


the Erie Canal and the Black Rock harbor to the Niagara river, about half a mile beyond the city line. The perpendicular shaft or well is about eight feet in diameter and thirty feet deep, nearly the whole being through rock. From the bottom of the well starts the Tunnel, which is nearly circular, and about six and a

half feet in diameter, running nearly horizontally towards the bed of the river, which is distant about three hundred and sixty feet. A slight slope upward, as the Tunnel advances, allows the water which pours into it from springs or crevices in the rock, to run back into the well out of the way of the workmen who are engaged incessantly, day and night, in blasting the rock. They have now proceed ed about two hundred and eighty feet from the well, progressing at about two feet per day. Only four of the miners employed are able to work at once, changing three times during the twenty four hours. The work is all done by lamp light.

The rock is soft and easily drilled and as yet no crevices have been found of sufficient magnitude to offer very considerable impediments to the work. The blasts are discharged about once in three hours, four charges being let off at once. When the holes are drilled to a sufficient depth and charged, all hands leave the hole to avoid the deafening roar of the explosions, and as a matter of safety in case they should open any water course connecting with the river, in which event the Tunnel would be likely to fill with water uncomfortably fast to people so far away from the external world.

At the mouth of the well the noise of the blasts is like the discharge of heavy artillery, and the earth and buildings are considerably shaken by the shock. The water which accumulates in the well is removed by two large driven by a steam eng also used to lift the broken stone from the pit

tion; fig. 5 is a diagram illustrating the srushing or pulverizing action. The same letters of reference indicate like parts. The nature of this invention consists in the

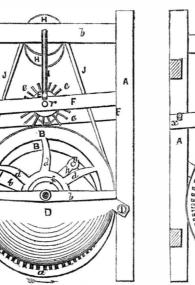
use of a revolving screen working on a station-

#### Figure 3.

202

the screen.

A A are uprights with cross ties, b b, forming the framing, a a a a are metal bars forming the screen; these bars may be placed at any required distance apart. They are bound in a ary axis set at a straight inclination and hav- cylindrical form by the hoops, B B, which


Figure 4.

0

н

88888888B

Ъ

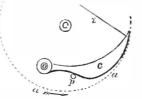


have notches to receive the ends of the said bars. To the hoops, B B, there are attached arms, d d d, connected with naves, f f, which form the bearings of the screen. The bars, a a, should be of such a shape in their cross section, and so arranged that any particles once entering the spaces from within between them, will readily pass off,-they are broader on their interior than their exterior F1G. 5.

naves, f f, rotate; it rests on the lower cross piece, b b, and is prevented from turning by its back end, S, being made square, and having an arm, t, fastened to the upright, A, by a screw, u fig. 1. The axis, C, is slightly inclined, thus giving the screw a slight dip towards its back end. On the axis there are secured arms, h h, l l, m m, (figs. 2 and 4), a is a cross bar connecting the arms, h h. H is announced his project every engineer and chea bar connecting the arms, l l, and p is a rod mist declared it impossible." This, poeticonnecting the arms, m m; c c c c are crushers cally speaking, shows how dark the minds of working on what is termed a hinged joint on such men must have been. the rod, O, at one end, while at the other extremity they are attached by cords or chains, i i i i, to the bar, n, at their lower side by the rod, p. Either arrangement of the suspension chain, i, or the supporting rod, p, may be used so as to prevent the crushers, C, from rubbing on the screw; or both arrangements as represented may be used. D is a stationary hopsent. per to feed in the clay. ee e e are pickers arranged radially round a small drum, E,

the rod, y. By unfastening the hook, g, (fig. 4,) the pickers enter the spaces between the bars, and as the scrow rotates the picker roller rotates also, and thus they clear the screen of any soft clay that might otherwise adhere to it and choke up the spaces between the bars.

We have thus described this invention in such a way, we believe, that all who read carefully will understand. Its practical qualities are of a very superior order. More information about the sale of rights &c., may be ostained by letter addressed to Mr. Whipple, directed as above.


#### Gas from Wood.

The Tribune of last Monday notices an invention, of Austrian origin, it seems, whereby it is stated that an eminent chemist in Vienna is said to have obtained gas from wood, and that the Railroad Depot at Munich had been lighted up with it. The invention is spoken of very favorably and at some length, and gas made from fir wood (pine) is made out to be much cheaper than coal gas. This is neither a new invention nor one that will be of any benefit to us. Every chemist knows that good gas can be made from wood, and we made experiments with hard maple, hickory, and Blosburg coal, in 1840, to test their different gas producing qualities, but the coal come paid for the trouble.

prim wood makes good gas, but then the quantity depends upon the rosin in the wood. The woody fibres which are mostly composed of nitrogen, give out no illuminating gas. It is much better to use rosin at once, at least for cheapness of material, as it saves freight, &c. It is stated that "when the discoverer

Railroad Completed. The Montgomery and West Point Railroad in Alabama, having an extent of ninety miles is finally finished. It is the first work of the kind ever completed in that State. It has already, it is said, poured into Mobile the groce ry and cotton trade of a large number of counties in Georgia and Alabama, and has done, remarks the Montgomery (Ala.) Journal, more for Mobile than all other causes put together.

A walk before breakfast on these heavenly spring mornings, is conducive to health, and costs nothing but a little energy. μt



edges, thus making the outside width of their spaces greater than the inside; for this purpose bars of a triangular half round or any othother appropriate shape may be used, with which is keyed to the axis, r, working in eiththeir narrowest face outside. The screen

er end in side levers, F F. The pickers are of may also be made of a cylinder having slots corresponding to the spaces formed by the bars. a a. C is the stationary axis on which the screen and they drop into the spaces between ing.

Stopping of Flour Mills. The Missouri Republican of the 23d ult., states that in consequence of the prevailing high prices for wheat, and low rates for flour in that and the Eastern and Southern markets, some ten or twelve of the principal millers have resolved to stop their mills for the pre-

Smoothing irons seem to be rather a late invention. About the time of Elizabeth and James the I., large stones inscribed with texts nearly the same length as the bars of the | of Scripture, were used for the purpose of iron-

282

### Scientific American.

Miscellaneous.

[Special Correspondence of the Scientific American, Matters and Things Connected with the Great Exhibition

LONDON, 28th April, 1851. There is a silly rumor going about England that it is the intention of the French Socialists and the English Chartists to combine and provoke a civil war during the progress of the Exhibition, and, as a consequence, a vast deal of nervous anxiety is entertained by the speculative portion of the John Bulls. How this report originated, or what grounds it has, we are unable to say, but true it is that such a belief exists, and to a very great extent.

Up to the alpha of May (which bids fair to glide in upon us in all its loveliness) no one is admitted to the Exhibition but "exhibitors," "agents," "Commissioners," or "assistants," and these, even, are cross-questioned to such an extent that it makes a visit little more than a series of disagreeable annoyances. At almost every turn, a policeman demands "your ticket," which, if you chance to be an American, only admits you to the American division; if an Englishman, to the English portion, and so on. In consequence of this unnecessary rigidity, and the officiousness of the men on duty, those inquisitive persons who wish to enjoy a general stroll over the various sections, are compelled to resort to all sorts of stratagems and finesse. It is not an uncommon thing to see a group of strangers, who have by some device, got into the building, crawling along through the rows and "confusion worse confounded" of bales and packing-cases, in breathless anxiety, watching the movements of the attendant police, in the fear that every moment they may put an end to their wanderings.

The American department is progressing, we regret to say, slowly. There seems to have been a spirit of jealousy and a desire to monopolize the arrangement, on the part of several gentlemen who claim to be representatives of the government. Mr. Riddel, the Commissioner, appears to be active and enterprising, but from some cause or other, not entirely discernable, the wheels of the machine do not move as glibly and unconstrainedly as we would wish. The French have adjusted their differences, and are now going on, as the Yankees say, like "clock-work"-their stalls are erected in a style of great, magnificence, the shelves being, in some instances, lined with velvet, and everything is worthy of the taste and elegance of their national industry.

At a meeting, on the 13th, of above two hundred French contributors, it was announced that some of the most celebrated pupils of the Parisian School of Industry were to be sent under the care of their several teachers. free Richard Cobden, M. P., proposed offering the hospitality of home, during the summer holidays, to one of those boys, an example of which, it was stated, many other distinguished Englishmen had expressed their intention of following. The idea was caught up with the utmost enthusiasm; and there was not a French exhibitor present who did not at once declare that he would, in return, invite some pupil of the English schools of design. Here, then, we have, springing from the Exhibition, a true beginning of perpetual international amity.

The total number of packages received, up to the date of my letter, is 9,575.

ſΦ

There is a general complaint here that there is no established place where Americans can meet. With the exception, perhaps, of House's Grand Sarsaparilla Depot, in the Strand, (and, ] which was, in all respects, a truly gorgeous by-the-bye, we would observe that Dr. Townsend is famous already in all parts of the realm), there is no hotel, shop, or building, in this great metropolis, where you could, with any degree of certainty, leok after a brother-American. A spot should be selected, as it would be gratifying for us to know who is coming, who has come, and all the particulars. Н.Н.Р.

#### Opening of the Great Exhibition. on the 1st of May.

#### London, May 2, 1851.

We were on the ground-that is to say, opposite the great building-at 6 o'clock in the morning, when we flattered ourself that, by selecting such an early hour, we should get a desirable standing-place and escape, to some extent, the rude jostling of the leviathan crowd,-but, when we arrived, it seemed that seventy thousand individuals, beside ourself, had conceived the same shrewd idea, and, per consequence, at just past daylight, the throng was most intense; there were acres of human beings from Knightsbridge to the Albert Gate of Hyde Park, and so on to Buckingham Palace, taking in the vast area of the Green Park and all the various thoroughfares leading thereto. We shall never forget the sight; and even at this early hour, an old inhabitant of London remarked to us that he had never witness ed its equal in broad day, much less at a time when it was fair to presume that half the me tropolis were in their beds. The crowds kept pouring in the direction of Hyde Park by shoals of hundreds, thousands, and tens of thousands, until about 2 o'clock, when, after the Queen had left the crystal building, the mighty current seemed to turn and disappear in the mazes of London streets. It is calculated that there were over 3,000,000 people in the neighborhood of Hyde Park, among which were natives of various countries, not forgetting the glorious presence of about 600 Americans who contributed, in a small degree, to swell the almost interminable mass of vitality.

The carriages commenced their approach to the east, south, and west doors of the building about nine o'clock, and at the hour of eleven the cortege reached from this point along Picadilly to the Regent Circus, on to Long Acre, and around to Gray's Inn, a distance of about eight miles. This cortege was formed of every variety of vehicle, from the stylish aristocratic carriage of the nobility to the tradesman's humble cart, all of which contained holders of season tickets, which, not being admitted after 12 o'clock, they made good use of their time by riding to their place of destination. The inmates of the carriagesof expense, to visit the Exhibition, and that more especially the ladies, were in full dress, and the spectacle presented was very magnificent-the liveries, too, were out in all of thei\_ variety, irom plain black to red and scarlet plush, blue and orange, three-cornered hats trimmed with silver and gold lace-the richness and variety of which combined to make up a delicious street panorama.

> At half-past ten, to the minute, the Queen and His Royal Highness left Buckingham Palace, which was besieged by tens of thousands of persons, and proceeded along Constitution Hill. First in order came a troop of the Life Guards, then the Gentleman Usher of Sword and State, in a state carriage drawn by six ing goes, "for love nor money." bays; the second carriage was occupied by

tress of the robes, the Duchess of Sutherland. | four times the power from fuel employed for The master of the horse, a guard of honor, and an escort of the Life Guards, closed the line, display. Her Majesty looked in excellent health, and when the royal carriage passed us, she was chatting and laughing with the Prince. who bore his blushing honors with becoming grace and dignity.

As the royal cortege proceeded along it was hailed with tremendous cheering at every point by the wilderness of spectators, and although the crowd was so great, few, if any, accidents occurred to mar the universal enthusiasm. After Her Majesty had alighted at the Exposition, she ascended a platform raised to the north of the centre of the transept, on which a chair of state was placed, when, after she was seated, a select choir sung "God Save the Queen." After Her Majesty had been in the building some five minutes, Prince Albert joined the Royal Commissioners, and when the music had ceased, proceeded to read to Her Majesty a short report of the proceedings up to that time, which he then delivered to Her Majesty, together with the catalogue of the articles exhibited. Her Majesty returned a gracious answer, handed to her by the Secretary of State; after which his Royal Highness again took his place by the side of Her Majesty. His Grace, the Archbishop of Canterbury then said a prayer, invoking God's blessing upon the undertaking, and the choir sang the Hallelujah Chorus.

After this, a procession was formed, consisting of the various committees and commissioners, native and foreign, and the royal suite, which turned to the right, then moved to the west end of the nave by its north side, returned to the east end of the nave by its south side, including the south end of the transept and proceeded back to the centre along the north side of the nave, which arrangement enabled all of the visitors who had places assigned them to see Her Majesty and the procession.

On Her Majesty's return to the platform she declared "The Exhibition Opened," which declaration was followed by a flourish of trumpets and the firing of a royal salute on the north of the Serpentine, whereupon the barriers which had kept the nave clear was thrown open and the public allowed to circulate.

After Her Majesty's return to Buckingham Palace, the crowds gradually broke and dispersed, all more or less gratified, delighted, or vexed with disappointment, or weary from waiting, as the case might be. It was a memorable event, and will be a bright page in the annals of English history. Shops and stores were closed in the business portions of the metropolis, and with few exceptions there was a general suspension of business.

The arrival of strangers from the country, on Wednesday, was extraordinarily large. It was calculated that the extra passengers by the North Western Railway exceeded 5,000, and those who arrived by the Great Western are estimated at nearly 3,000 more than the ordinary number. The steam vessels from Rotterdam, Hamburgh, Antwerp, Hull, Edinburgh, Calais, Boulogne, Havre, and Dieppe, were unusually crowded with passengers, so that, on a moderate calculation, the number of persons who arrived in London by different conveyances, on the 30th of April, was not less than 55,000. In the vicinity of the railway termini not a bed can be had, as the say-

The "Times," learns that the Queen

stame than can be obtained from fuel employed for steam, in a high pressure engine, and much more than six times the power from fuel employed for stame in a low pressure engine. These great and beneficial results directly depend on the properties of the engines, and particularly on the peculiar construction and position of the heaters employed.

Having experimented with many different formed heaters, I have obtained very different results therefrom : for instance, among other and certainly unexpected objections, I found, on passing steam through a cylindrical heater, corresponding with the description given by Mr. Whipple, that the steam was but little heated therein, being apparently driven in a direct course through it without coming in sufficient contact with the cylinder, which had quite as extensive a surface as another equally heated heater, but constructed of a long coil of tube; the effect produced by the cylinder was not more than half that produced by the coil-apparently from the better contact of the steam in its passage therein.

The coil, cylinder, engine, and connected philosophical apparatus, for showing the nature and value of "stame," are still open for public inspection. Very respectfully,

JAMES FROST, Engineer.

The Useful More Enduring than the Magnificent.

The tomb of Moses is unknown; but the traveller slakes his thirst at the well of Jacob. The gorgeous palace of the wisest and wealthiest of monarchs, with the cedar, and gold, and ivory, and even the great Temple of Jerusalem, hallowed by the visible glory of the Deity himself, are gone; but Solomon's reservoirs are as perfect as ever. Of the ancient architecture of the Holy City, not one stone is left upon another; but the pool of Bethsaida command's the pilgrim's reverence at the present day. The columns of Persepolis are mouldering into dust; but its cisterns and aqueducts remain to challenge our admiration. The golden house of Nero is a mass of ruins; but the Aqua Claudia still pours into Rome its limpid stream. The Temple of the Sun in Tadmor, in the wilderness, has fallen; but its fountain sparkles as freshly in its rays as when thousands of worshippers thronged its lofty colonnades. It may be that London will share the fate of Babylon, and nothing be left to mark its site save mounds of crumbling brickwork. The Thames will continue to flow as it does now; and if any work of art should still rise over the deep ocean of time, we may well telieve that it will be neither a palace nor a temple, but some vast aqueduct or reservoir: and if any name should still flash through the mist of antiquity, it will probably be that of the man who, in his day, sought the happiness of his fellow men, rather than their glory, and linked his memory to some great work of national utility and benevolence. This is the true glory which outlives all others, and shines with undying lustre from generation to generation, imparting to works something of its own immortality, and in some degree rescuing them from the ruin which overtakes the ordinary monuments of historical tradition or mere magnificence.

#### To Deaden the Sound of an Anvil.

If a chain, about one foot long, formed of a few large links, is suspended to the small end of an anvil, it will destroy that sharp thrilling noise produced by striking on it with the hammer : the vibrations of the anvil are extended to the chain, which absorbs them without producing any sound. This is good advice to anybody who has a blacksmith or, worse yet, a coppersmith for a neighbor.

lords and grooms in waiting on Prince Al-Seventy tons of white lead have been used in painting the monster building. bert; the third by the lord in waiting, the Trea-

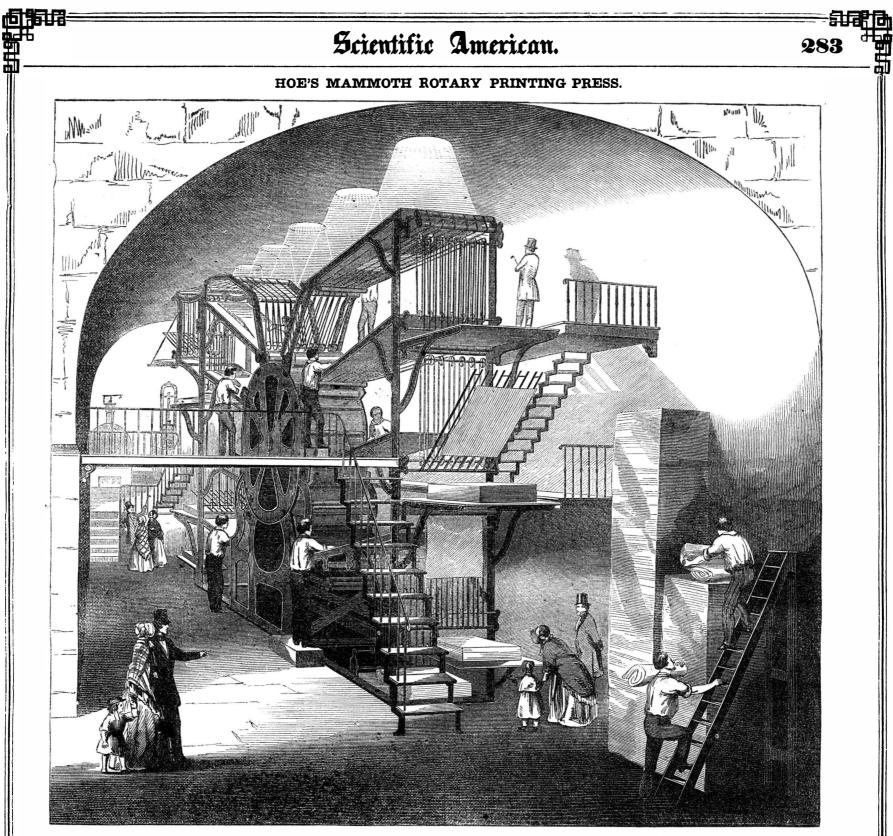
A company has been formed, at Madrid. surer of the royal household, and the Vice Spain, for the purpose of conveying passengers Chamberlain; the fourth by the groom of the to the Great Fair. It is thought that half of stole to the Royal Consort, Captain of the Yea- answer any inquiries which Her Majesty may men of the Guard, Captain of the gentlemen-at- desire to make respecting articles exhibited by the Spanish grandees will be in London duarms, and the master of the buck-hounds : the ring this year. them.

The Americans who are astray here will fifth by maids of honor in waiting, bed-chamfind lots of their papers on file at "Lloyd's ber women, and the earl marshall; the sixth by the lord steward and maids of honor in Reading Room," which fact they may find it important to remember, as the rooms will be waiting. Then followed, in coronation dresses, twelve state footmen walking two abreast, turned over to foreign visiters from 7 A. M. to after which came the Queen's state coach 3 P.M. This is a kind, considerate provision on the part of the proprietors of this fine depot drawn by four cream-colored Arabian horses, stame as from fuel employed for steam. Alattended by groomas, conveying Her Majesty | though this advantage is of considerable vade journal, and will be availed of, we have no doubt, by the hosts of strangers.

signified her intention to visit the Exhibition some Saturday, during the hours before the public are admitted, when all exhibitors are invited to be present and in their places, to

Н. Н. Р.

#### For the Scientific American.


Steam---" Stame." Your correspondent, Mr. Whipple, of Westfield, Mass., states he has obtained more than twice as much power from fuel employed for

the Queen, the Prince Consort, and the mis- lue, yet I have and can obtain much more than brother of Mungo Park, the great traveller.

Straw Bonnet Manufactory. At Sag Harbor, L. I., there is a very large manufactory of straw bonnets : there are about 100 females employed, and about 24,000 bonnets will be sent to this city from it during the present season.

A man's character is frequently treated like a grate-blackened all over first to come out the brighter afterwards.

The English papers record the death of the



The Art of Printing consists in having types | of a wedge shape, being thinner at the bottom | act points above the large drum, there are which ink the surface of the type, and fit it made of a composite metal, cast into a single than at the top, to wedge in the type at the | eight revolving tympan cylinders, or rollers, to print the sheet on the next tympan, and so widest part of a circle which they form with which feed in the sheets to the revolving on continually. These small inking rollers piece for every letter that is seen in a book or the large drum. This is an essential feature drum, and against the surface of which the have their journals fitted on springs, so as newspaper. These letters are put together one after another into words and sentences, and puncin securing the type, and its application is form, as it revolves, impresses the paper. to allow them to be pushed up or down by the certainly the result of a very happy thought. The attendants push in the sheets, one by one, type, and then to be forced against the distrituated with commas, &c. The words are The type is firmly screwed up in the chase by to the tympans, in each of which is an open buting surface, to take up the ink for their arranged in lines, the lines in columns, and section, with fingers worked by a cam, which next performance. set up in an iron frame named a Chase. The set screws. The surface of the large drum of the press are open when they come round to receive a In this one press, it may be said, "there type are all of the same depth, and are wedged is composed of smooth metal plates, and perare eight combined," that is, in respect to its up and secured in the chase, when it is then sheet, then close upon it, wrapping the said forms the office of an ink distributor to the sheet around the smooth surface of the tymeffective power. One, two, three, or more denominated the Form. It requires a great deal of labor to set up the type,-the men small rollers which ink the type. Below the pan; at this very period, the type on the tympan cylinders can be detached, and the large drum has come round, and is acting large rotary drum, there is a trough running rest left free to work. This makes it very who do so are termed Compositors. The inkon the paper. When the type has printed convenient, for it requires but a moment's laing of the type in the form, the placing of a across the frame, into which the ink is pumpsheet of paper on it, then pressing the said bor to set the press so as to work with any ed from a reservoir by a force pump, so as to the sheet, the fingers spoken of open like the human hand and the printed sheet is number less than the eight attendants. sheet down on the type, and afterwards remokeep the trough always full. Above the ink whipped off the tympan and carried away ving it, constitute the art of printing, and trough there revolves a large roller, which Although this machine is so large, strictly these several operations are performed in a takes up the ink on its surface, conveys back to the end of the press, there to be taken speaking it is exceedingly simple in its operation, and it works with a smoothness and remere expeditious manner by the press which it to another roller, that one to a third, off and folded neatly down by a vibratory flygularity that commands admiration. The illustrates this article than by any other in the and it to the smooth surface of the reer, four of which are placed above one another, world. This mammoth press, the largest ever volving drum, distributing the ink on it. The (one for each tympan,) at each side of the building of this great press for the New York constructed, was designed and built by Messrs. use of the three rollers to convey the ink from press. The two outside edges of each sheet of Sun, was commenced in 1849, and it was com-R. Hoe & Co., New York: it is 40 feet in d in 1851. the trough is to work and spread it on the paper are held against a sm narrow on the tympan at each side. Above each In the construction of this press Messrs. length and 5 wide; it has a large centraldrum | distributing surface. As the type in the chase tympan cylinder, it will be observed there are Hoe & Co. state that there are employed no which revolves like a broad wheel. The form stands higher than the smooth surface of the less than six thousand bolts and screws, one (or there may be a number of them) is placed a number of small pulleys, with straps runretary drum, the ink-roller below would cover on the periphery of the central drum, but only the type with ink when it came round to it, thousand two hundred wheels, two hundred ning around them, extending the whole length and two wooden rollers, four hundred pullies, of each tympan, and running on its surface. occupies a portion of it. The chase is curved were it not for a contrivance of Messrs. Hoe to The straps of these small pulleys run away four hundred tape guides, besides an amazing and forms the section of a circle, with the surobviate this difficulty. The large ink-roller amount of cogged wheel connections, arms, face of the type forming the outside of the same. back over a like set of pulleys, above the below has its gudgeons worked on springs, braces, and other connections. There are also which press it up against the smooth surface The type are secured in the curved chase in flyers. Whenever the type forms its impresrequired to give motion to various parts of the a peculiar manner. The column-rules are of the large drum, except at the exact time sion on the sheet, the fingers spoken of let the machine, no less than five hundred yards of straight and run parallel with the shaft of the during the passage of the type; then a cam paper free, and then these small straps whip up the sheet, and carry it along, as on a flybelting. large drum; the head and dash rules are curforces down the ink-roller below the surface of It can print 20,000 copies in one hour. It ved. The column-rules have bottom fianges; the type, until the form is past the point of ing railroad, to be folded by the flyer. After has been in successful operation printing the they slide in the grooves in the bed of the contact, when it rises up against the distributhe form makes its impression on the paper which is wrapped around the tympan, it comes New York Sun for the past three months, and chase, and are secured by brass dove-tail ting surface with its supply of ink. Around the fixed frame at different but ex- in contact with the two small ink rollers, it operates with astonishing precision. wedges. The cross section of a column-rule is

## 284

## Scientific American.

# New Inventions.

New Cloth Measuring Machine. At a recent meeting of the English Institution of Civil Engineers, Mr. Joseph Whitworth, of Manchester, exhibited a new measuring machine, for determining minute differences of length. The accuracy of the machine was demonstrated by placing in it a standard yard measure made of a bar of steel, about three-quarters of an inch square, having both the ends rendered perfectly true. One end of the bar was then placed in contact with the face of the machine, and at the other end, between it and the other face of the machine, was interposed a small flat piece of steel, termed by the experimenter "the contact piece," whose sides were also rendered perfectly true and parallel. Each division on the micrometer represented the one-millionth part of an inch, and each time the micrometer was moved only one division forward, the experimenter raised the contact piece, allowing it to descend across the end of the bar by its own gravity only. This was repeated until the closer approximation of the surfaces prevented the contact piece from descending, when the measure was completed, and the number on the micrometer represented the dead length of the standard bar to one-millionth part of an inch. Eight repetitions of the experiment in a quarter of an hour produced identical results, there not being in any case a variation of one millionth of an inch.

### Ship Measurer.

Mr. Abijah S. Hosley, of this city, has invented and taken measures to secure a patent for a most beautiful instrument to be used in taking the dimensions of the models of ships and other vessels, and which is termed a "ship model measurer," and which must be of great service to our nautical modellers and naval architects. By means of this instrument, by measuring the model, the proportions which it bears to those of the vessel it represents, are ascertained precisely, also the dimensions of the ship to be built from the model are set forth in its various parts, so that the ship builder obtains those necessary measurements which will enable him to construct a vessel in a much shorter space of time than can now be done by any means in use for that purpose. This is a very useful and beautiful invention indeed, and one which cannot fail to come into general used in a very short time.

Improvement in Apple Mills. M1. Samuel Amspoker, of Eldersville, Wash ington Co., Pa., has made an improvement in cider mills which is equally applicable to other mills when animal power is employed, and for which he has taken measures to secure a patent. The nature of this invention consists in causing the mill and its several parts to revolve on a vertical centre or shaft, while the crushing cylinder or roller (one or more) receives a separate motion on its axis by means of a friction roller, which rolls on the raceway on the ground, and which is attached to the driving shaft, so that in addition to its own rotary motion as well as that of the mill carried round by the horse or other animal, the driving power of the mill is governed at all times without alteration of the pace of the horse, by additional pressure or weight to the axis of the pressure roller.

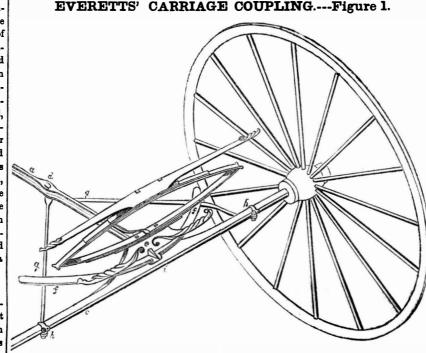
New Railway Torch for Signals. In England it is well known that great attention is paid to signals, and as the trains on our railroads become more numerous, so will

we have to adopt the same system. The fol-

lowing is the account of a new torch recently

introduced upon one of the English railroads :

-The torch consists of a small oil fountain


inside, and when withdrawn the valve shuts, preventing admission of the wind.

New Patent for Rising and Descending Inclinations in Railways.

Wm. F. Carr, of Wayland, Steuben county, New York, the Post says, has filed his caveat for the patent of an invention for ascending and descending any grade upon railroads. He claims that it is a great improvement on the

removed the point of the torch is passed into bled him, in the experiments he has made, to the lamp at the same time raising the valve surmount an ascentof eight hundred and forty-five feet to the mile. Its principle is said to be simple and easily supplied in practice. A third rail furnished with cogs, is laid by the side of the outside rails and cogs are put on the

flanges of the driving wheels. All that we can say about it is that if Mr. Carr had consulted us, he might have saved his money. His invention is at least six or ten years old. Mr. Hoyt of Indiana has a patent or such an invention.



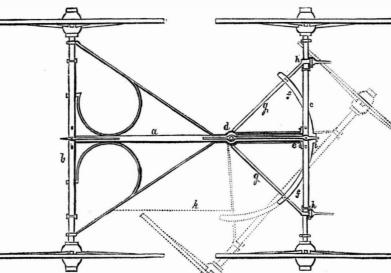

This is an improvement in carriage coup- At the front of the sole plate of the head ling by Messrs. Edward and Charles Everett, block, c, is a projection, i, which bends round patentees, Washington, D. C. These figures the front edge of the segment, f, and serves as a stop to prevent the wheel from striking the are taken from a carriage lately constructed.

Figure 1 is a perspective view of the fore the entire running-gear, with the position of k shows the line of the side of the body. the fore wheels in the act of turning shown in dotted lines. a is the perch; b the hind axle; c the fore axle, which is coupled to the perch by the bolt, d, placed some distance in the

body, when turned to either extreme, by compart of the running-gear, and fig. 2 a plan of ing in contact with one of the radial arms,  $g_{j}$ The carriage above represented will describe a circle, in turning entirely round, of six and a halfieet diameter, while one of the same proportions, but with the perch bolt through

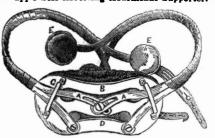
rear of the fore axle. The head block, e, and the fore axle, will not describe a less circle fore spring slide on a segment, f, which is atthan twenty feet diameter. The facilities for getting in and out are great, as the fore wheel tached to the fore axle, c, by bolts, and also by the two arms, g, radiating from the perch turns entirely out of the way, and there is ambolt, d, to the shaft clips, h, on the fore axle. ple room for steps. It is stronger than the old

#### Figure 2.



hinged and loaded; after the outer cover is | methods now in use. It has, he affirms, ena. | it is desirable to use large fore wheels, and it may be applied to those already constructed with little trouble and expense. More information may be obtained by letter addressed to Messrs, Everett.

> For the Scientific American. Theory of the Rifle.


The theory and fact of the superiority of the rifle-barrel gun over the smooth bore, is as follows : in the smooth bore the ball, when discharged from the muzzle, acquires a rotary motion by friction against one or the other of its sides, the axis of which motion is always at right angles with the line of its flight, but may be with respect to the earth, either vertical, horizontal, or inclined. It is obvious that, as the axis of rotary motion is at right angles to the line of flight, therefore one side of the forward half of the bullet revolves in the direction of its progressive motion, and the other half the reverse. Such being the case, the ball meets with much more resistance from the air on the side revolving forward than on the side revolving backward, and is, in consequence, deflected from a right line to the right or left, upward or downward, according to the direction of its axis of rotation.

To obviate the irregularity in the flight of the bullet, caused as above stated, the rifled barrel was invented, and effects the desired object with great certainty. The twisted grooves formed in the bore of the rifle-which, in the most approved rifles, make about one turn in the length of the barrel-cause the ball to rotate about an axis which lies in the same direction as the line of flight: hence its forward half meets on all sides an equal resistance from the atmosphere, and is not deflected from a right line otherwise than by the force of gravity.

#### H. W. H.

Knapp's Self-Arresting Abdominal Supporter.

Claremont, N. H.



The instrument represented in the accompanying engraving is the invention of Mr. Moses L. Knapp, of Painesville, Ohio, and was secured to him by patent on the 28th of last January. A A are the front springs, having four branches, but united into one branch on each side, extending round to the back pads, E E, of which there are four; B D is a polished front wood frame, with a movable cushion inside, and with ventilation openings in it. There is a clamp, C, for each spring in front, and at A A there is a slot in each spring, to adjust the said springs by expansion or contraction by the central set screw, to suit any size or form of the wearer-an improvement long desired. It can be adjusted to the exact degree of comfortable wearing, it has a polished concave wooden surface, with ventilations and a movable cushion, also four back pads suspended by elastic steel springs, affording gentleness of pressure and freedom of motion to that important part, the spineeach part being at once beautifully and happily combined.

From the testimony of medical men and others, Mr. Knapp is confident that his invention is perfectly adapted to attain the desired end in the relief of those for whom it is intended. We believe this to be a most excellent and durable instrument, and a meritorious invention. More information may be obtain ed by letter addressed to Mr. Knapp.

containing about half a gill of oil, with a tube, plan, as the fore axle is not weakened by a | obstacles with facility, and at the same time burner, and wick attached, which slide horihole through its centre, and the strain of the | obviating the disadvantages which have hithzontally inside of a case, completely protected draught is borne by the two radial arms; and erto attended their employment, and with this from the wind by a slide valve and small dome as the wheels are never prevented from turning improvement a carriage can be turned in a in which the light burns, ventilation being small space as those which have small fore supplied to the burner by two air tubes bethe risk of breakage is much lessened, and the wheels will ran under the body; and besides, low, so disposed that the stronger the wind disagreeable scraping of locked wheels altoblows the better the torch burns ; the fiame is gether avoided. the wheels never touch the body, and the parts

This improvement permits the use of large only sufficient to light the burners in the signal lamps, and will burn full four hours. The fore wheels, with all the advantages derived strength than the old method of coupling. valve, which is inseparable from the torch, is from them in saving friction and surmounting

Improvement in Carriage Springs. Mr. Benjamin J. Barber, of Saratoga Springs, N. Y., has taken measures to secure a patent for an improvement in springs for carriages. which is stated to combine greater strength and elasticity than any of the springs in common are so arranged as to give a greater degree of use. The improvement consists in combining a C and eliptic spring; a C is attached to This plan is applicable to all vehicles where leach end of a "semi-eliptic spring."

### Scientific American.

### Scientific American

NEW YORK, MAY 24, 1851.

Young Mechanics----The Way to Rise. We stated last week that few of our mechanics rose direct from the workshop to important places of trust in the Republic, and we also stated that but a few of the great many were qualified to fill important situations even in connection with the trades they learned Why is this? Is it not possible for men to be as well educated in the workshop as anywhere else? Do mechanics not possess the same abilities as those who follow the professions? Yes. Well then, why is it they are not in general fit to march out from the workshop to fill the highest and most honorable offices in our country?

The answer is, they do not in general try to qualify themselves to fulfill their proper duties. as citizens of this great Republic. We suppose that our mechanics themselves would be planet-struck, if it was proposed to run one of their number for President, but it is not our object, except in an angular direction, to point to political situations-we hope the point however, will not be lost.

We have alluded to the absence of a taste for sound and solid reading among our mechanics, and we have now to complain of the absence of a pure and lofty conversation. The majority of our young men belong to fire or military companies, and during their spare moments, their conversation consists more in what this and that engine can do, &c., and not about how it can be done. Idle, vain and frivolous conversation has a very injurious tendency, like reading bad books. A pure conversation and gentlemanly discussion of useful questions, has a very elevating tendency. Young mechanics, we speak to you, in all earnestness; if you wish to rise, you must be enthusiastic about your business, and in the pursuit of knowledge connected with it. In your spare moments, endeavor to seek enjoyment in talking about the principles of your trades, seek to know the why and the wherefore of everything connected with them, and whatever your hand findeth to do, do it well and with all your might. Do not be eye servants, do not use profane language, and give yourselves the best education you possibly can. Every machinist should learn to draw, so should every carpenter, and do not be content until you fully understand, and can construct every machine, apparatus, or whatever it may be, and can take charge of and superintend every branch of business connected with your trades. Men possessing such qualifications are sure to rise. And what is to hinder you from possessing such qualities, along with a character for honesty, fidelity, and ability? Let every one put this question to his own heart.

New Theory of the Central Heat of the Earth and the Cause of Volcanoe

理印

Mr. Stevenson Macadam, of Edinburgh, In South-Western Georgia and all that re-12.672 lbs. Scotland, has advanced a new theory, as india machine upon the same principle. In 1836 We have no data of the battery expense of Mr. Davenport propelled a turning lathe with cated by the caption of this article, which the locomotive of Prof. Page, but the experihis electric engine, and at the same time Mr. puts an entire new face on the subject, and is ments of Mr. Hunt and others have proved distinguished by the firm, clear, unmistakeable Davidson, in Scotland, had a turning lathe that one grain of coal consumed in the furlogic of the Scottish School. It is well known and a small locomotive in operation by the nace of a Cornish engine lifted 143 pounds that as we descend towards the centre of the same power. In 1838 Prof. Jacobi applied one foot high ; whereas one grain of zinc conearth (for all the small depth yet penetrated), his electro-magneticengine to propel a boat at St. Petersburg; and the effort was apparently sumed in the battery, lifted only 60 lbs. the temperature increases at the rate of about a very successful one, for the boat had pad-The difference of expense between stean one degree every 45 feet. Proceeding to reason and electro-magnetism is obvious, the latter is upon this as a basis, many suppose the centre dles, was 28 feet long, 71 wide, drew 21 feet fifty times more expensive, and some new disof water, and with only a battery of 64 plaof the earth to be a red hot fluid mass, and late fall to make so large a crop as the last. covery in its chemical developement must be tina plates, and but a small engine, he prothey account for volcances and hot boiling springs upon this theory. Sir Humphrey Da. pelled the boat with 12 persons in it at the made before it can hope to enter the field as The Seventeen Year Locusts. We perceive by some of our cotemporaries a competitor to propel machinery. We have vy once held this opinion, but discarded it. rate of 3 miles per hour, against the current. The favorers of it believe that the solid crust In 1840 Mr. Davenport, we believe, printed heard many objections against the huge en. that the seventeen year locusts have been gines, boilers, &c., required on board of steamplowed up in many places in Maryland and of this earth lies on the fluid mass as a lump for a short period, in this city, a paper named Pennsylvania. All those who desire to obtain of ice on water; but not so Mr. Macadam : he the "Electro Magnet," the press which printships, and have been told how electro-magnethe most correct description of the appearance tism would do away with "all unnecessary ed it being moved by his electro-magnetic enhas adopted the spheroid theory, which is thus and habits of this insect will find the same in encumbrances," but we have no hopes that explained :-If we throw some water on a red gine. Capt. Taylor obtained an American pa-Prof. Page's Rotary Electro Magnetic Engine an article by Dr. Smith, in number 27, this tent in 1838, and in 1839 he patented it in hot piece of iron it rolls up into little globules Vol. Sci. Am. England, and exhibited a working model in -for he has fallen back on this idea of Daand evaporates very slowly, each drop or sphe-London, which moved a lathe used in turning vidson and Avery-nor any other propelled by The Patent Office. roid keeping at a far lower temperature than the same power, can be placed in any less We have been informed that four Assistant articles of wood, ivory, and metal. boiling water. A quantity of water, by ordi-Examiners have been appointed in the Patent space than a steam engine; we are sure, at These were great experiments, and aroused nary boiling, will evaporate fifty times faster public attention to this "beautiful, cheap, least, they will have to be built just as strong, Office; their names are F. Southgate Smith. than water in this spheroidal state. It is and all those we have seen, exhibited, acof Ohio; Wm. C. Langdon, of Kentucky; Tiand simple power," as it was termed. In New found that there is no real contact between cording to their size, had far less power than mothy Fitch, of New York, and Henry Baldthese spheroids of water and the red hot me. |York, about 1841, electro-magnetic engines bethe common steam engine. win, of Tennessee, at a salary of \$1,500 each. tal, but a kind of reflecting atmosphere of heat. |came a kind of mania, and hundreds were ma-

Mr. Macadam believes the crust of our globe at the centre of our planet, in the same way that the spheroid lies on a red-hot plate. The internal crust he likens to a concave mirror, and the hot fluid mass to a sphere, with an atmosphere between the two of vaporized metal. He believes this heat is constant, and that the crust of the globe is influenced by two great forces-gravitation and spheroidal repulsion.

As it regards volcanoes, he believes they are used by basins of metal at a high temperature, to which water finds admission, thus generating steam, which causes volcanic explosions in some cases, and hot springs in others. The volcanic theory is thus set down as caused by chemical action, the central heat theory has nothing to do with chemical action.

These are the principal features of his theory, and it may be true and it may not. Among the many new and useful discoveries which are continually being developed, there is much that is speculative and of no real earthly benefit—speculations which can never be settled. consequently any person has the perfect right to be as wild and extravagant, or plausible, as he chooses, there being no risk to run, while there may be considerable notoriety gained. This theory of Macadam, however, is the most plausible on the subject which has yet been advanced, we think; and as he allows us 25 miles of solid crust, after which all is red hot fire, we may consider ourselves on solid floating ground until some better theory is advanced,

#### Electro-Magnetism as a Prime Mover.

Although much has been recently said and written about the application of electro-magnetism as a prime mover, it is not a new subject by any means. After the discovery of Electro-Magnetism, by Oersted, in 1819, it at once became apparent that a new mechanical power was given to man, and many were enthusiastic about its superior advantages over steam, as a propelling power. Our own Professor Henry, now of the Smithsonian Institute, first demonstrated the method of developing great magnetic power in soft iron by a small battery, and as a natural result he applied it to propel machinery. In 1831 he described, in Silliman's Journal, a machine for producing a reciprocating motion, "by a power never before applied in mechanics-by magnetic attraction and repulsion." He stated. however, that it was no more than a philosophical toy, but deemed it not impossible that a modification of it might be applied to some useful purpose. In 1833, Dr. Schultless, of Zurich, Switzerland, exhibited a machine propelled by this power, and so did Dr. Ritchie, of London. In 1834, Prof. Jacobi, of St. Petersburg, described to the Academy of Sciences, in Paris, a method of propelling machinery by electro-magnetism; and, about the same time, Mr. Davenport, of Vermont, who has corresponded with the Scientific American, contrived

nufactured to meet the market demand. It to be lying upon the interior red hot round sea | did not last very long, however : it was found that they were expensive, weak of power, inefficient, and troublesome. In 1842, Mr. Robert Davidson, of Aberdeen, Scotland, (a mechanic like our Mr. Davenport), built a locomotive weighing five tons, and experimented with it on the Edinburgh and Glasgow Railway. He had 6 batteries, in all containing 60 zinc plates, with iron ones intervening. Th carriage ran at the rate of 4 miles per hour-a failure, to be sure, as we stated last week. The experiments of Jacobi, Davenport, and Davidson, caused disappointment; still, many attributed their failures to mechanical and other defects, and not to the inherent nature of electro-magnetism. This is the right spirit, for, until all the depths and shoals of this science are discovered, it is folly to despair. Among the many successful investigators and experimenters in Electro Magnetic science, the name of Prof. Page stands high; and his recent experiment with an electro magnetic locomotive at Washington, is the greatest effort of the kind ever made. It makes no matter how much mechanical power may be developed by electro-magnetism, if that power is derived at too great an expense to compete with steam, and it is our opinion that the economy of steam power is not so well understood as it should be by many who are sincerely laboring to perfect electro-magnetism. Hunt, in his experiments, says he proved that the greatest amount of magnetic power is produced when the chemical action is most rapid. Hence, in all magnetic machines, it is more economical to employ a battery under an intense action, than one in which the chemical action is slow. It has been proved by Mr. Joule that one horse-power is obtainable in an electro-magnetic engine, the most favorably constructed to prevent loss of power, at the cost of forty-five pounds of zinc, in a Grove's battery, in 24 hours ; while seventy-five pounds are consumed in the same time to produce the same power in a battery of Daniell's construction.

A voltaic current, produced by the chemical disturbance of the elements of any battery, no matter what its form may be, is capable of producing, by induction, a magnetic force, this magnetic force being always in an exact ratio to the amount of matter, (zinc, iron, or otherwise) consumed in the battery.

What amount of magnetic power can be obtained from an equivalent of any material consumed? The following were regarded as the most satisfactory results yet obtained :

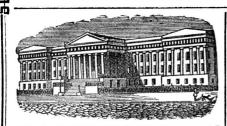
1. The force of voltaic current being equal to 678, the number of grains of zinc destroyed per hour was 151, which raised 9,000 pounds one foot high in that time.

2. The force of current being, relatively, 1300, the zinc destroyed in an hour was 291 grains, which raised 10,030 pounds through the space of one foot.

3. The force being 1,000, the zinc consumed was 223 grains; the weight lifted one foot

We consider the locomotive the prince of prime motors, and we have no hopes of ever seeing it superseded by an electro-magnetic engine. We may be mistaken, but when 400 tons can be drawn 58 miles at the expense of only 14 cents per ton for coal, as has been done by a locomotive, we may begin to talk of the importance of Electro Magnetism as a prime mover.

Astronomical Observations at Washington. The second volume of "Astronomical Observations," made under the direction of Lieut. Maury, at the National Observatory, Washington, containing the Appendix, has just been published. It is a work which does honor to our country, and Lieut. Maury has our thanks, and will have that of all our readers, for the information we are permitted to glean from its pages in relation to the Electric Clock of Dr. Locke, &c. Capt. Wilkes, of the Navy, it is stated, was the first to apply the magnetic telegraph to the determination of longitude. This was done five or six years ago, for determining the difference of longitude between Washington and Baltimore, and he reduced the results down to the accuracy with which the time, between the ticks of the second-hand could be measured by the eye and the ear; this was the first time the magnetic telegraph was reduced to a valuable astronomical instrument. In 1848, Dr. Locke, of Cincinnati, informed Lieut. Maury that he had invented a Telegraphic Register Clock for Longitude. This clock has been erected in the "National Observatory," by Dr. Locke, and the principle of its operation is the breaking and closing of the circuit, so as to make regular marks on a fillet of paper of a certain length, to indicate the 100ths of a second, unless the circuit is broken by the operator, who is observing the heavens, noting the transit of stars. He then lays his finger on the key, breaks the circuit, and, during the time the circuit is open, there is left a blank on the paper, which can be measured by compasses, and will tell whether the blank was 100th or 1 a second-time of transit.


#### Pay Your Postage.

When any person sends a letter to another pon matters of business, to gain information, he, as a gentleman, should pay the postage. Mr. O. Child, of Illinois, whose Saw Mill was illustrated, in No. 26, who was made to reside in Ohio, by mistake, has received a number of letters for which he has had to pay double postage. We believe that but few realize the extent of our circulation; when any machine is illustrated in our columns, if it has any merit, it is sure to meet with great attention, and hundreds of letters are sent to the proprietor; in such cases it is no more than just and fair for correspondents to pay their own letters. Those who wish to write to Mr. Child will be pleased to direct letters to Granville, Illinois, -not Ohio.

#### Cotton Crop Prospects.

gion of country beyond Macon, as well as in the north-eastern counties lying on the Savan. han river, the plant is small and unhealthy. The same is true of Burke and Jefferson, two of the most productive counties in the State. The cold weather has kept the plant from coming up, and consequently the stand is a poor one. In no particular, is the prospect so good as it was at this time last year. It will require favorable seasons and a

d l



286

C Reported expressly for the Scientific Ameri can, from the Patent Office Records. Patentees will find it for their interest to have their inventions illustrated in the Scientific American, as it has by far a larger circulation than any other journal of its class in America, and is the only source to which the public are accustomed to refer for the latest improve ments. No charge is made except for the execution of the engravings, which belong to the patentee after publication.

LIST OF PATENT CLAIMS Issued from the United States Patent Office.

FOR THE WEEK ENDING MAY 13, 1851. To Jonathan Sullivan, of Lexington, N. C., for im-

provement in Straw Cutters. I claim, in combination with the toothed grooved cylinder and curved stationary knives, the clearers, arranged and operating substantially as shown.

To John R. St. John, (assignor to James Renwick, G. F. Barnard, and E. B. St. John, of New York, N. Y., Trustees of the St. John's Compass and Log Manufacturing Co.), for improved method of supporting the vanes of aquatic velocimeters. Ante-dated Dec. 27.'1850.

I do not intend to claim any of the parts herein described, as taken separately; all are well known and in common use : but I claim attaching the disc or plate to the sliding frames, one of which frames carries the shaft of the paddle blades, when said frame and plate are fitted to be lowered into or raised out of a tube, in such a manner that when in place for use the plate prevents any indirect current of water from ascending into or descending out of the tube, to disturb or destroy the accuracy of the instrument, leaving the paddle blades subject only to the direct action of the vessel's progress through the water, substantially as described.

To Rufus Bixby, C. S. Bixby, and John Grist, of Dayton, Ohio, for improvement in PlaningMachines.

We claim the employment on one or both sides of the grooving cutters, of a chain or band applied and operated in the manner substantially as described.

To Charles Hoskyns, of New Orleans, La., for improved apparatus for relieving the helmsman from the shock of the rudder.

I claim the combination of two sets of pawls between which a wheel is placed, loose upon the shaft, having an endwise motion thereon, by means of the male and female screw, as described, said wheel being provided with a hub, so fitted as to disengage the pawls when the hub arrives at the limit of its end play in either direction ; the result being that the rudder secures itself through the agency of the pawls, and is unlocked so as to befree to move in either direction, by the first motion of the same wheel, which afterwards moves the rudder. In other words, I claim the combination of the hub, secured to the wheel, the male and female screws, or their equivalents, and the ratchet and pawls, substantially in the manner and for the purposes described.

To George Faber, of Canton, Ohio, for improved apparatus for indicating the height of water in steam boilers, etc.

I claim the combination of the chamber with the boiler or other vessel, in which the height of fluids is to be measured by means of tubes so formed and attached, as to act as springs, to indicate the weight of the water at any time within said chamber, for the purpose and substantially in the manner herein set forth.

the air passage for returning the particles of answer for a right or left hand door, substan- from rosin in precisely the same manner as flour which would otherwise escape, to the tially as described. centre hole of the floor of the bolting chamber, to be drawn in again by the draft, sub-

To Ezra Ripley, of Troy, N.Y., for Crane Hinge of doors, shutters, &c.

stantially in the manner set forth.

I claim the crane door-hinge, constructed in the manner and for the purpose substantially as set forth.

To A. F. Ahrens, of Philadelphia, Pa., for improvement in Setting Teeth.

I claim attaching artificial teeth to a plate in the roof of the mouth, by means of a wedgeformed recess in the tooth, and a pivot of corresponding shape, soldered or otherwise, attached to the plate, when the union of the two is effected, by the use of platinum and tin or solder, substantially in the manner and for the purposes specified.

To A. F. Ahrens, of Philadelphia, Pa., for improvenent in Setting Teeth.

I claim securing artificial teeth to a plate in the roof of the mouth by means of a rebate in the inner face of the tooth, and a slide fitting the same and soldered or otherwise attached to the plate in the mouth, for the purpose and in the manner described.

To Joseph Grant, of Providence, R. I., for improve nent in Brick Presses

I claim, first, the form of the pressing plates thicker at one edge than the other, as shown, and for the purpose described.

Second, the motion of the followers or plungers (three) by rollers moving in fixed grooved channels (two) and acted upon by revolving cams, (two) producing a drop movement, and operating as herein shown and explained.

Third, propelling the machine forwards by means of wheels keyed on the mould cylinde. shaft, for the purpose of depositing the bricks, as made, in regular layers for drying.

To Martin Rich, of Fairfield, Wisconsin, for imrovements in Saw Mills.

I claim, first, the tightener and key, and the manner in which they are used in tightening the dogs, as herein set forth.

Second, I claim the movable arm to regulate the thickness to be sawed when changing from one thickness to another in the same log, without taking the dog out of the log, as herein described.

Third, I claim placing the second dog upon the main plate and adjusting it by the bolt and key, constructed in the form and manner, and

for the objects and purposes herein set forth. No other part of the said described dogs do I, in this my specification, claim as new or original, excepting such as above enumerated.

**RE-ISSUES.** To G. H. Corliss, of Providence, R. I., for improve ment in cut-off and working the valves of Steam Engines. Originally patented March 10, 1849.

I claim, first, the method substantially as described, of operating the slide valves of steam engines by connecting the valves that govern the ports at opposite ends of the cylinder, with separate arms of the rock-shaft, or the mechanical equivalents thereof, so that from the motion thereof the valve that keeps its port or ports closed, shall move over a less space, while its port or ports are closed, than the one that is opening or closing its port or ports, and vice versa, while at the same time the two arms, by which they are operated, have the same range of motion as described, whereby I am enabled to save much of the power heretofore required to work the slide valves of steam engines, and by which, also, I am enabled to give a greater range of motion to the valves, at the periods of opening and closing the ports, to facilitate the induc-

Scientific American.

I also claim the peculiar construction and double action (upon an inclined and horizontal track or way) of the locking car, as described, and the combination of the locking car and two safety cars, with one another, and with the connecting or vibrating bar and bolt, as described, so as to fasten the bolt securely and prevent its being picked.

To Alex. Calderhead, of Philadelphia, Pa., for imrovement in the Jacquard Machinery for weaving all kinds of figured cloth. Originally patented Feb. 3, 1841.

I claim, first, in connection with looms for weaving figured fabrics, depressing the suspension board, or its equivalent, while the corresponding pattern card, acting as a trap-board. or its equivalent, is elevated substantially as described.

Second, I claim working the card prism, by mechanism connected with the loom, and whilst the boards, or their equivalents, for working the harness, are not opening and closing the shed, substantially as described.

DESIGNS. To M. C. Burleigh, of Great Falls, N. H., for De-

sign for Stove Doors and Panels. To James Hutchinson, of Troy, N. Y., (assignor to

Deborah, A. E., and Nathaniel Powers, of Lansingburgh, N. Y.), for design for Floor Oil Cloth. To N. A. Batchelor, of New York, N. Y., for design

for Clock Frame. (For the Scientific American.)

#### Practical Remarks on Illuminating Gas. [Continued from page 278.]

The production of gas from oil is a continuous process, and accordingly differs from coal gas. According to trustworthy statements. 1 cubic foot equal to about 64 gallons of whale oil, will produce on a average 300 cubic feet of gas. Dr. Fife says that it is generally allowed that by cautiously conducted trials, a gallon of whale oil will yield 100 cubic feet of gas; but this is seldom attained in practice, unless the gas is of inferior quality; for it is well known that by a particular mode, a large quantity of poor gas may be procured : he also says, "I am inclined to think, that in practice, there is in the conversion of oil into gas, a loss of about one-half."

Another material from which gas is generated for illuminating purposes, and which is more or less used at the present time, is Rosin ! Resin.-Resinous bodies form a very numerous class of vegetable substances. When volatile oils are exposed to the action of the air, they become thick after a time, and are then found to be converted into resin. The oil absorbs oxygen from the air, and is deprived of part of its carbon, which, combining with the oxygen of the atmosphere forms carbonic acid. Resinous substances therefore are generally considered as volatile eils saturated with oxygen. The resinous substances are divided into numerous species, such as copal, shellac, benzoin, rosin, &c., the latter only will now command our attention, as it is this species that has been made available for illuminating purposes.

Rosin (or colophony) .- This substance is extracted from different species of the fir, and the resinous matters obtained have been classified. and have received different appellations. That procured from the "pinus sylvestus" is the common turpentine; from the "pinus larix" Venice turpentine; and from the "pinus balsamea" the balsam of Canada. The turpentine is obtained by stripping the bark off the tree; a liquid juice flows out, which gradually hardens; this juice consists of oil of turpentine and rosin; by distilling, the turpentine in the above manner, then a glass tube is insses over, and the rosin remains behind; by serted, and strong sulphuric acid mixed with distilling to dryness common rosin is obtained. a small proportion of water is poured in; the The yellow color is given to rosin, by adding acid dissolves part of the stone; the sulphite water while it is in a fluid state; it being in- is then extracted and the bottom washed by corporated with it by agitation. Rosin Gas.-If rosin was naturally fluid instead of being solid, there would be no difference in the mode of obtaining gas from it to that practiced in the oil gas manufacture; as this, however, is not the case, it becomes necessary to render the rosin fluid by some suitable means, that it may be easily supplied to ming, and then blasted. The quantity of the retort; for this purpose the flame from the powder being as large as it may seem necessaretort fire, before escaping by the chimney, is ry, permits to blow up, with a single charge, employed, by being allowed to pass around as much as with ten of the old process, and

from oil, and the apparatus for both are similar in construction. Rosin is composed of carbon, hydrogen, and oxygen, its atomic formula being C10+H7+0. When decomposed these elements form new combinations and yield bi-carburetted, light carburetted hydrogen, carbonic acid, oxygen, and free hydrogen; there is also a large deposition of carbon formed upon the retort. The temperature of the retort should be somewhat higher than that required for the decomposition of oil; if the retort is too cold, a considerable quantity of essential oil is distilled, the vapors of which pass over, while the oil remains behind.

The opening of the retort for the removal of the coke, bricks, or whatever material may be used to increase the heated surface, becomes necessary much oftener in the manufacture of rosin gas than it does in oil gas; and where large quantities are manufactured, the renewal takes place every few hours; this operation is accompanied by an escape of a large quantity of light amorphous carbon, in the form of lampblack, which is conveyed through the air considerable distances, settling upon all contiguous surfaces, and is a constant source of annoyance to the inhabitants residing in the vicinity of such works. Rosin gas has not so high an illuminating power as that generated from oil; nevertheless it is much more desirable, being more free from the obnoxious odor which accompanies the latter, arising from the decomposition of animal matter contained in the oil, and which is brought over with the gas and condenses in the pipes, and not containing so much aqueous vapor which is condensed at common temperatures, and by which much is lost and great inconvenience caused by the clogging up of pipes.

Rosin is oftentimes introduced into coal retorts in a solid state in company with the coal; but this is only done when it is necessary to generate gas in a limited space of time, and more rapidly than can be done with coal alone. In cases of emergency it has been used with advantage, as it becomes decomposed and liberates its gases so quickly.

Rosin gas works have been erected, and companies formed for the purpose of manufacturing and supplying this gas; but they have not been successful; the expense attending the generating is the prime difficulty, and the fluctuating price of the raw material is also a great source of uncertainty. In New York this gas was at one time manufactured upon a large scale, but it has now been entirely given up and coal gas substituted. In Boston likewise for many years this gas was manufactured to a great extent, but is now entirely abandoned. Works were erected in a neighboring city a few years since, and after struggling along for some time, endeavoring to manufacture a gas satisfactory to their consumers, and receiving no remuneration for the investment. they were abandoned, and coal gas works erected in their place, at a great sacrifice of property. J. B. B.

Blasting Rocks. Blasting rocks by the old process consists in making holes in a proper spot, by using a heavy iron bar, of which the successive strokes produce the desired effect; the hole then is cylindrical and rather conical, being wider at the top by the friction of the rod bar against its sides. The powder has not then all the effect which it could have, and can never be used in large quantity. A process used with full success, is this: a deep hole is first made sending down some water, which is pumped out by any means whatever; this operation is repeated as many times as is necessary to produce at the bottom of the hole a kind of pouch, which is well dried by using rags or anything similar. This pouch is then filled with powder by the common process of ram-

To James M. Clarke, Lancaster, Pa., for improvement in Flouring Apparatus.

I claim, first, the arrangement of the "hopper boy," revolving on the same centre as the stone and the chamber beneath the stone, by which the flour is cooled as it is conveyed to the centre opening of the bolt, substantially as set forth.

Second, I claim the annular or endless conveyors for carrying the flour, &c, in the several annular chambers, to the spouts, the same ÎΨ being operated in the manner described. Third, I claim, in combination therewith, der that the same lock, or cased fastening, may the reservoir containing it. Gas is generated to have larger blocks if desired.

tion and eduction of steam, as specified. And lastly, I claim the method of regulating the motion of steam engines, by means of the regulator, by combining the said regulator with the catches that liberate the steam valves, by means of movable cams, or stops, substantially as described.

To Calvin Adams, of Pittsburgh, Pa., (assignor to J. P. Sherwood, of Sandy Hills, N. Y.,) for improvement in Door Locks. Originally patented Dec. 17, 1842.

I claim making the cases in which the movements of locks and latches for doors are contained, double faced, or so finished that either side may be used for the outside, in or-

## Scientific American.

#### TO CORRESPONDENTS.

N. C., of N. Y .- We shall write you in a few days in regard to the mill.

J. P. N., of N. Y .- We have been informed about the removal of the paddles of the Santa Claus, but are told that the boat moved faster and more steady with the curved blades. Now there can be no doubt but the defect was in the mechanical construction, not the principle. We are no advocates of them, however. In answer to your question, we must say that A, as you observe, will move towards C, but then it is just the same as the radial rudder, it would do the same. We still cannot see the benefit of a rudder made with double radius blades.

-.-The boiler iron you speak of W. M., ofmeans its strength when cold. It is understood that its strength diminishes as it increases in temperature This was presented in the reports made to Congress on the subject. The gas and the atmosphere, when united and ignited, produce an effect like gunpowder. You are perfectly right about the super-heated metal being so easily torn to pieces. The ratio of decrease in strength according to increase of heat in the metal, has been ascertained by experiment.

R. J. S., of Va .- We have never seen the same plan of wheels proposed for inclines, although cogs on the sides of the wheels have been used; but we believe that it is best to make very little provision for ascending steep inclines; the cheapest way in the end is to dig down the incline to as near a level as possible.

W. E., of Cincinnati .- We have just received the model of your invention and shall proceed with the application in a short time.

G. W. B., of N. Y.-Yours of the 6th May is received, and the advertisement will appear as soon as the patent is issued.

B. P. & P., of London.-Yours, per Franklin, of the 6th inst. is received. Shall remit the bill of exchange per first steamer.

F. G., of Boston.-We shall attend to your call without delay. The sketch will be furnished in time. W. M., of Wisconsin.-We will answer your inquiry by letter as soon as we can attend to it.

O. P. S., of Ohio .- The amount would be \$8 for having the engravings prepared. As soon as the patent is issued you had better transmit the Letters Patent to us for that purpose. Your own experience speaks favorably of such a medium as the Scientific American through which to publish improvements.

F. E. H., of S. C.-We are in correspondence with a practical tanner, and hope to advise you in full in a few days.

W. & P., of N. Y.-Your engravings will appear in our next number.

S. R., of N. Y.-There is no prospect of using the Electro-Magnetic engine so as to compete with the steam engine. We have some very strong facts to back up this opinion.

W. C. of --.-We have been trying to get some information that would be profitable about the ' diapa son scale,' but have not yet been able. We may 800n

J. C. V. D., of N. Y .- We will answer you about the raft and log soon. The question is not a complicated one by any means.

A. R. H., of N. J.-The malleable iron, we believe is made by submitting the common cast iron to the heat of an air furnace in a melted state for some days, and skimming the impurities as they rise to the surface.

T. McG., of Mass.-All machinery is just means to communicate or transmit power from one point to another. A train of wheels gives out power in a curved line, the section of which is of the same form as a section of the cogs on one wheel. Young mechanics should pay greatattention to the lines of direction generated by the motion of wheels, &c. Your ideas about employing air as a motive power will never answer, for this very reason, you wish to use compressed air, and it requires some other power to compress it, there can therefore be nothing but a no sitive loss sustained.

P. B. C., of Del.-Enough has been said about the Paine-Light to answer for some time. It will end as it began. in assertion.

R. J., of Geo.-The sulphate of iron (common copperas) is a very excellent disinfectant. Dissolve some of it in a pailful of water and throw it among the matters to be disinfected. The plaster of Parisis good, so is ground charcoal.

A.G., of N.Y.-There is no resemblance between your invention and the one to which you have alluded.

S. R., of Md.-You may depend upon it, that you can secure a patent, for your invention is both new and useful. We will do the business at a very rea sonable rate. We never wish to overcharge. We

S. D. H., of Va.-You will find, upon examination of the Scientific American, that we do not undertake the sale of patent rights; this branch of business w have never undertaken, perhaps for the want of pro-per time to attend to it. You had better send us your Letters Patent and we will publish an engraving of it, which will do much towards bringing it into notice Your invention for invalids appears to be good, and worthy of a patent. We should think some physician in your section would take hold of it. The incline plane may be new, we have no means of deciding from the description given. The Railroad Gate is probably similar to Coffin's Patent, in 1849. You are advised to do nothing with it, it will not pay. G. & Co., of Ala.-We wrote you a few days since

through Messrs. Jno. G. Winter, Son & Co.; please let us hear from you in reply as soon as convenient,

and we shall feel much obliged. E. E., of Va.-Messrs. Jacob Little & Co. attended to your order promptly and satisfactorily.

J. C. L., of W. T., of N. Y.-We shall be happy to receive the articles from your pen: you are from the right school. You know what we like-short and comprehensive articles, and, if possible, every one its own mirror. We have been very much and unfairly annoved, lately, from the quarter to which you refer, and we sincerely wish that a change may shortly take place there. You may judge from this how we have oftentimes, for the interest of our clients, to restrain our feelings.

R. J., of Pa.-There is no earthly way of compu ting the power of a machine when the question of velocity is left out of sight. The idea of a horse-power means a unit of comparison, and that is weight and velocity : a horse drawing 200 lbs. at the rate of 220 feet per minute over a pulley.

S. K. B., of Mass .- We are not positive about the experiment showing the rotation of the earth. We will publish an engraving of it next week.

II. R., of Mass.-We could not advise you to m an application for a patent on the Bench Hook, as there is not sufficient novelty to warrant it.

E. A. N., of Ind.-Such a contrivance as yo gest was patented in 1849, by Richard Coffin, of Haverhill, Mass. ; we should consider it essentially like yours : the gate opens on the approach of the cars, and closes immediately after they pass through. We

doubt the practicability of such a contrivance.

S. C., of N. Y.-C. M. Saxton, No. 152 Fulton st., published Gillespie's work on Plank Roads : price, we believe, \$1,50; it is the best work up to this time. N. G., of N. Y.-We do not see any advantage that could be gained by your arrangement of the levers on the locomotive. It would be of no advantage, we believe, but it is new.

B. G., of Mass.-The sketch of your contrivance or punching leather has been examined and believed not to possess novelty sufficient to warrant an application for letters patent ; punching shafts, havingspiral springs for throwing them back, have long been in use in different machines. A model of a machine now in this office, for cutting the ears of hoops, has the same essential characteristics as are exhibited in yours; guide rests are common, and any particular application could not be patented. We admit the compactness and utility of the arrangement, but believe it could not be patented.

E. S. H., of N. C.-We have forwarded your letter te one of the parties interested in the machine, who will no doubt respond to your inquiries.

W. H. G., of O .- There is no work published that specially treats of city and street architecture. We should have sent you a copy of Arnott's Architecture, but it could not be obtained in numbers, and the express fees upon a bound copy would cost you more than the book is worth.

Money received on account of Patent Office busi ness since May 13 :

W. J. McA., of Ga., \$20; B. & H., of N. Y., \$30; T. B., of N. Y., \$70; G. L. H., of Conn., \$20; D. & R. P., of N. Y., \$20; R. W. P., of Mass., \$30; R. M. W., of Va., \$60; E. D., of Ga., \$56; A. S. H., of N. Y., \$25; C. S.G., of Vt., \$10; S. W. K., of Pa., \$56. Specifications and drawings of inventions belonging

to parties with the following initials, have been forwarded to the Patent Office since May 13:

J. B., of Mich.; T. B., of N. Y.; A. S. H., of N. Y.; D. & R. P., of N. Y.; D. W. E., of N. Y.

#### **Back Numbers and Volumes**

In reply to many interrogatories as to what back numbers and volumes of the ScientificAmerican can be furnished, we make the following statement : Of Volumes 1, 2, and 3-none

Of Volume 4, about 20 Nos., price 50 cts.

Of Volume 5, all, price, in sheets, \$2; bound, \$2,75. Of Volume 6, all back Nos., at subscription price.

New Edition of the Patent Laws

### ADVERT ISEMENTS.

#### Terms of Advertising :

One square of 8 lines, 50 cents for each insertion. 12 lines, 75 cts., " " " " 16 lines, \$1,00

Advertisements should not exceed 16 lines, and cuts cannot be inserted in connection with them at any price.

### American and Foreign Patent

American and Foreign Patent Agency. MPORTANT TO INVENTORS.—The under-signed having forseveral years been extensively engaged in procuring Letters Patent for new mechani-cal and chemical inventions, offer their services to in-ventors upon most reasonable terms. All business entrusted to their charge is strictly confidential. Pri-vate consultations are held with inventors, however, need notincur the expense of attending in person, as the preliminaries can all be arranged by letter. Mo-dels can be sent with safety by express or any other convenient medium. They should not be over 1 toot square in size, if possible. Maying Agents located in the chief cities of Eu-rope, our facilities for obtaining Foreign Patents are unequalled. This branch of our businessreceives the especial attention of one of the members of the firm, who is prepared to advise with inventors and manu-facturers at all times, relating to Foreign Patents. In the item of changes alone, parties having besiness to pranact abroad, will find it for their interest to consult with us, in preference to any other concern. MUNN & CO., 128 Fulton street, New York.

#### 128 Fulton street, New York.

**LAW'S PLANER FOR PLANK, BOARDS, L**&c., is now attracting much attention on account of its effectiveness, the excellence of its work, its simplicity, and consequent economy. Machines are now in operation in Brooklyn, New York City, and at various points South and West. Rights or ma-chines for sale by H LAW. 23 Park Row 35 if chines for sale by H. LAW, 23 Park Row. 35 tf

WANTED.—A gentleman residing in Alabama is desirous of obtaining the services of a man of sound judgment and good morals, who has no wile —one who understands thoroughly the business of manufacturing chairs. No one but a man who can give the best of reference as to qualifications need apply. Address (post-paid in all cases) to MUNN & CO., this office. 354

M tention of Mechanics, inventors, and artisans is especially called to the Polytechnic Exhibition, which will open at the rooms, cor. Bowery and Division st, on the 15th; of May. Those who wish to exhi-bit models, machinery, &c., of mechanical skill, and those who would like to carry on, permanently, any mechanical occupation that would be in any way cu-rious or attractive to visitors, are requested to call on the Actuary. Steam power will be provided. Well-lighted, warmed, and airy rooms can be had on liberal terms. As this Exhibition is permanent, an excellent terms. As this Exhibition is permanent and the to bring themselves into notice. Articles may be sent in im-mediately and will be taken care of and insured. Z. PRATT, Prest.; T. C. DODD, Actuary. 34tf PRATT, Prest.; T. C. DODD, Actuary. 34tf

MOUNT PROSPECT INSTITUTE, West boomfield, N. J. (6 miles from Newark).—The object of this Institution is to prepare lads for busi-ness in every department of active life; mathematics and the sciences receive particular attention; sur-veying and civil engineering is carefully attended to; students make frequent surveys, and prepare draughts and maps of their surveys, and draw plane of bridges, locks of canals, &c. Instruction is also given in li-near, perspective, and mechanical drawing. Terms from \$160 to \$200 per year. The sessions commence on the first day of May and November. WARREN HOLT, Principal and Proprietor. References—Geo. Gifford, Esq., 17 Wall st.; S. R. Parkhurst, Esq., 70 Broad st., N. Y.; Prof. James J. Mapes, Newark, N. J. 344\*

**EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE S MACHINERY DEPOT**, 109 **D** Pearl st. 60 Beaver, N. Y.—The subscriber is constantly receiving, and offers for sale, a great va-rlety of articles connected with the mechanical and manufacturing interest, viz., Machinists' Tools—en-gines and hand lathes, iron planing and vertical drilling machines, outting engines, slotting machines, bolt cutters, slide rest, universal chucks, &c. Car-penters' Tools— mortising and tennoning machines, woodplaning machines, &c. Steam Engines and Boil-ers, from 5 to 100 horse power. Mill Gearing,— wrought iron shalting, brass and iron castings in ade to order. Cotton Bink thing, brass and iron castings in ade from the best makers. Cotton Gins, hand and pow-or, and power presses. Leather Banding of all widths, made in a superiormanner, from the best oak tanned leather, Manufacturers' Findings of every de scription—bobbins, reeds, shutles, temples, pickers, card clothing, roller cloth, potato and wheatstarch, oils, &c. P. A. LEONARD. 33tf.

oils, &c. **DATENT CAR AXLE LATHE.**—I am now manufacturing and have for sale the above lathes: they will turn and finish six sets per day, weight 5,000 lbs., price \$600. I have also for sale my Patent Engine Screw Lathe, for turning and chuck-ing tapers, cutting screws, and all kinds of common job work; weight 1500 lbs., price \$225, if the above lathes do not give good satiafaction, the money will be refunded on the return of the lathe, if within six months. Hartford, Conn. Hartford, Conn. 32 13\*

RON FOUNDERS MATERIALS-viz., fine

SCRANTON & PARSHLEY, New Haven, Conn., will have finished by the 10th of May, 12 Slide Latnes, with 8, 10, and 12 feet beads; these lathes swing 21 in., have back and sorew gear, have over-head reversing pullies, all hung in a cast-iron frame, with drill, chuck, centre, and follow rest. S. & P. will also have 12 upright drill presser ready to ship at the same time; they have also constantly on hand 5 and 9 feet power planers, the same as he reto-fore advertised in this paper. Hand Lathes and slide lathes constantly on hand. Cuts, with full descrip-tions and prices, of the above tools can be had by ad-dressing as above (post-paid.) 33tf

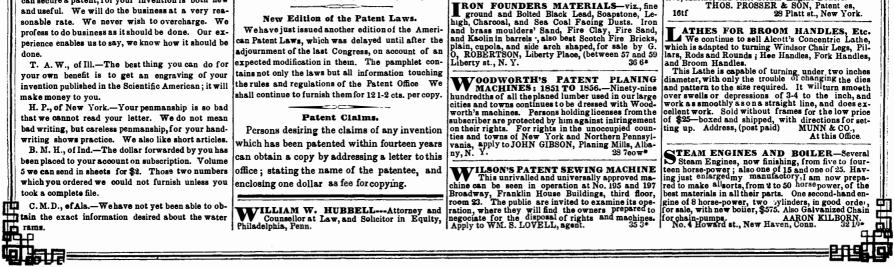
**A CARD.**—The undersigned beg leave to draw the attention of architects, engineers, machi-nists, opticians, watchmakers, jewellers, and manu-facturers of all kinds of instruments, to his new ard extensive assortment of fine English (Stubs) and Swiss Files and Tools, also his imported and own manulactured Mathematical Drawing Instruments of Swiss and English style, which he offers at very rea-sonable prices. Orders for any kind of instruments will be promptly executed by F. A. SIBENMANN, Importer of Watchmakers' and Jewellers' Files and Tools, and manufacturer of Mathematical Instru-ments, 154 Fulton st. 20 3m\*

ments, 154 Fulton st. 20 Gm<sup>\*</sup> DiCK'S GREAT POWER PRESS.-Th public are hereby informed that the Matteawan Company, having entered into an arrangement with the Patentee for the manufacture of the so-called Dick's Anti-Friction Press, are now prepared to exe-oute orders for the following, to which this power is applicable, viz.-Boiler Punches, Boiler Plate Shears, Saw Gummers, Rail Straighteners. Copying and Seal-ing Presses, Book and Paper Presses, Embossing Presses, Presses for Baling Cotton and Woollen Goods -Cotton, Hay, Tobacoo, and Cider Presses; Flax-seed, Lard, and Sperm Oil Presses; Stump Extract-ors, &c. &c. The convenience and celerity with which this machine can be operated, is such that on an average, not more than one-fourth the time will be required to do the same work with the same force required by any other machine. 25tf No. 66 Beaver st., New York City.

MACHINES FOR CUTTING SHINGLES. The extraordinary success of Wood's Patent Shingle Machine, under every circumstance where it has been tried, fully establishes its superiority over any other machine for the purpose ever yet offered to the public. It received the first premium at the last Fair of the American Institute—where its operation was witnessed by hundreds. A few State rights re-mainunsoid. Patented January Sth, 1530,--13 years more to run. Terms made easy to the purchaser. Address, (post-paid) JAMES D. JOHNSON, Redding Ridge, Conn., or Wm. WOOD, Westport, Conn.. All letters will be promptly attended to. 37tf

G URLEY'S IMPROVED SAW GUMMERS → -for gumming out and sharpening the teeth of saws can be had on application to G.A. KJRTLAND, 205 South st., N. Y. 10tf

TO PAINTERS AND OTHERS. TO PAINTERS AND OTHERS.—Ame-rican Anatomic Drier, Electro Chemical grain-ing color's, Electro Negative gold size, and Chemical Oil Stove Poinsh. The Drier, improves in quality, by age—is adapted to all kinds of paints, and also to Printers' inks and colors. The above articles are compounded upon known chemical laws, and are sub-mitted to the public without further comment. Manu-factured and sold wholesale and retail at 114 John st., New York, and Flushing, L. I., N., by QUARTERMAN & SON, 35tf Painters and Chemists -Ame-


M Street, N. Y., dealer in Steam Engines, Boil-ors, Iron Planers, Lathes, Universal Chucks, Drills Kase's, Von Schmidt's, and other Pumps, Johnson's Shingle machines, Woodworth's, Daniel's and Law's Planing machines Dick's Presses, Punches, and Shears; Mortic'g and Tennoning Machines, Belt-ing, machiner ' ci ; Beel's patent Cob and Corn Mills; Burr Mill, and Grindstones, Leed and Iron Pipe, &c Letters to be noticed must be post paid.

**BAILEY'S SELF-CENTERING LATHE,** for turning Broom and other handles, swelled work, chair spindles, &c.; warranted to turn out twice the work of any other lathe known-doing in a first rate manner 2000 broom handles and 4000 chair spindles periday, and other work in proportion. Orders, post-paid, may be forwarded to L. A. SPALDING, Lockport, N. Y. 21tt

OREIGN PATENTS .- PATENTS procured **F** in GERAT BRITAIN and her colonies, also France Belgium, Holland, &c., &c., with certainty and dis-patch through special and responsible agents ap, ont-ed, by, and connected only with this establishment.— Pamphlets containing a synopsis of Foreign Patent laws, and information can behad gratis on application JOSEPH P. PIRSSON, Civil Engineer, 24tf Office 5 Wall street, New York.

RAILROADCAR MANUFACTORY.--TRA-Passage, Freight and all other descriptions of Rail-road Cars, as well as Locomotive Tenders, made to order promptly. The above is the largest Car Fac-tory in the Union. In quality of material and in workmanship, beauty and good taste, as well as strength and durability.we are determined our work shall be unsurpassed. JOHN R. TRACY, 16tf. THOMAS J. FALES.

AP-WELDED WROUGHT IRON TUBES for Tubular Boilers, from 1 1-4 to 7 inches in di-ameter. The only Tubes of the same quality and manufacture as those so extensively used in Eng-land, Scotland, France and Germany, for Locomo-tive, Marine, and other Steam Engine Boilers. THOS. PROSER & SON, Patent es, 16tf 28 Platt st., New York.



### 288

# Scientific Museum

#### (For the Scientific American.) American Sponges and Florida Salt.

In your valuable paper of the 12 inst., in an article headed "Bahama Sponges," you make the query, "could not the sponge-fishing be pursued along the coast of Florida ?" and knowing your anxiety to keep posted up in relation to the industrial pursuits of the whole country, I take this opportunity to inform you that, within the last nine months, there has been exported from the Port of Key West some \$17,000 worth of sponges, and the business is daily increasing here in importance. The first start made at this kind of fishing took place not more than one year ago, and it now occupies the entire attention of that class of the population here that go by the name of "Conks." They are the descendants of refugees or tories who emigrated from North Carolina, during the Revolution, to the Bahamas, and who have been returning continually to the United States since the Emancipation Act began to take effect in the Btitish W. I., in 1833. At this time there are about 1500 of that class on this Island, and they are, in their way, industrious and frugal, but I do not think that they will set the Gulf of Mexico on fire with any extraordinary enterprise; however, they are orderly and quiet, and make the best divers and fishermen that we have here. On the whole, they are among our most useful citizens.

The wrecking vessels, likewise, which belong here, have begun, many of them, to join "sponging" with that of their regular business.

By the way, there is a business pursued on this island which promises to be of considerable importance hereafter : I mean the making of salt by solar evaporation, which is now carried on to a small extent, but could easily be increased a thousand fold, as the natural salt ponds are sufficiently extensive for the pur- | following : pose.

destructive hurricanes of 1845 and 1846, which laid everything in ruin about the ponds, and which so discouraged the proprietors that they sold out: but they had done enough to convince the judicious that the business could be made profitable by the right management. as the salt is of a superior quality, and the solar heat, joined to the Trade Winds, possess great evaporative powers. The present proprietors are making improvements slowly, and of such a character that a hurricane will not be likely to destroy them; and I should think motion, convenience of management and suthat they now make from 30,000 to 40,000 bushels of salt yearly, which would be sought after if its superior qualities for packing meats were generally known.

The writer of this, two years ago, took some of the "Key West Salt" with him to

The cost of a wheel of 1320 horse-power, West, is generally the kind brought from Liing, constantly, their perfect working condiand 100 feet fall, as represented last week, verpool, is evaporated by boiling, and which, tion. The capability of a belt of any given will be about \$18,592, or at the rate of \$14,80 of course contains all the impurities in both strength and tension to transmit mechanical per horse-power. the mineral salt and the sea-water used to power from one axle to another, being directly Sugar Refining Machinery. dissolve it in the manufacture of the article; as its velocity, the high speed attained in this At the present moment there are being except such impurities as epsom and glauber improved method, enables one of moderate constructed at the Novelty Works, this city, salts, which are more soluble than common strength and tension to communicate a great lt, and which are easily separated from that four copper vacuum pans, the largest ever seen amount of nower. And as the nower may be article by being drawn off in the form of "bit- taken from both ends of the shaft of the wheel, in this country, each weighing over four tons, and any number of belts be used, any amount and being 8 feet 6 in. in diam., and capable of terns;" but the muriate or sulphate of lime, containing 2,000 gallons. They are constructor the muriate of magnesia is crystalized of power that a wheel can be made to give, ed, also, on a new and improved plan; havwith the muriate of soda (common salt), or can be transmitted by this simple and easy double bottoms, and being lined with long with it hopelessly incorporated. Now, in a tamethod directly from the axis of the water coils of pipe, which allow of the application ble of the constituents of sea-water before me wheel to the several parts of the machinery to be propelled. In regard to the durability of of steam to the boiling of the sugar. An air (for its correctness I do not vouch), in some pump, worked by steam, draws off the vapor instances the three above named impurities, belts used in this way, our experience has now avoided by the boiling point being obtained at a low temperature. Each pan is provided with a thermometer; a guage to exhibit the extent to which the air has been exhausted; a proof-stick to enable the boiler to test, at any a proof-stick to enable the boiler to test, at any b our final statement of the science of arising in the pans; while the sugar itself is combined, bear a ratio to common salt of 111 | fully proved that when made of good leather, to 285,-nearly 50 per cent. However this in a proper manner, they will remain in good may be. it is certain that not a barrel of meat order in constant use, for years, with a workused by the British army or navy, or the com- ing tension of fifty pounds for each inch of mercial marine, for long voyages, is salted their width; and an increase of speed to any with salt made anywhere in the British Islextent yet tried, makes no apparent difference ands; "Bay (selar evaporated) Salt" alone is in their durability.

used, which is procured from France or Portugal, and John Bull sends here innumerable cargoes of his impure salt to taint our meat, and we are the gulls that buy it.

Scientific American.

In Key West great care is taken to get the pickle" to the strength requisite in the "reservoirs," to deposite all the crystals of those three named impurities there, before it is pumped into the "pans" where the salt is crystalized. This leaves the salt nearly pure, s the bitterns are easily drawn or washed off.

The American Encyclopædia, in the article on "Salt," says that the muriates of lime and magnesia and the sulphate of lime, which are always present in common salt, when evaporated by boiling, not only injure the salt to the amount of the weight of those impurities but that they materially injure the antiseptic powers of the remaining pure salt. Will not some of your numerous correspondents, who are practical chemists, test the antiseptic qualities of different kinds of salt or give us the esults through your columns? I think it is of importance to health that we should eat sound instead of tainted meat. By the way, England is very careful not to buy any of the meat salted here with the salt she sends us. Key West, Fla. D.

#### For the Scientific American Hydraulics.

(Continued from page 280.) GREAT POWERS ON HIGH FALLS .- We last week presented two engravings of the plan proposed by Mr. Parker for applying his wheels to high falls, and thereby bringing into useful action the immense water powers in some districts of country, where they are now dashing down expending their noisy strength upon crags and jutting rocks. It is a plan which appears to be perfectly practicable, and whereby the mountain torrent may be made to forge an anchor or to shape a pin. We do not present any engravings this week, but will let Mr. Parker give his own opinions upon the engravings we presented last week, to which we would refer our readers as they read the

The representations given are the deductions The business was commenced before the of long experience and much careful investigation; and as the principles upon which they are based have been fully tested in a practice of many years, they may be safely considered as reliable. That this improvement ranks with the best known in regard to economising water, has been fully proved by several carefully made scientific tests, and in many instances in practice, where they have been substituted for gravity wheels ; and that they are superior to all others in durability, freedom from accident or disarrangement, steadiness of perintendance, the smallness of the space they occupy, and cheapness of construction and maintenance, particularly where great powers are required, there can be no doubt with such as will investigate the subject.

With the arrangement represented, the sides the great strength of the materials of Alabama, where he resides, and where he had transmission of high powers and velocities by which they are proposed to be made (in the been much troubled to keep meat in the sumbelts, so far as tried, has been perfectly sucform most favorable for strength), any number mer, whenever he killed a small hog or beef, cessful and satisfactory. A considerable numof binding rods and bolts may be inserted and he does not remember of losing a pound ber of mills, so arranged, have been running when required without detriment to the effiof meat while he used this kind of salt. from two to five years, and in no instance has ciency or convenience of the machine. there been any trouble or expense in maintain-The kind of salt used at the South or South

On falls greater than 35 or 40 feet, it will time, the condition of the mass; and an eyegenerally be found most convenient to place glass which affords a view of the interior of the axis of the wheel about 24 feet above the

surface of the lower level; and for this reason they are so represented in the engravings. It may, however, be placed at any convenient height not exceeding 30 feet; the effect of the whole fall being the same, (if the air is perfectly excluded from the draft-chambers and tube), that it would be if the wheel were at the bottom of the whole descent. When the wheel is thus elevated in a sufficiently capacious cavity, from which the air is entirely excluded, and out of which the water, passing through and from the wheel can freely and slowly pass at the bottom, the pressure of the atmosphere on the surface of the head water becomes effective in giving velocity and force to the water, in its passage into and its action on the wheel, in addition to that due to the actual head above the wheel, to an extent equal to a column of water of a height equal to the elevation of the wheel above the lower level. For example, as the atmospheric pressure on the surfaces of both head and tail water is constantly nearly 15 lbs. for each square inch, which is sufficient to raise a column of water in a vacuum nearly 34 feet high; if the wheel be placed in such a cavity, 17 feet above the surface of the lower level, the atmospheric pressure on the upper level will be made available to the extent of half an atmosphere, or 71 pounds per square inch, which is equal

to a head of water of 17 feet; and this will be in addition to the pressure of so much of the whole fall as there may be above the wheel operating as head. The same rule will hold good till the wheel is placed at a height of 34 feet or more above the lower level,-where the whole atmospheric pressure is made available on the upper level. An elevation of the wheel above this point cannot increase the atmospheric pressure on the upper level; it will therefore cause a loss of so much of the whole descent as there may be between the wheel and the top of the column of water sustained in the vacuum by the pressure of the atmosphere on the lower level : thus, if on a total fall of 64 feet, the wheel were placed 44 feet high there would be a loss of 10 feet of the fall: because there would then be a height of 10 feet of perfect vacuum, through which the water (even the most minute particles) would fall with the velocity due to falling bodies.

Great advantages in efficiency, durability, and economy are anticipated from making the entire structure (except the walls) of metal; as besides the greater durability and stability of the materials, it will induce a much more perfect style of workmanship in the arrangement and finish of the parts than has hitherto been attainable.

The great statical pressure of the higher heads in the cylinders and on the disc and cover of the penstock, can, with proper attention, be sustained without difficulty, as be-

the pan.

#### 1 LITERARY NOTICES.

MANUFACTURE OF STEEL: Frederick Overman, published by A. Hart, Philadelphia.—Mr. Overman is the author of a splendid work on the "Manufacture of Iron," another on "Practical Mineralogy," all pub-lished by the same house. He has devoted his atten-tion to metallurgy in all its branches. This work is not only devoted to the manufacture of the steel, but the different methods of working in it, such as lorg-ing, making of anvils, fluxes for welding, testing steel, &o. It is a hand-book to the blacksmith and all workers in steel and iron. We consider it to be an exceedingly usefulbook, and well worthy the patron-age of all interested in iron work.

MILLER AND MILLWRIGHT'S ASSISTANT: Published by C. Baird, of Philadelphia.—The author of this work is Wm. C. Hughes, of Michigan, a practical man. It treats of Water Wheels and the Power of Water, es-pecially as applied to Re-action Wheels. Ittreats of the *friction* of machinery, &c.; it also treats of the oulture of grains and the different kinds of stones for grinding wheat and corn. It is very particular in its directions for dressing and laying the stones. This is the best part of the book, and is exceedingly practical and useful. It is just the book wanted by our millers, and no one in our country should be without it.

DICTIONARY OF MECHANICS AND ENGINE WORK.--No. 20 of this able work, published by D. Appleton & Co., New York, contains articles on the "Mineral Kingdom," "Moulding Maschinery," "Self-Acting Mule," "Nail Machinery," "Needles," and a view of "Byram's Oscillating Engines," and "Paper Machi-nery;" Byram's English Oscillating Engines are far inferior to some now running in our city--American engines.

ICONORAPHIC EXCYCLOPEDIA.—Part 19 of this use-ful and beautiful work is now published and ready for sale by Mr. Rudolph Garrigue, No.2 Barclay st., it contains plates from 18 to 37 of the work, repre-senting the various orders of architecture. The il-lustrations of this work really entitle it to be named "Iconographic," ior it is a book of pictures in every sense of the term.

PETERSON'S LADIES' NATIONAL MAGAZINE, for June, is for sale by Messrs. De Witt & Davenport, Tribune Buildings. It contains sprightly engravings of "Ghost Stories," "Fashions," etc. Peterson, Dana, Chivers, Mrs. S. S. Smith, are among the contributors.

The last number of the DRAMATIC WORKS of SHAK-The last number of the DRAMATC WORKS of SHAK-STEARE, by Philips, Sampson & Co., Boston, is is-sued; it contains the tragedy of "Othello." The publishers announce, in a special notice, that owing to the sicknessof the engraver, the portrait of Desde mona could not be executed, and that it will accompa-ny part one of the Peetical Works, which they will is-sue in about ten days. We commend this work to the attention of our readers as the most complete and va-luable edition ever published. Price 25 cents. De-witt and Davenport, agents.

NEW YORK NEWS LETTER.-This is the title of a new and very neat little paper, printed on a large sheet of good post, and containing a summary of all the news of the week, state of the markets, and so on. It has one blank side for writing upon, so that it is very convenient for merchants and others writing to their friends. It is published by J. E. Phillips & Co., 120 Water st.



INVENTORS MANUFACTURERS. The Best Mechanical Paper IN THE WORLD! SIXTH VOLUME OF THE

SCIENTIFIC AMERICAN.

SCIENTIFIC AMERICAN. The Publishers of the SCIENTIFIC AMERICAN. respectfully give notice that the SixtH VOLUME of this valuable journal, commenced on the 21st of September last. The character of the SCI-ENTIFIC AMERICAN is too well known throughout the country to require a detailed account of the va-rious subjects discussed through its columns. It enjoys a more extensive and influential circula-tion than any other journal of its class in America. It spublished weekly, as heretofore, in Quar-to Form, on fine paper, affording, at the wai of the year, an ILLUSTRATED ENCYCLOPEDIA, of over FOUR HUNDRED FAGES, with an Index, and from FIVE to SIX HUNDRED ORIGI-NAL ENGRAYINGS, described by letters of re-ference; besides a vast amount of practical informa-tion concerning the progress of SCIENTIFIC and MECHANICAL IMPROVEMENTS, CHEMISTRY, CIVIL ENGINEERING, MANUFACTURING in its various branches, ARCHITECTURE, MASONRY, BOTANY,--in short, it embraces the entire range of the Arts and Sciences. It also possesses an oughnal feature not found in any other weekly journal in the country, viz., an Oficial List of PATENT CLAIMS, prepared ex-pressly for its columns at the Patent Office,-thus constituting it the "AMERICAN REPERTORY OF INVENTIONS." TERMS-\$2 a-year; \$1 for six months. All Letters must be Post Paid and directed to

TERMS-\$2 a-year ; \$1 for six months. All Letters must be Post Paid and directed to MUNN & CO. ~a,a Publishers of the Scientific A 128 Fulton street, New York. INDUCEMENTS FOR CLUBBING. INDUCEMENTS FOR CLUBBING. Any person who will send us four subscribers for six months, at our regular rates, shall be entitled to one copy for the same length of time; or we will furnish-10 copies for 6 mos., \$8 | 15 copies for 12 mos., \$22 10 "12" \$15 20" 12" \$29 Southern and Western Money taken at par for subscriptions; or Post Office Stampe taken at their full value.