepted that all storms are circular, and most of those reported by "Old Probabilities" extend over space hundreds of miles in extent, and often a thousand or more. The storms are not only circular but rotary, and ad ance across the country at a rate varying from two or three hundred to much more than a thousand miles per day. Thei verage direction is a little north of east, and they seem to originate either in the northwostern part of the United States if not in the Pacific Ocean, or in the vicinity of Texas and the Gulf of Mexico. Storms are not necessarily accompa nied with rain; they may be only of wind, like the smal whirlwinds we often see carrying around sand and leaves, yet, at the same time, they progress slowly forward. But
they are usually accompanied with rain, and the rain extend hundreds of miles (500 is the average) to the east of the storm center, but a much shorter distance to the west. The barometer, whose normal hight is about 30 inches, is usually low at the center of these vast, advancing whirlwinds. We now proceed to notice the means by which these facts, and others to be mentioned, were deduced, and some of their suggested causes.
On the weather map, which the signal service of the Tni ted States army daily distributes, Professor Loomis divided the ficld covered by a storm into four quadrants, and noted the observed directions of the wind in each. He did the the same on all the weather maps showing a position of the storm center suitable for his purpose. By taking a mean of all these observations, he found that winds blow in a circu lar direction; not, however, in the line of the tangent to circle having its center at the eye of the storm, but directfd inwards more than 45° from the tangent. Hence the wind: direction is more nearly central than tangential. Of comsis the currents, blowing in from all directions towards one central point, can escape only when moving upwards at the center. This makes a kind of suction at this point, which diminishes the weight of atmosphere and consequently low ers the barometer. When swift, rotating, upward current. of this kind occur on the ocean, they sometimes produce the waterspouts of which we read. The causes which produce this inward motion of the air currents must be looked for in those distant quarters where the storm originated. They may be due to the collision of moist air with some cold moun tain peak. This would condense the moisture; the condens tain peak. This would condense the moisture; the condens.
ation would produce heat, which would expand and lighten ation would produce heat, which would expand and lighten
the air; and then the heavier air on all sides would move to the air; and then the heavier air on all sides would move to
wards this central point of diminished pressure. The air heated by contact with the warm earth, takes up a large quantity of moisture; and then, on leing carried up into coller regions, becomes condensed, and precipitates the moisture, thus showing us the cause of rain. The real cen ter of a storm is probably one or two miles high at least ; and from the average of a month's observations on the velocity of wind at the top of Mount Washington, compared with it velocity in neighboring places near the level of thesea, the Professor calculates that the velocity of wind at 6,000 fee high is five and a half times greater than at the sea level. The high currents, moving so much more rapidly than the base of the storm resting on the earth, would of course carry the ascending water-charged air forward. This gives a reason for the fact that the rain area is in advance of the storm Pro
Professor Loomis also learned, by deductions from his tab ulated data, that the more rapid the storm, the greater was
the extent of rain area to the east of $i c$; that the velocity of the extent of rain area to the east of $i c$; that the velocity o the storm increased more rapidly than the extension of the rain area; and that the direction of the storm for 24 hours was in general the same as the direction of the major axis of the rain oval for the preceding eight hours. The second of these facts seems to be a little anomalous, but the first and last are as we should expect them to be, because the velocit and direction of the most freely moving part of the storn should harmonize with the velocity and direction of the east ward upper air current, to which all parts of the storm, in the main, owe their motion. If the comparison had been made with the direction of the storm paths for the succeed ing eight hours instead of twenty four, the conclusions on the last point would probably have been still more satisfac tory.
But the upper current is not the only cause of the east ward motion of the storm. The condensation which cause rain expands, by its heat, the air which rises and comes down outside of the rain area. Hence we have low barometer in front of the storm center, and the descending air behind makes it high there. So the center is not only drifted for ward by the upper air currents from the west, but is pressed forward by the fact of a high barometer behind it and a low pressure before it. He also determined that the state of the barometer at the center, or its rate of fall in front, had little or nothing to do with the velocity of the storm's progress but that the rate of rise behind it was directly proportioned o the velocity of the storm
Again, he finds, by taking the mean of the velocities of wind in the four quadrants and comparing it with the storm's velocity, that, when the wind in the east quadrant has greater average velocity than in the west, the storm move faster than its mean rate, but slower when the wind's velocity in the west quadrant is the greatest. He explains this by supposing the upward movement would be grea est in the quadraut which had the greatest velocity of wind : then here would be the lowest barometer, and diminished pressure would tend to make the center move in this direction. Now if the excess of the wind's velocity in the west quadrant wer sufficient, it might cause a westward instead of an eastward movement to the storm center. This movement has occurred veral times, and caused the storm's path to make a up n itself. In one case the storm was made to change its di ection more than 360° in a little over 24 hours. This expla ation seems a little defective, for it apparently assumes a eparate upward movement in each quadrant, whereas it i presumable that the rotary centripetal motion of the wind nall sides contributes to one grand upward movement in the center. Again it would seem that the greater velocity of a west wind would tend, by its superior momentum, to veer the central cylinder of ascending air to the east rathe than to the west.

For making architectural ornaments in relief, a moldin composition is formed of chalk, glue, and paper paste. Eve tatues have formed of chalk, glue, and paper paste. Even

IMPROVED CHISEL TOOTH SAW

The engraving given herewith represents a new chisel tooth saw, in which the teeth are highly tempered bits of steel, about one inch and a quarter in length, confined secure-ly in place without wedges. No filing is required to keep the teeth in order. Theyare capable, we areinformed, of cutting 45,000 feet of timber at an expense of not over three cents per thousand, and require no expert work to replace or keep them in order.
The mode of removing and inserting the teeth is shown on the right of the illustration. E is the wreneh, which is
will always be in communication with the passages, D or E corresponding with the end of the stroke at which the piston, P^{\prime}, u.ay be. H is a passage communicating with the interior of the main cylinder, and terminating in an annulus or ring opening in the middle of the exhaust, C. With the parts in the position shown in the engraving, steam is admitted into the steam chest, N, and will pass through the pas. sage, F, and force the piston, $P P^{\prime}$, from left to right, until the part, P, passes the passage, D; and then the steam will pass through D to K, and force the valve piston, $A^{\prime} A^{\prime}$, from
right to left, carrying with it the slide valve, B. Before the

Collodion.
The physical properties of films of collodion (such as oneobtains after pouring collodion on clean glass and letting it dry) having been recently studied by M. Gripon (Comptes Rendus). The separated membrane reflects light like glass, and polarizes it both by reflection and by transmission. The index of refraction is $1 \cdot 5108$, a little less than that of crown glass; and with a thickness of $0.0 \mathrm{CO39}$ inch, the membrane allows the passage of a considerable proportion of radian heat; but it is less diathermanous the lower the temperature of the source. One may make polarizing piles of collodion

HOE'S CHISEL TOOTH SAW.

applied to the shank and turned forward sufficiently to relieve the jaw, C , which will open and allow the tooth to comeout. In the act of turning in, the projection on the inner edge of the jaw, B, closes into the depression in the front of the tooth, holding the latter thus firmly
The first trial of this saw took place during the competitive tests conducted during the Cincinnati Exposit on of last fall. The diameter of the tool was 56 inches ; teeth, 36 ; gages 5 eye, 7 teeth, and 2 keri. An oak $\log , 16 \times 16$, was to be divided into 12 boards, and a poplar log, 20x20, into 16 boards. The following is the record of the saw: For oak-revolutions, 602 feed, $2 \frac{1}{2}$: time, 1 m .58 s . ; number of perfect boards, 12 ; horse power indicated, 98.82 ; sq-are feet of lumber per minute, 00 ; percentage of power used. 0.720 . For poplarrevolutions, 605 ; feed, $3 \frac{8}{8}$; time 2 m . 45 s . ; perfect boards, 8 ; im perfect, 8; horse power, $114 \cdot 73$ square feet of lumber per minute, $109 \cdot 1$; percentage of power used,
0.680 0.689 .

From the table showing the performances of this and other saws, which will be found in another column, the chisel tooth appears to be the only one which cuts a whole \log into perfect boards. The tool was patented May 19, 1874, and is manufactured by Messrs. R. Hoe $\& \mathrm{Co}, 504$ Grand street, of thi city, who may be addressed for city, who may be
further particulars.

ENGINE VALVE MOTION

 Our engraving represents an im proved method of operating the slide valves of reciprocating engines, the construction of which will be clearly understood from the annexed engravings.Fig. 1 is a longitudinal vertical section of Fig. 2, taken on the line $x x$. Fig. 2 is a plan view of the main cylinder with the valve chest removed, showing the steam passages and valve ports of the engine.
M is the cylinder, having steam passages, F and G, exhaust pas sage, C, and valve, B, as in ordi nary engines. N is the steam chest, which is accurately bored out, having two pistons, A and A^{\prime}, accurately fitted to the same. W and O are two collars on the rod which connects the two pistons, $A A^{\prime}$, which form a yoke for the slide valve, B. D is a passage which communicates with the interior of the main cylinder. At the right hand this passage communicates with the small cylinder at K. F is a passage communicating with the main cylinder and with the left hand end of the small crlinder at L. I is one of a number of grooves cut in the main piston between the parts marked P \mathbf{P}^{\prime}. The number of these grooves is such that one or more
(serving for either heat or light). They are much more trans parent than the piles of mica which are usually employed in study of heat; and, if more fragile, are easily renewed.

Enlarglng of Photo Negatives.

Among the various methods of enlarging, either suggested or carried into practical operation, that explained by Mr. V. Blanchard, at a recent meeting of the London Photographic Society, is received with much favor

Soclety, is recilved with much favor.

piston, A A^{\prime}, moves from right to left, the left hand end of den small cylinder, at L, is full of steam, which has a ten The escape of this steam is through the in that direction. The escape of this steam is through the passage, L E, and groove, I , in the main piston, to passage, H . The slide valve, B, will open the passage, G, communicating with the steam chest, and also open the passage, F, with the exhaust, C. the exhaust, C , as before stated. Now, the high tension of the exhaust steam will induce a draft or current through H

Fig. 1.

Fig. 2.

ENGINE VALVE MOTION.

which will assist the exbausting of the steam from eithe end of the pistons, $A^{\prime} A^{\prime}$. When this is effected the parts will be in a position to move from right to left in a similar manner.
Patented November 17, 1874, through the Scientific Ame rican Patent Agency, to James Brandon and Albert W. Tran kle, New York city.

Amateurs or others who use hand lathes will find that the chattering of the hand tool may be stopped by placing a piece of leather between the tool and the rest.
abtaind by tharency on glass is obtained by the collodion process in the usual manner. The enlarged transparency is to be fully exposed, so as to possess every bit of detail existing in the small negative; and it must be a strong one, to permit its being used as a cliché in the printing frame. I there be any spots or defects, the pencil or brush may be used freely in removing them.
Here, then, we have obtained an eularged, intense transparency. The next step is to place this in the printing frame in contact with a sheet of ordinary sensitized paper either plain or albumenized. A paper very slightly albumenized is found to give the most pleasing results. When this is exposed to the light, the image printed upon the paper is not a positive but a negative, owing to a transparency being used as the cliché.
The printing must be carried very deep; this is of importance both as serving to secure all the de tail, and also because of the lowering of the image by the subsequent operations. Fixing in hyposuly hite of soda follows, the toning being omitted for obvious reasons.
The paper negative, which is the result of these operations, possesses a fine red color, which is very non-actinic and favorable to the production of bold, vigorous prints. But as paper is dense and stops much light, it is desirable, if not necessary, to impart to it some degree of translucence, for which purpose the negative is laid upon a hot plate or other sur face, and is rubbed with white wax, which melts, fills up the pores of and pores of, and renders being removed by blotting puper.
A negative prepared in this manner is now ready to be used in the printing frame for the production of positive proofs and from the fact that this new negative is upon paper, the opportunity is afforded to those so inclined to touch or work it up in a much easier way than could be effected upon a glass negative. Proofs printed from a paper negative of this kind possess the qualities characteristic of the fine calotypes.

IMPROVED ATTACHMENT FOR INJECTORS

 Injectors of almost any fom are liable to uncertainty of action, after becoming heated; as, for example, when, afte a stoppage, steam is let on to start the apparatus before it has cooled. There are other conditions, the inventor of the device below states, under which an injector is also likely to fail, and thus to imperil the boiler; but all such difficulties, he considers, are effectually avoided by the novel attachment represented in the illustration.The apparatus is to be attached in the discharge pipe and between the nozzle of any injector and the boiler, and it consists of a lateral tube, A , introduced $\mathrm{b} \in$ tween the nozzle and a check valve, B, to the pipe which leads to nozzle and a check valve, B, to the pipe which leads to
the boiler. In the tube, A, sectional view, Fig. 1, is placed the boiler. In the tube, A, sectional view, \mathcal{C}, the stem of which passes through guides, and a valve, C , the stem of which passes thro
which is held open by a spiral spring when which is held open by a spiral spring when
the steam is shut off, and the pressure thus the steam is shut off, and the pressure thus
removed. On the admission of steam, and as soon as the pressure of the same becomes greater than the power of the spring, the valve, C , closes. The steam, being thus prevented from escaping, opens the check valve, B, and passes into the boiler. The object of the check valve, placed between the overflow and boiler, is to shut off the boiler pressure from the overflow. If desired, the spring on valve, C, can be dispensed with and thesame worked by hand. A perspective view of the device is represented in Fig. 2. It requires no skill for its operation, as it is entirely automatic. With any injector, we are informed, it will lift hot water or feed under pressure. It is also claimed to obviate entirely the use of the pump. The simplicity of the invention is obvious, and its practical efficiency, it is stated, has been thoroughly proven by experience. It is now in successful use at the works of the Lehigh Zinc Company, Bethlehem, Pa., the Bethlehem Iron Works, Coleraine Iron Works, Redington, Pa., and in various Iron Works, Res
other localities.
Patented through the Scientific American Patent Agency, February 9, 1875. For further particulars address the inventor, Mr. David Lees, or S. C. Stewart, Tyrone Forges, Blair county, Pa.

STEWART'S IMPROVED STOVE DAMPER.

From the engraving of the device herewith presented, it will be observed that the means used for closing more or less the interior of the pipe cousists in double plates, instead of the single plate commonly employed. The double in

clines thus formed, it is claimed, oppose the draft with less abruptness than the single plate damper, and besides may be more tightly closed than the latter.
The two plates, A, are pivoted separately, and are ar ranged so that they meet and close in the middle for shut ting the damper. The pivots are geared together outside the pipe by segmental wheels, B, so that both are worked simultaneously by the same bandle. When partially open, the plates incline upward toward the middle opening in a way which facilitates the draft, by directing it to the center of the pipe.
Patented April 6, 1875, through the Scientific American Patent Agency, to Dr. Jacob Stewart, of Moline, Rock Island county, Ill., who may be addressed for further particulars.

Amalgamation of Battery Zincs.

The simplest and quickest method is that of M. Berjot (a chemist at Caen), which consists in immersing the zinc in a liquid composed of nitrate of mercury and hydrochloric acld. A few moments is sufficient for the complete amalgamation of the zinc, however soiled its surface may be. With a quart of this liquid, which costs less than 50 cents, 150
zincs can be amalgamated. The liquid should be prepared in this manner:-Dissolve in warm water 200 grains of mercury in 1,000 grains of aqua regia (nitric acid one part, hy drochloric acid three parts). When the mercury is dis solved, add 1000 grains of hydrochloric acid.

The Galvanic Battery.

In regard to the economical application of electricity, no subject is so important as the relative merits of different forms of batteries. For illuminating purposes and lectura demonstration, we have hitherto had to rely upon the Bunsen or Grove battery. But, during the siege of Paris, a form of bichromate of potash battery, known as the Chutaux battery, was frequently employed to yield the eleotric light used on the ramparts Count Moncel gives a full account of

LEES ATTACHMENT TO INJECTORS
different forms of the Chutaux battery, and furnishes some interesting data for the comparison of the Chutaux and
Bunsen battery when giving the electric light. The following results were obtained from the two batteries. each being composed of 48 cells, and each working for two hours:

Bunsen's battery.
 $\begin{array}{llll}109 & 68 & 87 \cdot 5 & 318 \cdot 61 \text { square inches. } \\ \left.\begin{array}{llll}109 & & \end{array}\right)\end{array}$

Chotatx Battery.
At beginning. Eng. ${ }^{\begin{array}{c}\text { Light equal to }\end{array} \text { Mean. }}$ Surface of zinc employed. $\begin{array}{lll}132 & 63 & 975 \\ 92.88 \text { square inches. }\end{array}$ Carcel lamps.
In working each of these batteries, for half an hour sucoessively, the following results were found:
$\overbrace{\text { Light equal to }}^{\text {Chutaux }}$
1st period of half an hour...... 109 Carcel lamps. 132 lamps. 2nd period of half an hour.... $\left\{\begin{array}{l}\text { Beginning }{ }_{13 \pi}^{134} \text { lamps. } \\ \text { End }\end{array}\right.$ 3rd period of half on hour th perio of hal Beginning 100
End

According to these figures, the bichromate of potash bat tery flags much quicker than the nitric acid battery, a fact which evidently depends on the polarisation of its plates, to which it is always liable. It is, however, more economical. One rather important advantage of these batteries is that they can be kept in a closed place without giving out any odor or unhealthy emanation; besides this, the liquid evap orates slowly. The author had also been able to verify the statement that, after a battery had been charged for more statement that, after a battery had been charged for more
than a year, and then left alone, it had hardly lost anything than a year, and then left alone, it had hardly lost anything
of its power. The relative consumption of zinc and acid, and the comparative cost of working of the whole battery, are not given; but so far as the foregoing data are concerned, the Chutaux evidently promises extremely well. So says the Telegraphic Journal. For lecture purposes, an electric light is rarely wanted for more than half an hour, the great desideratum being a rapid means of charging and dischar ging the battery. In this respect nothing could be better than the Chutaux ; being a single fluid battery, the plates can be raised and lowered easily and rapidly. One of the characteristics of this bichromate battery is the constan percolation of fresh solution through the battery; by this means a good deal of the bad effect of polarisation is go id of. Here is the composition of the solution for his bat teries, recommended by M. I'hutaux: Water, 1,500 grains bichromate of potash, 100 grains; bisulphate of mercury, 50 grains; sulphuric acid, 200 grains. The electromotive force of such a cell is at first more than twice that of a Daniel cell, but in duration it cannot, of course, be favorably com pared
The cost of working the Chutaux, Count du Moncel finds to be about 35 cents, which he states is less than that of a Daniell cell, the advantage being that in the Chutaux an electromotive force of nearly double is obtained, and an internal resistance less than half that of the Daniell, besides other obvious advantages noticeable in the working of the author, can furnish a rarely brilliant electric lisht at of about 15 cents per hour. If this be the case, the Chutaux
battery will rapidly come into use for the purposes of lecture demonstration.

The Lightning Rod Man.

He drove his team close up to the fence, got down, and rapped at the door. The widow Gilkens opened it, when he said: "Mrs. Gilkens, I am cognizant of the circumstances by which you are at present surrounded, left as you are to trudge d own the journey of life through a cold and heartless world-ro longer sustained and encouraged by the noble one to whom you gave the treasures of your heart's affection, and bowed down by the manifold cares and responsibilities incidental to the rearing of eight small children on forty acres of sub-carboniferous limestone land; yet, Mrs. Gil. kens, you are aware that the season is now approaching when dark, dismal, dangerous clouds at frequn intervals, span the canopy of heaven; and when zigzag streaks of electricity dart promiscuously hither and thither, rendering this habitation unsaf: for yourself and those dear little ones; hence, therefore, let me sell you a c p per wire, silver tipped, and highly mag netic lightning rod."
The woman staggered back a few paces and yelled: "Narcis! unfasten old Cronch!" In another instant a savage bulldog came dart. ing round the corner of the house with bris tles up, thirsting for gore. The dog lad al ready mangled a machine agent and a paten soap man, and was held in creat asteem the better class of citizens for his the betrvice; but when his eye his courag and service; but when his eye met the hard, penetrating gaze of Mr. Parsons, his chops fell, and he slinked off and hid in the curran bushes. Then the man said: "My dear lady you seem to be a little excited. Now, if you will allow me to explain the probably inesti mable-"
"Dern ye, I know what will start ye," said Mrs. Gilkens, as she reached under some bed clothing, and brought forth a horse pis tol; but owing to the shattered condition of her nerves, her aim was unsteady, and the charge of buck shot missed save where a few scattered ones struck his cheek and glanced off. A hard metallic smile spread over his coun tenance, as he leaned his shoulders against the door frame and again commenced: "My dear madam, such spasmodic manifestations of your disinclination to make a judicious in vestment of a few paltry dollars-'
"Hi-eo!" shrieked the widow, and collapsed into a kind of jerking swoon, and before she had recovered a bighly magnetic lightning rod decorated her humble domicile, and Parsons had the blank note filled out already for her signa ture.-Madison (Ind.) Courier.

IMPROVED TURPENTINE TOOL.
In gathering turpentine, it is necessary to have a tool for scraping the tree downwards, and one for pushing upwards. Mr. Walter Wat son, of Fayetteville, N. C. has recently patented through the Scientific American Patent Agency an implement which com bines the two appliances as shownin the engraving The shank, A, is to be in serted into a handle of any convenient length. B is the scraper, the edge, C of which is sharp. The arms, D D, are made so strong that the pressure on the edge, C , may not deflect them from the horizonta position. The blade, F has a sharp edge at G, and is attachtd to the shank, A by the enlargement, F. By using one or the other of these blades, any globules of resinous matter which exude from the bark of the tree can readily be detached

Steam Transportation on the Canals.

 As soon as the Erie canal opens, the Baxter Steam Canal Boat Company will resume operations with twelve boats, each having a carrying capacity of about 225 tuvs. Contracts have been made for the construction of six additional boats, which are expected to be ready for use in July. When these boats are built, it is the purpose of the Company to send one from this city daily. It is believed that fifteen days will be the average time consumed by each boat in making the trip from New York to Buffalo and return, not including the time occupied in loading. Improvements have been made in construction by which space is gained fore and aft, but no attempt has been made to secure greater speed. As the canal is occupied by boats drawn by horses, the steamers must run carefully to avoid collisions.The following method is used in Germany for the presorvation of wood: Mis 40 parts chalk, 50 resin. 4 linseed oil, melting them together in an iron pot; then add one part of ative oxide of copper and afterward 1 part of sulphuric acid. Apply with a brush. When dry, this varnish is as hard as stone.

The Cincinnati Circular Saw Test.
During the Industrial Exposition held in Cincinnati last fall, a competitive trial between the circular saws of nine well known makers took place. The contest was briefly alluded to by us at the time: and since its occurrence, we have noted the fact that the prize offered, namely $\$ 100$ in gold, was carricd off by the solid-toothed saw made by Messrs. Emerson, Ford \& Co., of Beaver Falls, Pa. The results obtained, owing to the thorough manner in which the competition was conducted, were very complete. We find them in tabulated form in the official report of the jurors, and reproduce them below, not doubting but what they will be of much interest to wood workers generally
The saws were of a uniform diameter of 56 inches, and each was required to cut a poplar log, 20×20 inches, and an oak $\log , 16 \times 16$ inches, and to make from each timber, respectively, 16 and 12 boards; or in other words, to saw through 300 and 176 square feet of lumber.
It will be observed from the annexed table that the competition was exceedingly close, and that the winning saw was narrowly pressed by the Hoe planer tooth tool. Comparing the times, the Hoe was but one second benind on the poplar log, and fifteen seconds on the oak log; but on the other land, the Emerson had the advantage of slightly more revolutions, and in onc case a faster feed. The Hoe furthermore produced twelve perfect oak boards, and in this respect stands ahead of any saw on the list. Taking results through, however, the award of the prize to the Emerson was a just one, but substantially the distinction between it and the Hoe saw is so small as to amount to nothing in practical use. There is no doubt but that both saws are exceptionally good tools; perhaps we may say each is the best of its class, the Emerson of the solid-toothed, the Hoe of the planer-toothed implements. At all events, both did admirably well; and for this reason, both are entitled to the best consideration of the public.
The following is the table above alluded to
CONTESTANTS IN TIIE TRIAL OFISAWS
AT 'IHE CINCINNATI EXPOSITION,

1874.

Correspmateuct.

The cause of the Tides.
 To the Editor of the Scientific American:

On page 273 of your current volume, Professor S. H. Trowbridge inquires into the cause of tides. I will try to disperse his doubts in as few words as the subject will admit of.
It is beyond doubt that tides are caused principally by the action of the moon, as their periods keep pace with the apparent motion of the moon, and have done so for centuries. We know that the earth and moon are attracted by each other; and on the other hand, we know that these two bodies are not approaching. There must, therefore, evidently exist another force which balances the attraction. It is generally said that the moon rotates round the earth once a month, but in reality both moon and earth rotate round their mutual center of gravity. By this peculiar rotation, a force akin to centrifugal force is produced, which prevents the approach. ing of the two bodies. Now we see that there are two forces acting between earth and moon, which are in perfect equilibrium in the centers of either of the two lodies. But the attractive force is greater in those parts of the earth that are nearer the moon, and causes an upheaval of water on that side. On the opposite side of the earth the contrary is the case, namely, theatraction towards the moon is less than in the center of the earth, and that force, which keeps moon and earth apart, gets the overhand and causes an upheaval and earth apart, gets the overhand and causes an upheava of water on that side also. The tidal wave produced by the
moon must, therefore, be necessarily a double one. The moon must, therefore, be necessarily a double one. The
wave caused by the sun is double for the same reason. On wave caused by the sun is double for the same reason. On the side of the earth nearest the sun the attraction is greater,
and on the opposite side the centrifugal force, caused by the and on the opposite side the centrifugal force, caused by the
orbital motion of the earth, is gaining on the diminished attraction.
A tidal wave caused by the mosn alone would have the shape shown by dotted line in Fig. 1 (greatly exaggerated in dimension, of course). If now the sun and moon form a straight line with the earth, no matter whether on the same or on opposite sides, the solar wave will be produced in addition to the lunar wave; and the real tide is shown in the diagram, where the additional solar tide is cross-lined. We see that spring tides are produced in both cases. When, however, sun and moon are in quadrature, thesolar flood will be on the lunar ebb, and the solar ebb on the lunar flood, as indicated in Fig. 2. A glance will show that the results are
not four floods a day, as your correspondent supposed, bu merely a diminution of the Junar tide. When the sun and moon form an angle of 45°, or 135°, or any other oblique angle, the solar wave is on one side of the lunar wave, caus ing, as it were, an inclination of the resulting wave, which may be in advance or in rear of the lunar wave, according to
the relative position of sun and moon. The period of the

high tide is, therefore, subject to slight variations; but the mean duration coincides mathematically with the mean apparent motion of the moon.
The hight of the wave is in proportion to the depth of the sea, or to the quantity of water exposed to the tidal in fluences.

The velocity of a wave must not be confounded with the velocity of the transmitter of the wave. The hight of the tidal wave is so small in comparison to its length that the mo tion of the transmitter is next to nothing, comparatively speaking, and it can therefore not do much harm in dashing upon the shore. For the same reason, we have no means of bserving the wave on the high seas.
The tidal influence tends to draw the tidal wave round the earth at a rate of about one thousand miles an hour, while the natural velocity of waves (depending on the depth of the sea) is considerably less. The effect will be similar to that of ringing a bell by pulling at intervals which are not in harmony with the period of oscillation of the bell. Such a
acid. It is of great value in certain forms of venereal dis eases, which, according to the last developments, arc of par asitical nature.
The first specimens of salicylic acid ever brought to America were brought here by me in June last, and given to Pro fessor N. R. Smith of this city, and to the Academy of Med icine in Ohio, who adopted it (on trial) into their hospital they afterwards published my investigations and their re port, edited by Professor Orr, in The Clinic of November 7 1874.

The first article ever written upon the use of salicylic acid as a disinfectant was written by myself in Leipsic in May, 1874 (cholera Asiatica, published under the auspices of the Medical Board, afterwards translated into English for the Baltimore Gazette of July 10, 1874).
My object in thus particularizing is to present my claim to having introduced salicylic acid into this country. I hope you will do me the justice to iosert this.

Geo. Halsted Borland, M.A., M.d
Maryland Academy of Sciences

American Steel Manufacture.

To the Editor of the Scientific American:

We notice in your paper of May 8, 1875, an article entitled "The Recent Remarkable Progress in the Steel Industry," which, we think, does us an injustice, unintentional, no doubt; but at the same time, we think you ought to correct the same. You say " the Port Henry product yields seventy per cent in the furnace, and the deposit is seeming inex haustable. The ore, however, is not capable of being smelted into steel."
The remark is correct as applied to our Old Bed ore; but the person furnishing you with information overlooks en tirely our New Bed ore, which is used for Bessemer steel purposes. The whole supply, nearly, for the last four years, has been used by Messrs. Witherbees and Fletchers, in their blast furnace, for making pig iron, all or nearly all of which was sold to Messrs. John A. Griswold \& Co., of Troy, for making Bessemer steel. Witherbees \& Fletchers shipped them about 3,000 tuns of the same in this present winter and
spring. The Cedar Port Iron Company of this place have a spring. The Cedar Port Iron Company of this place have a new blast furnace nearly ready to blow in; and they expect to use this same ore for making iron for Bessemer purposes.
Port Henry, N. Y.
Witherbees, Sherman \& Co.
To the Editor of the Scientific American:
In an article in your issue of May 8, you speak of the Crown Point ore "from which steel can be at once produced, without admisture of other ores." By this the reader will understand that the pig iron from the Crown Point ore is of a quality that, by itself, will make first quality Bessemer steel.
We believe that you will, by inquiry, find that this is not correct ; and while the Crown Point iron can be and is used for Bessemer steel, it is with a misture of other irons which are lower in phosphorus and sulphur. The furnace at Crown Point is allowed a maximum limit, in its pig iron, of 0.35 per cent of phosphorus, and 0.23 per cent of sulphur, pro portions which are not admissible in Bessemer steel irons without an admixture of otherirons which will bring down the average of phosphorus and sulphur.
Cleveland, Ohio.
H. B. Tuttle.

sCIENTIFIC AND PRACTICAL INFORMATION.

the american association for the advancement of science.
Mr. F. W. Clarke, of Cincinnati, Ohio, was appointed, at the last meeting of the above named society, to make an effort to obtain a full attendance of chemists, manufacturers, and others interested in the progress of chemical science, a subsection of the Association being especially and permanently devoted to that science and its branches. He asks us to state that the next meeting will be held at Detroit, Mich. commencing on August 11.

RECENT ASTRONOMICAL DISCOVERIES
The first calculations based on the data obtained by the transit of Venus observations have been announced by Piriseux. The solar parallax determined is 8.879 seconds, data noted by the French observing party at Pekin being used. A telegram from the English eclipse expedition at Bangkok, Siam, announces success in photographing the spectrum of the chromosphere, during the recent solar eclipse. Eight good pictures of the corona were taken.
The discovery of another small planet, No. 144, has been made by Perrotin of Marselles.
faults of construction in battery contacts.
Emile Girouard points out that one great obstacle in the way of our obtaining cheap electricity lies in the defect of the contacts. The rivets which connect the zinc to the carbon are often ill made; and after having been in use for some time, they are corroded all round, and the oxidation prevents the contact from being perfect. The current, consequently, is unable to pass, unless the tension is considerable enough to unable to pass, unless the tension the oxides. The author overcome the bad conductivity of the oxides. The author
proposes to obviate these defects by having all connections, proposes to obviate these
etc., made of platinum.
O. E. W. says: "The Scientific American is now in its thirtieth year; and during the entire time. I have scarcely missed reading a dozen numbers of it. All that you claim for it and much more is true; it cannot be excelled, and no other paper of its kind equals it. I want to thank you now for the thousand useful things that I have gathered from it, and I hope that its pages may never be less."

PRACTICAL MECHANISM.
 by joshea rose.

Number XXIII
rougling out
Our work, being countersunk, is now ready to be turned down to nearly the required size all over, before any one part is made to the finished size. The reasons for doing this are as follows: Upon the outside skin of all metal work, a tension is produced. In wrought iron and other forged work, this is caused by the working of the metal by the blacksmith, or, to a lesser degree, by the rolling mill, if the metal has been rolled. In iron, brass, or other castings, it is produced by unequal cooling after the metal has been cast, especially if the casting has been allowed to cool rapidly, as, for instance, when the casting has been taken from the mold, as is commonly the case, while at a red heat. The effect of blows delivered upon forged work by the blacksmith's tools, is not only greater tuon the exterior than upon the interior of the metal but is greatest upon that part of the forging which receives the most working, and upon that part which is at the lowest temperature during the finishing process: because the blows delivered during the finishing process are lighter than those during the earlier stages of the forging, and hence their effects do no: penetrate so deeply into the body of the metal. Then again, on that part of the metal which is coolest, the effects of the light hammering do not penetrate so deeply ; and from these combined causes, the tension is not equally distributed over the whole surface of the forging, and hence its removal, by cutting away the outer sur face of any one part, and thus releasing the tension of that part, alters the form of the whole body, which does not, therefore, assume its normal shape until the outer skin of its whole surface has been removed. While the metal is at about an even heat all over, and is above a red heat, the effect of working the metal by forging it is simply to improve its texture, to close the grain, and thus to better its quality, especially toward and at its outer surface; but as the tension commences, while and after the metal loses its redness, it is an excellest plan, after forging anything of irregular shape, to heat it all over to a low red heat, and to then lightly file its surface so as to remove any protruding scale; then allow it to cool of itself, without any forging being performed upon it at that heat. This process will nearly, if not entirely, remove the tension created by the forging.
The tension upon the outer skin of castings is greates upon that side or face which has the greatest area in proportion to its length and breadth, providing that the conditions under which its cooling takes place are practically equal a all parts, or, on the other hand, is greatest upon the part which conls the most rapidly, and is in all cases greater upon iron castings than upon forgings. It is so great in the for mer as to form the most important of all considerations in determiniug the order of procedure in getting up cast iro work, especially if it be slight in body in proportion to its dimensions, or of irregular shape. But even in massive bodies its effects are great, as may be instanced in the casting of cannon. A few years ago, when the cooling of casting received less attention than it does at present, it was found that a cast iron cannon made of more than a certain thicknes gained nothing in strength by reason of the inorease of thick ness, because the contraction of the metal, from cooling unequally, caused it to fracture; and it was not until the intro duction of the Rodman method of compensating by artificial means for the tendency to cool more rapidly in one part than nother (by assisting the cooling of the one part and by re turding the cooling of the other) that cast iron cannon of a larger size than those known as sixty nine pounders wer possible of manufacture. In ordinary workshop practice the effect of tension upon castings is most experienced in piston rings and slide valves. As to piston rings, the matte has been fully treated upon in a former chapter; and we will now treat of its effect upon slide valves, and clearly demon strate the practical importance of the subject.
acing slide valves and seats.
There are two methods employed by which to bed slide alves to their seats: one is to surface the flat face and the edges of the valve in a planer, and then to scrape up the flat face to fit the cylinder face, which has first been scraped up to a surface plate; and the other is to leave the planer too marks upon the valve seat or cylinder face, and then to sur face the valve face in a planer, holding it in such a position that the planer tool marks upon the valve face will cross those on the cylinder face when the valve is placed in posi tion, and to put it in without any further surfacing than that performed by the planer. It is admitted that the valve wil move more easily, and the surfaces will be in a better condition to wear smoothly, when the surfaces are trued and scraped than when the tool marks are left upon them; bu if, after the engine has run for a day, the valves are take out and examined, it is very often found that the scraped surface of the valve is no longer true and does not fit to its seat, and that, although the surface of the planed valve is not true, it fits more closely to its seat than does the valve which has been scraped. The omission of the scraping is only justified upon the plea that the valve in that case bed ore readily to its seat. The explanation of this anomaly is hat, when the valve becomes heated, the tension upon it back area becomes partially relieved; hence the shape of the whole valve alters; and it retains this alteration of shape when cold, and at all times when subject to a temperature less than that of the steam or other medium through which it was heated. If, however, it is subjected to a higher temperature, the alteration of its form will, in nearly all cases, ake place to a greater degree, The direction in which this
warping occurs depends upon the inequality of the thickness warping occurs depends upon the inequality of the thickness of the valve in its various parts (it being always thicker in
one part than in another), and upon the evenness with which one part than in another), and upon the
it was allowed to cool after being cast.
A valve whose face is scraped up very true will show any lteration of form much more plainly than one which has been merely surfaced with a planer; and the amount of surace in contact with the seat being proportionately large, it does not wear away so readily. Then, on the other hand, the valve and seat, whose surfaces have been only planed, bear or fit together merely upon the tops of the planer marks, and the consequence is that, when under steam, the whole pressure of the steam upon the back of the valve is sustained by a comparatively very small area of metal, which, there ore, abrades and wears quickly away, and thus permits the valve to bed itself, despite the alteration in the shape of the valve. To remedy this defect, the valve (or other casting) should, after it has been planed, be heated to the tempera ture at which it will be heated when it is in practical opera tion, and should be scraped to its seat so soon as it is cool enoagh to handle, after which it will remain true. From what has been said, the importance (in work which requires to be kept very true) of roughing the work out all over beore any one part is finished will be obvious, since the breaking of the skin in any one part releases the tension on that part, whatever be the temperature it is under when in operation. It is not practicable, on lathe work, to at all times rough the work out all over before finishing any part; but in our present operation, of turning down a plain piece of ron held between the lathe centers, we are enabled to pursue that course, and we will therefore commence the roughing out process with a graver.
the graver
is formed by grinding the end of a piece of square steel a an angle to the main body, as shown in Fig. 67, A being in
tryg. 67.

each case a cutting edge, B, the point, and C, in each in stance, a heel of the tool. The graver is the most useful of all hand too!s used upon metals. It can be applied to either rough out or finish steel, wrought iron, cast iron, brass, copper, or other metal, and will turn work to almost any de sired shape. Held with a heel pressed firmly against the

hand rest (the point being used to cut, as shown in Fig. 68 A being the work, B, the graver, and (C, the lathe rest), it turns very true and cuts easily and freely. This, therefore is the position in which it is held to rough out the work.
The heel of the graver, which rests upon the hand rest should be pressed firmly to the rest, so as to serve as a ful crum and at the same time as a pivotal point upon which it may turn to follow up the cut as it proceeds. The cuttin point of the graver is held at first as much as convenient owards the dead center, the handle in which the graver is fixed being held lightly by both hands, and slightly resolved from the right towards the left, at the same time that the handle is moved bodily from the left towards the right. B this combination of the two movements, if properly performed, the point of the graver will move in a line parallel to the centers of the lathe, because, while the twisting of the grave handle causes the graver point to move away from the cente of the diameter of the work,the moving of the handle bodily from left to right causes the point of the graver to approach he center of that diameter; hence the one movement counames the other, producing a parallel movement, and at the the heel as a pives graver point to follow up the cessity of an inconveniently frequent moving of the heel of the tool along the rest. The most desirable range of thes wo movements will be very readily observed by the operator because an excess in either of them destross the efficacy of the heel of the graver as a fulcrum, and gives it less pow to cut, and the operator has less control of the tool.

The handle in which the graver is held should be suffi iontly long to enable the operator to grasp it with both hands very much out of true. For use on wrought iron, the fit
ides of the graver should not be ground upon the stone, the end only being ground, in the position shown in Fig. 69, A being the grindstone, running in the direction of the arrow, B, the tool rest, and C, the graver
To cut smoothly, as is required in finishing work, the graver is held as shown in Fig. 70, C being the work. The edge on the end of the graver and between the corners, A and B, of the graver, performs the cutting operation.
By holding the graver in the positions described, and in various modifications of the same, the work may obviously be turned parallel, with either round edges,curves, or square shoulders, and it is possible to turn almost any shape with this one tool. For finishing curves, however, the end of the graver (the cutting edge, on the end and between the

Fig. 70.

sIoE VIEW
high speed. As little as cuts and more readily than the Fo
des of on brass and other sof metals, the two top flat 11, A being the cutting be ground away, as shown in Fig.

the tool, when cutting soft metals, is comparatively slight, so that the graver is rarely applied to such metals in the posi tion shown in Fig. 68

THE HEEL TOOL
In those exceptional cases in which, for want of a lathe having a slide rest, it becomes necessary to perform com paratively heavy work in a hand lathe, the heel tool should be employed. This tool was formerly held in great repute but has become less useful by reason of the advent and universal application of the slide rest. It is an excellent on for roughing work out, and will take a very heavy cut for a for roughing work out, and will take a very heavy cut for a
hand tool, because of the great leverage it possesses, by rea hand tool, because of the great leverage it possesses, by rea
son of its shape and handles, over the work. A heel tool i son of its shape and handles, over the work. A heel tool is
shown in Fig. 72, A being the tool, which is a piece of square

bar steel forged at the end to form the cutting eflge. The body of the square part is held (in a groove formed in the wooden handle, B) by an iron strap, C, which is tightened by screwing up the under handle, D, which contains a nut into which the spindle of the strap, C, is screwed as the handle D, is revolved. The heel, F, of the tool is tapered, so that it will firmly grip the face of the lathe rest, the cutting edge E, being rounded as shown above. The tool is held by grasp ing the handle, B, at about the point, G, with the left hand and by holding the under handle, D, in the right hand, the extreme end, H , of the handle being placed firmly agains he rightshoulder of the operator. The heel, F, of the too must be placed directly under the part of the work it is in ended to turn, the cutting edge, E, of the tool being kep ip to the cut by using the handle,D, as a lever and the heel F, of the tool as a fulcrum. Not much lateral movemen must, however, be allowed to the cutting edge of the tool to make it follow the cut, as it will get completely beyond the manipulator's control and rip into the work. Until som knowledge of the use of this tool has been acquired. it is be er not to forge the top of the cutting edge, E, too high from the body of the tool; since the lower it is, the easier the too is to handle.
The heel tool should, like the graver, be hardened right out; but in dipping it, allow the heel, F , to be a little the softer by plunging the end, E, into the water about half way to F ; and then, after holding it in that position for about four seconds, immerse the heel, F, also. After again holding the tool still for about six seconds, withdraw it from the water and hold it until the water has dried off the point, E; dip the tool again, and quickly withdraw it, repeatin his latter part of the operation until the tool is quite cold The object of the transient dippings is to prevent the junction of the hard and soft metal from beirg a narrow strip of metal, in which caso the tool is very liable to break at that junction. The tool should be so placed in the handle that there is only sufficient room between the cutting edge and the end of the handle to well clear the lathe rest, and should be so held that the hardle stands with the ond. H raised slightly above a horizontal pesition, the nocesuary rake being given by the angle of the top face, at E . It is culy ap. plicable to wrought iron and steel; but for use on those hand tool.

IMPROVED SKEIN SETTER.

The machine represented in the engraving is claimed to turn an axle to a pattern so as to make a perfect fit, the axle being produced in the exact form or shape of the inside of the skein or pattern used. At the same time the proper pitch is given to the wheels, all four of which are placed in a plumb spoke, this bring necessary to secure an easily running wagon. The apparatus also gives any gather required.
In preparing axles for the machine, it is necessary, first, to chop off the corners as far back as the skein reaches on the axle. It is not needed to lay off the axle, as the machine the clamps as shown, and one end of the bar, A, having a friction roller attached, tion roller attached,
is then placed inside is then placed inside
of the skein or patof the skein or pat-
tern, B. The bar is tern, B. The bar is then moved lack to
the bottom of the g'zein or pattern, by tarning the crank wheel, which is repiesented on the side of the frame. The asle is now placed botween the clamp. ing flanges, which are loosened or tight. ared hy the right and eaed hy the right and left hand screw, re presented in the $\in \mathrm{n}$ -
graving as holding the axle in position: aod the machine is started by pulling the handle, which is attached to a lever in connection with a friction clu'ch.which works inside of the rim of the driving pulley, C. By means pulley, C. By meas
of a feed screw, the of a feed screw, the sliding frame cylinder and bar, with the knife attached a D, are fed upon the asle until the friction roller comes outside of the skein or pattern. The machine is then stopped by its own mechanism, and cannot be again started until the skein is removed from the clamps and another skein is substituted in its place for turning the opposite end of the axle. When the work is completed, the skein or pattern will fit the wood, it is stated, with perfect accuracy throughout the length turned. The time necessary for fitting the skeins for sixty five wairons is said to be ten hours, and for fitting the ends of wagon poles, used by agricultural shops, is one minute per pole.
The manufacturers submit a number of testimonials from parties having the machine in use, in which its working is parties having the machine in use, in which its working is Studebaker Bros., of South Bend, Ind., Brown Manufactur Studebaker Bros., of South Bend, Ind., Brown Manuf
ing Company, of Zanesville, Ohio, and a number of ing Company, of Zanesville, Ohio, and a number of
other firms employing the invention. The device is the subject of several patents, the latest dated August 18, 1874. For further particulars address the Union Foundery and Machine Works, Mansfield, Ohio.

IMPROVED YARN SPOOLER.

Two machines, one for winding yarn and the other for knitting, both of improved construction and possessing many valuable advantages, have already been described in these columns as manufactured by Mr. described in these columns as manufactured by Tompkins, of Troy, N. Y. We now add a third C. Tompkins, of Troy, N. Y. We now add a third
device, by the same maker, regarding which but little device, by the same maker, regarding which but little
explanation supplementary to the engraving is needed, explanation supplementary to the engraving is needed,
as its uses, as well as its simple construction, will doubtless be obvious. Its object is to wind skein yarn upon spools for thesewing machine, and it is intended principally for hosiery manufacturers who color their yarn and match the goods. The pulleys are leatherfaced : and the jaws, whicb hold the wire on which the spools turn, are hinged and made heavy enough to cause the spools to move with the pulley face. The machine is mounted on legs, so as to be independent of bench room. It is automatic, only requiring the atof bendant to keep the ends tied; the reels are light and tendanta to liffere sized aleins. It is also calcuadjustable to difere sizels ion. It is also lated to save the der user by spools irregularly wound, and the vesatious breakiny of sewing machine needles from the same cause; and it saves time in getting the skein thread on to the spools. The manipulation of the machine is a very simple matter, a child being usually compe. tent to attend it.
Further particulars regarding the invention may be ob tained by addressing the manufacturer, as above.

A GOOD lacquer for philosophical instruments is composed of alcohol 8 ounces, gum guttæ 3 ounces, gum sandarac 8 ounces, gum elemi 8 ounces, dragon's blood 4 ounces, seed lac 4 ounces, terra merita 3 ounces, saffison 8 graing, and pulverized glass 12 ounees.
which flows off by the drains. This process is maintained

Recovery of Salt Solls.

Along the Mediterranean coast of France, there are vast surfaces of ground that are entirely unproductive. The soil, however which is of rich alluvium, contains the principles of a vigorous vegetation; but the presence of marine salt renders it quite sterile. M. Joannon states that he has succeeded in overcoming this pernicious feature in the following simple way: The land is first drained, and dug up to a great depth (about 20 inches), then covered with fresh water. The water filters through and dissolves the salt, with continuous immersion for three to five months, and the

IMPROVED SKEIN SETTING MACHINE

ground is then suitable for agriculture. The general practice
of this method, he says, woaId reclaim for France a whole of this method, he says, wo
department of fertile land.

Curlous Magnet.

In the year 1600 Galileo wrote to a friand about a wonder ful magnetic stone, one property of which was that the ame pole would both attract and repel the same piece of iron. At a distance of four or five finger lengths, it attracted the piece, but at a distance of one finger length it repelled it. He found, on examination, that the piece of iron was mag netized steel. In a note to the French Academy, M. Jamin says he is able to produce the phenomenon in a quite intelligible way. He magnetizes a bar to saturation with a cur-

TOMPKINS' YARN SPOOLER.

rent producing (say) austral magnetism. Then with an in verse current he communicates the certain amount of borea magnetism, less than the austral, and leaving some of it in the deeper parts. Then he dissolves the steel with acid which gradually removes the boreal layers, and ere long discloses the austral. Now, the latter are not disclosed equally all over; they make their first appearance at the extremity, on the edges and corners, the boreal layers still ocoupying
most of the surface: and (in contrariety to the latter) they have great tension, but small magnetic moment. Suppose, now, the austral pole of a magnet to approach. While it is still distant, it is subject to the predominating effect of the boreal layers of the bar, and is attracted. But when brought quite near the extremity, the austral points gain the predominance and there is repulsion; thus matching Galileo's mysterious stone (which, somehow or other, got lost).

Utillzation of Power.

Mr. F. J. Bramwell said in his annual address to the $\mathrm{Ir}^{\boldsymbol{5}}$ stitution of Mechanical Engineers: " Do we, in our applications of power, make as much use of wind, water, and waves as we ought, remember. ing that their jower may be transmitted to a distance? . Do we resort, to any large ex. tent, to sources of row. er in Nature other than coal? Is it not the fact that mechanical invention has gone back in these matters rather than forward? And do we utilize that primary source of pow. er, the heat of the sun, the current heat fron, year to year, making year to year, making the most of barren hill. sides, as it seems to
me we might do, by me we might do, by
planting quick-growplanting quick-grow-
ing trees, which, fostered and matured by the sun, would yield large quantities of wood to be used as fuel for domestic purposes? Are we estimating at their full valuethe de. posits of peat, and are we not tempted to pars by this large store of fuel because its use is attended with difficul
ties? Is it not true ties? Is it not true
that we usecoal in the
that we usecoal in the
most grossly wasteful manner? How much of the fuel goes up the chimneys of our furnaces unconsumed, in the form of visible carbon, or in the worse, because less readily detected, form of invisible carbonic oxide?' In the face of such faults and errors, Mr. Bramwell argues that it is the duty of mechanical engineers, "by precept, practice, and example, to do all that lies in their power to cause all to respect and un derstand the value of that which they have too long lightly treated and grossly abused."

The Use of the Mosquito.

Apropos to our article in answer to an inquiring correspondent on the uses of the bedbug, here is something which imparts a value to the winged nuisance which aids and abets the aforesaid crawling individual in his Macbeth-like efforts toward murdering sleep. Dr. Samuel W. Francis says that it is his "firm conviction that the mosquito was created for the purpose of driving man out of the malarial districts," and "that no region where chills and fever prevail can be free from the pest." "Now," be adds," if man will not go after the warning is given in humming accents, then the mosquito injects hypo dermically a little liquid which answers two purposes -first, to render the blood thin enough to be drawn up through its tube, and second, to inject that which pes sesses the principles of quinine."
The difficulty with this roseate riew of the mosquito family is that it imposes upon the propounder the necessity of explaining why it is that, in hundreds of perfectly healthy localities, the insects appear in swarms, also why the females alone have been constituted the biters, to the exclusion of the males, and why, if the fluid in the proboscis possesses quinine properties, it has been known to cause ugly uloers. We do not propose to accept Dr. Francis' theory so hastily. We decline to admit that the mosquitoes are of any use save to the birds and the bats, to the inventors of patent mosquito bars, to that enter. prising Yankee who devised an astonishing machine for capturing them in immense quantities and converting them into manare, and to Professor Mayer, who found out that they hear with their antennæ.

The expensive part of the Daniells' battery is the copper plate, the cost of which can be reduced two thirds in the following manner: Procure sheets of the ordinary sheet tin of commerce, brighten, and plunge into a very weak copper-plating solution, in connection with a voltaic battery of a very low quantity. In fifteen minutes a tenacious film of copper will have been deposited on the tinand the plate can then be bent into shape and used in the ordinary manner.

A silvering powder for coating coppor consists of nitrate of silver 30 grains, common salt 30 grains, cream of tartar $3 \frac{1}{3}$ drachms. Mix moisten with water, and apply.

THE SCORPION FLY.

The return of warm weather and the awakening of the insect world are usually simultaneous; and our farmers and gardeners are on the alert, ready for battle against their puny but powerful enemies. The enormous fecundity of insects is, however, somewhat offset by the great appetite for mutual destruction which characterizes many species; and some of the most pestiferous of them are useful, as they frequent. of the most pestiferous of them are useful, as they frequently destroy myriads of creatures against which human ingenuity can avail little. The scorpion fly, which we herewith
illustrate, while in its larval state burrows under the surface illustrate, while in its larval state burrows under the surface
of the earth, and is suoposed, with apparent reason, to prey of the earth, and is supposed, with apparent reason, to prey
on the roots of plants: but no sooner does it develope into a on the roots of plants: but no sooner does it
fly than it becomes carnivorous, rapaciously devouring any live insect that it can catch Its appearance reminds $u s$ of the dragon fly; and although it is not so murderous as that celebrated marauder, it does good by destroying the leaf-rolling caterpillars which destroy the foliage (aud the vitality) of so many currant and gooseberry bushes, depo siting their eggs in the curled-up leaves, and so so enabling their ofsspring to defy
History carries back the name of scorpion fly to the days of Aristotle, who fancied these insects were winged scorpions of diminutive size. The joints of the abdomen do suggest a comparison between the two. Other observers have seen a resemblance between the shape of the head (in one species at least) and that of the horse. We miss the brilliancy and lustrous beauty of the eyes so observable in the dragon flies; but yet these organs are keen enough in the scorpion fly tribe. The wings are gauzy, as in the dra. gon flies, and spotted with shades of gray and brown, while the forceps at the tail of and brown, while the forceps at the tail of the male fly indicates another resemblance ; this is said to have strength to pierce the human skin, but we incline to doubt this. The
females, unlike the dragon flies, have an females, unlike the dragon flies, have an ovipositor or egg placer, rendered necessary
by the mode in whish the eggs are deposi. by the mode in whi h the eggs are deposi. ted; otherwise they are equipped as are their partners, and they subsist in the same manner. The legs of these insects, to which al. lusion has already been made, are well worth looking at under a moderate magnifying power, as they are surrounded with finely cut spines arranged in rings; while the knee joints are fringed and spurred, and the ex. tremity of the foot bears toothed claws, which have been compared to those with which some spiders are furnisbed.

The larve of the scorpion flies The larve of the scorpion flies are cylindrical in shape, studded with tubercles, and with short fore legs; the head, somewhat flattened, facilitates the burrowing operations that are essential in thelr mode of life. Having reached maturity, each one scoops out for itself a cell, and there becomes a singularly squat pupa, exhibiting not much resemblance to the perfect insect that is to appear from it. It should be noticed that, if one of these flies is laid hold of, it executps such contortions that some persons are alarmed and speedily let it go.

THE DEATH'S HEAD MOTH
Among the lepidoptera, an order which includes terflies and moths, the tribe of splingina is in in many ways remarkable. Its specific title is derived from sphinx, and is attributable to a habit of the larve, of sitting with the head and fore part of the body raised, in some resemblance to the well known recumbent images of ancient Egypt. The hawk moth is one of the largest species of this order.
Another and well known member of the tribe is the death's head moth, dark brown in color, va riegated with yellow, which has on the back of the thorax a deep orange mark, bearing consider able resemblance in shape to a buman skull. This was once regarded as ominous, ard the appear ance of many of the moths was taken for a warn ing of an approachin: pestilence. The omen is ing of an approachin: pestilence. The omen is certainly portentous, but only to the potatoes, the pæ are frequently turned up in digging potato pæ are frequently turned up in digging potato
grounds. The moths are very fond of honey, and grounds. The moths are very fond of honey, and
will invade beehives to obtain it: yet the bees are will invade beehives to obtain it : yet the bees are
not known to attack them, being apparently scared not known to attack them, being apparently scared
by the intruders, who emit plaintive sque sks when any one tries to interfere with their proceedings. Our engraving gives an accurate representation of this singular caterpillar, which has always been an interesting study to naturalists, and is evidently not unimportant to agriculturists and gar. deners.

The Snapper Telegraph Sounder.

A little instrument is sold in the streets of New York city for 25 cents, for facilitating instruction and practice in telegraph manipulation. It consists of a little strip of ribbon steel mounted at one end in a soft metal block, indented in the middle by a hammer and punch, and fitted at the other ond with a brass tip. By pressing down the spring a dis-
tinct snapping sound is produced, which is repeated when the spring is allowed to resume its normal position. With the aid of this instrument-which is sufficiently portable to be carried in the waistcoat pocket-conversation can be carriel on between persons initiated in the use of the Morse sounder.

Tyre Rolls.

M. Dallar, an engineer of Dusseldorf, has made a new arrangement for rolling tyres. The rolls are on vertical axes. The smooth faced roll, which corresponds with the inner face of the tyre, is mounted on a vertical arbor, which receives its movement through bevel wheels from a horizontal

METAMORPHOSES OF THE SCORPION FLY.
main arbor turned by a t win steam engine, of which the fol lowing are the principal dimensions, etc.: Diameter of cylin der, 10 inches ; stroke, 36 inches; steam pressure, 8 lbs. ; re olutions per minute, 70 . The profile rolls are three in num ber, the first reducing the tyreafter it has been forged under he steam hammer, and the t wo others completing the work. An arrangement like that adopted in lathes allows of giving two distinct movements to the three rolls, a longitudinal movement to bring the roll up against the tyre, and a transverse movement to bring each of the three in succession
into action. The last movement is made by hand with the aid of a screw to which a wheel is attached, the transverse carriage bearing the three rolls being thus made to slide on the great carriage which has the longitudinal movement.

LARVA OF THE DEATH'S HEAD MOTH.

This latter is mounted somewhat after the fashion of a slide rest on the lathe beds, and its movementis effected by hy draulic pressure brought to bear upon two pistons fixed to the carriages which enter cylinders fixed to the bed. One piston and cylinder, much larger than the other pair, serve
to bring up the roll and press it against the tyre, while the smaller piston and cylinder are powerful enough to with draw it. When the roll is not working, the carriage may be moved by means of a rack and pinion worked by hand. The
apparatus is completed by two pulleys turned so as to serve as guides to the tyre, and the position of which is regulated
by a hand wheel and screw. When wheel and screw.
When large tyres are to be rolled, the number of these guide wheels is increased. A hurizontal roll also supports the tyre. The apparatus is said to do its work perfectly.

The Royal Society Soiree.

The recent annual soiree of the President of the Royal Society was very brilliant and successful. The Royal Society's apartments consist of five noble rooms on the upper floor and two on the ground, and in each a sufficiency of novelties were displayed. In the first were some models, interest in which was at once excited by their simple labels. One of them was a model of Valour's pile driving macbine, used in the construction of the old Westminster Bridge, which was built in 1739 and following years; the other was the original machine, constructed by Heathcote in 1808, which had the effect of reducing the price of bobbin net lace from five guineas a yard to five pence; apropos of which a quotation from Lord Bacon was given on the card: "For upon every invention of value we erect a statue to the inventor, and give him a liberal and honorable reward." In this room two of the prettiest and most instructive experiments were shown by Profes. sor Barrett, namely, the lengthening of a bar of soft iron within a helix of wire by heat the other the remarkable and anomalous changes which take place in the heating and cooling of iron wire. Thus, while the iron is first heating there is a sudden contraction or cooling. And so again, when the heat is cut off, the wire cools a little, and then suddenly reheats and glows, afterwards quietly passing down to a blackness. Now, the notable points of these jerks or changes are that the iron, in the first instance, loses its magnetism, and in the last jerk or oscillation regains it. In the second room some simple delicate radiometers were shown by Mr. Crookes. These consisted of a glass stem supporting a little four-bladed windmill, carrying four disks, one on each end of the four slender glass rays. These work horizontally, supported by a steel poin on a small topaz, and the radiation of light from a common candle at some distance away suffices to make them rotate with great liveliness, in vacuo in a small glass globe. In the fourth room was a werking model of Sir David Salomons' system of automatic railway signaling. Each engine is supposed to carry a battery and electric bell, and beneath it two metal wheels, insulated from each other. and pressing down on a signal line of small rails laid on the center of the sleepers. These central signal lines are double, and are laid in block lengths, one being a front signal line, the other a back sig nal line. On arriving at the termination of one block and the commencement of the next, one wheel will roll on the front signal line, while the other will roll on the back signal line, but at other places the left hand wheel will be free. Now one wire of the battery and one from the bell are taken to earth by being simply attached to the engine, the curren passing through the ordinary rails of the permanent way If, then, while a train was on one of the blocks, anothe train came on the same block, the bell on the engine of the following train would ring-a sufficient warning to stop and avoid danger. In the principal library, on the table beside the model of the fine telegraph ship Faraday, Mr. Siemens exhibited s?me large fragments of rock which had been dredged up in 1,100 fathoms, from the ocean depths, in the laving of the United States cable. Sir William Thom son's tide-calculating machines, in the same apart ment, however, bore the palm of the exhibition. By means of the first one, observation of the rise and fall of the tide is made daily from the shore, and the facts so accumulated are the constants, and form the basis for setting the second or calculating machine, in which a continuous wire passes over a series of wheels placed at various distances, the result being that of harmonic motion of different pe riods and epochs, by which the year's facts can be ground out by turning a hand wheel, and recorded on the paper-carrying drum.

Novel Steam Launch.

During the last few days some interesting experi ments bave been made with a steam launch belong ing to Sir Gilbert Clayton East. The boat itself is not new, having been built some four vears ago by Messrs. Forrest, of Limehouse, and then fitted with engines for driving twin screws by Messrs. John Penn \& Sons, the eminent marine engineers of Greenwich. Her owner, however, finding that the two pro pellers were constantly becoming entangled with weeds, ap plied a shart time ago to Messrs. Penn to supply him with new engine to drive a single screw, as less liable to that in new enghe to dre a colin that in Sir Gilbert East gave directions that the engines should be Sir Gilbert East gave directions that the engines should be fitted very far back in the stern so fark, in render the application of an ordinary launch engine impossi
ble-and at the suggestion of Messrs. Penn he declded to
make use of a new engine recently patented by Mr. P. W. Willans (a gentleman connected with Messrs. Penn's factory), which could be easily placed in the limited space in the stern. The work connected with the fitting of this engine on board the boat has just been completed.
Mr. Willans' engine is constructed with three cylinders, and the only working parts are three pistons, three connect ing rods, and a three-throw crank axle; these are enclosed in a cast iron casing, so that nothing can be seen of the en gine itself except the two ends of the axle which appear through the casing. The cylinders are placed side by side and it is by a system of ports which connect the cylinders one with the other, together with a peculiar construction of piston, that the piston of one cylinder acts as the slide, and admits to the next or third cylinder. All these ports meet in a three-way cock, and by turning this cock the direction of the steam is altered, and the engine is stopped or reversed with marvelous rapidity. It will thus be seen that all slides, eccentrics, link motion, and other complicated reversing gear are done away with; there is no exposed machinery to catch the dresses of people passing, no oil and grease flying about, and none of the other disadvantages which make steam en gines in small boats so disagreeable. Besides this, the en gine is so simple that it is completely under the control of any one, and is so compact that it can be lifted in or out of the boat by two men; two men can also take it to pieces, examine every part, and put it together again in less than an hour. The steam acts on one side of the piston only, and as the pressure is always downwards the engine is perfectly noiseless. By means of a very simple arrangement the en gine is made to work expansively, and cuts off at $\frac{8}{8}$ of its stroke. Though in this particular case morethan 380 revolutions per minute are not required, yet an engine of the kind has been constructed to make 1,000 revolutions; and at these great speeds, by allowing a small quantity of oil to remain in the bottom of the casing, the lubrication of the working parts is perfect, and such a thing as a hot bearing is unknown. The diameter of the cylinders of the engine under notice is 7 inches, the stroke being the same; and with 90 lbs . of steam and 380 revolutions, the indicator cards showed a little under 40 horse power. The weight of the engine by itself is 7 cwt .
No reliable trials of the speed of this boat have yet been made, but she steamed from Limehouse to Erith, a distance of thirteen miles, the other day, in 75 minutes against a slack tide. As the mean draft of the boat is $\frac{1}{2}$ greater than it was with the old engine, in consequence of the additions to the cabins, and as the trim of the boat is considerably al tered, it would be scarcely fair to draw a comparison between the speed with the twin screws and with the new engine. Many engineers of eminence have inspected the engine at work, and have expressed themselves greatly pleased with its arrangement and performance. The length of the boat is 50 feet, beam 7•4. The engine was made for Mr. Willans by Messrs. Tangye, of Birmingham; and Messrs. Penn supplied and fitted the boiler, propeller, shafting, and all other gear.-Iror.

CAR AXLES AND COUPLINGS.
We continue below our series of extracts from Mr. E. H. Knight's '"Mechanical Dictionary," * selecting for the present paper a variety of interesting engravings of car axles, and a number of railway couplings,

Fio

In Figs. 1 and 2 are represented two forms of divided car axle. When the axle is constructed of a single piece of metal, with the wheels fixed firmly thereon, it is subject to severe torsional strain in turning curves. The outer wheel has a larger circle to traverse, thus compelling the wheel on the inner and shorter circle to slip. This torsion of the axle

s very detrimental, and the slipping of the wheel is equivaent to grinding on the rail, retarding the train. To avoid these difficulties, the axle has been made in two parts, examples of which construction are given in Fig. 1, in which the axle is divided at mid-length, the inner ends being sup ported in a box or sleeve, and in Fig. 2, which shows one portion of the axte hollow, forming a sleeve for the other part.
Figs. 3, 4, and 5 are sections, etc.. of a number of car eouplings. The English coupling. A, Fig. 3, is a right and left screw shackle, a, on the median line, making a connection sufficiently rigid to compress the buffers, $b b$. The draw
bar, d, of the coupling is connected to an elliptic spring, e which diminishes the jerk of the cars in starting the train Some of these features are also found in B, which is an old form of United States coupling, with buffers copied from the English. C and C^{\prime} are respectively plan and elevation of the Miller coupling, which connects automatically as the

Fig. 3.

espective point-headed hooks come in collision. The springs, b, keep the hooks together when connected. The lower view C^{\prime}, exhibits also the spring buffers, c, above the hooks, which act as fenders to the cars and deaden the blow as the cars
strike against each other when the speed of the train is hecked The coupling hooks have, besides, springs, d, for the same purpose.
In Fig. 4, D is a falling latch hook. E has a gravitating Fig. 4.

hook provided with a spring, so that it yields to the thrust of the entering link in coupling. On the back of the hook, a, is a handle, c, which is lifted to uncouple the link. F has a vertically sliding bolt which rises automatically as the link collides with its lower inclined portion when coupling, and heads, in which the tumbling latch, a, holds up the pin until thrust back by the entering link. The pin, b, when fired for coupling, rests on the toe of the latch. H H 'are two rawheads, in the first of which the pin, a, rests on a sliding latch, which gives way before the thrust of the link, d, a result already accomplished in H^{\prime}. I I I^{\prime} are two matching
drawheads, in which sliding pistons hold up the link, and
are pushed back in the same manner as described in the preceding case. J exhibits a plate to hold the projecting link, a, in coupling position, and a small sliding latch, b, above, to hold the coupling pin, c, which is dropped, when the drawheads come in actual collision, and thrust in the latch. K has a ball, a, which holds up the pin but allows same to fall when pushed back by the entering link.

Fig. 5.

In Fig. 5, L has an arrowhead bolt which is grasped between spring jaws. M has a bar, m, with two slots. As the end enters the drawhead, it thrusts up the gravitating latch, which immediately falls into the slot of the bar. N is a plan view of a coupling in which each drawhead has a link which couples over a horn on the corresponding drawhead of the ther car. O is an elevation of a pair of drawheads. each of which has a link which may be coupled over a horn on the ther. P has a two-horned tumbler, one horn of which car ries a link, a, which may couple to a corresponding drawhead, and the other forms a latch for a link, a^{\prime}, proceeding from the other drawhead.

The Brain Not the Sole Organ of the Mind.
Dr. W. A. Hammond, President of the Neurological So ciety. recently delivered an address before that body upon the above topic. ' J he discourse included accounts of the speaker's original investigations, and in general advocated the theory that the spinal cord shares with the brain the faculties of perception and volition. The following is an abstract:
Dr. Hammond began by saying that, where there is no nervous system, there is no mind, and that where there is injury or derangement of the nervous system there is corresponding injury or darangement of the mind, and proceeded to review at length experiments conducted upon liv ing animals, the brains of which had been previously removed. A frog continues to perform those functions which are immediately connected with the maintenance of life The heart beats, the stomach digests, and the glands of the body continue to elaborate the several secretions proper to them. If the web between the toes be pinched, the limb is immediately withdrawn; if the shoulder be scratched with a needle, the hind foot of the same side is raised to remove the instrument; if the animal is held up by one leg, it strug. gles; if placed on its back-a position to which frogs have a great antipathy-it immediately turns over on its belly; if one foot be held firmly with a pair of forceps, the frog en one foot be held firmly with a pair of forceps, the frog en-
deavors to draw it a way; if unsuccessful, it places the other foot against the instrument, and pushes firmly in the effort toot against the instrument, and pushes firmly in bor form
to remove it. Still not successful, it writhes the body from to remove it. Still not successful, it writhes the body from
side to side, and makes a movement forward. All these and side to side, and makes a movement forward. All these and
even more complicated motions are performed by the decapieven more complicated motions are performed by the decapi-
tated alligator, and in fact may be witnessed to some extent in all animals. The speaker had repeatedly seen the headless body of the rattlesnake coil itself into a threatening atti tude, and, when irritated, strike its bleeding trunk against the offending body.
Dr. Hammond then proceeded to explain a large number of experiences under his theory. He said that the phenomena of reverie are similar in some respects to those of somnambulism. In this condition the mind pursues the train of reasoning, often of a most forcible character, but yet so ab stract and intense that, though actions may be performed by the body, they have no relations with the current of thought but are essentially automatic, and made in obedience to sen sorial impressions which are not perceived by the brain. In the case of a person performing on the piano, and at the same time earrying on a conversation, we have a most strik ing instance of the diverse though harmonivus action of the brain and spinal cord. Here the mind is engaged with ideas, and the spinal cord directs the manipulations necessary to the proper rendering of the musical composition. In somnambulism the brain is asleep, and this quiescent state of the organ is often accompanied in nervous and excitable persons by an excited condition of the spinal cord, and then we have he highest order of somnambulistic manifestations, such a walking and the performance of complex and apparently systematic movements. If the sleep of the brain be some-
what less profound, or the spinal cord less excitable, the somnambulistic manifestations do not extend beyond sleeptalking. A still less degree of cerebral inaction, or of spinal
excitability, produces simply a restless sleep and a little excitability, produces simply a restless sleep and a little
muttering; and when the sleep is perfectly natural and the muttering; and when the sleep is perfectly natural and the
nervous system well balanced, the movements do not extend nervous system well balanced, the movements do not extend
beyond changing the position of the head and limbs and turning over in bed. The phenomena of catalepsy, trance, and ecstasy are also indications of an independent action of the spinal cord, inasmuch as the power of the brain is not esercised over the body, but is either quiescent or engrossed with subjects which have made a strong impression upon it.
Dr. Hammond, in closing his address, said that he did not contend that the spinal cord, to say nothing of the sympathetic system, is, in the normal condition of the animal body as important a center of mental influence as is the brain The latter organ predominates, the very highest attributes of the mind come from it, and the cord is subortinate when
the brain is capable of acting. But it seems illogical to deny the brain is capable of acting. But it seems illogical to deny
mental power to the spinal cord after a consideration of such experiments and other facts brought forward, and hence w are justified in concluding:
I. That of the
I. That of the mental faculties perception and volition ar seated in the spinal cord as well as in the central ganglia. II. That the cord is not probably capable of originating mental influence independently of sensorial impressionscondition of the brain also, till it has accumulated through the operation of the senses.
III. That, as memory is not an attribute of the mental in fluence exerted by the spinal cord, it requires, unlike the brain, a new impression in order that mental force may be produced.

Useful Recipes for the Shop, the Household,
To make perpetual paste-which will remain sweet for a year-dissolve a teaspoonful of alum in a quart of water, to which add sufficient fownered resin and half a doz. Stir in to give a pleasant odor. Have on the fire a teacup of boiling to give a pleasant odor. Have on the fire a teacup of boiling
water, pour the flour misture into it, stirring well at the time. In a few minutes it will be of the consistence of mush. Pour it into an earthen vessel; let it cool ; lay a cover on, and put it in a cool place. When nceded for use, take out a portion and soften it with warm water
A beautiful ornament for the sitting room can be made by covering a common glass tumbler with moss, the latter fast-
ened in place by sewing cotton wound around. Then glue ened in place by sewing cotton wound around. Then glue dried moss upon a saucer, into which set the tumbler, filling it and the remaining space in the saucer with loose earth from the woods. Plant the former with a variety of ferns, and the latter with wood violets. On the edge of the grass also plant some of the nameless little evergreen vine, which bears red (scarlet) berries, and whose dark, glossy, ivy-like foliage will trail over the fresh blue and white of the violets with beautiful effect. Another good plan is to fill a rather deep plate with some of the nameless but beautiful silvery
and light green and delicate pink mosses, which are met with and light green and delicate pink mosses, which are met with
in profusion in all the swamps and marshes. This can be in profusion in all the swamps and marshes. This can be
kept fresh and beautiful as long as it is not neglected to water it profusely once a day. It must, of course, be placed in the shade,or the moss will blanch and die. In the center of this a clump of large azure violets should be placed, adding some curious lichens and pretty fungous growth from the barks of forest trees, and a few cones, shells, and pebbles. The following solder will braze steel, and may be found very useful in case of a valve stem or other light portion
breaking when it is important that the engine should continue work for some time longer: Silver 19 parts, copper 1 part, brass 2 parts. If practicable, charcoal dust should be part, brass 2 parts. If practicable, charcoal d
strewed over the melted metal of the crucible.
A simple method of case hardening small cast iron work is to make a mixture of equal parts of pulverized prussiate of potash, saltpeter, and sal ammoniac. The articles must be heated to a dull red, then rolled in this powder, and after ward plunged in a bath of 4 ounces of sal ammoniac and 2 ounces of prussiate of potash dissolved in a gallon of water.

Improved Milk-Testing Process.

quantity of standard milk and a given quantity of each farmer's supply to be tested, in separate vessels, to about 90° Fahrenheit, then coagulating the standard and samples, and finally compressing the undrained and unsalted curd. The specifled heat develops the
odors of the impurities, and the quantity of curd or whey indicates the water present.

Improved Combined Cupboard and Sink. Henry Cull, Marshalltown, lowa.-The object of this invention is to combine a cupboard, provision, or milk safe with a sink in such a manner that, on being closed, it represents the appearance of a
cupboard, while on being opened it furnishes a regular sink for the cupboard, while on being opened it furnishes a regular sink for the
cleaning of dishes, etc. The invention consists of a cupboard with a hinged lid, constructed as a sink, and connected by a short pipe Improved Boot and Shoe.
Charles F. Hill, Baltimore, Md.-This invention relates to certain tion with the upper, the insole, and the outsole of a top sole, de pressed without break or incision upon the apper side, and trimmed off upon the lower side, so as to leave a raised projecting edge for the vamp.
Improved Piston for Steam Engines, Pumps, etc. Franz Felblnger and Johann G. Koch, Vienna, Austna.-This invention relates to pistons for steam engines, pumps, etc., having a series of small pistons, which operate to expand the packing ring by
the pressure of the steam. The diameter and number of the small the pressure of the steam. The diameter and number of the small which the engine is intended.

Improved Gas Wrench.

Samuel B. H. Vance, New York city.-This invention consists in a key or wrench for turning the plugs of gas pipes in dwellings, etc.,
and relates particularly to the construction of the same, hollow hemispherical in shape, with an inner strengthening rib for each o the segments, into which its rim is divided by a series of notches
The ribs also strengthen the wrench, and so enable it to be made The ribs also
light and neat.

Improved
 Machine for Inserting Fibrous Screw

 Fastenings in Boots and Shoes.George V. Sheffield, New York city.-This invention consists of a work, pieces of rubber, and other analogous substances, by screw made of petrified hide or other animal fiber. The machine is essentially a combination of a boring tool for making the holes, also feed ing the work along, if preferred, a screw tap for cutting the threads in the holes, a chuck for inserting the screws, and cutters for cut fing off the screws after they are inserted, together with apparatu the place for operating on the work, perform their part, and the move away, while the work remains in position for work in whic the fastenings are to be inscrted in curved and irregular lines.

Improved Chemical Fire Extinguisher.
Jacob B. Van Dyne, Louisville, Ky.-This invention relates to cer-
tain improvements in chemical fire extinguishers, and it consists in tain improvements in chemical fire extinguishers, and it consists in
a hollow trunnioned extinguisher having a swivel joint connection with a stand pipe, and a trigger and catch device connected with an operating rod, whereby the extinguisher may be inverted and oper the acid vessel, and the means for sealing the same.

mproved Elastic Force Cup.

John S. Hawley, 144 Chambers Street, New
York city, whom address for Information.The invention illustrated herewith is fo clearing the discharge pipes of wash bowls, bath tubs, stationary wash tubs, etc., when they become partially or entirely stopped. A is a rubber cup; \mathbf{B} is a handle of wood; \mathbf{C} is an iron disk. A screw passes from the rub-
ber cup to the handle, thus holding the three pieces securely together, as shown in the engraving. In using this device, allow water to flow into the bowl or tub to a depth of three or four inches; the rubber cup is then placed
directly over the vent, and the handle is forced down three or four times with a quick motion. The water beneath the cup is thus
forced into the discharge pipe, with a sudden mpulse, dislodging the obstruction and forcing it through the pipe Patented
19th, 1875.
Don Juan Arnold, Brownville, Neb.-This consists in a spira flange, provided with a series of V-shaped cutters, arranged on an inclination outward toward the circumferential edge of the auger,
the object being to make the flange take hold of and work its way ine object being to

Improved Cotton Bale Tie
J. J. Holloman, Humboldt, Tenn.-This invention consists in a on the other end, at rightangles to the first, a second hook arrange vertically. This is used in conneetion with an intermediate plat having an aperture therein, the whole forming a simple, cheap and
reliable tie.

Improved Chemical Fire Extinguisher.
Jacob B. Van Dyne, Louisville, Ky.-This invention relates to certain improvements in portable wheeled chemical fire extinguishers;
and it consists in the peculiar construction of the acid vessel hav and it consists in the peculiar construction of the acid vessel hav-
ing studs, in combination with the holder ring having notches and ing studs, in combination with the holder ring having notches and
also vertical slots, whereby the security of the contents of the acid vessel is increased and the inadvertent mixture of the acid with the alkaline solution prevented.

Improved Carriage Bow Rest.
William E. Yeager, Lawrence, Kan.-This is a rest for the back bow of a carriage and buggy top, which consists of an arm fixed on
the pivot of the bow prop, so as to be supported thereby when projecting back horizontally, and having at the rear end a groove into which the back bow falls near the top, so as to be supported and a the same time sustained against lateral play. The arm is made ca-
pable of swinging upon the pivot to a certain extent, and it is con nected to the bow by links so as to swing up with it, to avoid projecting backward when the top is up. It is provided with lugs on its hub, to be held by a stop on the pivot in the horizontal position, and in the vertical position also.

Improved Lock for Pocket Books.
Bart M. J. Blank, Jersey City Hights, N. J., assignor to Charle
Kohlmann, New York city.-This is a small lever plate, which is Kohlmann, New York city.-This is a small lever plate, which is
pivoted to the flap-oinding frame of the pocket book, and provided with a recessed lower part, that enters and locks to a recessed plate ay swinging the lever to eilher side until stopped by the binding By swinging the lever to eilher side until stopped by the binding
frame, the hook is placed in the direction of the slot, and at the same time released therefrom.
Improved Process of Manufacturing Ammonia. Farnham Maxwell-Lyte, Paris, France.-This invention relates to an improred process for the manufacture of ammonia, and it conble element, so as to form an alloy of the two, which shall be of a spongeous character to present increased surface. This said alloy
is subjected to a moderate degree of heat in a closed chamber, and is subjected to a moderate degree of heat in a closed chamber, and
a mixture of nitrogen and hydrogen (or a hydrogen compound) is a mixture of nitrogen and hy drogen (or a hydrogen compound) is
then passed over the alloy, which produces, under the influences of heat and chemical affinity, a combination of nitrogen and hydrogen to form ammonia. An alloy of antimony and sodium or potassium,
for instance, which decomposes water at ordinary temperatures, for instance, which decomposes water at ordina
and rapidly at the boiling heat, is of this nature.

Improved Wagon Seat Fastening.
Charles Dixon, Weedsport, N. Y.-This is a strong and durable fastening for attaching seats to wagons, sleighs, and other vehicles,
and it consists of a main plate with perforated lugs for the bolt of the clamping piece, that is firmly secured by an incline and shoulder of the upper lug, in connection with a recessed cam-shaped lever, the required position of the clamping piece being obtained by a pro-
jecting shoulder of the same sliding in a recessed part of the lower supporting lug.

Improved Pocket Book Fastening

Morris Rubens, New York city. - This is an improved means of locking the hinged jaws of pocket books, orgar cases, etc. Each jaw
is provided, near its center, with a clasp that is soldered, so as to project toward the other Jaw, binding on it, and producing thereby
a double fastening. The clasps are made concave on the under a double fastening. The clasps are made concave on the under
side, and are provided with projecting knobs or buttons, which side, and are provided with projecting knobs or buttons, which
serve for the purpose of opening the frame by pressing with the serve for the purpose of opsing the fra
fingers against them in opposite directions.

Improved Side-Bar Wagon.
Ephraim Soper, New York city.-A bolster mounted on the hind port of the side bars, and to serve, at the same time, for a truss t stiffen the axle. The C spring, by which the side bar is attached to the bolster, is arranged to extend under the bolster, and up behind it, and over the top to the point of connection, so as to cconomize
space. space.

Improved Barrel Hoop.
Leopold Weil, New York city.-This invention relates to a mode of fastening bands or hoops on barrels, casks, kegs, or analogous
packages, and consists in a hoop having a cross-slotted wide end to eceive a narrow end, both ends being locked together by reversed lips rising from opposite sides.

Improved Rallway Rall Snpport.

Samuel L. Porter and Duane Peck, Rochelle, Ill.-The main object of this invention is to so confine the ends of the rails that the having two strong ledges cast thereon, in coubination with a cas ron block and key and a set screw, the latter passing through ledge, and holding the key in place. It also consists in oritices
through the top of the bed plate for the admission of screw nuts through the
and bolts.

Improved Bedstead Fastening

Wyly Merritt, Atlanta, Ga., assignor to himself and M. T. Castleberry, of same place.-The invention consists of a fastening plate contrived with a curved Thead, which enters a curved undercu olts. in the post, and holds fast by the head without screws or ound hole at the bottom of a slot in the end of the rail, and holds t without screws or bolts, and without requiring the attachmen f a special piece to the rail. The novelty lies in the contrivance o that the slots or mortises for connecting it to the post and rail ma be quickly made by revolving cutters.

Improved Steak Broiling Pan.

David Burrel Smith, Bastrop, La.-The object of this invention is to provide an improved device for cooking steak and other meat, by means of which all the flavor and juices of the meat are pre-
served, the tendency to burn obviated, and the meat cooked free from ashes, and without the taste of smoke. It consists in two mmetrically shaped pans containing griddles, which pans, whe meat between the tightly to form a closed chamber and hold th being detachably connected by means of a curved lip and an exten ion at one end, and the two handles which are grasped together at the other end.

Improved Sliding Bench Vise
Pierre Reinbold, San Antonio, Tex.-The object of this invention is to confine a piece of lumber of any length by pressure on its two
ends instead of on its sides, for the purpose of holding the same ends instead of on its sides, for the purpose of holding the sam While being dressed. It consists of a frame containinga sliding car riage, which is operated horizontally by a screw. This sliding car
riage has an adjustable portion, which, being provided with a ver tical screw and a guide rod, is capable of vertical adjustment above the table.

Improved Sash Holder.

Thomas Walker, Pleasantville, Md.-The object of this invention is to provide an improved fastening for window sashes, for the purIn a bolt which is screw-threaded at one end, and provided with an adjustable friction pad, and pivoted at the other to a short crank Said bolt carries a washer, between which and the friction pad, and
surrounding said bolt, is a spiral spring which forces the pad against the edge of the sash to hold it in the required position, and the crank is rigidly attached to a shaft terminating in a knob, by means of which the device is operated.

Improved Plow.
David Burrel Smith, Bastrop, La.-This invention relates to certain improvements in plows; and it consists in the peculiar con-
struction of a subsoiling device, in which an adjustable foot cuts struction of a subsoiling device, in which an adjustable foot cuts
a straight line through the hard pan below the plow, which, while it a straight line through the hard pan below the plow, which, while it
meets all the requirements of a subsoiler, lightens the draft, and meets all the requirements of a subsoiler, lightens the draft, and
enables the detachable device to be used in front of the plow for a enables the
coulter.

Improved Evaporator for Saccharine Liquids.
Thomas Scantlin, Evansville, Ind.-The primary objects of this inpans, all communicating one with another, without the use of solder or rivets; and second, to provide for a continuous side passage by which one pan of the series may be made, at will, to communicate with any one or more of the series, whether adjacent or not. To these ends, the evaporator is composed of a series of metal pans and communicating open side passages or channels, the latter being provided with sliding valves, stoppers, and plugs, so that the one, or past an adjacent one to another which is remote in the ser ies, and thereby the contents of the several pans may be kept sepa-
rate, or commingled more or less, as required, or according as the rate, or commingled more or less, as required, or accordis
heat varies in intensity in different parts of the furnace.

Automatic Governor for Hot Air Furnaces.

Solomon Kepner, Pottstown, Pa.-The object of this invention i to provide an automatic or self-regulating governor for hot air furnaces, in which the blast of hot air is made to regulate the draft to the fire box, or from the combustion chamber of the furnace. It
consists in a pivoted lever provided with a valve and damper so ar consists in a pivoted lever provided with a valve and damper so ar-
ranged that, as the valve is moved by the blast of hot air, the damranged that, as the valve is moved by the blast of hot air, the dam-
per opens communication from the outer air to the fire box or smoke pipe, and by diminishing the draft correspondingly reduce the generation of heat in the furnace. The lever is graduated and provided with a balance weight, by means of which the sensitive ness of the device may be regulated.
Improved Non-Explosive Lamp Collar and Filler James A. S. Hanford, Chicago, Ill.-The object of this invention gas or oil vapor in the body of the lamp; and it consists in the combination, with an ordinary lamp collar having side perforations, of hinged stoppers, which act as safety valves in the event of an ex plosion, and also afford a means for filling the lamp while it is burn ing, without danger. The invention also consists in a supplemental
collar provided with the above devices, which said collar is screwthreaded, so as to be interposed between the collar and burner of any ordinary lamp, whereby the advantages of the invention ar available in all kinds of lamps without alteration or injury.

Improved Thill Coupling.

Alfred W. Forwood, Georgetown, Ky.-An adjustable box fills the space between the journal and the clip, and is fitted into the Jack. journal, while its rear side bears against the clip. The arm curve from its upper side back over the clip, and near its end is an adjusting screw. When the draft pin becomes worn and the connection
loose, so that the thills or pole rattle, the set screw is turned down loose, so that the thills or pole rattle, the set screw is turned down
which throws the arm up, and consequently the circle forward, so which throws the arm up, and conseque
that the box fits closely to the journal.

Wusiness and Eersonal. The Charoe for Insertion under thie head is 81 a Line.
 andt Stroet, Sew Yors
Africultural Implements. Farm Maedinery, Seods

 ueriden, conn.

 Worke, 4 Cortrandt St., New Yors.
Hydrant
 burba Pa,

 Town, 181 Broadway, New York.
American Metaline Co,
American Metaline Co., 61 Warren St., N.Y. City. L. $1 / 2$ R. Livingston, Troy, N. Y

No good mechanic can afford to be without the
Lightning Screw Plate. Dles are perfectly adjustable lightning Screw Plate. Dies are perfectly adjustable
wear does not spoll them. Wiley \& Russell Manufacturing Company, Greenfleld, Mass.
The Philadelphia Scientific Journal says that
"Messrs. Geo. P. Rowell \& Co., of New York, are so well and extensively known all over this continent, that to
name them and explain the nature of their business
would be superfluous. No Newspaper Advertising agency has ever displayed more energy and skill in the For price of small copper boilers to drive small
steam engines, address, with dimensions, and enclose stamp to Geo. Parr, Buffalo, N. Y.
Situation wanted by an Engineer of Stationary
Engine. Address W. M. Burhaus, Barrytown, N. Y.
Wooden Ware Paten Wooden Ware Patent for Sale. 2947 N. Y.P.O.
Grindstones, 2,000 tuns stock. Mitchell,Phila.,Pa. Lathe Gear Cutters,Wm.P.Hopkins,Lawrence,Ms The "Catechism of the Locomotive"" a book of
625 pages, 250 engravings, fully describes the theory, conPrice, post-paid, \&i, 50 . Address The Rallroad Gazett ${ }_{73}$ Price, post-paid, \& \& 2.50.
For 13, 15, 16 and 18 inch Swing. Engine Lathes,
address Star Tool Co., Providence, R. I.
Wanted-Machinery for splitting out or riving
Plpe staves 60 inches long, 3 to 8 inges wide, and 14
Inch thick, from Walte Oak Timber, for the New Orleans nch thick, from White Oak Timber, for the New Orlea
market. Address Geo. G. Hughes, Jackson, Tenn.
 Telegraph and Electrical Instruments and Bat-
erles, cheap. M. A. Buell, 86 Bank St.. Cleveland. o. Models for Inventors.-H. B. Morris, Ithaca,N.Y Three Second Hand Norrns Locomotives, 16 tuns
each; 4 ft. $8 / 2$ inches gauge, for sale by N. O. \& C. R. R. Co., New Orleans. La.
1, $2 \& 3$ H.P. Engines. Geo.F.Shedd,Waltham,Ms. Boult's Paneling, Moulding and Dovetailing Ma-
chine is a complete success. Send for pamphlet and sample of work. B. C. Mach'y Co., Battle Creek, Mich. Saw Ye the Saw? $\$ 1,000$ Gold for Hand Sawmill
to do same work with no more power Expended. A. B.

For best and cheapest Surface Planers and Uni-
versal Wood Workers, address Bentel, Margedant \& Co., Haml ton, Ohlo
Diamond Carbon, of all sizes and shapes, for
drlling rock, sawing stone, and turning emery wheels,
 Simple, Safe, Durable, and Economical.
"The Best are alwase the Cheapest."'
Over One Thousand in use, giving entire satisaction. Over One Thousand in use, giving entire satigaction.
Address Wm. D. Russell. 13 Park Place, New York. Edgines, 2 to 8 H. P. N. Twiss, New Haven, Ct.
Agents. -100 men wanted ; $\$ 10$ daly, or salary. Agents.- 100 men wanted; $\$ 10$ dally, or salary;
selllng our new goods. Novelty Co., $\$ 00$ Broadway, N. , Thomas's Fluid Tannate of Soda never fails to
remove Scale from any steam boller; it removes the scale-productng materlal from all kinds of water; cannot
inju-9 Boller, as it has no effect on Iron; saves 20 times its cost buth in Fuel and repairs of Boller; Increases steamIng capacity of Boller; has been tested in hundreds of
Boflers; has removed Bushels of csales in single casees.
It is in Barrels 503 ib, Price 10 cents per ib., less than $/ x_{s}$ price of other prepara-
tons, and superior to all others. Address orders to tlons, and superior to all others. Address orders to
N. Spencer Thomas, Elmira, N. Y. For Tri-nitroglycerrn, Mica Blasting Powder,
Electric Batterles, Electric cha Insulated Leading Wires, etc., etc., etc.. result of
seven years
M. Moxpertence at Hoosac Tunnel, address Geo. M. Mowbray, North Adams, Mass.

Faught's Patent Round Braided Belting-The
Best thing out-Manufactured only by C. W. Arys, 301 \&
303 Cherry St., Philadelphis, Pa Genuine Concord Axles-Brown, Fisherville,N.H. Price only
Telegraph. A compact working Telegraph Apparatue, for sending messages, making magnets, the electric light,
gtving alarms, and various other purposes. Can be put in gtiving alarms, and various other purposes. Can be put in
operation by any lad. Includes battery, key, and wres.
Neatly of price. F. C. Beach \& Co., 216 Canal St., New York.
Hydraulic Pressee and Jacks, new and second hand. Lattee sod Maccinnery for Pollshng and Buafling
Metala. E. Lson. 470 Grand Street New York.
The Lester Oil Co., 183 Water St., N.Y., Exclusive Manufacturers or the renowned
The most pprfect and economioal lubricant in exdoconce.
Send for Clrecular.

Peck's Patent Drop Press. Still
Addreses Mill Peck, New Haven. conn. The "Scientific A mencean" Office, Now York, is ittle euttons on the deeks of the managers 0 persons in the rarlous departments of the establish-
ment. Cheap and effective. Splendid for shops, offlees, fwelings. Works for any distance. Price 86. Witb good
Battery. F. C. Beach \& Co., 276 Canal St.. New York,
Makers. Send for free illustrated Catalogue 8mall Toois and Gear Wheels for Models. List
ree. Goodnow \& WIghtman. $2 s$ Cornhill. Boston. Mass Hotchkiss Air Spring Forge Hammer, best in the
market. Prices low. D. Frisble \& Co.. New Haven. Ct. market. Prices low. D. Frisble \& Co.. New Haven. Cc
For solid Wroughtiron Beams. etc., see adver-
Hsement. Address Union Iron Mills, Pittsburgh, Pa. fo tispement. Add
ithograph, \&c.
Spinning Rings of a Superior Quality-Whiting-
ville Spinning Ring Co., whtingville. Mass. All Fruit-can Tools, Ferracute W k'?, Bridgton, N. J. Wash Stands, New Styles, Marble Tops, can be
used in anv situation. Prices very low. Send for a catalogue. Bailey, rarrell \& Co., Pittsburgh, Pa.
For best Presees, Dies, and Fruit Can Tools, Blise Willams, cor. of Plymouth and Jay, Brooklyn, N. Y. Mechanical Expert in
is Murrav St. New Yori. For Solid Emery Wheels and Machinery, send to
ne Union Stone Co., Boston, Mass., for circular.

J. G. B. ought not to remove the cancelin ink from postage stamps, as it may lead to fraud using the dip described on p. 107, vol. 31.-J. P. McC. can clean shells by following the directions
on p.122, vol. $27 .-$ J. M. C. will tind directions for on p. 122, vol. 27.-J. M. C. will tind directions for
casehardening on p. 202 , vol. 31.-F. E. can deodorve butter by following the direct varnish for ma king waterproof cloth. See p. 11, vol. 32.-D. H. H .
can separate silver from lead by the method decan separate silver from lead by the method de-
scribed on p. 138 , vol. 32 .-G. M. will find a formula for thickness of a boiler on p. 155, vol. 32. Read Camus on the "Teeth of Wheels."-K. R. B. ough to know that no instrument can possibly point out earth.-J. T.C. can dissolve pure rubber in benzine, naphtha, or carbon bisulphide.-D. can remove stains of iron rust from fabrics by the mether to wood with marine glue. See p . 282, vol. 31. J. A. W. can fasten chromos on thin canvas by
following the directions on p . 91 , vol. 31.-A. A will find directions for separating aluminum on pp . will 116, vol. $32 .-\mathrm{R}$. McA. can exterminate cockroaches by using the recipe on p. 43, vol. 31.-A.
K. should consult Kustel on the "Nevada and Cal fornia Processes for Gold and Silver Extraction. W. A. P. can galvanize his iron articles by the method described on p. 346, vol. 31.-I. G. will find
a recipe for a hair stimulant on p. 3A3, vol. 31. a recipe for a bair stmulant on p. 3n3, vol. 31.-G.
E. K. Jr. will find directions for making a black walnut stain on p. 90, vol. 32-G. C. H. can make windowglass opaque by the method described on
p. 264, vol. 30 .-T. H. L. can utilize old rubber by the process described on p. 349,vol. 26.-J. S. F.can
fill and polish his black walnut furniture by the All and polish his black walnut furniture by the
method described on p. 315, vol. 30 , and 347 , vol. 31 . -W. C. can render wood
detailed on p. 280, vol. 28.
(1) P. C. askos: What is the chemical reacer bicalting from the adding of tartaric acid af Carbonate of potash, being an alkali, neutralizes the lactic and butyric and other acids in the ran cid butter, but the excess of alkali used has a burning taste. The tartaric acid added decom-
poses the potash salt, liberating carbonic acid,and the resulting tartrate of potash does not offend the sense of taste.
(2) S. R. asks: 1. For what particular pursoda glass? A. The addition of lime to glass diminishes its fusibility, while it increases its luster, but the addition of an excess of lime is apt to make the glass milky when cold, although it may
be perfectly clear while hot. 2 . What is the pro be perfectly clear while hot. 2. What is the proess that has been patented by a French gentle
man for adding strength and elasticity to the glass? d. The agent of M. Bastie, the inventor, lately exhibited specimens of the glass at the office of the Scientific American, New York, and subjected
the same successfully to the most remarkable tests. The process for treating the glass has not yet bee (3) H B
(3) H. B. W. asks: How is rubber melted
so that it can be run into molds? that it can be run into molds? A. The rubber is simply rendered soft by passing between roll-
ers heated by steam, in which state it is pressed ers beated by
into the molds.
(1) M. H. K. asks: What are the cheapest and best chemicals known, to be mixed together for use as a freezing mixture? To what degree
Fah. will they descend, and what are the proper Fah. will they descend, and what are the proper
proportions to mix and use? A. One of the best, and one of the most economical, is the solution of sulphate of soda in commercial hydrochloric acid
Pour 5 parts of the acid upon 8 parts of the reduced to powder; the temperature may thus be redaced from 50° to 0°.
(5) G. E. K. Jr. asks: How can I remove oil stains from marble? A. First rub with benohalk or pipe clay and keep in a warm place for some time.
(6) E. M. D. asks: What kind of clay should I use to make crucibles? A. You do not state for
what purpose you intend to use your crucibles. We cannot give definite directions unless we know. In order to render crucibles capable of withstanding great variad: sand, filnt, fragments of old cru-
stances are used: cibles, blaok lead, and cose are used for this pur-
pese. The most refractory crucibles are those
made with pure clay, or such as oontains little or no oxide of iron and is free from calcareous mat-
no ter. The best clays contain the most silica, yet and in the high temperature of a blast furnace hey sometimes soften so much as actually to fall
into a shapeless mass. This defect cau be some what remedied by mixing the clay with be someor coke; either of these substances form a kind of solid skeleton, which retains the softened clay and revents its faling out of shape.
(7) S. F. H. \& Co. say: We have some leather lined with blue cloth,such as is used for car-
riage curtains. The color of the cloth is blue, and riage curtains. The color of the cloth is blue, and
it rubs off. Can the color be made so as not to come off by applying a solution to it? A. Tr dipping it into a solution of india rubber in naph
(8)
(8) A. C. J. asks: Are the numerals and A. The numerals are, but punctuation marks ar not very generally used, except the full stop.
(9) S. S. W. asks: How long should locust seeds be boiled before planting? A. Take three times as much water as you bave seed, by measure.
Boil the water, and pour it boiling hot over the eeds and let them soak till the next dav: the plant them. The plants are as tender as melons,
and the least frost will kill them, so do not plant and the least frost will kill them, so do not plant
too early. Some of the plants will have thorne, aoo early. Some of the plants will have thorne,
and some not; save the thornless ones to plant for shade trees; the rest you can use for hedges or throw away, for they are too disagreeable to keep in a
ivilized community. Both the thorny and thorn civilized community. Both the thorny and thornfter the first start, and are about the safest tree transplant (at any age) that grows in this lati der : while their foliage and peculiar growth ren

rable.-H. H.

(10) W. Y. asks: What tools does a man n assortment of fles. a flat chisel, a cape chise scrapers (1/2 round and flat), a straight edge, an assortmen
(11) F. W. asks: In manufacturing ou ommon red brick, is there any way of colornng hem, either by glazing or mixing, to produce some pleasing tint, without adding materially to the ex coloring preparation, as is now done in the case of encaustic floor tiles, but not without consider ably enhancing the price.
(12) W. R. H. asks: How much greater is the resistance of the ordinary railroad rail, made of wrought iron, than that of a rail of the same cast iron, respectively, in respect to resisting the whecks or strains of locomotive or car wheels
when motion? A. The steel rail is about $1 \cdot 5$ times as strong as the wrought iron one, within the limit of elasticity. Malleable cast iron is no well suited to resist shocks.
(13) H. R. T. asks: Which is correct, "buhr tone" or "burr stone?" A. Both are correct, but
buhr stone" is the more usual way of writing it
(14) R. C. M. says: I am putting in two 8 10 engines, to run together, and I wish to use cis-
tern water. If I exhaust into a fourinch pipe, exending from the cistern upward, and keep a smal tream of cold water running through it from the second story, 10 feet above the engines, will it con-
dense the most of the steam? A. This plan will not answer. Your best plan would be to use a proper condenser. 2. How will I get most power out of two 8×10 cylinders, coupled rigidly together haft with belts? Part of the time I shall use onl ne cylinder for light work. A. It would no doubt be better to run them independently.
How can I ascertain the number and claims records, or engaging some one to do it for you. (15) A. A. asks: I have a steam heater o pressure it will stand without bursting. It is 18 nches long, 14 inches wide, $21 / 2$ in hes deep and $1 /$ nch thickness of the iron. The boiler pressure is 5/6 of an inch in diameter, and is about 60 feet in ength. The exhaust pipe is $1 / 2$ inch in diameter and is not quite free. A. Under the conditions
(16) D. asks: Can the area of an octagon xactitude, if the diameter of the circle be known A. Yes. It is composed of eight equal isosceles
triangles, of which two sides and the included angle are known. The two equal sides are eac aqual to the raalus of the circumscribing circle (17) C. C.
(17) C. C. asks: In your issue of April 17,
1875, in answer to the following question:" what power would you rate an engine that is 8 inches bore and 15 inches stroke, running at a
speed of 20 revolutions with 80 lbs steam? say : At about 12 horse power. By what formul do you calculate this? Do you mean that the real effective power of an engine under these cond:-
tions is 12 horse power? According to Roper's for-mula, as well as Haswellis, I should figure it at 36 horse power, with (say) 10 per cent off for friction,
making about 32 horse power. A. We do not consider that either of these rules gives very correct results. Our answer was based on a personal knowledge of the actual performance of such enpower. It is quite true that the rules sou menlon will give you true results, if they represent the conditions of actual practice; but in general
tiey do rot.
(18) J. W. asks: How many inohes from
the fulcrum must a ball of $121 / \mathrm{lbs}$. weight hang to give 30 lbs . pressure on the square inch on a safety
alve $1 \frac{8}{\text { i }}$ inches in diameter, the valve being be
ween the fulcrum and the ball, with its center $13 / 8$ inches from the fulcrum? A. You can work it out for yourself by the aid of the following rule Multiply togetber: (1) The pressure of steam, the
area of valve, and the distance of center of valve area of valve, and the distance of center of valve
rom fulcrum. (2) The weight of the valve, and rom fulcrum. (2) The weight of the valve, an
the distance of its center from the fulcrum. (3) The weight of the lever, and the distance of its enter of gravity from the fulcrum. (4) Add to gether the products obtained by (2) and (3), and
subtract the sum from the product obtained by subtract the sum from the product obtained by
(1). (5) Divide the difference by the weight of the (1). (5)
ball.
(19) C. H. D. asks: I enclose you a photo graph of a windmill which is erected on an emi
nence near York, Pa. It was built in 1870 by an ngenious German, and has been regarded as a cu losity, being the only windmill for many mile around. The sails are rot constructed on the principle put forth in your recentarticle on wind mills, but have a uniform inclination to the plane of revolution. They seem, however, to be very ef icient, and I am informed that the power varie
from 5 to 10 horse power, according to the velocit of the wind, the sails being 3 feet wide, and the dimeter of the wheel 25 feet. The shaft is inclined o the plane of the horizon at an angle of about 6° and is arranged to swing around a vertical sbaft when the wheel is shifted to face the wind. The ond is utillansmar for and is utilized for crunching bones. This windmil which is certainly cheap. A. We have no doub ur readers will be interested in this account; fo while it is probable that a wheel constructed with the proportions noted in our recent article would be somewhat more efficient, this is a little simple
construct.
(20) P. F. asks: In a cylinder 6 feet high containing 6 cubic feet of air, how many lbs ressure on the piston will be required to compres A, If the temperature is constant, the pressur aries inversely as the volume
(21) L. H. R. asks: 1. Can you explain the principle of the gyroscope? A : It may be ex plained generally on the principle that, thought here are other forces with which the force of gravity is resolved. See p. 91, vol. 31. 2. Was
there a marine governor built some time ago upo that principle? A. There have been several If a locomotive engineer be called upon to stophis ngine as soon as possible, would it be advisable to shift the eccentric, thereby causing great resist nce at every stroke, until the engine has stopped apply the brakes.
(22) J. W. H. asks: What is the difference in strength between an iron and a steel shaft, 47/8
inches in diameter? How far will it spring with-
out breaking, being 3 feet long between boxes? A. The steel axle will be about twice as strong. It would not be advisable to strain the shaft so as to spring it sensibly ; and, though it might not break
(23) M. P. S. says: We have a 60 horse ower horizontal return tubular boiler,set in brick the usual way. Length is 15 feet, diameter 5 of boiler is a combustion chamber, 3×5 fect, and the chimney is on one side, at front of boiler. The heat passes under the boiler, returns throug es, into the round iron stack, 48 inches in diamete nd 36 feet high. This stack is lined with brick fo bout 20 feet up, reducing the area to about 40 nches. The draft is sluggish, and the cast iro covering of the rear combustion chamber has
given way with the excessive heat. A. We think the stack is too large, and you might We think ters by contracting it at the bottom.
(24) P. A. asks: What is the correct rule or getting an engine into line and squaring th shaft? A. Set up two lines, one parallel to th
axis of the cylinder or through the cy linder, if possible, and the other perpendicular to the firs in the same plane. These are reference lines to
measure from, to bring the shaft and guide into ine.
(25) B. \& C. say : 1. We are building a boat bout 60 feet long and 20 feet wide, with a flat bot om and a light top,to be used as a trading boat on
small river. What engine power will be neces sary? A, The boat is of a very bad model, and will probably require ar engine of from 15 to 20 horse power. 2. Can the motion of a vertical en ine be reversed ? A. A vertical engine can be re
versed hy being fitted with a link, or with two ec centrics and books. 3. Can a propeller be used on flat-bottomed boat to advantage? A. If you build such a boat, it
with a stem wheel
(26) R. B. W. asks: Would a 12 horse gin and a 30 inch grist mill? A. Not if they wer driven up to their full capacity.
(27) D. S. S. says: I have a steel spring, 4 eet long, $11 / 2$ inches wide, and $1 / 3$ inch thick, which
was bent to its utmost for a period of 1 week, a the rate of 100 times a day. a had that it now re tains a bend which weakens it. Is it impossible to make one that will always retain its natural
straight position when left alone? A. All springs,
however good, take a set in time.
(28) J. B. K. says : I claim that a balance to the engine, but only regulates it and gives a teady motion. My opponent claims that the balWho wins? A You do You adiconal popear to assert tbat the fly wheel bas more power than the machine which moves it. If this wero the case,
it would be a very desirable kind of perpetual mo-
(29) R. H. McI. asks: What is the best cement or packing to use under a soft patch on bo which fine iron fllings may be added.
In a low pressure boiler, with mercury gage howing 15 lbs., is the actual pressure upon the piston 15 lbs. to the square inch or $15 \mathrm{lbs} .+1434$ (the lbs. per square inch actual working pressure? A The actual effective pressure is the total pressure
above a vacuum on one side of the piston, diminabove a vacuum on one side of the piston, diminished by the
other side.
(30) B. B. B. asks: Will two hydraulic rams, with the same fall, with separate feed pipes,
playing into the same landing pipe, work? If so, playing into the same landing pipe, work? If so,
will they force up more water than one ram with the same fall? A. They would work satisfactorily, and, under favorable conditions, the two
deliver abo it twice as much water as one.
(31) F. A. C. says: 1. I have an upright
ailer, 30 inches high above firebox, 15 inches in diboiler, 30 inches high above flrebox, 15 inches in diameter, with shell and heads of wrought iron 38 How great a pressure will it safely stand? A. If How great a pressure will it safely stand? A. If
well made. you can carry from 150 to 175 lbs. of
st 2 am. 2. Of what power ought an engine for this st/am. 2. Of what power ought an engine for this
boiler to be? A. From 1 to $11 / 4$ effective horse boiler to
power.
(32) J. N. C. aeks: What is your opinion about the use of compressed air for street car locomotion in lieu of steam (or hor,ee) power? What
is to prevent the compressing of air into suitable is to prevent the compressing of air into suitable tain air to last long enough for one trip? A.There are numerous difficulties in the way; but they may be overcome, as many in
attention to the subject.
(33) R. A. K. asks: Of what dimensinns should a boiler, engine, and propeller be, to draw a
yawl 22 feet long and 5 feet beam, drawing 20 inchyawl 22 feet long and 5 feet beam, drawing 20 inch-
es, at a speed of 6 miles an hour? A. Engine, 3×5; es, at a speed of 6 miles an bour? A. Engine, 3×5;
propeller, 2 feet in diameter and 8 feet pitch; boilpropeller, 2 feet in diameter and 8 eet peet high.
er, 2 to $23 / 2$ feet in diameter, and 3 or 4 feer
(34, C. R. H avks: If I take a boiler, fill it full of water, and seal it up tas as a bo have, it properly airtight, and place a fire under the same, what will cause the boiler to burst? Will it be the expansion of the water, or the steam? A. As water
expands rapidly by heat, it is probable that the expands rapidly by heat, it is probable that the
boiler would be torn open long before the boiling boiler would be torn open lon
point of water was reached.
point of water was reached.
(35) W. S. B. says: We have a machine called a cool air slasher, situated in a small room in
theattic of our mill. Tbe room is so small that, when the atmosphere outside is damp and heavy, we cannot dry our yarn. The air in the room is so moist that the beams and plaster overhead become
wet. A ventilator on the roef, with a fan inside, wet. A ventilator on the roof, with a fan inside,
is a beneft; but as moist air remains low and does is a beneft: but as moist air remains low and does
not rise, I am thinking of putting a fan to one of the "rindows at the end of I will box in the window on bottom, put in a suction fan, and open the window at the bottom opposite the fan, more or less. Am I right? A. Your general idea is right :
for if you cannot get a natural draft, you must for if you cannot get a natural draft, you must
create one, either by a heated flue or a revolving fan. It is probable that you might get
trouble by the use of a well devised flue.
(36) J. B. S. asks: How is it that the wheels (of the same size) are going round a curve, the out(of the same size) are going round a curve, the out
side track of which is of course longer than the inside
case.
(37) A. F. \& Co. say : We have been think ing of using our exhaust steam by turning it into
a tank containing cold spring water, thereby heating our supply water and saving fuel. We bave been advised by experienced men not do so, as
they say we should burn out our bo:ler in a short they say we should burn out our bo:ler in a short
time; they claim that the grease contained in the exhaust steam would form into globules, which would sink to the bottom of the boiler and pre vent the water from touching the plates, thereby burning them out, and that they know this by ac tual experience with lake water in Chicago. With hard water or water containing much lime, it
might be feasiole; but with spring or soft water, it would be disastrous. Are these opinions suater There would not be much danger unless you use
very large amount of grease in the cylinder. In nearly all ocean steamers the condensed steam is used for feed water. With a proper oil cup, the amount of lubricant used in the cylinder is very small, and is aseffective as a much larger quantity
admitted carelessly. It is not well to use tallow in such a case.
(38) F. S. L. asks: Are not the cubic conend aud a 18 inches square at the other, of a uniform taper, equal to one of the same length, 15 inche square throughout? And is not the answer No 49, p. 251, vol. 32, incorrect? A. The answer is cor-
rect. The rule is as follows: Multiply together the area of the two bases, take the square root of the product, add the areas of the two bases; and
multiply by $1 / 3$ of the hight. If $A=$ area of lowe base, $a=$ area of upper base, and $h=$ altitude, then solidity $=\frac{(A+a+\sqrt{A a}) \times h}{3} . \quad$ Applying the rule to
 (39) A. W. asks: What horse power are we $151 / 4$ inches, stroke 32 inches, revolutions 73 per minute, average pressure throughout stroke being
${ }_{48} \frac{1}{1} \delta$ lbs.? A. Do you and many others who continually write to inquire the horse power of engines ever read our replies on the subject? We and have explained that, with the mean pressure as ascertalned by the indicator, the indicated horse
power can be calculated; but that the effective
orse power can only be found with preclsion by test with the friction brake or dynamometer. Once more: Multiply together the area of thepiston in square inches, the mean pressure throughout the stroke diminished by the mean back pressure in pounds per square inch, and the speed of the pis
on in fect per minute, and divide the product by 33,000 . If you can ascertain the pressure in lbs per square inch required to overcome the friction of the engine-by subtracting this from the mean and using the remainder for the effective pressur - you can calculate the useful horse power by th a above rule
(40) G. W. G. says: We have buried here (Galena, Ill.) one Lyttoo, whose friends claim tha he was the original inventor of the paddle whee
and the first to put it in practice. Is this so? A. and the frrst to put it in practice. Is this so? A
No. The paddle wheel was used by the ancien Egyptians, and later by the Romans.
(41) L. K. Y. asks : Please give me a recipe plated cup, that I am going to gold plateon the in side; it must be thin and easily taken off. The object is to prevent the outside from being gol plated. A. Coat it with wax
(42) G. M. H. asks : 1 Can a strong electric current be sent through successive coils of fine platinum wire for gas lighting purposes? A. No. Can the current be divided at each platinum coil pass through the coll? A. Yes, by shunting the coll.
(43) B. R. H. says: 1 . I have a mirror for a recal length of 12 feet 2 inches. I wish to construct a telescope on the Cassegrainian plan. 1. What
ought the diameter of the small mirror to be? A. ought the diameter of the small mirror to be? A.
Two inches. 2. What focal length should it have Two inches. 2. What focal length should it have ${ }^{2}$
A. Sixtcen inches. 3. What should be the size of the hole in the large mirror? A. Two inches. How can I test the accuracy of the curvature the sun. 5. Is there any other method than Draper's of silvering the surface of the mirrors? A.
English method of silvering glass: Solution A Nitrate of silvor of silvering glass: Solution 4 ozs. Solution B : Potassa, pure, by alcohol, 1 oz ., distilled water 25 ozs. Solution C: Powdered milk
sugar $1 / 2$ oz., distilled water 5 ozs. A and B will sugar $1 / 2$ oz., distilled water 5 ozs. A and B will
keep in stoppered bottles; C must be made fresh aod filtered. To silver an 8 inch glass speculum : Pour 2 ounces of solution, A, into a glass vessel ca-
pable of holding $3 \overline{5}$ fuid ozs. Add drop by drop, stirring with glass rod, as much ammonia as is just necessary to nbtain a clear solution of the gray
precipitate first thrown down. Add 4 ozs. of soluprecipitate first thrown down. Add 4 ozs. of solu-
tion B. The brown-black precipitate formed must be just redissolved by the addition of more ammonia as before. Add distilled water until the bulk reaches 15 ozs., and add drop by drop some of solution, A, until a gray precipitate, which does not re-dissolve after stirring three minutes, is ob tained; then add 15 ozs. more distilled water. Set
aside to settle without flltering. Finally add 2 ozs. of solution C; stir gently and thoroughly in a round disk 3 inches deep and 2 inches larger than the speculum. Suspend the speculum face downward in the liquid, which should rise $1 / 4$ inch up the side. The mirror is attached to a wooden block by pitch at the back after wetting the back
with turpentine.
(41) J. H. asks: Could a galvanic battery be
made of sufficient current to stun birds, so as to oatch them if they were to alight upon the wire ?
(45) S. H. asks: What is a Florentine re
 olls? A. A Flor-
entine receiver is conical in form, and at the side is a spout, B C, com-
municating with municating with
th3 bottom, the spout being much lower than the
mouth, A, of the receiver. The distilled product be-
ing poured into
this vessel, the oil this vessel, the oil
separates from the pics the upper part of the vessel. The water, as it
rises above the bend of the spout, flows off at C rises above the bend of the spout, flows off at C,
while the ofl may be from time to time removed by means of a pipette.
(46) W. P. J. says: In the report of the Hartford Boiler Insurance Company, it is stated that common soda is as good an absorbent as any-
thing. Does this mean sal soda, or carbonate of soda, o
soda.
(47) (47) A. L. asks: Will a blowpipe drill
hole in the best safes nanufactured i A. No. (48) C. F R. asks: Can you give me a re cipe for mixing dry pigment, as wator colors, for ter to a thin paste. Add pure gum arabic (heavy) sufficient, when dry, to mate
may be used as a body color
What can I put on drawing paper to make it toughness? A. See p. 208, vol. 32
What is the heaviest metal? A. Platinum is
(with the exception of irdium and osmium, which re equally dense) the heaviest form of matter yet

I often
I often hear people say it is too cold to snow; is cold, dry alr is one from which the moisture in great part must have previously precipitated.
If an ice house be built on the side of a hill,
alls being of stone 12 inches thick and two stories
igh, and the ice packed in the upper story, and he lower one used for a sort of refrigerntor, would the temperature be sufficiently low to preserve
fresh meatand other perishable articles? A. We resh meatand other perlshable articles? A. We
actory.
(49) R. D. asks: 1. What distance apart their diameters and focal lengths being as follows
 focus, $\frac{11}{16}$ diameter, plane. A. Lenses $3 / 4$ inches
apart. 2 . Where should the diaphragm be placed and of what size should the aperture be? A. Dia phragm aperture $5 / 8^{\prime}$, distant $1 / 2$ inch from eye len
at its inside focus. 3. What distance apart should the lenses for a terrestrial eyepiece be placed,their ocal length and diameters being (1) 2 inches fo cus, 138 diameter, plane; (2) $21 / 4$ inches focus, 11 diameter, double ; (3) $2, \frac{4}{2}$ inches focus, $11 / 4$ diameter
 4. Where should the diaphragm be placed,and wha he size of the aperture? A. Diaphragm aperture $0 \cdot 23^{\prime \prime}$, distant $1 \cdot 6 t^{\prime \prime}$ from A. 5. What will be th power of these eyepieces with a 3 inch achromatic of 48 inches focal length? A. Equivalent focus
(50) J. D. W. says: I would like to know why the pile of my Leclanche battery bothers m as it does. The top of the pile swells up, and some kind of whitish stuff comes out. It smells some-
what like hartshorn, and after it appears the bat tery gets weaker. What is the cause of it ? A Probably it is owing to defective manufacture.
The genuine Leclanche battery is cemented at the top with gutta percha, but an article bas bee made in this country in which paper is made to take the place of gutta percha. Now the pape it out of the cell by oapillary attraction, an hence the appearance of the whitish deposit. Th smell of hartshorn is due to the artion of the battery, am
trode.
(51) R. O. T. says: 1 . I wish to make an induction coil, about 10 or 12 inches long, with center bundle of iron wires of about 94 inch di ameter. The inducing coil consists of No. 18 wire gage. The primary coil is to be about 35 yard long, and what I want to know is how much of the secondary wire ought I to wind on the primary to get a spark at least $1 / 1 /$ inch long? A. It would b
better to use finer wire for the secondary coil,sa better to use finer wire for the secondary coil,say
No. 36 wire. Your secondary coil should be at least thirty times as long as the primary. 2. How prs ar saturated with paratin, arranged like the leaves o an interleaved book, the metal plates being the blant paper. Each alternate metal plate is con
blation nected so as to form two distinct series, insulated with each end an induction coil cannot take the place of a bat tery for general purposes. 3. I tried to make a of a large sheet of common newspaper; and aft doubling it up so that the two sides did nct touc each other, I counected each sheet with each et
of the inducing coil. Will this do? A. You ca not mane a cong. Will this do A. You ca separately as proposed. 4. Why cannot I use tbe induced current of a small coil for the inducing
one of a larger? A. The reason why you cannot use the induced current of a small coil for the inducing one of a larger is that the induced curre, t is
one of tension, whereas quantity is required. The one of tension, whereas quantity is required. The
effects produced by the secondary coil result from the transference of electric quantity in
mary to electric tension in the secondary.
(52) J. J. J. a.kks: 1. If I make a sq a square of zinc. I will have a sulphate of copp battery. How many such cells will I require to
plate with nickel and silver? A. Two. 2. How many such will be required to make the electric
light? A. 100. 3. If I make a silver solution by dissolving two silver dollars in acid, and put this a one gallon stone jar, can I, by suspending th articles to be plated in this solution and connect ing them to the negative pole of a battery, plate
them? A. Use 100 parts of water, 10 parts cyanide of potassium, 1 part cyanide of silver
(53) C. asks: Is there such a preparation 8 s
chemical ink, tesoming invisible or fading after chemical ink, tesoming invisible or fading after
wsiting, to reappear on exposure to heat? A.Us wsiting, to reappear on exposure to he
a dilute solution of chloride of cobalt.
(54) R. W. W. asks: 1. What causes th iquid, commonly called smoke water, to form in
stove pipes? A. A certain amount of well as smoke is formed in the combustion of fuels. As long as the temperature of the flue is kept high enough, this water is carried off in the form of vapor; but if the temperature is lowered,
it is condensed and acquires an acid reaction from the sulph the surning of the cuel 2 aciasgeneffectually prevent the dripping nuisance? A. and is free from is not chille, etc., where vapors may be condensed and collected.
(55) B. H. A. says: I wish to procure a vat
for boiling a solution of 1 part sulphuric acid and for boiling a solution of 1 part sulphuric acid and
11 parts water; I want it to hold about 60 or 70 gallons. Of what material should it be made, in order not to corrode? A. Porcelain lined iron
(56) H. L. asks: What is the formula for a terrestrial ocular with plano-convex lenses, for an
objeotive or speoulum of 48 inches focus? A. objeotive or speoulum of 48 inches focus? A.
Foci: $A=1.58^{\prime \prime} ; B=2 \cdot 38^{\prime \prime}, \mathrm{C}=2 \cdot 65^{\prime \prime}, \mathrm{D}=1.50^{\prime \prime}$. Dis-
tances, A B $=2 \cdot 57^{\prime \prime \prime}$, B C=4.70, C D $=2 \cdot 45^{\prime \prime}$. Focal
point, $0.713^{\prime \prime}$ in front of A. Aperture of $\mathrm{B}=0 \cdot \%^{\prime \prime}, \mathrm{C}=1 \cdot 15^{\prime \prime}, \mathrm{D}=07 \%$. Aperture of $\mathrm{A}=0.7$, distant $1 \cdot 2 y^{\prime}$ from A. Diaphragm aperture,
at inside focus of eye lons 0.75 , at inside focus of eye lens. Cap, $0 \cdot 26$, aper-
ture distant 0.44 from D. Length of esepiece $=10$ inches. Field of view $=30$ minutes. Power=5: A and B plane side to objective, C and D plane A and B pla
side to eye.
(57) W. R. B. says: 1. In Dick's "Practical n achromatic telescope consisting of a small correcting lens of flint and crown glass to correct a large object glass of crown. I do not uning such the formula for computing or construct ng such a lons. I have a good double convex
lens of crown glase, 5 inches in diameter and of 97 nches focus. Will you please give me the diameter and focus of both the convex crown and concave flint composing the correcting lens, for such
an object glass? A. Professor H. L. Smith gives an object glass? A. Professor H. L. Smith gives of following formula for a 6 inch dialyte telescope
feet focus; Crown objective, outeside of 834 feet focus; Crown objective, outeide
radius, 76.896 inches, inside radius, $175 \cdot 10 \%^{\prime}$. Corector composed of a plano-convex crown, radius .9915", and a double concave flint lens, radii 161-14" and $9.93^{\prime \prime}$. Flat sides of the corrector together,
nd crown next to object glass. 2. What is the distance at which it should be placed from the ob ect glass? Is there any great difficulty in obtainng a satisfactory effect in this manner? A. The corrector, 4 inches diameter, is placed about hal
hefocus of erown objective from it, and moved until it corrects the chromatic aberration; and then the lenses of the corrector are separated nore or less by 3 bits of card, about $\frac{1}{\frac{1}{2}}$ inch, more or
less, untll the spherical aberration is corrected. less, until the spherical aberration is corrected. The correction is now perfect at center of field
only; and the field lens of the Huyghenian eyeonly; and the fiecid lens of the Huyghenian eyethe correction is complete throughout the field ecepta slight aberration at the margin. 3. Ide object glass for a telescope. Will you please give me the radius of the different curves of the crown and fint for an object glass 4 inches diameter, 6 pohes focus? A. Tables for the curves of any dispersive power of the flint and crown, to the ourth place of decimals are to be found in Prechtl's "Praktische Dioptrik," being Barlow's ex-
tension of Herschel's tables." Where can I ob tension of Herschel's tables. 4. Where can I ob-
tain the fint and crown glass disks for the above? tain the flint and crown glass disks for the above
A. At Heroy \& Marenner's (Chance's agents), Duane treet, New York city. 5. Is there any work pub shed which would aid an amateur in the making grinding, polishing, and testing) of lenses? A tor braper's book, and also Prechtl, to read with
he help of some intelligent Teuton. You wil then be on the road to success.
(58) H. W. W. says: In your most interest ng article in No. 10, on solar chemistry, you say botoe gaseous substances which constitute the Are we to infer that our sunshine contains these Whatis the proof? A. The sunshine does not contain lime, magnesium, etc. Its spectrum, howcompared with the spectra of the metals in the state of incaudeseent vapor, correspond with the bright spectral lines formed by tbese incandescent vapors. But it is a property of incandescent va oors to absorb light of the same refrangibility as dhey emit. Hence the dark bands in the sola tion of certain portions of the sunlight by corre sponding incandescent vapors.
(39) C. A. says, in reply to E. G., who asks what spece to give a foot power circular saw: I
un mine at 4,500 revolutions per minute. My saws are five inch, of No. 28 gage. The balanc Wheel is about 7 hlbs . Na weight, and I increase mo lon with countershaft. I enclose sample of cut foot powersow? A. Yes, very good inded. and give evidence that the sawyer is an expert. E. G and others will be much obliged for the informa
(60) R. H. H. says, in reply to J. S., "who asks if a belt would hug a smooth iron pulley sloser than one covered with leather, and you say
that you are not sure that a pulley covered with leather is better than onewith a smooth iron face know it is better, for we put on a 10 inch iron pul uld slip, no matter how tight it was. We changed $i n c h$ wood pulley with 4 inch face covered with leather,
(61) G. B. says, in reply to A. B., who asks ordurs material used in the manufacture of n odor when wet? Animal size, made chiefly o dead horses, put in to give the fabric more body. (62) F. V. J. says, as to the needed improve ments in the rall joints on street railroads. A plece of rubber put under the plate would prevent the evil to some degree. As the ralls are now, hey would act as a spring and deaden the jar.
Minerals, etc.-Specimens have been recived from the following correspondents, and examined, with the results stated:
J. H. N. D.-The brilliant golden scales are films of muscovite, a variety of mica, which bave ac-
quired thelr color by the oxidation of a small per centage of iron which the miveral contains under You are mistaken in supposing that the sun heat is attributed by scientists to combustion. A great many suns made up of coal would have
been entirely consumed during the time the sun been entirely consumed during the time the sun M. H.-It is sulphuret of lead or galena.-M. R. K. - We regret to say that the jewelers will not pur-
chase these river pearls. We have bad a pearlfrom
the Wabash river many times the size of the larg est specimen, but it is not saleable.
B. M. asks: Which is the best way to bottl lager beer to avoid a second fermentation?-R. H. inches, be dropped into a conical glass full of waer, whose diameter is 5 inches and altitude 6 inches, how much water will run over?

COMMUNICATIONS RECEIVED.

The Editor of the SCRENTIFIC American acknowledges, winal papers and contributions upon the following subjects:
On the Tides. By W. H. P., and by Z.
On Poetry and the Locomotive. By J. H. B. On the Vital Principle of Organic Matter. By On Lighting Tapers. By F. W.D On a Parasite of the House Fly. By D. V.D.
On Boiler Explosions. Ry S. N. B.
\qquad A so euquiries and answers from the following. M.-F. C. R.-H. C.-O. C.-H. S. R.-W. S. D.-P. B.
J. H. H.-C. ©. M.-M. W. H.-J. M. E.-H.J. D.-
J. P.-J. C. R.-A. P. F.-E. W. P.-S.-A. W. P.-

GINTS TO CORRESPONDENTS.
Correspoudents whose inquuries fail to appear sould repeat them. If not then published, they clines them. The address of the writer should al Enquiries re
Ent
Enquiries relating to patents, or to the patentablity of inventions, assignments, etc., will not be
pubished here. All such questions, when initials only are given, are thrown into the waste basket, as it would ill half of our paper to print them all; by mail, if the writer's address is given. Hundreds of enquiries analogous to the following are sent: "Who makes the best steam trap? Who the latest improved steam cut-off? Who sells the best sewing machine motor? Whose is the best tool teel All such personal inquiries are printed. as Till be obscrven, in the colurnn of "Business and
?ersonul." which is specially set apart for that pur oose, subject to the charge mentioned at the head yn in this way be expeditiously obtaned.
[OFFICIAL.]
INDEX OF INVENTIONS
Letters Patent of the United States were

Granted in the week endine

April 20, 1875,
AND EACH BEARING THAT DATE.

Alarm, burglar, L. M. Johnson........
Alarm, burglar, Kennoch \& Gililiand
Ash pan for stoves, A. T. Bleyley..... Ash pan for stoves, A . T. Bleyley. Asphaltum to a liqua, Baby walker, I. D. Cla
Bale tie, J. W. Deyo..
Barel head adjuster, Granger \& smith Barrel tap and faucet, A. C. Springer. Basket stuff, machine for shaving, R
Bed bottom, sping, G. L.. shepard Bed bottom, sping, G.
Bird cage, H. Belmer..

Blt for blast holes, expanding, G. Frishee Bit stock, E. R. Charles.. Bolt threading machine, E. Schlenker ooot soles, edge settIng, B. J. Tayma Bottle, L. F. C. Schund
Bottle stopper, R. \& D. L Bottle wire fisticuiner, II. W. W.entermann Bridge, iron, J. B. Eads
Bridele bit, A. Buermann
Broiler
Broiler, H. J. Chamberliu
Bronzing machine, Forbes \& Hallock Bronzing machne, For Bull's eyc, w. W. Wilico
Burner, lamp. J. Pigot. Can. stand oll, J. D. Gray (i) Cans, nozzle for oil, w.
Cap box, A. Huskamp
Car brake, A. Barker..
Car brake, D. D. Kimel
Car brake, Laauwe \& Winkion
car coupling,, . T. Baker
Car coupling, G. C. Sclion
Car coupling, J. G . Wilison
Car coupling, S . T. Young
Car for elevated railways, L .
Car for inclined planes,
Car, ore, S. L. Plerce...
Car pole coupling, street, J. S. Hagert
Car starter, H. W. Baltz,
Cartureters, arr pump for, H. Seyter
Carriage, Scherb \& Doland
Carriage axle lubricator, J. M. Witme
Carriage jump sent, C. K. Mellinge
Carriage spring, W. F. Dusenbury
Cartridges, loading, T. L. Sturtevaut
Casters, etc., fastening, Thinnes \& Schuele
Chain, drive, W. D. Ewart (r).
Chair, rocking, A. List
Churn, b. F. Price
CIgar box, paper, G. A. Beldler
Clamp, joiner's, D. A. Fisher, Jr.
Clamping device, Naxwell \& Scott.

Clock, R. H. Strong...........................
Cloth winding and measurig, J. Wayiand
Coal scuttle, Feldmeier \& Stoeppelwerth. Cock, stop, P. Ball. Corks, machine for tapering, Z. M. Lane Cotton gin feeder, F. W. Fly....
Cotton seed drill, H. Steckler, J Crucible mold, J. C. Wallace. cultivator, A. B. Colver.. Dental bib, IL Horton. Door check, ,. Burt......... Dough mixer, E. G. Morrison Drill for drilling metal. Shaw \&
Drill, rock, G. H. Reynolds.... Drill, tripod rock, Nunting \& Githens. Elevator, hay end grain. .T. Powell.
Elevator, hydraulic, c. W. Baldwin Elevators. safety catch for, F. B. Perkins Embossing cr printing staul p, J. M. Smart
Engine governor, steam, G. L. McCahan. Engine governor, steam, J. D. Willoughby Engine lubricator, steam, J. Farnan
Engine valve, stean, Engine valve, steam, R. Sclumidt....
Engine plston cushion, G. H. Reyno Fabrics, machil:e for coating. L. L. Allen Fan, automattc, L. D. Stamps
Fare box, R. M. Robins Fastener, metallic, G. W.
Faucet, F , G . Faucet, J. G. Bickel (r).
Fence, farm, T. W. Owen
Filter rack, M. Leiner.....
Fire arm, breech: loading, F. W. Fre.......... Fire a marm, revolviving, Fore White...............
Fire arm, guard lever, etc., F
Fire escape, E. Matteson..
Fire extinguisher, J. T. H
Fire shleld, T . T. Moore.
Flour. making middlings, R. L. L. Downton
Forging file blanks T. L. Grover Forging flle blanks, T. L. Gro
Fuel, artificlal, J. J. Endres. Furnace doors. J. Ashcroft...
Furnace door, E. H. Ashcrof.
Furnace, hot air, . E. Wallis Gaffs, throat gear for, C. H. Kingston. Game board, G. Bay les.
Gas retort, S. S. Putna
Gas stove, Burnham \& Taite.
Gate, farm, G. O. Ross.
Gate, farm, J. N. Wilse
Gillding, passe- partout baee for, H. McHugh Glass mold, Hobbs \& Brockunier.
Glassware, c. W. Brucku Governor, D. L. F. Chase.. Harrow, J. McPherson...
Harrow, G. H. Pounder Harrow, C. W. Strombeck
Harvester, bean. Barber \& A
Harvester rake, J. H. Myer
Harvester reel, F. Wyman
Harvester pitman holder, C. Wheeler, Jr.
Hat brushing machine, Λ. S, Joyce.......
Hatcliwass, safery guard for, E. Schlen ker
Hay loader, P. L. Craig....
Heel stIfener. J. w. Hatch
Hoist, hydraulic. F. Rochow.
Horse interfering pad. H. s .
Horse interfering pad. H. S. Nichols.
Horseshoe. J. D. Feltnousen Hose pipe nozzle. compound, C . L. Jones
Hydrant, H. H. Clover.......
Hyaraut, street. J. Flower. ree machine, S. B. Martin
Ice machine, A. I. Talt.. Injector, steam, D. Fergus ron, pile for bar, W. F. Durfee Jelly press, W. W. Bostwick...
Kettle handle, tea, w. s. Potwin Key fastener, R. F. Gibson. Key fastener, J. Thornton
Kill, brick, P. E. Smith.
Knife cleaner, F. A. Phillipp1...
Knife, pocket, C. P. Benedict
Knife, pocket, c. P. Benedict
Kitting machine needle, s . Peber
Laduer, I. \& C. Erkskine.
Lamp bracket, H. G. Hubon
Lamp chimneys, box for packing, N. Harris. Latch, door, J. H. Crane Latch, locking, c. Seymou Lathe for turning wood, gage, F. Goulet.
Lathe, metal turning, T. Wilbrat Lathe, metal turning, T. Wilbraham.
Leather work, seam for, s. w. Shorey Light and heat, collecting rays of, P. Balestrier
Locomotive running gear, F. S. W. Nowotny Lock, combination, w. Gillillan Loom harness motion, \mathbf{O}. W. Kentis
Loom heddle frame, F. S. Pratt. Loom pattern chain, L. J. Know
Loom warp beam, E. Oldileld.... Lubricator for steam engines, J. F.........
Marble, etc., grinding, Robinson et al Marble, etc., grinding, Robinso
Mashing machine, I. A. Millier Metal bars, enlarging ends of, G. H. Sellers.
Millstone balance, s. Bernhelsel Mincine mandine, J. A. Miller. Molding machine, J. H. Blaisdell vecktle holder, M. A. Head veedles, punching eyes of, s. C. Kingman Nut lock, S. Brunson.....
Nut lock, C. L. Holland.
Oil cloth, polishing, J. Webber, Jr...
Oils, lubricating, Gordon
Ore, crusher, G. E. Noyes
Organ, pneumatic action, T. Winans.
Oven, baker's, D. Mce
Paper barrel, N. Keely
Paper box feed mechanism, E. B. Beeche
Paper, calendering, N. H. Whitten
Paper cigar box, G. A. Belder
Paper cigar box, G. A. Beldler
Paper fastener, G. W. McG11
Paper fastener, metalil, G. W. McGill.
Paper feeding machine, D. Colbock....
Paper feeding machine, D. Colbock
Paper tube machine, J. F. Jones.
Paper tube machine, J. F. Jones..
Pavement wood, Carr and Phillips

Pavior's rammer, G. Hitchcock...
Pen holder, J. Larru.
Photorap
Photograph burnisher, E. R. R. Weston.....
Piano keys, device for shaping, M. Prat
Piano keys, device for shaping,
Pianoforte pedal, L. C. Whting

2,385.-Soap.-W. Conway, Phfladelphia, Pa. 2,386.-Medicine.-W. M. Clarke \& Co., Boston, 2,387.-Suirts.-E. Jennings \& Co., Chicago, Ill. 2,388.-Watch Movements.-L. \& M. Kahn, N. Y 2389.-Lard.-A. \& J. M. Moses, New York city. 2,390.-Lard.-G. C. Napheys \& Son, Philadelphi 2,391.-Petrolecm.-Power \& Co., London, Eng. 2,392-Medicine.-J. H. Ruttley. San Francisco, 2,393.-JaMs, etc.-P. J. Ritter, Philadelphia, Pa. 2,391 to 2,397.-Tobacco.-I. Sarrazin, New Orleari ,398-Stoves.-Summer King Co., Pittsburgh, Pa 2.39n.-Copynble inks.-F. de B. Bertot, New Yor 2.400.-Silks.-A. De Greiff \& (:o., New York city 2,101.-Coffiess, etc.-Vocht \& Co., Philadelph: 2,402.-Spirits.-Frefberg et all., Cincinnati, Ohio 2,403.-Starch.-GGlen Cove starch Co., New York 2,404.-Corn Flour.-Glen Cove starch Co., N. Y 2,405.-Rasps anl Files.--Heller et al., Newark, 2,406.-Soap.-Lineoin M'r's C'o.. Providence, R. 2,407.-Gloves, e'tc.-Passavant \& Co., New York , 409 . -Toys.--IR. Jenkins, Brooklyn, N. Y. 2,409.-Corsets....S. Kleinberger, New York city 2,410.-Fisir. - Eagle Fish Co., New York city. SCHEDULE OF PATENT FEES. \qquad On each Trade mark................................ On filing each application for a Patent (17 years). issuing each original Pateut. appeal to Examiners-in-Chtep On appeal to Comnisssioner of Paterits.. Un application for Relssue. Un tiling a Disclainer. On an application for Destgn (3 $3 / 2$ years) On application for Desiga (7 yearis). On application for Design (14 years) CANADIAN PATENTS. List of Patents Granited in Canad APRIL 16 to 21, 1875. ,636.-Wm. T. Root et al., Ingersoll, Ont. Radiato steam heating apparatus. April $16,18 i 5$. ,637.-J. L. M'ams, Montreal, P. Q. Tobacco c April 16, 18%. ,638.-J. D. Stark, Brooklyn, N. Y., U. S. E wheel lubricator. Λ pril 16, 1875. ,639.-A. H. Swain, Winchester. Ind., U. S. Adjus table and ironing board. April 16, 1375. ,640.-R. F. Cooke, New lork city, U. S. Elastic shoe. April 16, 1575. , ,i11.-J. E. Wisner, Friendship, N. Y., I. S. hay rake. A pril 16, 18 \%is. ,64..-M. D. Murray et al., Johnstown, N. Y., Breast collars for harness. April 16, 1575. ,613.-A. L. Carey et al., Ypsilantl. Mfch., It. S. pump bucket. April 17, 1875. , 644 . Wm. I. Gibbs, Oshawa. Ont. Middings pu April17, 1875. ,645.-R. W. Jeffery, Woodbridge, Ont. Bolt loc pitman box. April 17 19:5. ,646.-J. Currie, Toronto, Ont. Boller foam prev and fuel saver. April 17, 1875. ,647.-J. F. Wcbster, Hamiltoin, Ont. Screw mac April 17, 1875. ,618.-L. W. Russell, Gananogue, Out. Fence co April 17, 1 s 75. 4,649.--B. Sloper, Montreal, P. Q. Hydrogen genc and carbureter combined. April 17, 1875. ,650.-S. R. Bailey, Boston, Mass., U. S. Wooding machine. April 17, $18 \pi 5$. ,651.-W. G. Rawbone, Toronto, Ont. Cartridge er April 17, 1875. 4,652.-S. II. Hall, Belle Plaine, Iowa, U. S. Tan April 20, 18 \%5. ,653.-J. B. Porter, Yarmouth, N. S. Ironing mac Λ_{11} il 20, 1875. ,654.-E. Tiffany, Bennington, Vt., U. S. Circular ting machine. April $20,18 \pi$ in. 4,655.-A. G. Gray, St. John, N. B. Mowing mac April 20, 187\%. 4,656.-S. Rydbeck, Red Wing, Minn., U. S. Mor machine. Λ pril $20,1875$. 4,65\%.-I. Levy, Ellaville, Fla., U. S. Fence picke chine. April $20,1875$. 4,658.-Wm. Peaker et al., lrampion, Ont. Hot air stove. April $20,1575$. 4,659.-J. S. Kemp, Magog, P. Q. Manure spre machine. April 21, 1875. 4,660.-13. Curtis, Jr., Boston, Mass., U. S. Buck tachment. April 21. 1875. 4.661.-Wm. Shea, Trenton, Ont. Milk and liquid c April 21, 18 Ti5. 4,662.-Wm. J. Mansell, Toronto, Ont. Self-actin coupling. April 21, 1875. 4,663.-W. H. Landon. Princeton, Ont. Parlor co stove. April 21, 1875. 4,664.-W. J. Wauchope, Niddrie, Scetland et al manufacture. April 21,1875 .	

caduertisements.

Back Page :-..... 81.00 a lino. Inside Page:-.... 75 centa a line

 Engravings may hewl advertisements at the same rats per line, by measurement, as the letter presss. Advertisements must be received at pubication office as early as Friday mornino to appear in next issice.

BAIRD'S yours

FOR PRACTICAL MEN.
 HENRY CAREY baird \& CO.,
Industrial publishers and booksell INDUSTRIAL PUBLISHERS AND BOOKSELLERS,
406 WALNUT STREET, Phlladelphha.
 FOR SALE

 Bradley's Cushioned Hammer

 IMPROVED MACHINERY FO STAVE

Machinists' To, This,

 Dituhing and drainage machines

Improved Sloting Machine.
New Trip torelieve the Tool on the

 WOOD \& HGIT MACBINE 0 . WorcrsTrx, MAss, Manufacturers of all
kind of IronW Working Machinery
Lathes, Planers, Shapers, Drils, Boti
Cher

FIRE PROOF SHUTTERS.

clark \& co's self-coiling rolling steel shotters (Burglar Proof), For store from and Rear Windows, require no machinery or balance weights, and can be applled to any opening; aliso Roilthe world. Send for Catalogne to
dambs G. WILSON, Manager,

London, Paris, Vienna, and Berlin.

 BLAKE'S PATENT Stone and Ore Breaker

 DROP PRESSES

$\mathbf{T}_{\text {He }}^{\text {He }}$ Union Iron Mills, Pittsburgh, Pa

Patent
Planing \& Matching

10

NIAGARA STEAM PUMP,
Hubbard \& Aller Enainks ant Bolurse, ${ }_{a}$ Epecially.

FIRST \& PRYIBIL,
BandSawMachines
Bor dill

 461 to 467 w. 40 Sh Sthat, Now Yorls Clty.

Emery Wheel Co Manufacturers of
mery Wheels under a new patent.

LeCount's, Patent

Masuns patt friction clutches
 () UR Coverina FOR boilers and Asbestos ${ }^{\text {Reelting }}$ Co.

eagle foot lathes

Cope Maxw ril mipe cos

Planing \& Matching,

STHN(IIL DIES For cuttily busines

For Crinding Bones, Fertilizers, Clay for Bricks, and hard materia DENMEAD \& SON, Engine \& Boiler Works,

Stone Channeling Quarrying Machine,
 FOR CUTTING STONE INTO VARIOUS SIZES AND DIME
QUARRIES.
STEAM STONE CUTTER CO., RUTLAND, VT.

P. BLAISD래L \& CO.,

STEEL CASTINGS.

$\mathbf{W}^{\text {OOD.WOI KIN }}$ MACHINERY GEN

$\mathbf{P}^{\text {atented by c. saukr, saint paul, }}$
 tiont the triftio maniusature the Hame or the Pat notice for bridge contiactors.

 and

TTONE SAWING MACHINERY. DDERRICKS \& TRAVELLERS

MACHINERY.

IRON \& WOod working machinery of every description.
Cold Rolled Shafting.

COLDROLLED SHAFTING

YALE IRON WORKS,

$\mathrm{F}^{\mathrm{OR} \text { SALE-Machine Shop, for the manufacture }}$

Manu \& Co.s's Patent Oficices.

Established 1846.

The Oldest Agency for Soliciting Patents in the United States.
TWENTY-EIGHI $\overline{\text { YEARS EXPERIENCA. }}$
MORE PATENTS have been secarred througb his agency, at home and abroad, than through any other in They employ as their assistants a corps of the most oxdraftemen that can be found, many of whom have been se ected from the ranks of the Patent Offlce.
SIXTY THOUSAND inventors have avalled Stions and procuring the servces in examining their' inMUNN \& CO, in connection
Screvtrifo American, contine to the publication of the confer with inventos, contime to examine inventiona assignments,attend to fling applications in tho Patent Office paying the government fees, and watch each case step by
step whlle pending before the examiner. This is done through their branch office,corner F and 7th Streets, Washngton. They also prepare and file caveats, procurr deeign patents, , trademarks, and reissues, attend to rejected cased
(prepared by the inventor or other attorneys). procure copyrights, attend to interferences
matters of inf rive written opeminions on
, furnith copies of patents: in fact matters of infringement, furrith copies of patents: in fact
sttend to every branch of patent busin $\mathbf{n s}$ ooth in this and n foreign countries.
Patents obtained in Canada. England, Yrance, Belgium Germany, Russia, Prusia, spain, Portuga, the Britith
Tollonies, and all other countries where patents an $\underset{\substack{\text { ranted } \\ \text { sppec }}}{ }$
A special notce is made in the Sorevizino Amritioas of sil Inventions patented through this Agency, with the
oame and residence of the patentee.
Patents are often sold, in rart or whole, to persons attracted to the invention by such notice.
A pamphlet of 110 pages, contanting the laws and fall d1rections for obtaining United States patente, also a circular
pertaining exclusively to Foreiga Patents, stataing cost for pertaining exclusively to Foreige Patentes, stating con granted, etce, sent fry
MUNN $\&$ CO.,
Pablibers SCIENTIFIC AMERICAN,

Gavertisements.
 Enoravinos may head advertisements at the same rate
per line, by measurement, as the letter press. Adper line, by measurement, as at me mectived at pubcation offce a carly as Friday morning to appear in next issue. TO PATENTEES AND MANUFACTURERS.-

 TESTING MACHINE WANTED

 A samer actory guarantee of efficlencr and of comple-
tion within the specifed time must accompany each proposal. and a forfelture of one hundred dolarr (8100) per
day will be exacted in case of non fulil ment of the con-
ditlons of the contract The general proportions of the machines are to b

 The privilege is reserved of rejecting any, or all, pro

 CARVING MACHINES WANTED-Those of Chilipp Hauck \& Andrew Metzger,orany other make
Parties will please send Price ilition , San Francisco. Cal.

Working Models

And Ryermental M. Nand
School of Civil Engineering OF UNION COLLEGE. SCHENECTADY,N.Y

 greatest invention of the age ELECTRIC \& VAPOR CHAIR.

THE ROOT SAFETY

BOILER.

OVER 1,200IN USE. SAFETY FROM DESTR UTMOST DURABILITY; And Greatest Facilit for ECONOMY, (TP For Illuatrated, and Repairin
Aoendroth \& Root M'f’g Co., GREENPOINT, BROOKLYN, N. Y.
ROGARDUS' PATENT UNIVERSAL ECCEN-

 guccessor to JAMES BOGARDUS, corner of White and
Elm Sts. New York. MAGNETS-Permanent steel Magnets
 Todd \& Rafferty Machine Co.

NEWSPAPER FILE.

Addrem

TO LUMBERMEN. $\$ 100.00$ IN GOLD,

 ASBESTOS MATERIATS ROOFING, 8HEATHING, BOILER FELTING, PAINTS (all colors), ROOFING PAINT
 Patentoo and soie nanaracturer, $\}$ H. W. JOHNS, 87 Maiden Lane, N. Y.

O OKK S FOR BUCILDERS.

IRON PLANHRS,

Friedmann sa yatent
Orer 15,000 Now in Uee Here and in Europe.

Machinists' Tools.

 ${ }^{W} A R$ R Worcester, Maso

PORTLAND CEMENT

The TANITR E MERY WHELL

 Address THE TANITE CO., STROUDSBURG, MONROE CO., P

 Niagara SteamPump Works Established 1862. CHARLES B. HARDICK, BROOKL
Mill FurnishingWorks

HARTFORD

STEAM BOILER Inspection \& Insuranco COMPANY.
 J. B. Pract, Soe
abtrobd
Co

coventro

ROOTS' PATENT PORTABLE FORGE.

THE ONLY FORGE WITH FORCE BLAST BLOWER.

THE ONLY EFFECTIVE FORGE MADE.

P. H. \& F. M. ROOTS, Manuf'rs, CONNERSVILLE, IND. S. S. TOWNSEND, Gen'I Ag't, 3I Liberty St., NEW YORK.

Portland Cement

BINGHAM \& RICH, Ollity, Pa.
Diamonds 多 Carbon

Chemical \& Mineral Productions

Corrugated Iron

I MPORTANT FOR ALL LAROE CORPO

ELGIN WATCHES.

 THE BEST fOT RAILROAD purposes now SUPERINTENDEENTS of Leaddng RailSlx grades or Gents' Writches with Stem BUY NO MORE CHEAP AWISS WATCHES
 THE NEW WLGIN WATCH, "I.MAATBRE"
 The BEST WATOH, for the money, now made th the Each Watch manurfactured by the Com- pany, bearlng their Trade Marle, is accompany, bearing their Trace Mark, is accom- panid by a MEDAL, bearlng the name and number of the watch, Guaranteelng THE HEAL \mathcal{C} \& CISCO Patent Centrifugal Pumps.
 Perfect satisfaction gua Insititute, 18 The cheapest, most
 IRON AND STEEL
 DROP FORGING.
 The Hall \& Bolden Company, Dazbury, Ot
 Jiamond solid Rmery Wheeds. K IDDER'S PASTILEM A SURE RELIEF KOR
 MROUR

SCIENTIFIC AMERICAN,: THR MOBT POPOLAR 8CIENTIFIC PAPER IN THE WORLD.

THIRTIETH YEAR.

VOLUME XXXII-NEW SERIEP. The publishers of the OCIENTIFIC AMERICAN beg to announce that on the second day of January,
1875, a new volume commenced. It will contivue 1875, a new volume commenced. It will continue
to be the aim of the publishers to render the cnnto be the aim of the publishers to render the con-
tents of the new volume more attractive and usetents of the new volume more a
ful than any of its predecessors.

To the Mechanic and Manufacturer No person engaged in any of the mechanical pursuits should think of doing without the SCIENTIFIC
AmERICAN. Every number containsfrom six to ten engrannes of new machines and inventions which cannot be found in any other publication.
The SCIENTIFIC AMERICAN is devoted to the interests of Popular science, the Mechanic Arte, Manufactures, inventions, Agriculture,Commerce, and the industrial pursuits generalls; and it is val uable and instructive not only in the Workshop and
Manufactory, but also in the Household, the Liorary, and the Reading Room.
One copy, one year (postage included)....... 83.20 $\begin{array}{lll}\text { One copy, six months (postage included).... } & 1.6 \\ \text { One copy, three months (postage included).. } & 1.0\end{array}$
 year, and one copy of engraving " Men
year, and one copy of engraving, "Men
of Progrees"............................ 10.00 year, and one copy of "Science Record"
for $1874 . .$.
Remit by postal order, draft, or express.
Remit by postal order, draft, or express.
Address all letters and make all Post Gilloe or
ders and drafts payable to
MUNN \& CO. 37 PARE ROW, NEW YORE

[^0]:

